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Abstract
We apply the tangent method of Colomo and Sportiello to predict the arctic
curves of the six vertex model with reflecting (U-turn) boundary and of the
related twenty vertex model with suitable domain wall boundary conditions on
a quadrangle, both in their disordered phase.
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1. Introduction

1.1. Arctic phenomenon

Geometrically constrained two-dimensional statistical models are known to display the so-
called arctic phenomenon in the presence of suitable boundary conditions. This includes ‘free
fermion’ dimer models, where typically dimers choose a preferred crystalline orientation near
boundaries while they tend to be disordered (liquid-like) away from the boundaries: the arctic
phenomenon is the formation of a sharp phase boundary as the domain is scaled by a large
overall factor, the so-called arctic curve separating frozen crystalline from disordered liquid
phases. The first observed instance of this phenomenon is the celebrated arctic circle arising
in the domino tilings of the Aztec diamond [JPS98], and a general theory was developed for
dimers [KO07, KOS06]. The free fermion character of these models can be visualized in their
formulation in terms of non-intersecting lattice paths, i.e. families of paths with fixed ends,
subject to the condition that they share no vertex (i.e. avoid each-other), and can consequently
be expressed in terms of free lattice fermions.Amanifestation of the free fermionmodels is that
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their arctic curves are always analytic, and usually algebraic at ‘rational’ values of interaction
parameters, such as in the uniformly weighted cases.

Beyond free fermions, the archetypical model for paths allowed to interact by ‘kissing’ i.e.
sharing a vertex at which they bounce against each-other, is the six vertex (6V) model. The
families of paths describing the model are called osculating paths. With so-called domain wall
boundary conditions (DWBC) the 6V model exhibits an arctic phenomenon in its disordered
phase, which was predicted via non-rigorous methods[CNP11, CP10b], the latest of which
being the tangent method introduced by Colomo and Sportiello [CS16]. The new feature aris-
ing from these studies is that the arctic curves are generically no longer analytic, but rather
piecewise analytic. For instance, the arctic curve for large alternating sign matrices (uniformly
weighted 6V-DWBC) is made of four pieces of different ellipses as predicted in [CP10b] and
later proved in [Agg20].

The tangent method was validated recently in a number of situations, mostly in free fermion
situations [CKN21, CPS19, DFG18, DFG19a, DFG19b, DFL18, PR19a]. However, a simple
transformation using the integrability of the models allowed to deduce from the 6V results
the arctic curves for another model of osculating paths: the twenty vertex (20V) model with
DWBC1, 2 [DDFG20]. The 20V model is the triangular lattice version of the 6V model: in
one formulation the configurations of the model are orientation assignments of all edges of the
lattice, in such a way that the ice rule is obeyed at each vertex, namely that there be an equal
number of edges pointing toward and outwards (2 + 2 for 6V, 3 + 3 for 20V). In [DFG18],
four possible variations around DWBC were considered for the 20V model, denoted DWBC1,
2, 3, 4. In the present paper, we will concentrate on the 20V-DWBC3 model on a quadrangle,
which was recently shown to have the same number of configurations as domino tilings of the
Aztec triangle of suitable size [DF21]. The proof uses again the integrability of the model to
relate its partition function to that of the 6V model with another type of DWBC, called U-turn,
considered by Kuperberg in [Kup02], and whose partition function has a nice determinantal
form [Kup02, Tsu98].

In this paper, we set the task of deriving the arctic curves for the U-turn 6V model, and as
by-products, those of the 20V-DWBC3, and of the domino tiling of the Aztec triangle.

1.2. Arctic curves and the tangent method

The systems we are considering in this note are all described in terms of osculating or non-
intersecting paths, and are expected to display an arctic curve phenomenon. The rough idea
behind the tangent method is as follows. The n paths describing the model’s configurations
have fixed starting and endpoints, and form a ‘soup’ whose boundary tends to a subset of the
arctic curve. Indeed, this boundary is a solid/liquid separation between an empty phase and
one with disordered path configurations. Consider the outermost path forming that boundary:
if we displace the endpoint of this path to a point say L outside of the original domain, the path
will have to detach itself from the soup, and continue to its endpoint within a mostly empty
space, once it gets away from the soup formed by the other paths, where it is most likely to
follow a geodesic (a line in all cases of this paper, due to a general argument of [DFL18]). This
geodesic is expected to be tangent to the arctic curve in the large n limit. The corresponding
path is therefore used as a probe into the arctic curve: the geodesic is determined by the point
L and the point K at which it exits the original domain1.

The partition function Σn,L of the new model is now a sum over the possible positions of K
of the product of two partition functions: (1) Zn,K the partition function of the n osculating/non-

1 Both points K and L scale linearly with the size n so that a thermodynamic limit can be reached.
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intersecting paths on the original domain, in which the outer path is conditioned to end at point
K instead of its original endpoint. (2) YK,L the partition function of a single path subject to the
same weighting, in some empty space from the point K to the new endpoint L. The quantity
Σn,L =

∑
K Zn,KYK,L is dominated at large n by contributions from the most likely exit point

K(n, L). The arctic curve is then recovered as the envelope of the family geodesics through L
and K(n, L) for varying L (in rescaled coordinates).

We see that the crucial ingredient in this method is the refined partition function Zn,K in
which the outer path is conditioned to exit the domain at point K, or rather its normalized
version, the ‘refined one-point function’Hn,K = Zn,K/Zn wherewe have divided by the original
partition function Zn. Computing exactly the leading large n,K, L asymptotics ofHn,K and YK,L
leads to the determination of K(n, L) by solving a steepest descent problem, and eventually to
the arctic curve.

After revisiting the case of the 6Vmodel for pedagogical purposes in section 3,wewill apply
the tangent method in section 4 to the case of the 6V′ model on the (2n− 1)× n rectangular
grid (a simplified version of the U-turn 6V model), in section 5 to the case of the 20V model
with DWBC3 on the quadrangleQn, and finally in section 6 to the domino tilings of the Aztec
triangle Tn. Note that the tangent method was previously applied in [PR19a] to a particular
‘free fermion’ case of the U-turn 6V model, where the arctic curve is a half-circle: the results
of section 3 extend this to arbitrary values of the parameters.

1.3. Outline of the paper and main results

The paper is organized as follows. In section 2.1 we define the four models studied in this
paper. These include: the 6V model with DWBC, the 6V model with U-turn boundary con-
ditions and the related 6V′ model, the 20V model with DWBC3 of reference [DF21], and
finally the domino tiling problem of the Aztec triangle introduced and studied in references
[DF21, DFG18]. We show in particular that all models are described by families of weighted
osculating/non-intersecting paths. In section 2.2, we describe the tangent method in general
and how it applies to the determination of the arctic curves of our models.

The next sections are all organized in a similar way, and treat the various models. For each
case, we first derive compact relations obeyed by the partition function and one-point function
of the model, allowing for extracting asymptotic results. The latter are used to apply the tangent
method, and finally obtain the arctic curves of the model. While section 3 revisits the known
case of the 6V model with DWBC, as a pedagogical warmup, the remaining sections provide
new results: section 4 is about the 6V′ model, section 5 the 20V model with DWBC3, and
section 6 the domino tilings of the Aztec triangle.We obtain arctic curves in all cases: theorems
3.6, 4.15, 5.3 and 6.2 cover respectively the cases of 6V, 6V′, 20V and domino tilings.

We gather a few concluding remarks in section 7.

2. Models, paths and the tangent method

2.1. The models

In this paper we consider 4 different models: three vertex models with particular domain-wall
type boundary conditions (6 vertex on an n× n square grid, 6 vertex with U-turn boundaries on
a 2n− 1× n rectangular grid, and 20 vertex on the quadrangleQn), and one model of domino
tilings of the Aztec triangle Tn.

2.1.1. 6V model with DWBC. The 6V model is the archetype of integrable ice-type model on
the two-dimensional square lattice. Its configurations are obtained by orienting the edges of

3
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Figure 1. The 6 vertex environments obeying the ice rule on the square lattice (top) and
their osculating path reformulation (bottom). We have indicated the corresponding types
(a)–(c).

the lattice (with arrows) in such a way that each vertex has exactly two entering and two out-
going arrows (the so-called ‘ice rule’). This gives rise to the

( 4
2

)
= 6 local environments of

figure 1 (top row), traditionally called (a)–(c) types. Here we consider the 6V model on an
n× n square grid with fixed DWBC, i.e. the 2n horizontal boundary arrows (n on the West
(W) and n on the East (E) boundaries) pointing toward the square domain and the 2n vertical
ones (n on the North (N) and n on the South (S) boundaries) outwards (see figure 2(a) for an
illustration). Finally, the configurationsareweighted by the product of local vertexweights over
the domain2, parameterized by real ‘spectral parameters’ u, v attached to the horizontal and
vertical line that intersect at the vertex, taking the following values in the so-called disordered
regime, which we consider in this paper:

a = ρ sin(u− v + η), b = ρ sin(u− v − η), c = ρ sin(2η) (2.1)

for a, b, c type vertices respectively. The overall fixed factor ρ > 0 emphasizes the projec-
tive nature of the weights and the homogeneity of the partition function (weighted sum over
configurations), from which ρn

2
factors out. Positivity of the weights imposes the condition:

η < u− v < π − η, 0 < η <
π

2
. (2.2)

In the following we shall consider the homogeneous partition function Z6V
n [u, v] ≡

Z6V
n [u− v] in which all horizontal spectral parameters at taking the value u and all vertical ones

the value v, so that weights are uniformly defined by (2.1), and where we note that both the
weights and the partition function only depend on the quantity u− v. As stressed in [CP10a],
the partition function enjoys the following crucial symmetry property:

Z6V
n [π − (u− v)] = Z6V

n [u− v]. (2.3)

This is a consequence of the reflection symmetry of the weights: indeed, the DWBC are
unchanged if we reflect the domain w.r.t. say a horizontal line. However, such a reflection
interchanges vertices of types a↔ bwhile keeping c-type environments unchanged. The same
result is independently obtained by keeping the original setting, but applying the transformation

2We restrict throughout the paper to the disordered regime, in which all weights are trigonometric.
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Figure 2. (a) A sample configuration of the 6V model with DWBC (for n = 9) and
(b) its reformulation in terms of osculating paths.

(u− v)→ π − (u− v) which leaves the domain (2.2) invariant, and under which the weights
a and b are interchanged, while c remains invariant, and (2.3) follows.

This model was extensively studied [ICK92, Kor82, Lie67], and turned out to play a crucial
role in Kuperberg’s proof of the alternating sign matrix (ASM) conjecture [Bre99, Kup96]. The
enumeration of ASM is realized at the ‘ASM point’ where all weights are equal to 1, namely:

η =
π

6
, u− v =

π

2
, ρ =

1
cos(η)

(2.4)

while the weighted enumeration (with a factor τ per entry −1 in the ASM) is provided by
picking

u− v =
π

2
, ρ =

1
cos(η)

, τ = 4 sin2(η), 0 < η <
π

2
(2.5)

namely (a, b, c) = (1, 1,
√
τ ), with the particular cases of 1, 2, 3-enumeration, for the choices

η = π
6 ,

π
4 ,

π
3 respectively. The ‘20V-DWBC1,2 point’ is another interesting combinatorial

point, which corresponds to the identification of the number of 20V DWBC1,2 configurations
in terms of 6V DWBC [DFG18], with the choice:

η =
π

8
, u− v =

5π
8
, ρ =

√
2 (2.6)

corresponding to weights (a, b, c) = (1,
√
2, 1).

More recently the thermodynamic free energy of the model was obtained in [BF06, KZJ00,
ZJ00], and the arctic curves were derived using various semi-rigorous methods, such as the
tangentmethod in [CPS19, CS16], and further used in [DDFG20] to determine the arctic curves
of the 20V DWBC1,2 models.

The configurations of the model can be rephrased in terms of families of osculating paths as
follows. Pick a base orientation of arrows, say to the left and down, andmark all the edges of any
given configurations that respect the base orientation. Note that all theW and S boundary edges
are marked, while the N and E ones are not. The marked edges can be combined into paths say

5
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Figure 3. (a) U-turn boundary 6V model: each U-turn (marked by a black dot along the
W boundary) transmits the arrow orientation through the dot. (b) When all ui = −θ − η,
the weights yd = 0, hence all arrows go up through the U-turns, which may be cut out as
shown. The bottom row becomes trivially fixed to the same b-type vertex. (c) The 6V′

model is finally obtained by cutting out the trivial b-type vertices.

starting at theW boundary and ending at the S one, with right and down steps only, that are non-
intersecting but may kiss/osculate by pairs at fully marked vertices: the corresponding six local
configurations are depicted on the second row of figure 1. The osculating path formulation is
well adapted to the tangent method as we shall see below. For illustration, we have represented
in figure 2 a sample 6V DWBC configuration both in the arrow (a) and osculating path (b)
formulations.

2.1.2. 6V model with U-turn boundary and 6V′ model. Kuperberg considered different sym-
metry classes of ASM, which in turn correspond to different variations around the 6V-DWBC
model [Kup02]. In particular he found a remarkable connection between vertically symmetric
ASMs (VSASM) and the 6V model with so-called U-turn boundary conditions (6V-U), also
considered independently by Tsuchiya [Tsu98]. The 6V-U model is defined on a rectangular
grid of square lattice of size 2n× n with the usual DWBC along the N, S boundaries (each
with n outgoing vertical arrows) and E boundary (with 2n entering horizontal arrows), while
the W boundary has U-turns connecting the 2n horizontal boundary edges (which we label
0, 1, 2, . . . , 2n− 1 from bottom to top) by n consecutive pairs (2i, 2i+ 1), i = 0, 1, 2, . . . , n− 1
(see figure 3(a) for an illustration). Each U-turn transmits the arrow orientation through the
marked dot. The horizontal lines connected by a U-turn receive horizontal spectral parameters
−ui (even label 2i) and ui (odd label 2i+ 1), while vertical spectral parameters are denoted
by vi, i = 1, 2, . . . , n from left to right. As before, we consider the disordered regime, with
trigonometric weights depending on horizontal and vertical spectral parameters as in the case
of the 6V-DWBC model. The local weights, say at the intersection of a horizontal line with
spectral parameter u and vertical line with spectral parameter v are:

ao = ρo sin(u− v + η), bo = ρo sin(u− v − η), co = ρo sin(2η) (2.7)

6
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on odd rows, while we must apply the transformation u→−u on even rows, resulting in:

ae = ρe sin(η − u− v), be = ρe sin(−u− v − η), ce = ρe sin(2η) (2.8)

and where the overall constant factors ρo, ρe > 0 emphasize the projective character of the
weights. Finally, U-turns receive weights:

yu(u) = − sin(u− θ + η) yd(u) = sin(u+ θ + η) (2.9)

according to whether the transmitted arrow goes up or down. We must further constrain u, v, θ
so that the weights of configurations of the 6V-U model are positive. A natural choice is
0 < θ < π

2 and the following domain for the u, v, η parameters:

η < u− v < π − η, η − π < u+ v < −η, 0 < η <
π

2
. (2.10)

For the purpose of this paper, we will consider the uniform case, where all horizontal odd
spectral parameters are equal with value ui = u for all i, and all vertical ones are equal, with
value v j = v for all j, so that weights of odd/even rows are given by (2.7) and (2.8) respectively.
Moreover, we pick θ = −u− η, thus enforcing that at each U-turn the arrows go up3. Divid-
ing each U-turn into two horizontal edges, we now obtain arrows that alternate in/out along
the W boundary (as shown in figure 3(b)). Note that the bottom row of vertices has all its edge
orientations fixed by the ice rule. Upon dividing by the corresponding product of local even
b-type weights, we may safely remove the n vertices of the bottom line. After dividing by the
weights of the removed vertices and U-turns, we are left with the 6V model on a rectangular
grid of square lattice with size 2n− 1× n, and with usual DWBC along the N, E, S bound-
aries, while arrows alternate in/out from bottom to top along the W boundary (as depicted in
figure 3(c)). Note that the rows are now labeled 1, 2, . . . , 2n− 1 from bottom to top. By lack
of a better name, we shall refer to this model as the 6V′ model, and denote by Z6V′

n [u, v] the
corresponding homogeneous partition function. Similarly to the 6V-DWBC case, this partition
function enjoys a reflection symmetry property:

Z6V′
n [−u,−π− v] = Z6V′

n [u, v]. (2.11)

Indeed, like in the 6V case, applying a reflection w.r.t. a horizontal line to the rectangu-
lar domain interchanges vertices of type ao ↔ bo and ae ↔ be while c-type vertices are
unchanged. The same result is obtained in the original setting by applying the transformation
(u, v)→ (−u,−π − v), which leaves the domain (2.10) invariant, and (2.11) follows.

We now examine a few ‘combinatorial points’ in parameter space, where the partition
function of the 6V′ model has some known combinatorial interpretations. Similarly to the 6V-
DWBC case, the enumeration of VSASM is realized [Kup02] at the ‘VSASM point’ of the 6V′

model, where all weights are equal to 1, namely:

η =
π

6
, u = 0, v = −π

2
, ρo = ρe =

1
cos(η)

(2.12)

3 This choice simplifies the model by fixing the orientations of all arrows along the W boundary. However, we argue
that the thermodynamics of the model are insensitive to that choice. For instance, the thermodynamic free energy, a
bulk quantity, is independent of the choice of θ (see remark 4.2 below). So is the one-point function (see remark 4.12
below). As a consequence, the arctic curves of the U-turn 6V and of the 6V′ models are expected to be identical.

7



J. Phys. A: Math. Theor. 54 (2021) 355201 P Di Francesco

Figure 4. (a) A sample configuration of the 6V′ model (for n = 5) and (b) its reformu-
lation in terms of osculating paths.

