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Credibility building activities in computational research
include verification and validation, reproducibility
and replication, and uncertainty quantification. Though
orthogonal to each other, they are related. This
paper presents validation and replication studies in
electromagnetic excitations on nanoscale structures,
where the quantity of interest is the wavelength at
which resonance peaks occur. The study uses the
open-source software PyGBe: a boundary element
solver with treecode acceleration and GPU capability.
We replicate a result by Rockstuhl et al. (2005,
doi:10/dsxw9d) with a two-dimensional boundary
element method on silicon carbide particles, despite
differences in our method. The second replication
case from Ellis et al. (2016, doi:10/£83zcb) looks
at aspect ratio effects on high-order modes of
localized surface phonon-polariton nanostructures.
The results partially replicate: the wavenumber
position of some modes match, but for other modes
they differ. With virtually no information about the
original simulations, explaining the discrepancies is
not possible. A comparison with experiments that
measured polarized reflectance of silicon carbide nano
pillars provides a validation case. The wavenumber
of the dominant mode and two more do match, but
differences remain in other minor modes. Results in
this paper were produced with strict reproducibility
practices, and we share reproducibility packages for
all, including input files, execution scripts, secondary
data, post-processing code and plotting scripts, and
the figures (deposited in Zenodo). In view of the
many challenges faced, we propose that reproducible
practices make replication and validation more
feasible.
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1. Introduction

Some fields of research, particularly solid mechanics and computational fluid dynamics, have
a long tradition of community consensus building and established practices for verification
and validation of computational models. Such practices are uncommon in other fields of
science, especially if they have more recently become computationally intensive. Verification and
validation also become increasingly difficult when the computational models arise from many
levels of mathematical and physical modeling, representing a complex system. In recent years,
science as a whole has come to be concerned with reproducibility and replication as a new
front in the continual campaign to build confidence on published findings. Together with formal
processes of uncertainty quantification, we have now three complementary “axes” for building
trust in science.

The lengths to which research communities should go to conduct activities in verification and
validation, reproducibility and replication, and uncertainty quantification, are highly debated.
Some journals require articles reporting on computational results to include proof of these
activities, while most do not consider these aspects at all in their review criteria. In this paper,
we tackle a sub-field of computational physics where tradition for these confidence-building
activities is scant. The physical setting, excitation of resonance modes in nanostructures under
an electromagnetic field, relies on multiple levels of modeling, while the experimental methods
are complicated by the small length scales. We previously developed a computational model
and software (called PyGBe) that has undergone code and solution verification, but a validation
opportunity had remained elusive. Here, we present replication studies and a validation case
based on published simulation and experimental results. Moreover, the studies in this paper were
conducted under rigorous reproducibility practices, and all digital artifacts needed to reproduce
every figure are shared in reproducibility packages available in a GitHub repository and archival
services.

2. Background and methods

(a) Verification, validation, reproducibility and replication

Verification and validation of computational models—often abbreviated V&V and viewed in
concert—have developed into a mature subject with more than two decades of organized efforts
to standardize it, dedicated conferences, and a journal. The American Society of Mechanical
Engineers (ASME), a standards-developing organization, formed its first Verification and
Validation committee (known as V&V 10) in 2001, with the charter: “to develop standards for
assessing the correctness and credibility of modeling and simulation in computational solid
mechanics.” It approved its first document in 2006: The Guide for Verification and Validation in
Computational Solid Mechanics (known as V&V 10-2006). The fact that this guide was five years
in the making illustrates just how complex the subject matter, and building consensus about it, can
be. Since that first effort, six additional standards sub-committees have tackled V&V in a variety
of contexts. V&V 70 is the latest, focused on machine-learning models. The key principles laid out
in the first V&V standard persevere through the many subsequent efforts that have operated to
this day. They are:
> Verification must precede validation.
> Needs for validation experiments and associated accuracy requirements for computational
model predictions are based on the intended use of the model.
> Validation of a complex system should be pursued in a hierarchical fashion from the
component level to the system level.
> Validation is specific to a particular computational model for a particular intended use.
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> Validation must assess the predictive capability of the model in the physical realm of
interest, and it must address uncertainties that arise from both simulation results and
experimental data.
The process of verification establishes that a computational model correctly describes the intended
mathematical equations and their solutions. It encompasses both code correctness, and solution
accuracy. Validation, on the other hand, seeks to determine to which measure a computational
model represents the physical world. We like to say that “verification is solving the equations
right, and validation is solving the right equations” [1]. But in reality the exercise can be much
more complicated than this sounds. Computational models in most cases are built in a hierarchy
of simplifications and approximations, and comparing with the physical world means conducting
experiments, which themselves carry uncertainties.