Figure 5. The twenty vertex environments obeying the ice rule on the triangular lattice
(top two rows) together with their osculating Schröder path reformulation (bottom two
rows).

while the refined enumeration corresponds to [Kup02]:

u = 0, v = −π

2
, ρo = ρe =

1
cos(η)

, τ = 4 sin2(η) (2.13)

with even and odd weights (ai, bi, ci) = (1, 1,
√
τ ), with the particular cases of 1, 2, 3-

enumeration of VSASM corresponding respectively to η = π
6 ,

π
4 ,

π
3 . The ‘20V-DWBC3 point’

is another interesting combinatorial point, which corresponds to the identification of the

8
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Figure 6. (a) A sample configuration of the 20V model with DWBC3 on the quadrangle
Qn (with n = 9 here) and (b) its osculating Schröder path reformulation.

number of 20VDWBC3 configurations onQn in terms of 6V′ DWBC [DF21], with the choice:

η =
π

8
, u =

π

8
, v = −π

2
, ρo = ρe =

√
2. (2.14)

Like in the 6V-DWBC case, the configurations of the model may be rephrased in terms of
osculating paths. Using the same recipe,we see that configurationsare in bijectionwith families
of n osculating paths, starting at odd horizontal edges along the W boundary, and ending at all
vertical edges along the S boundary. For illustration, we have represented in figure 4 a sample
6V′ configuration both in the arrow (a) and osculating path (b) formulations.

The U-turn 6V/6V′ model thermodynamic free energy was derived in reference [RK15],
boundary correlations were studied in [PR19b], and arctic curves were derived in the
VSASM case [DFL18] and in the particular free fermion case corresponding to η = π

4 , u = 0,
v = − π

2 [PR19a].

2.1.3. 20V model with DWBC3. The 20V model is a two-dimensional ice-type model defined
on the triangular lattice. As in the 6V case, edges are oriented in such a way that at each vertex
there are exactly three incoming and three outgoing arrows. This gives rise to the

( 6
3

)
= 20

local vertex configurations depicted in figure 5. Recently this model was considered with
special boundary conditions [DFG18] emulating DWBC on some particular domains. For sim-
plicity, the triangular lattice is represented with vertices in Z

2, and edges of the square lattice
are supplemented by the second diagonal of each square face. Edges are accordingly called
horizontal, vertical and diagonal.

In reference [DFG18], four types of boundary conditions (DWBC1, 2, 3, 4) were considered
on an n× n square grid in this representation, with remarkable combinatorial properties. The

9
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Figure 7. The seven classes of vertices of the 20V model (in osculating Schröder path
formulation), and their corresponding weights ωi, i = 0, 1, 2, . . . , 6.

Figure 8. (a) A sample domino tiling of the Aztec triangle Tn (here for n = 6) and
(b) its non-intersecting Schröder path formulation. The dictionary for the path steps (hor-
izontal, vertical, empty, diagonal) is indicated for each of the four (bicolored) domino
configurations.

DWBC1, 2 are closest to the 6V-DWBC, and correspond to arrows entering the domain on the
W and E boundaries, and exiting on the N and S boundaries, with a particular choice of the NW
and SE corner diagonal edges as belonging to the W and S boundaries respectively (DWBC1)
or to the N and E (DWBC2). The DWBC3 is a more relaxed version of DWBC, where only the
horizontal arrows point toward the domain on the W boundary, and only vertical arrows point
outward on the S boundary, while all other arrows point outward on W and N, and inward
on S and E. In [DFG18], a family of pentagonal extensions of the grid was considered, and
the corresponding 20V configurations were conjectured to correspond to the domino tilings
of special domains, viewed as truncations of the Aztec triangle. The conjecture was proved in
[DF21] for the maximal extension, namely the 20V model with DWBC3 on the quadrangle
Qn of shape n× n× (2n− 1)× n (see figure 6(a) for an illustration), whose partition function
was shown to be identical to that of domino tilings of the Aztec triangle Tn (see figure 8(a)).
In the present paper, we shall concentrate on this model.

Like in the 6V case, we may rephrase the arrow configurations of the 20V model in terms
of osculating paths with horizontal, vertical and diagonal steps along the corresponding edges
of the lattice (these are usually called Schröder paths). This is done similarly by picking a
base orientation (right, down, and diagonal down and right) of all the edges of the lattice, and
marking only those edges of a given configuration of the 20V model that agree with it. The
selected edges are assembled again into non-intersecting, but possibly kissing paths traveling
to the right and down. We have represented in figure 5 (bottom two rows) the 20 local path
configurations at a vertex corresponding to the 20 arrow configurations (top two rows). In the

10
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osculating Schröder path formulation, the DWBC3 onQn gives rise to families of n osculating
paths starting at the n odd horizontal edges along the W boundary, and ending at the n vertical
edges of the diagonal SW boundary, as displayed in figure 6(b).

As detailed in [DFG18, Kel74], the model receives integrable weights inherited from those
of the 6V model upon resolving the triple intersections of spectral parameter lines at each
vertex into three simple intersections corresponding to three 6V models on three distinct lat-
tices. Integrability was used in [DF21] to transform the partition function of the 20V DWBC3
model into that of a 6V′ model, for a particular normalization of spectral parameters of the 20V
model. With this normalization, the seven local vertex weights corresponding to the dictionary
of figure 7 read respectively:

ω0 = ν sin(u− v + η) sin(η − u− v) sin(2u+ 2η)

ω1 = ν sin(u− v − η) sin(−u− v − η) sin(2u+ 2η)

ω2 = ν sin(u− v − η) sin(2u+ 2η) sin(2η)

ω3 = ν {sin3(2η)+ sin(u− v + η) sin(−u− v − η) sin(2u)}

ω4 = ν sin(2u+ 2η) sin(η − u− v) sin(2η)

ω5 = ν sin(u− v − η) sin(η − u− v) sin(2η)

ω6 = ν sin(u− v − η) sin(η − u− v) sin(2u)

, (2.15)

where again the fixed overall factor ν > 0 emphasises the projective nature of theweights. Note
that each vertex is the intersection of three lines (horizontal, vertical, diagonal) each of which
carries a spectral parameter (η + u, v,−u respectively). The domain of parameters ensuring
positivity of the weights is:

0 < u <
π

2
− η η < u− v < π − η η < −u− v < π − η 0 < η <

π

2
. (2.16)

(Note the similarity with the domain (2.10) for the 6V′ model, the only extra condition being
that u > 0).

Note the existence of a combinatorial point where the weights are uniform and all equal
to 1:

η =
π

8
, u =

π

8
, v = −4η = −π

2
, ν =

√
2. (2.17)

identical to the 20V-DWBC3 point of the 6V′ model, where the partition functions of both
models are related [DF21].

2.1.4. Domino tilings of the Aztec triangle. Our fourth class of objects is the tiling configura-
tions by means of 2× 1 dominos of the ‘Aztec triangle’ of order n [DF21, DFG18], denoted
Tn, depicted in figure 8(a). The identity between the number of 20V-DWBC3 configurations on
Qn and the number of domino tilings of the Aztec triangle Tn was conjectured in [DFG18] and
proved in [DF21]. In section 6 below, we will make use of this correspondence to determine
the limit shape of typical domino tilings of Tn for large n.

It proves useful to rephrase the domino tiling problem in terms of non-intersecting lattice
paths, as indicated in figure 8(b), where the indicated dictionary between bi-colored dominos
and path steps has been used to reexpress bijectively the tiling configuration into a family
of non-intersecting lattice paths with fixed ends on the diagonal NW and S boundaries of
the domain. As indicated, the paths may have horizontal, vertical and diagonal steps and are
therefore non-intersecting Schröder paths.

11
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Figure 9. Application of the tangent method to determine the NE branch of the arctic
curve, illustrated for the four models studied in this paper: 6V-DWBC (top left), 6V′

(bottom left), 20V-DWBC3 (top right) and domino tilings of the Aztec triangle (bottom
right). In all cases, the endpoint of the topmost path is displaced from its original position
(white dot) to the right, at some distance 	 (red dot). The partition function splits into the
modified partition function of the model Zn,k with exit point at position k (pink domain)
and that, Yk,	, of a single path from the exit point to the displaced endpoint with the
same ambient weights (light blue domain). The tangent method uses the most likely
position k = k(	) namely the one giving the largest contribution to the total partition
function. The relevant portion of arctic curve is given by the envelope of the family of
lines through (	, 0) and (0, k(	)) (the green and red points), in rescaled coordinates with
the origin at the SE corner of the original domain. All dimensions are expressed in units
of the underlying lattice grid.

2.2. Tangent method: combining one-point functions and paths

This section details how the tangent method of [CS16] works and how we are going to apply
it to the four models studied in this paper: the 6V-DWBC, 6V′, 20V-DWBC3 and finally the
domino tiling of the Aztec triangle, all expressed in the (possibly osculating) path formulation.

2.2.1. The tangent method. As explained in the introduction, the tangent method consists in
finding the most likely exit point from the original domain of the topmost path, given that its
end has been displaced away from the domain. To determine this point, we consider the full
partition function Σn,	 of the model, which is made of two pieces (corresponding respectively
to the pink and light blue domains in figure 9):

• The modified partition function Zn,k for the set of nweighted paths in the original domain,
with the (topmost) nth path constrained to exit the domain along the E border at a
fixed height k (green dot in figure 9), normalized into the ‘refined one-point function’
Hn,k = Zn,k/Zn.

12
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• The partition function Yk,	 of a single weighted path constrained to start at the previous
exit point and end at a fixed endpoint (displaced at distance 	 from its original position,
second green dot in figure 9).

The full partition function reads:Σn,	 =
∑μn

k=1Hn,k Yk,	, where μ = 1 for the 6V-DWBC and
the domino tiling models, and μ = 2 in the other models. Note that all weights (including those
of the single path) are those of the underlying vertexmodel; in particular, the vertices not visited
by the single path (in the light blue zones of figure 9) receive the weight of the empty vertex
configuration.

Next we go to the large n = N scaling limit and use large N estimates of both partition
functions to find the leading contribution to the sum in Σn,	. More precisely, setting n = N,
	 = λN, the limiting solution of the saddle-point approximation to the sum, in the form of
some function κ(λ) where k(	) = μNκ(λ) is the most likely position of the exit point. The
(rescaled) arctic curve is then obtained as the envelope of the family of lines through the most
likely exit point and the fixed endpoint, both functions of the parameter λ. More precisely, we
must estimate the large N behavior of the total partition function Σn,	:

ΣN,λN � μN
∫ 1

0
dκHN,μκNYμκN,λN ,

where we have replaced the summation by an integral over the rescaled variable
κ = k/(μN). In sections 3–6 below, we work out the explicit asymptotics of both functions in
the integrand, in the form HN,μκN � eNSH(κ) and YμκN,λN � eNSY (κ). The leading contribution to
the integral comes from the solution κ = κ(λ) to the saddle-point equation ∂κSH + ∂κSY = 0.
This gives the most likely exit point (0,μκ(λ)) (in rescaled variables). The tangent line in
rescaled variables is the line through (0,μκ(λ)) and (λ, 0), with equation

y+ Ax − B = 0, A =
μκ(λ)
λ

, B = μκ(λ). (2.18)

As we shall see, the family of tangent lines is best described in terms of the parame-
ter ξ (the deviation from uniform vertical spectral parameter in the last (E-most) column
vn = v + ξ). In particular the relationship between λ and κ(λ) takes the parametric form:
(κ(λ),λ) = (κ[ξ],λ[ξ]), for ξ ∈ I, I an interval determined by the conditions that λ[ξ] > 0
and κ[ξ] ∈ [0, 1]. The envelope of the family of lines

Fξ(x, y) := y+ A[ξ]x − B[ξ] = 0 (2.19)

is determined as the solution of the linear system Fξ(x, y) = ∂ξF(x, y) = 0, and gives rise to
the parametric equations for the arctic curve:

x = X[ξ] :=
B′[ξ]
A′[ξ]

, y = Y[ξ] :=B[ξ]− A[ξ]
A′[ξ]

B′[ξ], (ξ ∈ I). (2.20)

By the geometry of the problem, only a portion of the arctic curve can be obtained in this
way: moving the exit point to the right along the line through all other exit points covers a por-
tion of arctic curve between a point of tangency to the E vertical border of the original domain
(when the endpoint tends to its original position) and a point of tangency to the horizontal
N border of the domain (when the endpoint tends to infinity on the right along the line), or
equivalently corresponding to the slope A[ξ] ∈ [0,∞). This condition was used to restrict the
domain of the variable ξ ∈ I. This portion of arctic curve is on the NE corner of the domain,
and we shall refer to it as the NE branch of the arctic curve.

13
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Figure 10. From NE to SE branch in the 6V′ model: (a) configuration of the 6V′ model
(b) after application of theVF (c) after application of the reflection (R), leading to another
6V′ configuration, with weights of ai and bi types interchanged for i = e, o.

The case of the domino tiling of the Aztec triangle is simpler: as a (free fermion) dimer
model, it is expected on general grounds [KOS06] to have an analytic arctic curve, equal to
the analytic continuation of its NE branch. As we shall see, the cases of 6V-DWBC, 6V′ and
20V-DWBC3 are more involved, and lead in general to non-analytic arctic curves.

2.2.2. Other branches. To reach other portions of the arctic curve, we will have to resort to
various tricks, all based on the same principle: we switch to a different interpretation of the
configurations of the original model, to express them in terms of different families of paths, to
which the tangent method can be applied again.

2.2.2.1. 6V-DWBC and 6V′ cases.In the case of the 6V-DWBC/6V′ model arctic curves, we
have access to the SE branch by reinterpreting the 6V configurations in terms of paths with
the same starting points (every point/every other point along the W vertical border) but with
endpoints along the N border (see figures 10(a) and (b) for an illustration in the 6V′ case). This
corresponds to redefining the base orientation of edges (and direction of travel of the paths) to
be to the right and up: we call this transformation on the paths vertical flip (VF). The osculation
at each vertex must be redefined so that all paths now go horizontally right and vertically up.
The SE branch of the arctic curve is obtained by applying the tangentmethod to this new family
of paths. The easiest way to do so is to reflect the picture w.r.t. a horizontal line, so that the
setting is that of the 6V′ model again: we call this transformation reflection (R) as shown in
figure 10(c). The net effect of the composition of VF followed by R on the model is simply to
interchange the a and b type weights, a transformation also implemented by the involution ∗

acting on the spectral parameters as follows:

u→ u∗ = π − u (6V− DWBC) (2.21)

(u, v)→ (u∗ = −u, v∗ = −π − v) (6V′). (2.22)

14
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Figure 11. The shear trick: (a) configuration of the 20V-DWBC3 (b) after application of
the VF (c) after application of the reflection (R) (d) after the shear transformation (S).

This gives rise4 to the new weights a∗ = b, b∗ = a, c∗ = c (6V-DWBC) or a∗i = bi,
b∗i = ai, c∗i = ci, i = o, e (6V′).

The ‘upside-down’ one-point function must also be reinterpreted as Hn,k = H∗
n,μn−k where

the latter is computed with the new transformed weights. Similarly, the path partition func-
tion Yk,	 with starting point (0, k) and endpoint (	, 0) is reinterpreted as the partition function
Y∗
μn−k,	 with the new weights. More precisely setting the origin of the rescaled domain at

the SE corner of the domain, the vertices of the rescaled domain are: SE:(0,0), NE:(0,μ),
NW:(−1,μ), SW:(−1,0). The large n = N optimization problem leading to the most likely
exit point (0,μκ(λ)) leads now to the most likely exit point (0, μ(1− κ∗(λ))) and the associ-
ated family of rescaled lines. The SE branch of arctic curve is obtained by reflecting back the
envelope of this family, and effectively amounts to applying ∗ to the NE branch and reflecting
it w.r.t. the line y = μ/2, namely applying the transformation

(x, y) �→ (x,μ− y) (2.23)

with μ = 1 for the 6V-DWBC model, and μ = 2 for the 6V′ model.

2.2.2.2. 20V-DWBC3 case In the case of the 20V-DWBC3 model illustrated in figure 11(a),
the same idea leading to the SE branch must be adapted (by adapting the ‘shear trick’ devised
in reference [DDFG20]). More precisely, as in the 6V-DWBC and 6V′ cases, we first redefine
the base edge orientation so that horizontal/diagonal edges point right/down, but vertical edges
point up. Alternatively, compared to the original base orientation, this simply interchanges ver-
tical edgeswhich are occupied by path steps with vertical edges which are empty and vice versa
(like in the 6V, 6V′ cases, we call thisVF=VP, see figure 11(b)). The osculation at each vertex
must be redefined so that all paths now go horizontally right, diagonally down and vertically
up: in particular the paths now end on the n vertical edges of the N boundary (see figure 11(b)).
To match this with a 20V configuration of Qn, we must reflect the configuration w.r.t. a hor-
izontal line (we call this again R = reflection, see figure 11(c)). However, the quadrangular
domainQn is not invariant under horizontal reflection: to recover it, we apply a shear transfor-
mation as indicated in figure 11(d) (we call this S = shear). More precisely setting the origin

4 Here and in the following the superscript ∗ indicates that the corresponding quantity is obtained by changing u→ u∗

(6V-DWBC) or (u, v)→ (u∗, v∗) (6V′).
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of the rescaled domain at the SE corner of the domain, the vertices of the rescaled quadran-
gleQN/N are: SE:(0,0), NE:(0,2), NW:(−1,2), SW:(−1,1). Applying successively (in rescaled
variables (x, y)) the reflection (x, y)→ (x,−y), shear (x, y)→ (x, y− x), and finally translation
by (0, 2) leaves the domain invariant, but effectively flips the orientation of the vertical edges in
the 20V-DWBC3 configuration. Note that the final configuration after application of VF,R, S
(figure 11(d)) is slightly different from a 20V-DWBC3 configuration, as all the starting steps
along theW boundary are diagonal, as opposed to horizontal. This clearly makes no difference
in the case of uniform weights, however for non-uniform weights this changes the weights
along the W boundary.We argue nonetheless that this mild boundary effect does not affect the
asymptotic behavior of bulk quantities as all other weights are the same in both situations. In
particular, we expect the arctic curve to be the same in the original 20V-DWBC3 model with
horizontal starting steps along the W boundary, and in the modified one, where all starting
steps are diagonal.

Let us now examine the fate of the local vertex environments of figure 7 under the sequence
of transformationsVF,R, S. It is easy to see that under this transformation the types of vertices
aremapped as follows:ω0 ↔ ω1,ω2 ↔ ω4, while all other types are preserved. For illustration,
the top left vertex of type ω2 of figure 7 is successively transformed into the top left vertex of
type ω4 as follows:

We finally note that the involution ∗ which maps the weights (ω0,ω1,ω2,ω3,ω4,ω5,ω6) �→
(ω1,ω0,ω4,ω3,ω2,ω5,ω6) is simply given by

(u, v) �→ (u∗, v∗) = (u,−v − π) (20V− DWBC3). (2.24)

As before, we have to reinterpret Hn,k = H∗
n,2n−k and Yk,	 = Y∗

2n−k,	 leading to the most likely
exit point 2N(1− κ∗(λ)) in rescaled variables κ = k/(2N) and λ = 	/N. The SE branch is
finally obtained by applying the reflection/shear/translation (x, y) �→ (x, 2− x − y) to the NE
one after applying ∗, namely changing v →−v − π.

This gives access to the SE branch in all 6V-DWBC, 6V′ and 20V-DWBC3 cases. Except in
the free fermion cases, where arctic curves are expected to be analytic, we have no prediction
for other portions of arctic curve when they exist.

3. 6V model

3.1. Partition function and one-point function

3.1.1. Inhomogeneous partition function. A general result [ICK92] provides a determinant
formula for the partition function Z6V

n [u, v] of the inhomogeneous 6V-DWBC model, with
horizontal/vertical spectral parameters u = u1, u2, . . . , un/v = v1, v2, . . . , vn.

Theorem 3.1. Let

m(u, v) :=m(u− v) :=
1

sin(u− v + η) sin(u− v − η)
.
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The full inhomogeneous 6V-DWBC partition function reads:

Z6V
n [u, v] = ρn

2
sinn(η) det

1�i, j�n

(
m(ui, v j)

) ∏n
i, j=1 sin(ui − v j + η) sin(ui − v j − η)∏

1�i< j�n sin(ui − u j) sin(v j − vi)
. (3.1)

3.1.2. Homogeneous limit. The homogeneous limit Z6V
n [u− v] of the inhomogeneous parti-

tion function Z6V
n [u, v] in which ui → u and vi → v for all i involves the quantity

Δn[u− v] := lim
u1,u2,...,un→u
v1,v2,...,vn→v

det1�i, j�n

(
m(ui, v j)

)∏
1�i< j�n(ui − u j)(v j − vi)

= :
1∏n−1

i=1 (i!)
2
Dn[u− v]. (3.2)

Using Taylor expansion of rows and columns leads to the determinant

Dn[u] = det
0�i, j�n−1

(
∂ i+ j
u m(u)

)
.

This determinant obeys a simple quadratic relation as a consequence of
Plücker/Desnanot–Jacobi relations (up to some permutation of rows and columns) relating a
determinant to some of its minors of size 1 and 2 less, summarized in the following lemma.

Lemma 3.2. Given an n+ 1× n+ 1 square matrix M, its determinant |M| and minors |M|ba
(with row a and column b removed), and |M|b1,b2a1,a2

(with rows a1, a2 and columns b1, b2 removed
are related via:

|M| × |M|n,n+1
n,n+1 = |M|nn × |M|n+1

n+1 − |M|nn+1 × |M|n+1
n .

Applying this to the matrixM =
(
∂ i+ j
u m(u)

)
0�i, j�n

, we easily get

Dn+1[u]Dn−1[u] = Dn[u]∂2
uDn[u]− (∂uDn[u])2 = Dn[u]2∂2

u log(Dn[u]).

As a direct consequence, we have

Theorem 3.3. The quantityΔn[u] obeys the following recursion relation for all n � 1:

Δn+1[u]Δn−1[u]
Δn[u]2

=
1
n2

∂2
u log(Δn[u]) (3.3)

with the convention thatΔ0[u] = 1.

Note that this relation determines Δn[u] recursively, from the initial data Δ0[u] = 1 and
Δ1[u] = m[u]. Finally the homogeneous partition function Z6V

n [u, v] is expressed as

Z6V
n [u− v]
sinn(2η)

= Δn[u− v](ρ sin(u− v + η) sin(u− v − η))n
2
. (3.4)

3.1.3. One-point function. We now consider a slightly more general limit, in which we take
u1, u2, . . . , un → u and v1, v2, . . . , vn−1 → v but the last vertical spectral parameter is kept
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arbitrary, say vn = w = v + ξ. The corresponding partition function Z6V
n [u− v; ξ] is again

obtained as a limit of the inhomogeneous formula (3.1). We have

Z6V
n [u− v; ξ]
sinn(2η)

= Δn[u− v; ξ] (ρ sin(u− v + η) sin(u− v − η))n(n−1)

× (ρ sin(u− v − ξ + η) sin(u− v − ξ − η))n (3.5)

in terms of a function

Δn[u− v; ξ] := lim
u1,u2,...,un→u

v1,v2,...,vn−1→v

vn→v+ξ

det1�i, j�n

(
m(ui − v j)

)∏
1�i< j�n sin(ui − u j) sin(v j − vi)

=:
(−1)n−1 (n− 1)!

sinn−1(ξ)
∏n−1

i=1 (i!)
2
Dn[u− v; ξ],

where

Dn[u; ξ] = det

(
{∂ i+ j

u m(u)} 0�i�n−1
0� j�n−2

∣∣∣∣ {∂ ium(u− ξ)}0�i�n−1

)
(3.6)

identical to Dn[u] except for its last column.
We define the ‘one-point function’ as the ratio

H6V
n [u; ξ] :=

Z6V
n [u; ξ]
Z6V
n [u]

=
Δn[u; ξ]
Δn[u]

(
sin(u− ξ + η) sin(u− ξ − η)

sin(u+ η) sin(u− η)

)n

.

Applying again lemma 3.2 this time with the matrixM in the expression (3.6) forDn+1[u; ξ],
we find that

Dn+1[u; ξ]Dn−1[u] = Dn[u]∂uDn[u; ξ]− Dn[u; ξ]∂uDn[u]. (3.7)

We also introduce the reduced one-point function

Hn[u; ξ] := (−1)n−1 (n− 1)!
Dn[u; ξ]
Dn[u]

= sinn−1(ξ)
Δn[u; ξ]
Δn[u]

(3.8)

in terms of which

H6V
n [u; ξ] = sin(ξ)Hn[u; ξ]

(
sin(u− ξ + η) sin(u− ξ − η)
sin(u+ η) sin(u− η) sin(ξ)

)n

. (3.9)

The reduced one-point function is determined by the following relation, as a direct
consequence of (3.7).

Theorem 3.4. The reduced one-point function Hn[u; ξ] of the 6V-DWBCmodel satisfies the
following relation:

Hn+1[u; ξ]
Hn[u; ξ]

Δn+1[u]Δn−1[u]
Δn[u]2

+
1
n
∂u log(Hn[u; ξ]) = 0. (3.10)

18



J. Phys. A: Math. Theor. 54 (2021) 355201 P Di Francesco

3.2. Large n limit: free energy and one-point function asymptotics

In the following sections, we use the fact that the 6V weights depend on the quantity u− v
only. Without loss of generality we shall set v = 0 from now on.

3.2.1. Free energy. In this section, we reproduce an argument of [CP10a, KZJ00] leading to
the large n asymptotics of the partition function of the 6V-DWBC model.

The free energy per site f 6V[u] of the 6V-DWBCmodel is defined via the large n = N limit

f 6V[u] = − lim
N→∞

1
N2

log(Z6V
N [u])

or equivalently as the leading asymptotics Z6V
N [u]�N→∞ e−N

2 f 6V[u]. Substituting this into (3.4),
we get:

f 6V[u] = f [u]− log (ρ sin(u+ η) sin(u− η)) (3.11)

in terms of the limit

f [u] := − lim
N→∞

1
N2

log(ΔN[u]).

Finally, substituting the large N asymptoticsΔN[u]�N→∞ e−N
2 f [u] into (3.3) yields the follow-

ing differential equation (1D Liouville equation)

e−2 f [u] + ∂2
u f [u] = 0.

To fix the solution, let us derive some symmetry and some limit ofΔN[u].
First note that the reflection symmetry u→ π − u from (2.3), together with the relation

(3.11) imply that

f [π − u] = f [u].

Next let us consider the limit u→ η of Δn[u]. Setting u = η + ε, we may perform the homo-
geneous limit (3.2) by setting ui = u+ εxi, vi = εyi (recall we have set v = 0) and taking all
xi, yi → 0. We have for small ε

m(ui − v j) =
1

ε sin(2η)(1+ xi − y j)
+ O(1).

Using the Cauchy determinant formula, we find that

det1�i, j�n(m(ui − v j))∏
1�i< j�n(ui − u j)(v j − vi)

�ε→0
1

εn2
det

(
1

1+xi−y j

)
∏

i< j(xi − x j)(y j − yi)
=

1

εn2

n∏
i, j=1

1
1+ xi − y j

→ xi→0
y j→0

1

εn2
.

We deduce that{
lim
N→∞

− 1
N2

log(ΔN[η + ε])

}∣∣∣∣
ε→0

� log(ε) ⇒ f [η + ε]|ε→0 � log(ε).

DefiningW[u] := e f [u], we find thatW satisfies the following conditions:

W[u]∂2
uW[u]− (∂uW[u])2 =

∣∣∣∣ W[u] ∂uW[u]
∂uW[u] ∂2

uW[u]

∣∣∣∣ = 1
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W[π − u] = W[u], W[η] = 0.

The constant Wronskian condition implies that W[u] obeys a second order linear differential
equation, with general solution of the formW[u] = sin(αu+β)

α
. The parameter β is fixed by the

vanishing condition W[η] = 0, and α by the symmetry condition W[π − u] = W[u]. We find
the solution

W[u] =
sin(α(u− η))

α
, (3.12)

where α(π − u− η) = π − α(u− η), and finally

f [u] = log

(
sin(α(u− η))

α

)
, α =

π

π − 2η
. (3.13)

Substituting this into (3.11), we finally get the thermodynamic free energy of the 6V-DWBC
model in the disordered regime:

f 6V[u] = −log

(
αρ sin(u+ η) sin(u− η)

sin(α(u− η))

)
(3.14)

with α as in (3.13).

3.2.2. One-point function. We present now a simplified version of the argument given in
[CP10a] to derive the asymptotics of the one-point function Hn[u; ξ]. By equation (3.10) we
may infer the large n = N leading behavior of Hn[u; ξ] to be:

HN[u; ξ]�N→∞e−Nψ[u;ξ]. (3.15)

Substituting this into (3.10) yields the differential equation:

e−ψ[u;ξ]−2 f [u] − ∂uψ[u; ξ] = 0 ⇒ ∂u eψ[u;ξ] = e−2 f [u].

Using the result (3.13) for f [u], this is easily integrated into

eψ[u;ξ] = c[ξ]− α cot(α(u− η))

for some integration constant c[ξ] independent of u, and α as in (3.13). To fix the integration
constant, let us consider the limit when u− ξ − η → 0, by setting ξ = u− η + ε for a small
ε→ 0. Noting that

{
∂ium[u− ξ]

}∣∣
ξ=u−η+ε

= − i!
sin(2η) εi+1

+ O(ε−i)

we see that the determinant for DN[u; ξ] (3.6) is dominated by the term in the last row and
column i = j = N− 1, resulting in the leading behavior

DN[u; ξ]
DN[u]

� −(N − 1)!
DN−1[u]

sin(2η)εNDN[u]
� (N − 1)!

W2N

εN

⇒ HN[u; u− η + ε]�ε→0

(
W2

ε sin(u− η)

)N

,

where we have used the defining relation (3.8) for HN[u; ξ]. Sending ε→ 0, we conclude that

lim
ξ→u−η

eψ[u;ξ] = 0.
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This immediately gives c[ξ] = α cot(αξ), and finally

eψ[u;ξ] =
α sin(α(u− ξ − η))
sin(α ξ) sin(α(u− η))

. (3.16)

Collecting all the above results, we finally get the asymptotics of the 6V one-point function.

Theorem 3.5. The 6V-DWBC one-point function H6V
n [u; ξ] has the following large n = N

behavior:

H6V
N [u; ξ] � e−Nψ

6V[u;ξ]

ψ6V[u; ξ] = −log

(
sin(αξ) sin(α(u− η)) sin(u− ξ + η) sin(u− ξ − η)
α sin(α(u− ξ − η)) sin(ξ) sin(u+ η) sin(u− η)

)

with α as in (3.13).

Proof. By the relation (3.9), we immediately get

ψ6V[u] = ψ[u]+ log

(
sin(ξ) sin(u+ η) sin(u− η)
sin(u− ξ + η) sin(u− ξ − η)

)

and the theorem follows. �

3.2.3. Refined partition functions and one-point functions. To apply the tangent method, we
need the large n, k asymptotics of the refined partition functionsZ6V

n,k [u], k = 1, 2, . . . , n, defined
as follows. Given a configuration of n osculating paths contributing to Z6V

n [u] (with all hori-
zontal spectral parameters equal to u and all vertical ones to 0), let us focus on the topmost
path: let us record the first visit of this path to the east-most vertical line, say at the intersection
with the kth horizontal line from the bottom. Note that the path accesses the last vertical via
a horizontal step, and ends with k vertical steps until the east-most endpoint. We define the
refined partition functions Z6V

n,k [u] to be the sum of all contributions in which the topmost path
has these k+ 1 last steps.

The quantitiesZ6V
n,k [u] turn out to be generated by the semi-inhomogeneouspartition function

Z6V
n [u; ξ] (3.5), for which the last vertical spectral parameter is replaced by ξ. Introducing

relative weights (ā, b̄, c̄) for the last column, as the following ratios of weights at v = ξ by
those at v = 0:

ā =
sin(u− ξ + η)
sin(u+ η)

, b̄ =
sin(u− ξ − η)
sin(u− η)

, c̄ = 1,

we have the following decomposition:

Z6V
n [u; ξ] =

n∑
k=1

Z6V
n,k [u]b̄

k−1c̄ān−k = ān−1
n∑

k=1

τ k−1Z6V
n,k [u]

in terms of a parameter

τ :=
b̄
ā
=

sin(u− ξ − η) sin(u+ η)
sin(u− ξ + η) sin(u− η)

. (3.17)

21



J. Phys. A: Math. Theor. 54 (2021) 355201 P Di Francesco

In applying the tangent method, we truncate the topmost path after its last horizontal step (see
an illustration in the top left of figure 9 in the pink domain). The effect of removing the last
k vertical steps and replacing them by empty edges is an overall multiplication by a factor
(1/c)(a/b)k−1 (as we have cut5 the turning c-type vertex and replaced the k − 1 b-type vertices
by a-type ones). This suggests to define refined one-point functions as the ratios

Hn,k[u] :=
1
c

(a
b

)k−1Z6V
n,k [u]

Z6V
n [u]

.

The above relation between refined partition functions turns into the following relation between
one-point function and refined one-point functions:

c
H6V
n [u; ξ]
ān−1

=

n∑
k=1

tk−1Hn,k[u], (3.18)

where we have used a new parameter

t =
b
a
τ =

sin(u− ξ − η)
sin(u− ξ + η)

=: t6V[ξ]. (3.19)

Let us now consider the large n = N scaling limit of Hn,k[u] in which the ratio κ = k/N is
kept finite. Using the relation (3.18) and the asymptotics of the one-point function H6V

N [u; ξ]
of theorem 3.5, we have at leading order as N →∞:

HN,κN [u] �
∮

dt
2iπt

e−NS0(κ,t), S0(κ, t) = κ log(t)+ ϕ6V[u; ξ], (3.20)

where we have defined

ϕ6V[u; ξ] :=ψ6V[u; ξ]+ log(ā) = −log

(
sin(α ξ) sin(α(u− η)) sin(u− ξ − η)
α sin(ξ) sin(u− η) sin(α(u− ξ − η))

)
.

Here the variable t is integrated over a contour around the origin to extract the coefficient of
tk−1 in Hn,k[u], and ξ is an implicit function of t upon inverting the equation t6V[ξ] = t.

The integral is dominated by the solution of the saddle-point equation ∂tS0(κ, t) = 0 or
equivalently ∂ξS0(κ, t6V[ξ]) = 0 resulting in

κ = κ6V[ξ] := − t6V[ξ]
∂ξ t6V[ξ]

∂ξϕ
6V[u; ξ]

= {cot(u− ξ − η)+ cot(ξ)− α cot(αξ)− α cot(α(u− ξ − η))}

× sin(u− ξ + η) sin(u− ξ − η)
sin(2η)

(3.21)

with α as in (3.13).

5 Here we choose not to attach any weight to the end vertex at height k, as it will be part of the partition function of
the single path treated in next section.
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3.3. Paths

3.3.1. Partition function. The second ingredient of the tangent method is the partition function
Yk,	 for a single weighted path in empty space with the sameweights as the 6V osculating paths
(see an example of such a path in the light blue domain of figure 9 top left). Note that the path
starts where the topmost one in Hn,k[u] stopped, namely with a preliminary horizontal step,
and end with a vertical step at position 	 (measured from the original position in Zn) on the
S boundary. Note also that all empty vertices receive the weight a of (2.1). We may therefore
factor out an unimportant overall weight an	, and weight the path by the product of its relative
vertex weights:

a0 = 1, b0 =
b
a
=

sin(u− η)
sin(u+ η)

, c0 =
c
a
=

sin(2η)
sin(u+ η)

,

for respectively a, b and c type vertices.
Let us use a step-to-step transfer matrix formulation of the path, namely a matrix T describ-

ing the transfer from a step to the next. Each step may be in either of two states: horizontal
or vertical, and the matrix entry is the corresponding 6V weight at the vertex shared by the
step and its successor, which we multiply by an extra weight z,w if the next step is horizontal,
vertical respectively. This gives the matrix

T6V =

(
b0 z c0 z
c0 w b0w

)

allowing to express the generating function P(z,w) :=
∑

k,	�0 Yk,	z
	wk+1 as

P(z,w) =
(
0 1

)
· (I− T6V)−1

(
1
0

)
=

c0w

1− b0z− b0w
(
1+

c20−b
2
0

b0
z
) .

Using the new weights

γ1 := b0 =
sin(u− η)
sin(u+ η)

, γ2 :=
c20 − b20
b0

=
sin(3η − u)
sin(u− η)

.