As we will discuss in this paper, verification and validation in contexts that involve complex
physics at less tractable scales (either very small, or very large), or where experimental methods
are nascent, proceeds in a tangle of researcher judgements and path finding. In practice,
validation activities reported in the scholarly literature often concentrate on using a stylized
benchmark, and comparing experimental measurements with the results from computational
models on that benchmark. Seldom do these activities address the key principles of pursuing
validation in a hierarchical fashion from the component to the system level, and of assessing the
predictive capability of the computational model accounting for various sources of uncertainties.
Comprehensive validation studies are difficult, expensive, and time consuming. Often, they are
severely limited by practical constraints, and the conclusions equivocal. Yet the computational
models still provide useful insights into the research or engineering question at hand, and we
build trust on them little by little.

Verification and validation align on one axis of the multi-dimensional question of when are
claims to knowledge arising from modeling and simulation justified, credible, true [2]. Two other
axes of this question are: reproducibility and replication, and uncertainty quantification (UQ).
Uncertainty quantification uses statistical methods to give objective confidence levels for the
results of simulations. Uncertainties typically stem from input data, modeling errors, genuine
physical uncertainties, random processes, and so on. A scientific study may be reproducible, the
simulations within it undergone V&V, yet the results are still uncertain. Building confidence in
scientific findings obtained through computational modeling and simulation entails efforts in the
three “axes of truth” described here.

Reproducibility and replication (we could call it R&R) preoccupy scientific communities
more recently. Agreement on the terminology, to begin with, has been elusive [3]. The National
Academies of Science, Engineering and Medicine (NASEM) released in May 2019 a consensus
study report on Replicability and Reproducibility in Science [4] with definitions as follows.
“Reproducibility is obtaining consistent results using the same input data, computational steps,
methods, and code, and conditions of analysis. Replicability is obtaining consistent measurements
or results, or drawing consistent conclusions using new data, methods, or conditions, in a
study aimed at the same scientific question.” According to these definitions, reproducibility
demands full transparency of the computational workflow, which at the very least means open
code and open data, where ‘open” means shared at time of publication (or earlier) under a
standard public license. This condition is infrequently satisfied. The NASEM report describes
how a number of systematic efforts to reproduce computational results have failed in more
than half of the attempts made, mainly due to inadequately specified or unavailable data, code
and computational workflow [5-8]. Recommendation 4-1 of the NASEM report states that “to
help ensure reproducibility of computational results, researchers should convey clear, specific,
and complete information about any computational methods and data products that support
their published results in order to enable other researchers to repeat the analysis, unless such
information is restricted by nonpublic data policies. That information should include the data,
study methods, and computational environment” [4].
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Although it may seem evident that running an analysis with identical inputs would result
in identical outputs, this is sometimes not true. For example, the combination of floating-point
representation of numbers and parallel processing means that running the same software with
the same input data may give different numerical results. In some research settings, it may make
sense to relax the requirement of bitwise reproducibility and settle on reproducible results within
an accepted range of variation (or uncertainty). This can only be decided, however, after fully
understanding the numerical-analysis issues affecting the outcomes—and the risk associated with
an uncertainty range. Researchers using high-performance computing thus recognize that when
different runs with the same input data produce slightly different numeric outputs, each of these
results is equally credible, and the output must be understood as an approximation to the correct
value within a certain accepted uncertainty.

Beyond the particulars of high-performance or parallel computing, a number of factors can
contribute to the lack of reproducibility in research. In addition to lack of access to non-public
data and code, the NASEM report (of which Barba is a co-author) lists the following contributors
to lack of reproducibility:

> Inadequate record-keeping: the researchers did not properly document all relevant digital
artifacts and steps followed to obtain the results, the details of the computational
environment, software dependencies, and/or identifiers and metadata for data products.
> Lack of transparency: the researchers did not transparently report, using standard public
licenses, an archive with all relevant digital artifacts necessary to reproduce the results.
> Obsolescence of the digital artifacts: over time, the digital artifacts in the research
compendium are compromised because of technological breakdown and evolution or
lack of continued curation.
> Flawed attempts to reproduce others’ research: the researchers who attempted to
reproduce the work lacked expertise or failed to correctly follow the research protocols.
> Barriers in the culture of research: lack of resources and incentives to adopt reproducible
and transparent research across fields and researchers.
Improving computational reproducibility hinges on capturing and sharing information about the
computational environment and steps required to collect, process, and analyze data. Scientific
workflows represent a complex flow of data products through various steps of collection,
transformation, and analysis to produce an interpretable result. Capturing provenance of the
result is increasingly difficult to do using manual processes, and automation is key. With regards
to software management, version-control systems are used to automatically capture the history
of all changes made to the source code of a computer program. This creates a history of changes
and allows the developers to better understand the code and to identify possible problems or
errors. Recent technological advances in version control, virtualization, computational notebooks,
and automatic provenance tracking have the potential to simplify reproducibility, and tools have
been developed that leverage these technologies. Still, many questions remain unanswered both
to understand the gaps left by existing tools and to develop principled approaches that fill those
gaps.

Replication of scientific findings is key for building trust in them. It is often difficult to attain,
for many reasons, not least because deciding when two scientific findings are consistent is tangled
in researcher judgements and inevitable constraints. The NASEM report lists the following factors
affecting the replicability of findings:

> the complexity of the system under study;

> understanding of the number and relations among variables within the system under
study;
the ability to control the variables;
levels of noise within the system (or signal to noise ratios);
the mismatch of scale of the phenomena and the scale at which it can be measured;
stability across time and space of the underlying principles;
fidelity of the available measures to the underlying system under study (e.g., direct or
indirect measurements); and
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> prior probability (pre-experimental plausibility) of the scientific hypothesis.
Fields of study that have been at the center of the ‘replication crisis’ commotion tend to be
characterized by their complexity, intrinsic variability, or inability to control variables, e.g.,
psychology. But in many areas of modern technology we face similar challenges to control
variables or disentangle many interacting effects. In this paper, we tackle replication and
validation of computational models in nanoscale physics, where certainly the systems are
complex, variables difficult to control, and signals subject to noise.

(b) Description of the PyGBe software

Our research group has been developing PyGBe—pronounced pighée—for several years. It was
first written for biomolecular-electrostatics calculations using a continuum model of proteins in
water or an ionic solvent. The computational model applies a boundary integral form of the
governing Poisson-Boltzmann and Poisson equations, to obtain the electrostatic potential and
its normal derivative on the molecular surface. In the implicit-solvent model, this information
is used to compute the quantity of interest: solvation energy, which is diagnostic for questions
of protein binding affinity, protein-surface interactions, and others. Biomolecules are modeled as
dielectric cavities inside an infinite continuum solvent, and the partial differential equations are
solved via a boundary element method, leading to a dense linear system of equations. PyGBe uses
a fast-summation algorithm via a Barnes-Hut treecode [9], and accelerates the computationally
intensive parts of the code on Nvidia GPU hardware using CUDA kernels in the treecode,
interfacing with PyCUDA [10]. Other portions of the code are written in C+4-, wrapped using
swig, to extract more performance [11]. These features allow PyGBe to handle problems with
half a million boundary elements or more.

In more recent work, we expanded the capabilities of PyGBe to applications of computational
nanoplasmonics for biosensing [12]. Applying the long-wavelength limit, one can model the
phenomenon of localized surface plasmon resonance (LSPR) via electrostatics, instead of the
full Maxwell equations. This phenomenon is harnessed in nanosensors for detecting with high
sensitivity the presence of biomolecules through shifts in resonance frequency. In LSPR, an
electromagnetic wave excites the free electrons on the surface of a metallic nanoparticle. The
name given to these electron-cloud vibrations is plasmons. In this setting, they resonate with the
incoming field, and the energy is either absorbed by the nanoparticle or scattered in all directions,
causing what’s called extinction. Since the resonance frequency depends on the dielectric
environment, the change produced by a biomolecule approaching the metallic nanoparticle
results in a frequency shift, and a means of detecting its presence. The electrostatic approximation
allows using the methods implemented in PyGBe, after substantial code development to permit
using complex-valued permittivities, and to incorporate an external electric field into the model.
These changes included re-writing the Krylov iterative solver to work with complex numbers, and
splitting the treecode evaluation into real and imaginary parts. New functions were added to read
from configuration files the data describing the electric field, to compute the dipole moment, and
to compute the final quantity of interest: extinction cross-section. We reported a major new release
of the software in 2017 [13], and later presented the mathematical formulation for electromagnetic
scattering in the long-wavelength setting and its associated continuum and discretized integral
equations, and results including verification activities and sensitivity calculations on a biosensor
model [12]. For verification, we conducted grid-convergence studies in two settings. In the first,
we set up a computational model for a spherical silver nanoparticle in a constant electric field,
leading to an analytical solution for the extinction cross-section. The second case does not have a
closed form solution: a spherical nanoparticle with a nearby protein (analyte), under an electric
field. To estimate relative errors in the extinction cross-section, in this case, we made use of
the method of Richardson extrapolation. These verification activities build our confidence on
the computational model—moreover, our work was published following careful reproducibility
practices, including the release of reproducibility packages for all results. Nevertheless, the gold
standard of confidence in the predictive capability of the computational model comes from
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validation: our quest for an opportunity to conduct validation studies with PyGBe in these
settings led us through the twisted path that we report in this paper.