We deduce that

Yk,	 = c0γ
k
1
(1+ γ2 z)k

(1− γ1 z)k+1

∣∣∣∣
z	
= c0

∑
P1�0

0�P2�k
P1+P2=	

(
P1 + k
k

)(
k
P2

)
γk+P11 γP22 . (3.22)

3.3.2. Asymptotics. We now consider the scaling limit of large n = N and κ = k/N,λ = 	/N
fixed. Replacing the summation in (3.22)with an integral over p2 = P2/N and using the Stirling
formula, we find the leading large N behavior of Yk,	:

YκN,λN �
∫ κ

0
dp2 e

−NS1(κ,p2)

S1(κ, p2) = p2 log

(
p2
γ2

)
+ (κ− p2)log(κ− p2)+ (λ− p2)log(λ− p2)

− (κ+ λ− p2)log(γ1(κ+ λ− p2)).
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3.4. Arctic curves

We now apply the tangent method. We must solve for the saddle-point equations for the
total action S(κ, ξ, p2) = S0(κ, t[ξ])+ S1(κ, p2), namely ∂κS = 0 and ∂p2S = 0, while the last
equation ∂ξS = 0 eventually allows us to solve for κ = κ[ξ] by using the result (3.21).We get:

t(κ− p2)
γ1(κ+ λ− p2)

= 1,
γ1
γ2

p2(κ+ λ− p2)
(κ− p2)(λ− p2)

= 1

with the following unique solution:

p2
κ

=
sin(u− 3η) sin(ξ)

sin(u− ξ − η) sin(2η)
,

κ

λ
=

sin(u− ξ + η) sin(u− ξ − η)
sin(ξ) sin(ξ − 2η)

parameterized by ξ via t = t6V[ξ] (3.19) and κ = κ6V[ξ] (3.21). In particular this determines
κ as a function of λ in the parametric form (κ,λ) = (κ6V[ξ],λ6V[ξ]), where

λ6V[ξ] :=κ6V[ξ]
sin(ξ) sin(ξ − 2η)

sin(u− ξ + η) sin(u− ξ − η)
.

This allows us to identify the slopeA[ξ] = κ6V[ξ]
λ6V[ξ]

and the interceptB[ξ] = κ6V[ξ] for the family
of tangents: Fξ[x, y] = y+ A[ξ]x − B[ξ] = 0. The parameter ξ is constrained by the condition
that A[ξ] > 0 which implies that ξ ∈ [u+ η − π, 0]. Using the expression for the envelope
(2.20), we arrive at the final result.

Theorem 3.6. The NE portion of the arctic curve for the 6V-DWBCmodel in the disordered
regime is predicted by the tangent method to be given parametrically by:

x = X6V
NE[ξ] :=

B′[ξ]
A′[ξ]

, y = Y6V
NE[ξ] :=B[ξ]− A[ξ]

A′[ξ]
B′[ξ], (ξ ∈ [u+ η − π, 0]),

where

A[ξ] =
sin(u− ξ + η) sin(u− ξ − η)

sin(ξ) sin(ξ − 2η)

B[ξ] = {cot(u− ξ − η)+ cot(ξ)− α cot(αξ)− α cot(α(u− ξ − η))}

× sin(u− ξ + η) sin(u− ξ − η)
sin(2η)

with α as in (3.13).

As explained in section 2.2.2, we easily get the SE portion of the arctic curve, by applying
the transformation ∗: u �→ u∗ = π − u, and the change of coordinates (2.23) for μ = 1. As a
result we have the following.

Theorem 3.7. The SE portion of the arctic curve for the 6V-DWBC model in the disordered
regime is predicted by the tangent method to be given parametrically by:

x = X6V
SE [ξ] :=X6V

NE[ξ]
∗, y = Y6V

SE [ξ] := 1− Y6V
NE[ξ]

∗, (ξ ∈ [η − u, 0])

with X6V
NE, Y

6V
NE as in theorem 3.6.
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Finally, we note that the weights (2.1) and the DWBC are invariant under central symmetry,
which reflects all arrow orientations. As a consequence, the arctic curve of the 6V-DWBC
model is centro-symmetric as well, and it can be easily completed by applying the central
symmetry (x, y) �→ (−1− x, 1− y) to the NE and SE branches to respectively produce the SW
and NW ones.

Remark 3.8. At the self-dual point u = u∗ = π
2 , the arctic curve is symmetric w.r.t. the hor-

izontal line y = 1/2, as well as the vertical line x = −1/2 by the central symmetry. The full
curve is then obtained by successive reflections of the NE branch; as an example the limit shape
of ASMs [CP10b] is made of 4 reflected portions of ellipse. This is no longer true if u 
= π

2 .

4. 6V′ model

4.1. Partition function and one-point function

4.1.1. Inhomogeneous partition function. The partition function of the inhomogeneous U-
turn boundary 6V model was derived by Kuperberg and independently by Tsuchiya [Kup02,
Tsu98]. Let

mU(u, v) :=
1

sin(u− v + η) sin(u− v − η)
− 1

sin(u+ v + η) sin(u+ v − η)
.

Note that as opposed to the 6V case, this is no longer a function of u− v only, but includes a
reflected term which is a function of u+ v.

Theorem 4.1. The U-turn boundary 6V partition function reads:

Z6V−U
n [u, v; θ]

= (ρeρo)
n2 det

1�i, j�n

(
mU(ui , v j)

)

×

{∏n
i=1 sin(θ − vi) sin(2ui + 2η) sin(2η)

}{∏n
i, j=1 sin(ui − v j + η) sin(ui − v j − η) sin(ui + v j + η) sin(ui + v j − η)

}
{∏

1�i< j�n sin(ui − uj) sin(v j − vi)
}{∏

1�i� j�n sin(ui + uj) sin(vi + v j)
} .

(4.1)

As mentioned above and illustrated in figure 3, the 6V′ model corresponds to the choice
of parameter θ = −u− η, which ensures that yu(u) = 0 for all U-turns. The partition func-
tion corresponding to this choice, where we cut out the U-turns of figure 3(a) and remove
their weights, as well as the weights of the trivially fixed b-type vertices of the bottom row in
figure 3(b), reads:

Z6V′
n [u, v] = lim

ui→u
θ→−u−η

(−1)nZ6V−U
n [u, v; θ]

sinn(2u+ 2η) ρne
∏n

i=1 sin(−u− vi − η)
, (4.2)

where we have identified the limit of the U-turn weights to be yd(ui)→−sin(2u+ 2η) and that
of the b weights of the bottom (even) row to be be → ρe sin(−u− vi − η).
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Remark 4.2. Note that in (4.1) the dependence on the parameter θ is only through the pref-
actor

∏
i sin(θ − vi). The ‘worst case scenario’ is the homogeneous limit where all vi → v, and

where this gives a factor sinn(θ − v). In any case, this does not affect the value of the thermody-
namic free energy f = limn→∞ − 1

n2
log(Z6V′

n ), which is independent of θ. We may therefore
safely fix the value of θ to suit our needs.

4.1.2. Homogeneous limit. Like in the 6V case, the homogeneous limit where we take all
ui → u and all vi → v involves the quantity:

Δn[u, v] := lim
u→ui
v→vi

det1�i, j�n
(
mU(ui, v j)

)∏
1�i< j�n

(ui − u j)(v j − vi)
.

Upon Taylor-expanding rows and columns, we may rewrite:

Δn[u, v] = (−1)n(n−1)/2 det
0�i, j�n−1

(
∂ iu∂

j
vmU(u, v)
i! j!

)
=:

1∏n−1
i=0 (i!)

2
Dn[u, v],

where the determinantDn[u, v] reads

Dn[u, v] = det
0�i, j�n−1

(
(−1) j∂ iu∂

j
vmU(u, v)

)
. (4.3)

Using the relation (4.2) and the result of theorem 4.1, we obtain the homogeneous partition
function of the 6V′ model:

Z6V′
n [u, v]

ρn2−ne ρn2o sinn(2η)
= Δn[u, v]

(sin(u− v + η) sin(u− v − η) sin(u+ v + η) sin(u+ v − η))n
2

(sin(2u) sin(2v))n(n+1)/2 .

(4.4)

To determineΔn[u, v] one uses like in the 6V case the Plücker/Desnanot–Jacobi relation of
lemma 3.2 applied to the n+ 1× n+ 1 matrixM in the definition of Dn+1[u, v] (4.3):

Dn+1[u, v]Dn−1[u, v] = ∂uDn[u, v]∂vDn[u, v]− Dn[u, v]∂u∂vDn[u, v]

which implies

Dn+1[u, v]Dn−1[u, v]
(Dn[u, v])2

+ ∂u∂v log (Dn[u, v]) = 0. (4.5)

As a direct consequence, we have:

Theorem 4.3. The quantityΔn[u, v] obeys the following recursion relation:

Δn+1[u, v]Δn−1[u, v]
Δn[u, v]2

+
1
n2

∂u∂v log (Δn[u, v]) = 0. (4.6)

Note that the latter can be used to determineΔn[u, v] recursively, starting withΔ0[u, v] = 1
andΔ1[u, v] = mU(u, v), as we illustrate now with a few simple examples.

Example 4.4. Let us consider the ‘classical limit’ η → 0, where:

mU(u, v) =
1

sin2(u− v)
− 1

sin2(u+ v)
=

sin(2u) sin(2v)

sin2(u− v)sin2(u+ v)
.
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We have:

Theorem 4.5. In the classical case η = 0, we have for all n � 1:

Δn[u, v] = n!

(
sin(2u) sin(2v)

sin2(u− v)sin2(u+ v)

)n(n+1)/2

.

Proof. The proof is by induction on n, using (4.6), and follows from the relation

sin(2u) sin(2v)

sin2(u− v)sin2(u+ v)
− ∂u∂v log (sin(u− v) sin(u+ v)) = 0.

�
Note that the corresponding 6V′ partition function vanishes, however we get a finite limit

for the quantity

lim
η→0

Z6V′
n [u, v]

ρn2−ne ρn2o sinn(2η)
= n!(sin(u− v) sin(u+ v))n(n−1).

This result has a simple interpretation: sending η → 0 implies both ce and co type vertices have
vanishing weights. However, without the ability to turn right, none of the osculating paths can
satisfy the boundary conditions, unless each path is allowed at least one right turn. In this for-
mulation, we must no longer see the paths as osculating, but rather as crossing at fully occupied
a-type vertices. The minimal case is if each path has exactly one turn (and the vanishing weight
sinn(2η) is divided before taking the η → 0 limit). For each i = 1, 2, . . . , n, the ith path from
the bottom starts with say j = σ(i) horizontal steps, then turns right and ends with 2i− 1 ver-
tical steps at the jth endpoint. Clearly there are as many such configurations as permutations
σ of the n path ends, which accounts for an overall factor of n!. Collecting all the Boltzmann
weights gives the remaining factor.

Example 4.6. We now consider the ‘free fermion’ case η = π
4 , where

mU(u, v) =
1

sin
(
u− v + π

4

)
sin

(
u− v − π

4

) − 1
sin

(
u+ v + π

4

)
sin

(
u+ v − π

4

)
=

4 sin(2u) sin(2v)
cos(2(u− v)) cos(2(u+ v))

.

Theorem 4.7. In the free fermion case η = π
4 , we have for all n � 1:

Δn[u, v] =
(4 sin(2u) sin(2v))n(n+1)/2(4 cos(2u) cos(2v))n(n−1)/2

(cos (2(u− v)) cos (2(u+ v)))n
2 .

Proof. The proof is by induction on n using (4.6), and follows from the relation

4 sin(4u) sin(4v)
cos2(2(u− v))cos2(2(u+ v))

+ ∂u∂v log (cos(2(u− v)) cos(2(u+ v))) = 0.

�
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The corresponding 6V′ partition function reads:

Z6V′
n [u, v]

ρn2−ne ρn2o
= (cos(2u) cos(2v))n(n−1)/2. (4.7)

4.1.3. One-point function. As in the case of the 6Vmodel, we consider the semi-homogeneous
partition function Z6V′

n [u, v; ξ] with the same boundary conditions as Z6V′
n [u, v] but with a dif-

ferent vertical spectral parameter in the last column, set to vn = v + ξ. It is again obtained as
a limit of (4.2) and reads:

Z6V′
n [u, v; ξ]

ρn2−ne ρn2o sinn(2η)

= Δn[u, v; ξ]
(sin(u− v + η) sin(u− v − η) sin(u+ v + η) sin(u+ v − η))n(n−1)

sin(2ξ + 2v)(sin(ξ + 2v))n−1(sin(2u))
n(n+1)

2 (sin(2v))
n(n−1)

2

× (sin(u− v − ξ + η) sin(u− v − ξ − η) sin(u+ v + ξ + η) sin(u+ v + ξ − η))n

(4.8)

in terms of the semi-homogeneous quantity

Δn[u, v; ξ] := lim
u1,...un→u

v1,...,vn−1→v,vn→v+ξ

det1�i, j�n

(
mU(ui, v j)

)∏
1�i< j�n sin(ui − u j) sin(v j − vi)

.

Repeating the Taylor expansion of rows and columns except the last one, we may rewrite:

Δn[u, v; ξ] =
(−1)n(n−1)/2

sinn−1(ξ)

× det

{(
∂ iu∂

j
vmU(u, v)
i! j!

)
i=1,...,n−1
j=0,...,n−2

∣∣∣∣
(
∂ iumU(u,w)

i!

)
i=0,...,n−1

}

=:
(−1)n−1 (n− 1)!

sinn−1(ξ)
∏n−1

i=0 (i!)
2
Dn[u, v; ξ], (4.9)

where the determinantDn[u, v; ξ] reads

Dn[u, v; ξ] = det

{{
(−1) j∂ iu∂

j
vmU(u, v)

}
i=1,...,n−1
j=0,...,n−2

∣∣∣∣ {∂ iumU(u, v + ξ)
}
i=0,...,n−1

}
. (4.10)

As before, we define the one-point function H6V′
n [u, v; ξ] as the ratio:

H6V′

n [u, v; ξ] :=
Z6V′
n [u, v; ξ]
Z6V′
n [u, v]

=
Δn[u, v; ξ]
Δn[u, v]

sin(ξ + 2v)
sin(2ξ + 2v)

(
sin(2v)

sin(ξ + 2v)

)n

×
(
sin(u− v − ξ + η) sin(u− v − ξ − η) sin(u+ v + ξ + η) sin(u+ v + ξ − η)

sin(u− v + η) sin(u− v − η) sin(u+ v + η) sin(u+ v − η)

)n

. (4.11)
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The Plücker/Desnanot–Jacobi relation of lemma 3.2 applied to the n+ 1× n+ 1 matrixM
in the definition of Dn+1[u, v; ξ] (4.10) implies the following:

Dn+1[u, v; ξ]Dn−1[u, v] = Dn[u, v; ξ]∂uDn[u, v]− Dn[u, v]∂uDn[u, v; ξ].

Introducing the reduced one-point function

Hn[u, v; ξ] := (−1)n−1(n− 1)!
Dn[u, v; ξ]
Dn[u, v]

= sinn−1(ξ)
Δn[u, v; ξ]
Δn[u, v]

, (4.12)

we may recast the above into the following.

Theorem 4.8. The reduced one-point function of the 6V′ model obeys the following
relation:

Hn+1[u, v; ξ]
Hn[u, v; ξ]

Δn−1[u, v]Δn+1[u, v]
Δn[u, v]2

+
1
n
∂u log(Hn[u, v; ξ]) = 0. (4.13)

Together with (4.6), this determines Hn[u, v; ξ] recursively, using the initial data
H1[u, v; ξ] =

mU(u,v+ξ)
mU(u,v)

, and in turn the one-point function H6V′
n [u, v; ξ] via:

H6V′
n [u, v; ξ]

= Hn[u, v; ξ]
sin(ξ) sin(ξ + 2v)
sin(2ξ + 2v)

(
sin(2v)

sin(ξ) sin(ξ + 2v)

)n

×
(
sin(u− v − ξ + η) sin(u− v − ξ − η) sin(u+ v + ξ + η) sin(u+ v + ξ − η)

sin(u− v + η) sin(u− v − η) sin(u+ v + η) sin(u+ v − η)

)n

.

(4.14)

4.2. Large n limit: free energy and one-point function asymptotics

4.2.1. Free energy. For large n = N, like in the 6V case, the relation (4.6) leads to the
following leading behavior for the functionΔn[u, v]:

ΔN[u, v] � e−N
2 f [u,v] (4.15)

for some function f[u, v] to be determined (see [RK15] for a full derivation).

4.2.1.1. Liouville equation and free energy For large n = N, substituting the behavior (4.15)
into equation (4.6), and expanding at leading order in N−1, we get the following 2D Liouville
partial differential equation for the function f [u, v]:

∂u∂v f [u, v]− e−2 f [u,v] = 0. (4.16)

Introducing the functionW[u, v] := ef[u,v] this may be rewritten as:

W∂u∂vW − ∂uW∂vW = 1.

The general solutionW of this equation is known to be [Cro97, Lio53]:

W[u, v] =
g(u)− h(v)

|g′(u)h′(v)| 12
(4.17)
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for some arbitrary differentiable functions g, h. In [RK15], the functions g, h are fixed by use
of symmetries and known limits ofW, leading to the following.

Theorem 4.9 ([RK15]). The leading asymptotics of the determinant Δn[u, v] is given by

W[u, v] = limN→∞ ΔN[u, v]
− 1
N2 where:

W[u, v] =
sin(α(u− v − η)) sin(α(−u− v − η))

α | sin(2αu) sin(2α(v + η))| 12
(4.18)

with

α =
π

π − 2η
. (4.19)

Theorem 4.9 gives access to the full free energy f 6V′ of the 6V′ model, as defined by the

large N asymptotics Z6V′
N [u, v] � e−N

2 f 6V
′
[u,v], where as a consequence of (4.4), we have:

f 6V
′
[u, v] = f [u, v]

+ log

( √
| sin(2u) sin(2v)|

ρeρo sin(u− v + η) sin(u− v − η) sin(u+ v + η) sin(u+ v − η)

)
.

(4.20)

This leads immediately to the following.

Corollary 4.10 ([RK15]). The free energy of the 6V′ model in the disordered regime reads:

f 6V
′
[u, v] =

1
2
log

∣∣∣∣ sin(2u) sin(2v)
sin(2αu) sin(2α(v + η))

∣∣∣∣
+ log

(
sin(α(u− v − η)) sin(α(−u− v − η))

α ρeρo sin(u− v + η) sin(u− v − η) sin(u+ v + η) sin(u+ v − η)

)
.

(4.21)

We also have access to the free energy f20V of the 20V DWBC3 model defined in
section 2.1.3, which will be studied in section 5 below. The free energy is defined via
Z20V
N [u, v] � e−N

2 f 20V[u,v] for large N. As a consequence of (5.2) which relates the partition
functions of the 20V-DWBC3 and 6V′ models (see also reference [DF21]), we have the
relation:

f 20V[u, v] = f 6V
′
[u, v]+

1
2
log

(
ν3 sin3(2u+ 2η) sin(u− v − η) sin(u+ v − η)

)
. (4.22)

Let us apply this to the uniform case (2.17), where the partition function Z6V′
n of the 6V′

model on the (2n− 1)× n grid is related to the number of configurations Z20V
n of the 20V

model with DWBC3 on the quadrangleQn [DF21] (see section 2.1.3). Using theorem 4.9 and
the relations (4.21) and (4.22), and approaching the desired value v = −4η + ε, while u = η,
we get for η = π

8 , α = 4
3 , ν =

√
2:

e f
20V

= lim
ε→0

∣∣∣∣ sin(2η) sin(−8η + 2ε)
sin

(
8
3η

)
) sin

(
−8η + 8

3ε
) ∣∣∣∣

1
2 3 sin

(
16
3 η

)
sin

(
8
3η

)
4 ν3/2 sin2(4η) sin(6η) sin(2η)

=
39/4

29/2
.

30



J. Phys. A: Math. Theor. 54 (2021) 355201 P Di Francesco

This is in agreement with the asymptotics of the exact conjectured formula of reference
[DF21] for the uniformly weighted partition function, namely:

Z20V
N = 2N(N−1)/2

N−1∏
i=0

(4i+ 2)!
(n+ 2i+ 1)!

�
(
29/2

39/4

)N2

, (4.23)

easily derived by use of the Stirling formula.

4.2.2. One-point function. We now derive the large n = N asymptotics of the one-point func-
tion H6V′

n [u, v; ξ] (4.11). From equation (4.14), the latter is simply expressed in terms of the
reduced one-point function Hn[u, v; ξ] (4.12). Like in the 6V case, we first derive a differ-
ential equation governing the asymptotic behavior of Hn[u, v; ξ], and compute a number of
limits to fix integration constants. It turns out that our conjecture 4.9 is sufficient to determine
asymptotics completely.

By theorem 4.8, Hn[u, v; ξ] must satisfy (4.13), which implies the leading asymptotic
behavior

HN[u, v; ξ]�N→∞ e−Nψ[u,v;ξ] (4.24)

for some function ψ[u, v; ξ]. As a simple confirmation, using the definition (4.12) and the fact
thatΔn[u, v; 0] = Δn[u, v], we find that Hn[u, v; ξ] �ξ→0 ξ

n−1, resulting in:

ψ[u, v; ξ]�ξ→0 −log(ξ). (4.25)

4.2.2.1. Differential equation Substituting the expressions (4.15) and (4.24) into
equation (4.13) for n = N, and expanding to leading order in N−1, we get the following
partial differential equation:

∂uψ[u, v; ξ]− e−2 f [u,v]−ψ[u,v;ξ] = 0. (4.26)

4.2.2.2. Limits In addition to the limit (4.25) above, let us consider the limit u− v − ξ −
η → 0, by setting ξ = u− v − η − ε and sending ε→ 0. The entries of the last column of the
determinantDN[u, v; v + ξ] (4.10) read:

∂ iumU(u, u− η − ε) =
1

sin(2η)
(−1)i i!
εi+1

+ O(ε−i).

The dominant term is in the last row and results in

DN[u, v; u− η − ε] � (−1)N−1(N − 1)!
sin(2η)εN

DN−1[u, v].

We deduce that

HN[u, v; u− v − η − ε] = (−1)N−1(N − 1)!
DN[u, v; u− η − ε]

DN[u, v]

�ε→0
(N − 1)!2

sin(2η)εN
DN−1[u, v]
DN[u, v]

� 1
εN

ΔN−1[u, v]
ΔN[u, v]

� W[u, v]2N

εN

,
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where we have used the largeN asymptoticsΔN[u, v] � W[u, v]−N
2
. Matching this with the

asymptotics (4.24), we conclude that

ψ[u, v, u− v − η + ε]ε→0 � log

∣∣∣∣ ε

W[u, v]2

∣∣∣∣ . (4.27)

Repeating the analysis for ξ = η − u− v + ε, we find analogously:

ψ[u, v, η − u− v + ε]ε→0 � log

∣∣∣∣ ε

W[u, v]2

∣∣∣∣ . (4.28)

4.2.2.3. Solution Note that equation (4.26) may be rewritten in the form ∂u(eψ) = e−2f =
W−2. This can be integrated w.r.t. the variable u as follows:

eψ[u,v,ξ] = c[v, ξ]− α sin(2α(v + η))
sin(α(u− v − η)) sin(α(u+ v + η))

(4.29)

for some integration constant c[v, ξ] independent of u.
We now use the limit (4.27) to express that, for ξ = u− v − η + ε and ε→ 0, we have

eψ[u,v;ξ] → 0. This gives:

c[v, u− v − η] =
α sin(2α(v + η))

sin(α(u− v − η)) sin(α(u+ v + η))

which is valid for all u, v. In particular, setting u = v + η + ξ yields the integration constant

c[v, ξ] =
α sin(2α(v + η))

sin(αξ) sin(α(ξ + 2v + 2η))

which we plug back into (4.29) to finally get:

ψ[u, v; ξ] = log

(
α sin(2α(v + η)) sin(α(u− v − ξ − η)) sin(α(u+ v + ξ + η))
sin(α(u− v − η)) sin(α(u+ v + η)) sin(αξ) sin(α(ξ + 2v + 2η))

)
.

(4.30)

Using the relation (4.14) this leads to the following result for the one-point function
asymptotics.

Theorem 4.11. The one-point functionH6V′
n [u, v; ξ] has the following large n = N behavior:

H6V
N [u, v; ξ] � e−Nψ

6V′ [u,v;ξ]

ψ6V′
[u, v; ξ] = −log

(
sin(α(u− v − η)) sin(α(u+ v + η)) sin(αξ) sin(α(ξ + 2v + 2η))
α sin(2α(v + η)) sin(α(u− v − ξ − η)) sin(α(u+ v + ξ + η))

)

− log

(
sin(2v) sin(u− v − ξ + η) sin(u− v − ξ − η) sin(u+ v + ξ − η) sin(u+ v + ξ + η)

sin(ξ) sin(ξ + 2v) sin(u− v + η) sin(u− v − η) sin(u+ v − η) sin(u+ v + η)

)

with α as in (3.13).

As a consistency check, we find that limξ→0 ψ
6V′

[u, v; ξ] = 0, in agreement with the fact
that H6V′

n [u, v; 0] = 1 by definition.
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Remark 4.12. In the case of the more general U-turn 6V model (with arbitrary value of
the parameter θ), we already showed in remark 4.2 that the thermodynamic free energy of the
model is independent of θ, therefore identical to that of the 6V′ model. The same argument
may be applied to the one-point function, whose leading asymptotics is independent of θ as
well, and therefore the same for U-turn 6V and 6V′ models.

Remark 4.13. Independently of theorem 4.9, equation (4.26) can be solved in terms of the
generic function g which determines the general solution (4.17) to the Liouville equation with
the correct symmetries and limits, namely such that h(v) = g(v + η), with the expression:

W[u, v] =
g[u]− g[v + η]√
|g′(u)g′(v + η)|

.

Solving equation (4.26) in the same manner as above, we obtain:

ψ[u, v; ξ] = log

(
(g(u)− g(v + ξ + η))g′(v + η)

(g(u)− g(v + η))(g(v + ξ + η)− g(v + η))

)
.

In particular, we recover the solution for the 6V-DWBC case by picking g(u) = tan(αu), which
leads to

W[u, v] =
sin(α(u− v − η))

α
= W[u− v]

ψ[u, v; ξ] = log

(
α sin(α(u− v − η − ξ))
sin(αξ) sin(α(u− v − η))

)
= ψ[u− v; ξ]

in agreement with (3.12) and (3.16).

4.3. Paths

4.3.1. Partition function. With the setting of figure 9 (bottom left, light blue domain), we wish
to compute the partition function Yk,	 of a single path of the 6V′ model in the first quadrant
Z
2
+, with starting point (0, k) and endpoint (	, 0). The weights of the path are those of the 6V′

model, namely (bo, co) for a path (going straight, turning) at a vertex with second coordinate
y = 2 j, j = 0, 1, 2, . . . and (be, ce) for a path (going straight, turning) at a vertex with second
coordinate y = 2 j+ 1, j = 0, 1, 2, . . . . However the path crosses a domain of empty vertices,
each receiving weights ae, ao depending on the parity of their second coordinate y. Factoring
an overall weight (ao)n	(ae)(n−1)	 which does not affect our study, the weights of the path steps
must be divided by ae, ao and finally read:

b0 =
bo
ao

=
sin(u− v − η)
sin(u− v + η)

, c0 =
co
ao

=
sin(2η)

sin(u− v + η)
,

b1 =
be
ae

=
sin(u+ v + η)
sin(u+ v − η)

, c1 =
ce
ae

=
sin(2η)

sin(η − u− v)
(4.31)

for vertices with y = 2 j and y = 2 j+ 1 respectively. Note that the path has a horizontal step
just before entering the first quadrant, and has a final vertical step.

The partition function Yk,	 is computed by use of a transfer matrix technique. Each path
is traveled from N, W to S, E, and the transfer matrix is a 4× 4 matrix T6V′ whose entries
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correspond to the vertex weight for the transition from the entering step at each visited vertex
to the outgoing step, with the four possible configurations (−, o), (|, o), (−, e), (|, e) of horizon-
tal/vertical step ending at an odd/even vertex. Moreover we include an extra weight z,w per
horizontal, vertical outgoing step respectively. The matrix T6V′ reads:

T6V′ =

⎛
⎜⎜⎝
b0z c0z 0 0
0 0 c1w b1w
0 0 b1z c1z
c0w b0w 0 0

⎞
⎟⎟⎠ .

We deduce the generating function for the Yk,	:

Y6V′
(z,w) =

∑
k,	�0

Yk,	 w
k+1z	 = (0, 0, 0, 1)(I− T6V′)−1

⎛
⎜⎜⎝
1
0
1
0

⎞
⎟⎟⎠

=
w(c0(1− b1z)+ c1w(b0 + (c20 − b20)z))

(1− b0z)(1− b1z)− w2(b0 + (c20 − b20)z)(b1 + (c21 − b21)z)

= c0
∑
j�0

w2 j+1 (b0 + (c20 − b20)z)
j(b1 + (c21 − b21)z)

j

(1− b0z) j+1(1− b1z) j

+ c1
∑
j�0

w2 j+2 (b0 + (c20 − b20)z)
j+1(b1 + (c21 − b21)z)

j

(1− b0z) j+1(1− b1z) j+1

=
∑
k�0

wk+1cε
(γ1(1+ γ3z))

k+ε
2 (γ2(1+ γ4z))

k−ε
2

(1− γ1z)1+
k−ε
2 (1− γ2z)

k+ε
2

, (4.32)

where we have used the notation ε := k mod2 (with ε ∈ {0, 1}), and the following weights:

γ1 = b0 =
sin(u− v − η)
sin(u− v + η)

, γ2 = b1 =
sin(u+ v + η)
sin(u+ v − η)

,

γ3 =
c20 − b20
b0

= − sin(u− v + 3η)
sin(u− v − η)

, γ4 =
c21 − b21
b1

= − sin(u+ v + 3η)
sin(u+ v + η)

. (4.33)

To obtain (4.32), we have used the fact that the first step of path is horizontal with y parity
unspecified (and receives no weight z), and the last step is vertical, with y = 0 (and receives
the weight w).

4.3.2. Asymptotics. We wish to take the large n = N scaling limit with κ = k/(2N) and
λ = 	/N finite. Further expanding (4.32) in powers of z, we find:

Yk,	 =
∑

P1,P2,P3,P4�0
P1+P2+P3+P4=	

( k−ε
2 + P1

P1

)( k+ε−2
2 + P2

P2

)( k+ε
2

P3

)

×
( k−ε

2

P4

)
γ
P1+

k+ε
2

1 γ
P2+

k−ε
2

2 γ
P3
3 γP44

Y2κN,λN �
∫ 1

0
dp2 dp3 dp4 e

−NS6V′1 (κ,p2,p3,p4)
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S6V
′

1 (κ, p2, p3, p4) = −(κ+ λ− p2 − p3 − p4) log(κ+ λ− p2 − p3 − p4)

+ (λ− p2 − p3 − p4)log(λ− p2 − p3 − p4)

− (κ+ p2)log(κ+ p2)+ p2 log(p2)+ p3 log(p3)

+ (κ− p3)log(κ− p3)+ p4 log(p4)+ (κ− p4) log(κ− p4)

− (κ+ λ− p2 − p3 − p4) log(γ1)− (κ+ p2) log(γ2)

− p3 log(γ3)− p4 log(γ4). (4.34)

Here we have eliminated P1 and replaced the remaining summations overPi by integrations
over pi = Pi/n in [0, 1]. Note that this covers the case of vanishing weights γi for i = 3 or 4 as
well: if γ i = 0 we simply suppress Pi from the above expression, which in turn corresponds to
taking the pi → 0 limit at finite γi in (4.34).

4.4. Refined one-point functions and asymptotics

4.4.1. Refined partition function. Let Z6V′
n,k [u, v] denote the refined partition function of the

6V′ model on the rectangular grid of size (2n− 1)× n with uniform weights (2.7) and (2.8),
in which the rightmost path is conditioned to first visit the rightmost vertical line at a point at
position k ∈ [1, 2n− 1] (counted from bottom to top), before going vertically down until its
endpoint, as illustrated in figure 9 (bottom left, pink domain, with the k final steps removed).
This quantity is easily related to the semi-homogeneous partition function Z6V′

n [u, v; ξ] as fol-
lows. In the latter, only the weights of the last column (with spectral parameter vn = v + ξ)
are different, and depend on the parity of the vertex height. Let us denote by (āi, b̄i, c̄i), i = o, e
the relative 6V′ weights (ratio of the value at v + ξ by that at v):

āo =
sin(u− v − ξ + η)
sin(u− v + η)

, b̄o =
sin(u− v − ξ − η)
sin(u− v − η)

, c̄o = 1

āe =
sin(u+ v + ξ − η)
sin(u+ v − η)

, b̄e =
sin(u+ v + ξ + η)
sin(u+ v + η)

, c̄e = 1.

Contributions to Z6V′
n,k [u, v] have a last column with k − 1 bottom vertices of type b (vertical

step), the kth vertex of type c (right turn), and the top 2n− 1− k vertices of type a (empty).
Splitting contributions according to the parity of the position of the point of entry into the last
column of the rightmost path, we arrive at:

Z6V′
n [u, v; ξ] =

n∑
j=1

Z6V′
n,2 j−1[u, v](b̄ob̄e)

j−1c̄o(āeāo)n− j

+

n−1∑
j=1

Z6V′
n,2 j[u, v](b̄ob̄e)

j−1b̄oc̄eāo(āeāo)n− j−1

= (āeāo)n−1
n∑
j=1

τ j−1{Z6V′
n,2 j−1[u, v]+ Z6V′

n,2 j[u, v]σ},

where we have used the values c̄o = c̄e = 1 and the parameters

τ :=
b̄ob̄e
āeāo

=
sin(u− v − ξ − η) sin(u+ v + ξ + η) sin(u− v + η) sin(u+ v − η)
sin(u− v − η) sin(u+ v + η) sin(u− v − ξ + η) sin(u+ v + ξ − η)
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σ :=
b̄o
āe

=
sin(u− v − ξ − η) sin(u+ v − η)
sin(u− v − η) sin(u+ v + ξ − η)

.

For use with the tangent method, we need to consider the refined one-point function
Hn,k[u, v] defined as the ratio of the partition function of the 6V′ model in which the topmost
path ends at position k with a horizontal last step between the n− 1st vertical and the rightmost
vertical, to that of the usual 6V′ partition function. Note that the numerator is slightly differ-
ent from the refined partition function Z6V′

n,k [u, v] as the rightmost path does not continue with
k vertical steps after hitting the rightmost vertical. Consequently, we must replace the k − 1
corresponding b-type weights with a-type weights:

Hn,2 j−1[u, v] :=

(
aoae
bobe

) j−1 Z6V′
n,2 j−1[u, v]

Z6V′
n [u, v]

,

Hn,2 j[u, v] :=
ao
bo

(
aoae
bobe

) j−1 Z6V′
n,2 j[u, v]

Z6V′
n [u, v]

.

In terms of the one-point function H6V′
n [u, v; ξ] (4.11), the above identity reads:

H6V′
n [u, v; ξ] = (āeāo)n−1

n∑
j=1

t j−1{Hn,2 j−1[u, v]+ Hn,2 j[u, v] s},

where

t = τ
bobe
aoae

=
sin(u− v − ξ − η) sin(u+ v + ξ + η)
sin(u− v − ξ + η) sin(u+ v + ξ − η)

s = σ
bo
ao

=
sin(u− v − ξ − η) sin(u+ v − η)
sin(u− v + η) sin(u+ v + ξ − η)

.

4.4.2. Asymptotics. We wish to estimate the leading behavior of the one-point function
HN,k[u, v] for largeN and κ = k/(2N) finite. To this end, we use the asymptotics of the function
H6V′
N [u, v; ξ] (theorem 4.11) to estimate for large N:

H6V′
N [u, v; ξ]
(āeāo)N−1

� e−Nϕ
6V′ [u,v;ξ]

ϕ6V′
[u, v; ξ] = ψ6V′

[u, v; ξ]+ log

(
sin(u− v − ξ + η) sin(u + v + ξ − η)

sin(u − v + η) sin(u + v − η)

)

= −log

(
sin(2v) sin(u− v − ξ − η) sin(u + v + ξ + η)
sin(2v + ξ) sin(u − v − η) sin(u + v + η)

)

− log

(
sin(αξ) sin(α(ξ + 2v + 2η)) sin(α(u − v − η)) sin(α(u + v + η))

α sin(ξ) sin(2α(v + η)) sin(α(u − v − ξ − η)) sin(α(u + v + ξ + η))

)
. (4.35)

This leads finally to the following result.

Theorem 4.14. The large N asymptotics of the refined one-point function for the 6V′ model
are given by:

HN,2κN[u, v] �
∮

dt
2iπt

e−NS
6V′
0 (κ,t)
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S6V
′

0 (κ, t) = ϕ6V′
[u, v, ξ]+ κ log(t), (4.36)

where the variable t is integrated over a contour around the origin,ϕ6V′
[u, v, ξ] is as in (4.35),

and where ξ can be thought of as an implicit function of the variable t, upon inversion of the
relation

t = t6V′ [ξ] :=
sin(u− v − ξ − η) sin(u+ v + ξ + η)
sin(u− v − ξ + η) sin(u+ v + ξ − η)

. (4.37)

The leading contribution to (4.36) is determined by the solution of the saddle point equation
∂tS6V

′
0 (κ, t) = 0 or equivalently ∂ξS6V

′
0 (κ, t6V′[ξ]) = 0, leading to:

κ = κ6V′ [ξ] := − t6V′ [ξ]
∂ξ t6V′[ξ]

∂ξϕ
6V′

[u, v; ξ]. (4.38)

Explicitly we have:

κ6V′[ξ] = {cot(u− v − η − ξ)+ cot(ξ)+ cot(ξ + 2v)− cot(u+ v + η + ξ)

− α (cot(α(u− v − η − ξ))+ cot(αξ)

+ cot(α(ξ + 2v + 2η))− cot(α(u+ v + η + ξ)))}

× sin(u+ v − η + ξ) sin(u+ v + η + ξ) sin(u− v − η − ξ) sin(u− v + η − ξ)
sin(2η) (cos(2η)− cos(2u) cos(2v + 2ξ))

(4.39)

with α = π
π−2η as usual.

4.5. Arctic curves

4.5.1. NE branch. As explained above, the first application of the tangentmethod gives access
to the portion of the arctic curve situated in the NE corner of the rectangular domain.

Theorem 4.15. The NE branch of the arctic curve for the 6V′ model as predicted by the
tangent method is given by the parametric equations

x = X6V′
NE [ξ] =

B′[ξ]
A′[ξ]

y = Y6V′
NE [ξ] = B[ξ]− A[ξ]

A′[ξ]
B′[ξ]

with the parameter range:

ξ ∈
[
η + |u| − v − π, 0

]
and where

A[ξ] = 2
sin(u− v − η − ξ) sin(u− v + η − ξ) sin(u+ v − η + ξ) sin(u+ v + η + ξ)

sin(ξ − 2η) sin(ξ) (cos(2η)− cos(2u) cos(2v + 2ξ))

and B[ξ] = 2κ6V′[ξ], with κ6V′[ξ] is as in (4.39).

Proof. We may now bring together the ingredients of the tangent method.We determine the
family of tangentsFξ(x, y) = y+ A[ξ]x − B[ξ] defined in section 2.2.We already identified the
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intercept B[ξ] = 2κ6V′[ξ] with κ6V′[ξ] given by (4.39). To determine the slope A[ξ] = 2κ/λ,
we must find the leading contribution to the total partition function

2n−1∑
k=1

HN,k[u, v]Yk,	 �
∫ 1

0
dκHN,2κN[u, v]Y2κN,λN �

∫ 1

0
dκ dp2 dp4, dp5 e−NS

6V′ (κ,p2,p4,p5,t)

S6V
′
(κ, p2, p4, p5, t) := S6V

′
0 (κ, t)+ S6V

′
1 (κ, p2, p4, p5)

with S6V
′

0 (κ, t) as in (4.36) and S6V
′

1 (κ, p2, p3, p4) as in (4.34). As in the 6V case, the saddle-
point equation ∂ξS

6V′
= 0 is solved by (4.39), and amounts to parameterizing κ = κ6V′[ξ] in

terms of the parameter ξ. The saddle-point equations ∂κS6V
′
= ∂p2S

6V′
= ∂p3S

6V′
= ∂p4S

6V′
=

0 give rise to the system of algebraic equations:

t
γ1γ2

=
(p2 + κ)(κ+ λ− p2 − p3 − p4)

(p3 − κ)(p4 − κ)

γ1
γ2

=
(p2 + κ)(λ− p2 − p3 − p4)
p2(κ+ λ− p2 − p3 − p4)

γ1
γ3

=
(κ− p3)(λ− p2 − p3 − p4)
p3(κ+ λ− p2 − p3 − p4)

γ1
γ4

=
(κ− p4)(λ− p2 − p3 − p4)
p4(κ+ λ− p2 − p3 − p4)

.

Substituting the values of the weights γi (4.33) and t = t6V′[ξ] (4.37), we find the unique
solution such that λ,κ > 0:

p2
κ

= − sin(u+ v + η) sin(ξ)
sin(2η) sin(u+ v − η + ξ)

p3
κ

=
sin(u− v − 3η) sin(ξ)

sin(2η) sin(u− v − η − ξ)

p4
κ

=
sin(u+ v + 3η) sin(ξ)

sin(2η) sin(u+ v + η + ξ)

κ

λ
=

sin(u− v − η − ξ) sin(u− v + η − ξ) sin(u+ v − η + ξ) sin(u+ v + η + ξ)
sin(ξ − 2η) sin(ξ) (cos(2η)− cos(2u) cos(2v + 2ξ))

. (4.40)

Using the parametrization κ = κ6V′ [ξ], we may interpret the last equation as determining λ
as a function λ6V′ [ξ] of the parameter ξ, where:

λ6V′ [ξ] :=κ6V′ [ξ]

× sin(ξ − 2η) sin(ξ) (cos(2η)− cos(2u) cos(2v + 2ξ))
sin(u− v − η − ξ) sin(u− v + η − ξ) sin(u+ v − η + ξ) sin(u+ v + η + ξ)

.

(4.41)

To summarize, we have found the most likely exit point κ as an implicit function of the arbi-
trary parameter λ, via the parametric equations (κ,λ) = (κ6V′[ξ],λ6V′[ξ]), which results in the
family of tangent lines with equations Fξ(x, y) = 0. The theorem follows from the expressions
(2.20), by identifying the slope A[ξ] = 2κ6V′[ξ]/λ6V′[ξ], while the range of the parameter ξ
corresponds to imposing A[ξ] ∈ [0,∞). �
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4.5.2. SE branch. As mentioned in section 2.2.2, a simple transformation of the model gives
access to the portion of the arctic curve situated in the SE corner of the rectangular domain:
wemust change parameters (u, v) �→ (u∗, v∗) = (−u,−v − π) and coordinates (x, y) �→ (x, 2−
x − y).

Theorem 4.16. The SE branch of the arctic curve for the 6V′ model is given by the
parametric equations

x = X6V′
SE [ξ] = X6V′

NE

∗
[ξ] y = Y6V′

SE [ξ] = 2− Y6V′
NE

∗
[ξ] (ξ ∈ [η + |u|+ v, 0])

with X6V′
NE , Y

6V′
NE as in theorem 4.15, and where the superscript ∗ stands for the transformation

(u, v) �→ (u∗, v∗) = (−u,−v − π), which we have also applied to the parameter range.

Remark 4.17. In the case v = − π
2 = v∗, we note that the equation of the tangent is invariant

under u→−u = u∗. We deduce that the arctic curve is symmetric w.r.t. the line y = 1, and that
the SE branch is simply the reflection of the NE branch: XSE = XNE, YSE = 2− YNE. This is
no longer true when v 
= − π

2 .

4.6. Examples

In this section, we illustrate theorems 4.15 and 4.16 with some concrete examples.

4.6.1. The ‘6V’ case u = 0, v = − π
2 . The condition u = 0 implies that all horizontal spectral

parameters are equal, and that the Boltzmann weights (2.7) and (2.8) lose their dependence on
the parity of the row (upon taking ρe = ρo = ρ). In fact this gives a mapping to the weights
(2.1) of the ordinary 6V model via (u6V′ , v6V′) �→ (0,−u6V). We may wonder how the U-turn
boundary condition has affected the thermodynamics of the 6V-DWBCmodel. In fact, extend-
ing the usual connection between ASM and VSASM, it is easy to identify the 6V′ model at
u = 0 with a 6V-DWBCmodel on a grid of ‘double’ size 2n+ 1× 2n+ 1, and whose configu-
rations are vertically symmetric, i.e. invariant under reflection w.r.t. a vertical line. As noted in
remark 3.8, the parameter u in the 6V-DWBC case may be interpreted as an anisotropy param-
eter. Indeed, the value u = π

2 corresponds for the 6V-DWBC model to identical weights a = b
which imply invariance of the partition function under reflection w.r.t. a horizontal line. How-
ever, when u 
= π

2 , this is no longer true, as the weights a 
= b are interchanged in the reflection.
As a consequence, the tangency points of the arctic curve to the boundary of the domain move
away from their symmetric positions. We expect therefore a connection between 6V-DWBC
and 6V′ models only at the isotropic point u6V = π

2 , corresponding to (u6V′ , v6V′ ) = (0,− π
2 ).

Note that this point corresponds to the τ -enumeration of VSASM (for the 6V′ side) and ASM
(for the 6V side), with τ = 4 sin2(η).

Theorem 4.18. For arbitrary 0 < η < π
2 , the arctic curve for the 6V′ model with

(u6V′ , v6V′ ) = (0,− π
2 ) as obtained via the tangent method assuming conjecture 4.9 holds is

identical to that of the 6V-DWBC model with u6V = π
2 in the NE/SE sector, up to global

rescaling.

Proof. As our choice of parameters is invariant under the symmetry ∗ for both the 6V′ case
(u6V′ , v6V′ )∗ = (u6V′ , v6V′ ) = (0,− π

2 ) and the 6V case u∗6V = u6V = π
2 , we simply have to com-

pare the envelope of the corresponding families of tangent lines leading to the NE branches,
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Figure 12. Arctic curves for the 6V′ model with parameter u = 0. Left: case v = − π
2 ,

with η ranging from 0+ (outermost curve) to π
2
− (innermost curve): all curves are sym-

metric w.r.t. the line y = 1, and coincide with those of the 6V-DWBC model (NE/SE
portions). Right: arctic curve of the 6V′ model for η = π

3 , u = 0 and v = − π
2 − π

12 (red
curve) compared with the arctic curve of the 6V-DWBC model (scaled by a factor of
2) for the same value of η and the value u = π

2 + π
12 leading to the same Boltzmann

weights (blue curve).

as given by theorems 3.6 and 4.15. We have the two families (we add a superscript 6V, 6V′ to
avoid ambiguities):

y+ A6V[ξ]x − B6V[ξ] = 0 and y+ A6V′
[ξ]x − B6V′

[ξ] = 0.

We find:

lim
u→0,v→− π

2

A6V′
[ξ] = lim

u→π
2

A6V[ξ], lim
u→0,v→− π

2

B6V′
[ξ] = 2 lim

u→π
2

B6V[ξ]

while the 6V and 6V′ ranges of the parameter ξ coincide with ξ ∈ [η − π
2 , 0]. We deduce that

upon rescaling of x and y by a factor of 2 the two families are identical, and conclude that
(X6V′

NE [ξ], Y
6V′
NE [ξ]) = 2(X6V

NE[ξ], Y
6V
NE[ξ]). The SE branch identification follows immediately from

our remark on the symmetry ∗, leading to (X6V′
SE [ξ], Y6V′

SE [ξ]) = 2(X6V
SE [ξ], Y

6V
SE [ξ]) as well, and

the theorem follows. �
A particular case of theorem 4.18 corresponds to the uniform case where the 6V-DWBC

model boils down to the enumeration of ASM, and the 6V′ model to that of VSASM. The
arctic curves for both these cases were derived in [CP10a, CP10b] and [DFL18] respectively,
and shown to coincide.

For illustration, we have represented in figure 12 (left) the corresponding arctic curves for
some values of η ranging from 0+ to π

2
−: the curves are identical to the NE/SE portions of the

arctic curve of the 6V-DWBCmodel, upon a rescaling by a global factor of 2. For η → 0+, we
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Figure 13. Arctic curves for the free fermion case η = π
4 of the 6V′ model. Left: sym-

metric case v = − π
2 , with u ranging from 0+ (outermost curve on the vertical x = −1)

to π
4
− (innermost curve on the vertical x = −1): all curves are symmetric w.r.t. the line

y = 1. Right: asymmetric case v = − π
2 − π

12 , with u ranging from 0+ (outermost curve
on the vertical x = −1) to π

6
− (innermost curve on the vertical x = −1 degenerating to

a segment).

find the following limiting arctic curve:

(XNE, YNE)|η→0 =

(
1
π
(2ξ − sin(2ξ)), 1− 1

π
(2ξ + sin(2ξ))

) (
ξ ∈

[
−π

2
, 0
])

.

The limit η → π
2
− is singular, as the parameter α = π/(π − 2η) diverges. However, one

can take a double scaling limit η = π
2 − ε, ξ = εζ , and ε→ 0, in which case the limiting curve

reads:

XNE|ε→0 =
(2+ ζ)2 (cos(2πζ)− 1+ 2πζ2(π(1− ζ2) cos(πζ)+ 2ζ sin(πζ))

4(1+ ζ + ζ2)sin2(πζ)

YNE|ε→0 =
(1+ ζ)2 (3 sin2(πζ)+ π(1− ζ)2(πζ(2+ ζ) cos(πζ)− 2(1+ ζ) sin(πζ))

2(1+ ζ + ζ2)sin2(πζ)

for ζ ∈ (−1, 0].

41



J. Phys. A: Math. Theor. 54 (2021) 355201 P Di Francesco

Figure 14. Arctic curve (NE and SE portions) of the ‘20V point’ of the 6V′ model,
with η = u = π

8 , v = − π
2 (symmetric curve in red) together with the arctic curve of the

associated 6V model, with η = π
8 , u =

5π
8 , scaled by a factor of 2.

By contrast, in the anisotropic case where u6V′ = 0 but v6V′ 
= − π
2 (and u6V = −v6V′ 
= π

2 ),
the arctic curves no longer coincide. For illustration, the predicted NE and SE portions of
arctic curve of the 6V′ model at η = π

3 , u6V′ = 0, v6V′ = − π
2 − π

12 are depicted in figure 12
(right), together with the arctic curve of the 6V-DWBC model with the same values of the
weights (i.e. with same η and u6V = −v6V′ = π

2 + π
12 ): the resulting curves are very different.

In particular, the 6V′ curve is anchored at the endpoints (−1, 0) and (−1, 2) with horizontal

tangents, whereas the 6V curve has horizontal tangents at different points
(
2(1− 2√

3
), 2

)
�

(−0.309, 2) and
(
4( 1√

3
− 1), 0

)
� (−1.69, 0).

4.6.2. The ‘free fermion’ case η = π
4 . This case is nicer in the sense that arctic curves are

expected to be analytic. In particular, we checked that the SE portion of the arctic curve is
indeed the analytic continuation of the NE one. In figure 13 (left) we represent arctic curves for
η = π

4 and the isotropic value v = − π
2 with u ranging from 0+ to π

4
−. The u = 0 arctic curve is

given by (x, y) = (cos(2ξ)− 1, sin(2ξ)+ 1): it is the half-circle (x + 1)2 + (y− 1)2 = 1 with
x � −1, first obtained in [PR19a]. The case u = π

4 is singular. As before, we consider the
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Figure 15. Arctic curve (NE and SE portions) of the 6V′ model with η = π
3 , u =

π
12 and

v varying from − π
2 (leftmost curve on top) to − π

2 − π
12 (rightmost curve on top).

double-scaling limit u = π
4 + ε and ξ = εζ , leading to the limiting curve:

(x, y) =

(
− ζ2

1+ ζ2
,
(1+ ζ)2

1+ ζ2

)

equal to the ellipse (2x + 1)2 + (y− 1)2 = 1 inscribed in the rectangle [−1, 0]× [0, 2]. We
see that the gap between the endpoints of the arctic curve on the vertical x = −1 ranges from
2 (semi-circle case) to 0 (ellipse case). This type of arctic curve was also encountered when
considering lozenge tilings (an archetypical free fermionmodel) with free boundary conditions
in [DFR12].

In figure 13 (right) we represent arctic curves for η = π
4 and a sample anisotropic value

v = − π
2 − π

12 with u ranging from 0+ to π
6
−. The u = 0 arctic curve is the quartic:
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(x, y) =

(
−sin2(ξ)

(
1+

cos2(ξ)
cos2

(
π
6 − ξ

)) ,
1
2
cos2

(
π
6 + ξ

)
cos2

(
π
6 − ξ

) (
1+

√
3 sin

(π
3
+ 2ξ

)))
.

The limit u→ π
6
− is singular, but the double scaling limit u = π

6 − ε and ξ = ζ
√
ε and ε→ 0

leads to the segment

(x, y) =

(
−1+

1
1+ 4√

3
ζ2

,
2

1+ 4√
3
ζ2

)
(ζ ∈ [0,∞))

that joins point (−1, 0) to (0, 2).

4.6.3. 20V case. This case corresponds to η = π
8 , u = η = π

8 and v = −4η = − π
2 , by anal-

ogy with the 6V model with DWBC whose partition function is identical to that of the uni-
formly weighted 20V model with DWBC1,2 studied in references [DDFG20, DFG18]. The
corresponding NE/SE portions of arctic curve are depicted in figure 14.

4.6.4. Generic case. We present a ‘generic case’ in figure 15 with η = π
3 , u = π

12 and v vary-
ing from− π

2 to−
π
2 − π

12 . As before the case v = − π
2 − π

12 is singular, but may be investigated
via a double scaling limit, leading to the segment joining (−1, 0) to (0, 2).

5. 20V model with DWBC3

5.1. Partition function and one-point function

In reference [DF21] the partition function of the 20V-DWBC3 model was related to that of
the 6V′ model, by use of the integrability of the weights (2.15). More precisely, let us denote
by Z20V

n [u, v] the semi-homogeneous partition function of the 20V-DWBC3 model, with all
horizontal spectral parameters equal to η + u, all diagonal ones to −u and arbitrary vertical
spectral parameters v = v1, v2, . . . , vn, and by Z6V′

n [u, v] the partition function of the 6V′ model
with horizontal spectral parameters all equal to u and arbitrary vertical spectral parameters v.
We have:

Theorem 5.1 [DF21] . The following relation holds for all n � 1:

Z20V
n [u, v] = αn(3n−1)/2Z6V′

n [u, v] sin (2u+ 2η)n(3n−1)/2

×
n∏
i=1

sin (u− vi − η)i−1 sin (η − u− vi)i. (5.1)

In the homogeneous case where all vi = v for all i, this reduces to:

Z20V
n [u, v] = αn(3n−1)/2Z6V′

n [u, v] sin (2u+ 2η)n(3n−1)/2

× sin (u− v − η)n(n−1)/2 sin (η − u− v)n(n+1)/2. (5.2)

Next we define the one-point function H20V
n [u, v; ξ] as the ratio:

H20V
n [u, v; ξ] :=

Z20V
n [u, v; ξ]
Z20V
n [u, v]

=

(
sin(u− v − ξ − η)
sin(u− v − η)

)n−1( sin(η − u− v − ξ)
sin(η − u− v)

)n

H6V′
n [u, v; ξ] (5.3)

,
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where in Z20V
n [u, v; ξ] we have kept v1 = v2 = · · · = vn−1 = v but relaxed the last value

vn = v + ξ. Like in the 6V and 6V′ cases, this function will be a crucial ingredient of the
tangent method.

5.2. Refined one-point functions and asymptotics

5.2.1. Refinedpartition function. Let Z20V
n,k [u, v] denote the partition function of the 20Vmodel

on the quadrangleQn with uniform weights (2.15), in which the rightmost path is conditioned
to first visit the rightmost column at a point at position k ∈ [1, 2n− 1] (see figure 16 for an
illustration). We may split this partition function into Z20V

n,k [u, v] = Z20V−
n,k [u, v]+ Z20V\

n,k [u, v]
according to whether the topmost path accesses the point k via a horizontal − or diagonal \
step, before terminating with k vertical steps until its endpoint. This quantity is easily related
to the partially inhomogeneous partition function Z20V

n [u, v; ξ] (5.3). Recall that for the latter
the weights are homogeneous with parameters u, v except for the nth column in which v is
replaced by v + ξ. Let ω̄i :=ωi[u, v + ξ]/ωi[u, v] be the relative Boltzmann weights for the
last column, as compared to the homogeneous values. Specifically, using the weights:

ω̄0 =
sin(u− v − ξ + η) sin(η − u− v − ξ)

sin(u− v + η) sin(η − u− v)
, ω̄2 =

sin(u− v − ξ − η)
sin(u− v − η)

ω̄1 =
sin(u− v − ξ − η) sin(−u− v − ξ − η)

sin(u− v − η) sin(−u− v − η)
, ω̄4 =

sin(η − u− v − ξ)
sin(η − u− v)

we find the following relation, expressing the decomposition of the contributions to
Z20V
n [u, v; ξ] according to the configurations of their topmost path (see figure 16 for an

illustration):

2n−1∑
k=1

(
ω̄4Z

20V−
n,k [u, v]+ ω̄2Z

20V\
n,k [u, v]

)
ω̄2n−k−1
0 ω̄k−1

1 = Z20V
n [u, v; ξ]. (5.4)

Introducing the parameters

τ :=
ω̄1

ω̄0
, σ :=

ω̄2

ω̄4

this reads:

Z20V
n [u, v; ξ] = ω̄4ω̄

2n−2
0

2n−1∑
k=1

τ k−1(Z20V−
n,k [u, v]+ σ Z20V\

n,k [u, v]).

5.2.2. Refined one-point function. As in the 6V′ case, the corresponding (normalized) refined
one-point functions H20V−

n,k [u, v],H20V\
n,k [u, v] are ratios of slightly modified refined partition

functions to the original homogeneous partition function Z20V
n [u, v]. The corresponding con-

figurations have a topmost path that stops at the point k after a last step from the n− 1th vertical
to the nth one (see figure 9 top right, pink domain). Compared to Z20V−

n,k [u, v], Z20V\
n,k [u, v], we

must remove the last k vertical steps of the topmost path, and thus replace the k corresponding
weights by 1 (instead of ω4,ω2) for the turning vertex, and by ω0 (instead of ω1) for the k− 1
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Figure 16. A sample contribution to the refined partition function Z20V
n,k [u, v]. In this

particular example, the contribution pertains to Z20V\
n,k [u, v]. The medallions detail the

various weights involved in the last column.

vertices crossed by the path:

H20V−
n,k [u, v] =

1
ω4

(
ω0

ω1

)k−1 Z20V−
n,k [u, v]

Z20V
n [u, v]

,

H20V\
n,k [u, v] =

1
ω2

(
ω0

ω1

)k−1 Z20V\
n,k [u, v]

Z20V
n [u, v]

. (5.5)

We deduce the relation

H20V
n [u, v; ξ] =

Z20V
n [u, v; ξ]
Z20V
n [u, v]

= ω4[u, v; ξ] ω̄2n−2
0

2n−1∑
k=1

tk−1(H20V−
n,k [u, v]+ sH20V\

n,k [u, v]), (5.6)

where we have used the parameters

t = τ
ω1

ω0
=

sin(u− v − ξ − η) sin(−u− v − ξ − η)
sin(u− v − ξ + η) sin(η − u− v − ξ)

=: t20V[ξ],

s = σ
ω2

ω4
=

sin(u− v − ξ − η)
sin(η − u− v − ξ)

. (5.7)
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We note that the function t20V[ξ] is identical to t6V′ [ξ] of the 6V′ model (4.37).

5.2.3. Relation to 6V′ one-point function. Using equation (5.3), and noting moreover that
āoāe = ω̄0, we may express:

H20V
n [u, v; ξ]
ω̄2n−1
0

=

(
sin(u− v − ξ − η)
sin(u− v − η)

)n−1( sin(u− v + η)
sin(u− v − ξ + η)

)n H6V′
n [u, v; ξ]
(āoāe)n−1

. (5.8)

5.2.4. Asymptotics. We now turn to large n = N asymptotics of the one-point functions (5.5)
with the scaled exit point position κ = k/(2N) kept finite. We first note that the relation (5.8)
yields the large N asymptotics

H20V
N [u, v; ξ]

ω̄2N−1
0

� e−Nϕ
20V[u,v,ξ]

ϕ20V[u, v; ξ] = ϕ6V′
[u, v, ξ]− log

(
sin(u− v − ξ − η) sin(u− v + η)
sin(u− v − ξ + η) sin(u− v − η)

)

= −log

(
sin(2v)sin2(u− v − ξ − η) sin(u+ v + ξ + η) sin(u− v + η)

sin(2v + ξ)sin2(u− v − η) sin(u+ v + η) sin(u− v − ξ + η)

)

− log

(
sin(αξ) sin(α(ξ + 2v + 2η)) sin(α(u− v − η)) sin(α(u+ v + η))

α sin(ξ) sin(2α(v + η)) sin(α(u− v − ξ − η)) sin(α(u+ v + ξ + η))

)
.

(5.9)

As the parameter s is finite and independent of k, using the relation (5.6), the connection
between H20V

n [u, v; ξ] to the 6V′ one-point function (5.8) and finally the asymptotics (5.3), we
get identical leading behaviors for both one-point functions.

Theorem 5.2. The large n = N scaling limit of the refined one-point functions H20V−
n,k [u, v]

and H20V\
n,k [u, v] reads:

H20V−
N,2κN[u, v] � H20V\

N,2κN[u, v] �
∮

dt
2iπt

e−NS
20V
0 (κ,t)

S20V0 (κ, t) :=ϕ20V[u, v; ξ]+ 2κ log(t),

where ϕ20V[u, v; ξ] is as in (5.9), and in which the variables t and ξ are related via t = t20V[ξ]
(5.7).

As before, the integral is dominated at large N by the solution of the saddle-point equation
∂tS20V0 (κ, t) = 0, or equivalently, changing integration variables to ξ: ∂ξS20V0 (κ, t20V[ξ]) = 0.
Using the identification t20V[ξ] = t6V′ [ξ], this is easily solved as

κ = κ20V[ξ] := − 1
2
t6V′[ξ]
∂ξ t6V′[ξ]

∂ξϕ
20V[u, v; ξ]

=
κ6V′ [ξ]

2
+

cot(u− v − ξ + η)− cot(u− v − ξ − η)
2 sin(2η)

× sin2(u− v − ξ + η)sin2(u− v − ξ − η)
cos(2u) cos(2ξ + 2v)− cos(2η)

(5.10)
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with κ6V′[ξ] as in (4.38) and (4.39).

5.3. Paths

5.3.1. Partition function. With the setting of figure 9 (top right, light blue domain), we wish
to compute the partition function Yk,	(β1, β2) of a single (Schröder) path of the 20V model in
the first quadrant Z2

+, with starting point (0, k) and endpoint (	, 0). We include a weight β1, β2

according to the configuration of the step taken before entering the path domain (last step in
the pink domain, respectively horizontal or diagonal).

The paths receive homogeneous 20Vweights (2.15), with horizontal, vertical, diagonal uni-
form spectral parameters u+ η, v,−u respectively, while all vertices not visited by the path
receive the weight ω0. As in the previous cases, we may factor out an unimportant overall fac-
tor ωk	

0 (where k	 is the area of the light blue rectangle [0, 	]× [0, k] in figure 9 top right), and
weight the vertices visited by the path by and extra factor 1

ω0
.

The partition function Yk,	(β1, β2) is computed by use of a transfer matrix technique (see
[DDFG20] appendix B for details with slightly different definitions). Each path is traveled
from N, W to S, E, and the transfer matrix is a 3× 3 matrix whose entries correspond to the
vertex weight for the transition from the entering step at each visited vertex to the outgoing
step. The three states are (−, \, |) for respectively a horizontal, diagonal, vertical step ending
at the transition vertex. Moreover we include an extra weight z, zw,w per horizontal, diagonal,
vertical outgoing step respectively. Note that the step prior to entering the quadrant (exit from
the rectangular domain) may be either horizontal (with an extra weight β1) or diagonal (with
an extra weight β2), while the last step is vertical. The transfer matrix T20V reads:

T20V =
1
ω0

⎛
⎝ ω6z ω5z ω4z
ω5zw ω3zw ω2zw
ω4w ω2w ω1w

⎞
⎠ .

The generating function for the Yk,	 reads

∑
k,	�0

Yk,	(β1, β2)zkw	+1 = (0, 0, 1)(I− T20V)−1

⎛
⎝β1

β2

0

⎞
⎠ .

This is a rational fraction with denominator det(I− T20V) = 1− α1w − α2z− α3zw −
α4zw2 − α5z2 w − α6z2w2, where

α1 =
ω1

ω0
, α2 =

ω6

ω0
, α3 =

ω0ω3 + ω2
4 − ω1ω6

ω2
0

α4 =
ω2
2 − ω1ω3

ω2
0

, α5 =
ω2
5 − ω6ω3

ω2
0

,

α6 =
2ω2ω4ω5 + ω1ω6ω3 − ω3ω

2
4 − ω1ω

2
5 − ω6ω

2
2

ω3
0

. (5.11)

5.3.2. Asymptotics. We now consider the large n = N, k, 	 limit, with κ = k/(2N) and λ =
	/N fixed. Like in section 4.3.2 above, the asymptotics of Yk,	 are determined by the
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denominator (5.11), and read (see also reference [DDFG20] appendix B for details):

Y2κN,λN �
∫ 1

0
dp3 dp4 dp5 dp6 e−NS

20V
1 (κ,p3,p4,p5,p6)

S20V1 (κ, p3, p4, p5, p6) = −(2κ+ λ− p3 − 2p4 − 2p5 − 3p6)log(2κ+λ−p3−2p4−2p5−3p6)

+ (2κ− p3 − 2p4 − p5 − 2p6)log

(
2κ− p3 − 2p4 − p5 − 2p6

α1

)

+ (λ− p3 − p4 − 2p5 − 2p6)log

(
λ− p3 − p4 − 2p5 − 2p6

α2

)

+
6∑
i=3

pi log

(
pi
αi

)
. (5.12)

As before this also covers the case of vanishing weights αi by taking the limit pi → 0 at
finite αi in the above.

5.4. Arctic curves

Theorem 5.3. The NE branch of the arctic curve for the 20V-DWBC3 model on the
quadrangleQn is predicted by the tangent method to be:

x = X20V
NE [ξ] =

B′[ξ]
A′[ξ]

, y = Y20V
NE [ξ] = B[ξ]− A[ξ]

A′[ξ]
B′[ξ],

where B[ξ] = 2κ20V[ξ] with κ20V[ξ] as in (5.10), and where A[ξ] is given by

A[ξ] =
cos(2η)− cos(u+ v + η) cos(u+ v − η + 2ξ)

cos(2η)− cos(2u) cos(2v + 2ξ)

× sin(u− v − η − ξ) sin(u− v + η − ξ)
sin(ξ) sin(ξ − 2η)

(5.13)

and with the parameter range:

ξ ∈ [η + u− v − π, 0] .

Proof. We may now bring together the ingredients of the tangent method.We determine the
family of tangentsFξ(x, y) = y+ A[ξ]x − B[ξ] defined in section 2.2.We already identified the
intercept B[ξ] = 2κ20V[ξ] with κ20V[ξ] given by (5.10). To determine the slope A[ξ] = 2κ/λ,
we must find the leading contribution to the total partition function

2n−1∑
k=1

HN,k[u, v]Yk,	 �
∫ 1

0
dκHN,2κN [u, v]Y2κN,λN

�
∮

dt
2iπt

∫ 1

0
dκ dp3 dp4, dp5 dp6 e−NS

20V(κ,p3,p4,p5,p6,t)

S6V
′
(κ, p2, p4, p5, t) := S20V0 (κ, t)+ S20V1 (κ, p3, p4, p5, p6),
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where the contour of integration of the variable t circles the origin, and with S20V0 (κ, t)
as in (4.36) and S20V1 (κ, p3, p4, p5, p6) as in (5.12). As in the 6V case, the first saddle-point
equation reads ∂tS

20V = 0 or equivalently ∂ξS
20V = 0, in terms of the dependent variable ξ

via t = t20V[ξ]. The latter is solved by (5.10), and amounts to parameterizing κ = κ20V[ξ]
in terms of the parameter ξ. The other saddle-point equations ∂κS20V = ∂p3S

20V = ∂p4S
20V =

∂p5S
20V = ∂p6S

20V = 0 give rise to the system of algebraic equations:

t
α1

=
2κ+ λ− p3 − 2p4 − 2p5 − 3p6

2κ− p3 − 2p4 − p5 − 2p6

α1α2 p3
α3

=
(2κ− p3 − 2p4 − p5 − 2p6)(λ− p3 − p4 − 2p5 − 2p6)

2κ+ λ− p3 − 2p4 − 2p5 − 3p6

α2
1α2 p4
α4

=
(2κ− p3 − 2p4 − p5 − 2p6)2(λ− p3 − p4 − 2p5 − 2p6)

(2κ+ λ− p3 − 2p4 − 2p5 − 3p6)2

α1α
2
2 p5

α5
=

(2κ− p3 − 2p4 − p5 − 2p6)(λ− p3 − p4 − 2p5 − 2p6)2

(2κ+ λ− p3 − 2p4 − 2p5 − 3p6)2

α2
1α

2
2 p6

α6
=

(2κ− p3 − 2p4 − p5 − 2p6)2(λ− p3 − p4 − 2p5 − 2p6)2

(2κ+ λ− p3 − 2p4 − 2p5 − 3p6)3
.

Substituting the values of t = t20V[ξ] (5.7) and of the weights αi (5.11) expressed
using (2.15):

α1 =
sin(u− v − η) sin(u+ v + η)
sin(u− v + η) sin(u+ v − η)

, α2 =
sin(2u) sin(u− v − η)

sin(2u+ 2η) sin(u− v + η)

α3 =
2 sin(2η) sin(2u)

(
sin

(
u− v + π

4

)
sin

(
u+ v + π

4

)
− sin2(2η)

)
sin(2u+ 2η) sin(u− v + η) sin(u+ v − η)

α4 =
sin(2u) sin(u− v − η) sin(u+ v + 3η)

sin(2u+ 2η) sin(u− v + η) sin(η − u− v)

α5 =
sin(2u− 2η) sin(u− v − η) sin(u+ v + η)
sin(2u+ 2η) sin(u− v + η) sin(η − u− v)

α6 =
sin(u− v − 3η) sin(u+ v + 3η) sin(2u− 2η)
sin(u− v + η) sin(u+ v − η) sin(2u+ 2η)

we find the unique solution such that λ,κ > 0:

p3
κ

=
2 sin(ξ − 2η) sin(ξ) sin(u+ v + ξ − η) sin(u+ v + ξ + η)

sin(2η) sin(u− v − η) (cos(2u) cos(u+ v + η)− cos(2η) cos(u− v − 2ξ + η))

× cos2(2u)− cos(4η)− sin(2u) sin(2v + 2η)
cos(2η)− cos(u+ v + η) cos(u+ v + 2ξ − η)

p4
κ

=
sin(2u) sin(u+ v + 3η) sin(u− v − ξ + η)

sin2(2η) sin(u− v − ξ − η) (cos(2u) cos(u+ v + η)− cos(2η) cos(u− v − 2ξ + η))

× sin(ξ − 2η) sin(ξ)sin2(u+ v + ξ − η)
cos(2η)− cos(u+ v + η) cos(u+ v + 2ξ − η)
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p5
κ

=
2 sin(2u− 2η) sin(u+ v + η)

sin2(2η) (cos(2u) cos(u+ v + η)− cos(2η) cos(u− v − 2ξ + η))

× sin2(ξ)sin2(u+ v + ξ + η)
cos(2η)− cos(u+ v + η) cos(u+ v + 2ξ − η)

p6
κ

=
2 sin(2u− 2η) sin(u− v − 3η) sin(u+ v + 3η)sin2(ξ)

sin2(2η) sin(u− v − η) (cos(2u) cos(u+ v + η)− cos(2η) cos(u− v − 2ξ + η))

× sin(u− v − ξ + η) sin(u+ v + ξ − η) sin(u+ v + ξ + η)
sin(u− v − ξ − η) (cos(2η)− cos(u+ v + η) cos(u+ v + 2ξ − η))

κ

λ
=

sin(u− v − ξ − η) sin(u− v − ξ + η) (cos(2η)− cos(u+ v + η) cos(u+ v + 2ξ − η))
2 sin(ξ − 2η) sin(ξ) (cos(2η)− cos(2u) cos(2v + 2ξ))

.

(5.14)

Using the parametrization κ = κ20V[ξ], we may interpret the last equation as determining
λ as a function λ20V[ξ] of the parameter ξ, where:

λ20V[ξ] :=κ20V[ξ]
2 sin(ξ) sin(ξ − 2η)

sin(u− v − η − ξ) sin(u− v + η − ξ)

× cos(2η)− cos(u+ v + η) cos(u+ v − η + 2ξ)
cos(2η)− cos(2u) cos(2v + 2ξ)

. (5.15)

To summarize, we have found the most likely exit point κ as an implicit function of the
arbitrary parameter λ, via the parametric equations (κ,λ) = (κ20V[ξ],λ20V[ξ]), which results
in the family of tangent lines Fξ(x, y) = 0. The theorem follows from the expressions (2.20), by
identifying the slope A[ξ] = 2κ20V[ξ]/λ20V[ξ], while the range of the parameter ξ corresponds
to imposing A[ξ] ∈ [0,∞). �

As explained in section 2.2.2, the SE branch of the arctic curve is easily obtained by
applying the transformation (u, v) �→ (u∗, v∗) = (u,−v − π) and the change of coordinates
(x, y) �→ (x, 2− x − y).

Theorem 5.4. The SE branch of the arctic curve for the 20V-DWBC3 model is given by the
parametric equations

x = X20V
SE [ξ] = X20V

NE [ξ]∗

y = Y20V
SE [ξ] = 2− X20V

NE [ξ]∗ − Y20V
NE [ξ]∗ (ξ ∈ [η + u+ v, 0])

with X20V
NE , Y20V

NE as in theorem 5.3, and where the superscript ∗ stands for the transformation
(u, v) �→ (u∗, v∗) = (u,−v − π), which we have also applied to the range of ξ.

5.5. Examples

We now illustrate the results of theorems 5.3 and 5.4 in a few examples.

5.5.1. Case u = 0. In this case the arctic curve is entirely made of its NE and SE portions,
as it touches the W boundary at points (−1, 1) and (−1, 2), both with a tangent of slope−1/2
(corresponding to A = 1/2) for all values of η, v. We have represented in figure 17 (left) the
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Figure 17. Left: arctic curve of the 20V-DWBC3 in the cases u = 0, v = − π
2 and η

varying from 0+ (outermost curve) to π
2
− (innermost curve). Right: arctic curve of the

20V-DWBC3 in the cases u = 0, η = π
6 and v varying between − π

2 − π
6 (topmost NE

curve) and − π
2 (bottommost).

arctic curves for the self-dual value v = − π
2 and for η ranging from 0+ to π

2
−. The arctic curve

for η = 0 reads:

(XNE[ξ], YNE[ξ]) =

(
2ξ − sin(2ξ)

π
, 1− 2

ξ

π

) (
ξ ∈

[
−π

2
, 0
])

.

The limit η → π
2
− is singular, however we find a finite result by setting η = π

2 − ε and ξ = εζ,
and then sending ε→ 0, with the result:

XNE =
(2+ ζ)2 (cos(2πζ)− 1+ 2πζ2(π(1− ζ2) cos(πζ)+ 2ζ sin(πζ))

4(1+ ζ + ζ2)sin2(πζ)

YNE = 1+
1
ζ
− π(1− ζ2)

2 sin(πζ)

+
(2+ ζ)(2ζ2 + 2ζ − 1) (cos(2πζ)− 1+ 2πζ2(π(1− ζ2) cos(πζ)+ 2ζ sin(πζ))

8(1+ ζ + ζ2)sin2(πζ)
.

In all these cases, the SE branch is given by (XSE, YSE) = (XNE, 2− XNE − YNE) as v = v∗.
We also represent non-selfdual cases in figure 17 (right), for u = 0, η = π

6 and v varying
between − π

2 − π
6 and − π

2 . We see that the tangency point on the vertical x = 0 moves away
from the self-dual point (0, 1), and that the curves are no longer nested as in the v = − π

2 case.
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5.5.2. Uniform case. As is easily checked on the weights (2.15), the uniform case cor-
responds to η = π

8 = u, v = − π
2 and ν =

√
2 (2.17). The NE and SE portions of the

arctic curve predicted by theorems 5.3 and 5.4 have a vertical tangent at (0, 1), a hor-
izontal tangent at

(
2
3 (
√
3− 3), 2

)
� (−0.845, 2) and a diagonal tangent of slope −1 at(

2
3 (
√
3− 3), 23 (3−

√
3)
)
� (−0.845, 0.845). We have represented in figure 17 (left) the

NE and SE portions of the arctic curve together with the rescaled quadrangular domain
limn→∞ Qn/n.

As pointed out before, the tangent method does not allow to predict the NW and SW
portions of the arctic curve. It is interesting however to notice that the NE portion of the
curve is algebraic. With a suitable shift of the origin to the point (−2, 1), namely substituting
(x, y)→ (x− 2, y+ 1), we obtain the following algebraic equation:

36
(
x2 + y2 − 2

3

)5

− 5333
(
x2 + y2 − 2

3

)3

− 2 32 54
(
x2 + y2 − 2

3

)2

− 2255(x2 + y2 − 4x2y2) = 0. (5.16)

We have represented this algebraic curve in figure 18 (right) together with the NE portion of
the uniform 20V-DWBC3 curve, and the scaled quadrangular domain (in black). We see that
the SE portion of the arctic curve (dashed black curve) is obtained as the shear of the analytic
continuation of the NE portion (red curve).

5.5.3. Free fermion case. In view of the connection to the 6V′ model (with same values of
η, u, v) it is clear that η = π

4 plays the role of free fermion point. In particular, we expect the
arctic curve to be analytic. As a highly non-trivial check, we have verified that at η = π

4 and
for all allowed values of u, v the SE branch is the analytic continuation of the NE branch. Like
in the 6V′ case, we also get access to the NW and SW branches via analytic continuation. We
have represented in figure 19 a sequence of cases with η = π

4 , u = π
16 and v varying (1) from

− π
2 to−

π
2 + 3π

16 (left) and (2) from− π
2 − 3π

16 to−
π
2 (right).We see that in the case (1) the curve

is anchored at the point (−1, 2) while the other end along the vertical x = −1 varies along the
W boundary. The reverse phenomenon is observed in the case (2), where the curve is anchored
at the point (−1, 1) and its other end varies along the W boundary.

5.5.4. Generic case. We finally present in figure 20 a ‘generic’ case with no special symme-
try: η = π

8 , and v = − π
2 − π

32 
= v∗ = − π
2 + π

32 , for u varying from 0 to 11π
32 = π + v − η. The

last value is singular, and must be approached as u = 11π
32 − ε, ξ = ε1/2ζ with ε→ 0. The result

is a line segment joining the points (−1, 1) and (0, 2).

6. Aztec triangle domino tilings

6.1. Partition function and one-point functions

In reference [DF21], a correspondence was established between the 20V-DWBC3 model on
Qn and the domino tiling problem of the Aztec triangle Tn. First it was shown that the models
share the same uniformly weighted partition function (total number of configurations):

Z20V
n = ZDT

n .

Next this correspondence was refined by considering the (uniformly weighted) 20V-DWBC3
refined partition functions Z20V

n,k , k = 1, 2, . . . , 2n− 1, equal to the refined partition function of
section 5.2.1with the parameters (2.17). Their counterparts are the refined partition functions of
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Figure 18. Left: arctic curve (NE = red and SE = blue portions) of the uniform 20V-
DWBC3 model on its rescaled domain (black), corresponding to η = π

8 , u =
π
8 and

v = − π
2 . Right: arctic curve of the uniform 20V-DWBC3 model (NE branch in thicker

blue line, SE branch in dashed black), together with the analytic continuation of its NE
portion (in red). The arrow indicates the shear transformation from the latter to the SE
branch.

the domino tiling problemZDT
n,k defined in a similar manner, using the non-intersectingSchröder

path formulation of section 2.1.4, as the number of configurations in which the topmost path
is conditioned to first enter the last vertical at position k = 0, 1, . . . , n− 1, before ending with
k vertical steps (see the pink domain in figure 9 (bottom right) for an illustration). In reference
[DF21], it was shown that

ZDT
n,k = Z20V

n,n+k+1 + Z20V
n,n+k. (6.1)

This implies the following relation between the corresponding refined one-point functions
H20V
n,k = Z20V

n,k /Z20V
n and HDT

n,k = ZDT
n,k /Z

DT
n :

HDT
n,k = H20V

n,n+k+1 + H20V
n,n+k. (6.2)

6.2. Arctic curves

6.2.1. Asymptotics of the one-point function. As usual, we explore the asymptotics of the
refined one-point function HDT

n,k for the domino tiling model in the scaling limit of large n = N
and κ = k/N finite. The relation (6.2) allows immediately to express:
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Figure 19. Left: arctic curve of the free fermion 20V-DWBC3 model for η = π
4 , u =

π
16

and v varying from − π
2 (topmost) to − π

2 + 3 π
16 (bottommost). Right: same, but with v

varying from − π
2 − 3 π

16 (topmost) to − π
2 (bottommost).

Theorem 6.1. The large n = N asymptotics of the refined one-point function HDT
n,k for the

domino tiling model reads:

HDT
N,κN = 2H20V

N,2κ′ N , κ′ =
1+ κ

2
(6.3)

and

HDT
N,κN �

∮
dt
2iπt

e−NS
DT
0 (κ,t)

SDT0 (κ, t) = S20V0

(
1+ κ

2
, t

)
= ϕ20V[u, v; ξ]+ (1+ κ)log(t),

where the contour of integration of the variable t circles the origin, and the variable ξ depends
implicitly on t via t = t20V[ξ] (5.7).

Similarly to the 6V′ and 20V cases, the saddle-point equation in the variable ξ reads
∂ξSDT0 (κ, t20V[ξ]) = 0, with the solution:

κ = κDT[ξ] := 2κ20V[ξ]− 1
(
ξ ∈

[
−π

4
, 0
])

(6.4)

with κ20V[ξ] as in (5.10), andwhere the range of ξ ensures thatκ20V ∈ [1, 2] henceκDT ∈ [0, 1].
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Figure 20. Left: arctic curve of the 20V-DWBC3 model for η = π
8 , v = − π

2 − π
32 and u

varying from 0 (innermost) to 3π
16 . Right: same, but with u varying from 3π

16 (bottommost)
to 11π

32 (segment).

6.2.2. Asymptotics of path partition function. By definition, and comparing figure 9 top right
and bottom right (light blue domains), we have in the uniform case: YDT

k,	 = Y20V
k,	 . We deduce

the asymptotics

YDT
κN,λN �

∫ 1

0
dp3 e

−NSDT1 (κ,p3), SDT1 (κ, p3) = S20V1 (κ, p3)

with S20V1 the uniform weight version of (5.12):

S20V1 (κ, p3) = −(κ+ λ− p3)log(κ+ λ− p3)+ (κ− p3)log(κ− p3)

+ (λ− p3)log(λ− p3)+ p3 log(p3).

6.2.3. Arctic curves via the tangent method. Strictly speaking, the tangent method only pre-
dicts the NE portion of the arctic curve. However, the domino tiling problem is of the ‘free
fermion’ class, as it involves only non-intersecting lattice paths (or alternatively the dual is just
a dimer model, for which the general results of [KOS06] apply). As such, it has an analytic
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Figure 21. Left: arctic curve of the uniformly weighted domino tiling problem of the
Aztec triangle, tangent to the NW, N and E boundaries. Right: comparison with the
arctic curve of the 20V-DWBC3 model: the blue portion is the common NE branch of
the two curves, represented with their respective rescaled domains.

arctic curve, hence we may safely use the analytic continuation of the NE portion predicted by
the tangent method.

Theorem 6.2. The arctic curve for the uniform domino tilings of the Aztec triangle, as
predicted via the tangent method, reads

x = XDT[ξ] =
B′[ξ]
A′[ξ]

y = YDT[ξ] = B[ξ]− A[ξ]
A′[ξ]

B′[ξ]

(
ξ ∈

[
−3π

8
, 0

])
,

where

B[ξ] :=κDT[ξ] and A[ξ] := − cot(2ξ)

with κDT[ξ] as in (6.4).

Proof. The rescaled tangent lines are now through the points (0,κ) and (λ, 0), governed by
the equation y+ Ax − B = 0 with A = κ/λ, B = κ. We have already determined the most
likely exit point κ = κDT[ξ] (6.4), leading to B[ξ] = κDT[ξ]. To determine A[ξ] we solve
the saddle-point equations ∂κSDT(κ, t, p3) = ∂p3S

DT(κ, t, p3) = 0, in terms of the total action
SDT(κ, t, p3) := SDT0 (κ, t)+ SDT1 (κ, p3). These read

t =
κ− p3

κ+ λ− p3
,

p3(κ+ λ− p3)
(κ− p3)(λ− p3)

= 1

and are easily solved into

p3
κDT[ξ]

=
t[ξ]− 1
2t[ξ]

=
sin(ξ)√

2 sin
(
ξ − π

4

) , κDT[ξ]
λ

=
2t[ξ]

t[ξ]2 − 1
= − cot(2ξ) = A[ξ].

The range of parameter ξ for the NE portion of arctic curve is ξ ∈ [− π
4 , 0], ensuring that

κDT[ξ] ∈ [0, 1], however as noted above we may extend the range to cover the entire domain,
which corresponds to κDT[ξ] ∈ [0, 2], namely ξ ∈ [− 3π

8 , 0], and the theorem follows. �
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Figure 22. Left: the arctic curve of the uniform 6V-DWBC/ASMmodel (red and dashed
black curves inside the square) and the analytic continuation of the NE branch (blue
ellipse inscribed in a hexagon); the arrow indicates the shear mapping the latter to the SE
branch (dashed black curve). Right: the arctic curve for TSSCPP (blue curve inside the
pink triangular domain), and that for the lozenge tiling of the regular hexagon obtained
by multiple reflections (red circle).

We illustrate the result of theorem 6.2 in figure 21 (left). Note that the curve has a verti-
cal tangent at the origin, and a horizontal tangent at the point

(
2
3 (
√
3− 3), 1

)
, while it ends

tangencially on the diagonal NW boundary at the point
(
2
√
2
3 − 2, 2

√
2
3

)
.

We note that the curve of theorem 6.2 is a portion of an algebraic curve. In fact, changing
the origin to (−2, 0) by applying the substitution (x, y)→ (x − 2, y), we find that this curve
is given by the same equation (5.16) as in the uniform 20V-DWBC3 case. This is illustrated
in figure 21 (right) where we have represented both rescaled domains, and their common NE
branch of the arctic curve (in blue).

7. Conclusion

In this paper, we have presented the tangent method derivation of arctic curves for the disor-
dered phase of the 6V-DWBC, 6V′, 20V-DWBC3 models, as well as for the domino tilings
of the Aztec triangle. The main ingredient used is the large size asymptotics of refined one-
point functions, which we derived from the form of the thermodynamic free energy of the 6V′

model in the disordered phase (theorem 4.9), and then deducing all relevant asymptotics from
there. Our method however only predicts the NE and SE branches of the relevant arctic curves.
It would be desirable to find the remaining NW and SW branches of the arctic curves when
applicable.

Another question regards the other possible phases of the 6V-U model: unfortunately the
thermodynamic free energy is known only for the disordered phases (see [RK15]), and this
problem should be addressed first.

The results for the 6V′ and 20V-DWBC3 models of the present paper complement earlier
results on the 6V-DWBC [CS16, DFL18] and 20V-DWBC1, 2 models [DFG20], which display
non-analytic arctic curves as well. The key to the non-analyticity can be traced back to the
symmetries of the systems, allowing for determining their SE branch in terms of the NE branch
of another system obtained by applying an involution ∗ to its weights together with a geometric
transformation of the plane involving a reflection and possibly a shear. Note also that our results
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Figure 23. The expected arctic curve of the uniformly weighted domino tiling problem
of Ciucu’s cruciform region (in red), is obtained as the multiple reflection of the arctic
curve of the Aztec triangle (in blue). The resulting clover-shaped curve is the analytic
continuation to the whole plane of the blue portion.

for the 6V′ model also apply to the more general case of U-turn boundary 6V model, which is
expected to share the same arctic curves.

Finally, let us compare the situation of the 20V-DWBC3 model to that of ASMs, with the
known enumeration formula:

ASMn =
n−1∏
j=0

(3 j+ 1)!
(n+ j)!

,

a formula strikingly reminiscent of (4.23). The analogy goes further: we have found that the
NE/SE portion of arctic curve for large uniform 20V-DWBC3 configurations is piecewise alge-
braic, the SE portion being equal to a shear transformation of the analytic continuation of the
NE portion (see figure 18 right). The same holds for ASMs, whose NE/SE portion of arctic
curve is piecewise elliptic, the SE portion being obtained by a shear transformation of the
ellipse containing the NE portion (see figure 22 left). The algebraic curve (5.16) clearly plays
a role similar to this ellipse.

Finally, recall that ASMs of size n are also in same number as TSSCPP [MRR86], which
can be viewed as rhombus tilings of a regular hexagon with edges of length 2n, which satisfy
all the symmetries of the hexagon. The triangular fundamental domain under these symmetries
occupies 1

12 th of the hexagon, which is recovered by successive reflections (see figure 22 right
for an illustration). As such, the arctic curve for TSSCPPwas argued in [DFR12] to be identical
to that of the full hexagon without any symmetry constraint, i.e. the inscribed circle in the
uniform case. There is a clear analogy between TSSCPP and the domino tilings of the Aztec
triangle, in which the algebraic curve (5.16) plays the role of this circle.
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Recently Ciucu [Ciu21] noticed a relation between the number of domino tilings of the
Aztec triangle Tn and that of a cruciform domain Cn−1,n,n,n−2

2n−1,2n−1 , obtained by ‘symmetrization’,
namely a succession of ‘reflections’ of the original Aztec triangle. We believe that the curve
(5.16), which is the analytic continuation of the arctic curve for the triangle, is in fact the
complete arctic curve for the rescaled large n cruciform domain. As visual evidence, we have
displayed both curves in figure 23, together with the original asymptotic Aztec triangle (shaded
in pink) and its 7 reflected copies. Figure 23 suggests that, similarly to the TSSCPP case, the
Aztec triangle could be the fundamental domain for symmetric tilings of a crosslike shaped
domain probably similar to that considered by Ciucu.
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