(c) Physics context for this work

In recent years, polar dielectric crystals such as Silicon Carbide (SiC) became recognized as
an alternative to plasmonic metals in many technologies, including biosensors. They manifest
oscillations of lattice-bound charges, called surface phonon polaritons, in the mid- to long-wave
infrared range with low optical losses. Nanostructures made of these materials offer sensing
capabilities, described by their figure of merits, that are unattainable with plasmonic metals.
The figure of merits of a nanoparticle is defined as the ratio between the sensitivity and the
width of the resonance peak at mid-height [14]. In turn, sensitivity is the shift in the resonance
position divided by the change in the refractive index: S = AX/An. The dielectric function of
polar dielectrics has a negative real part and a small imaginary part, in the mid to long infrared
regime. This dielectric behavior is similar to that observed in metals like silver in the blue
part of the wavelength spectrum. In plasmonics, when illuminating a small particle made of
metallic materials, we will observe that certain wavelengths excite a surface plasmon. The main
difference with polar dielectrics like SiC is that for this material the frequency of the incoming
light matches instead the resonance frequency of the Si and C sub-lattices [15,16]. This excitation
leads to a strong extinction cross-section at the resonance wavelength, and an enhanced near-field
amplitude. These behaviors can be modeled with the same approaches used for localized surface
plasmon resonance, and when the wavelength is much larger than the size of the nanoparticle,
we can again apply the electrostatic approach implemented in PyGBe [12,13].

When studying both surface phonon polaritons and surface plasmon resonances, one can
analyze the spectrums by measuring different quantities. We can measure scattering cross-section,
absorption, or extinction cross-section (scattering plus absorption), as well as reflection. Since
the quantity of interest is the wavelength (frequency) at which the resonance modes happen,
these different approaches are comparable in some cases, e.g., whether we measure reflection or
extinction cross-section, the wavelength (frequency) at which the peaks happen remains the same.
Throughout this work, we will concentrate on studying the wavelength (frequency) at which the
resonance modes occur, and we aim to replicate results from Rockstuhl et al. 2005 [16] and from
Ellis et al. 2016 [17], and to validate our software against experimental results from Ellis et al.
2016 [17].

3. Results

All the results reported in this paper were obtained using the PyGBe software [13], with
the version at commit 34eddfe in the history. The software GitHub repository contains a
Dockerfile to create the container image where we ran the simulations. The manuscript GitHub
repository is separate from the software repository, and can be found at https://github.
com/barbagroup/pygbe_validation_paper. It contains the reproducibility packages for all
results, as described in sub-section (c) and elsewhere in the paper. We used a lab workstation for
all simulations, built from parts. Hardware specifications are as follows:

> CPU: Intel Core i7-5930K Haswell-E 6-Core 3.5GHz LGA 2011-v3

> RAM: G.SKILL Ripjaws 4 series 32GB (4 x 8GB)

> GPU: Nvidia Tesla K40c (with 12 GB memory)

Solver parameters: We used a GMRES exit tolerance of 1 x 1076 in the iterative solver for all
our simulations. Details on the treecode and integration parameters (and others) can be found
within input files included in the manuscript GitHub repository as part of the reproducibility
packages (“repro-packs”).
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Run times: We report detailed time logs together with the data of our simulations, as part of
the repro-packs to accompany this paper. Here is a brief report. For the result of the replication
of Figure 14 of Rockstuhl et al., sub-section (a), the total wall-clock time for producing each curve
was approximately 11.6 hours, which is the result of computing the extinction cross section for
175 wavelength cases, giving ~4 minutes per run. In the case of the validation and replication
of Figure 2a of Ellis et al., sub-section (b), the total wall-clock time for producing the curve was
approximately 2.3 hours, which is the result of computing the extinction cross section for 208
wavelength cases, giving ~40 seconds per run.

(a) Replication of results from Rockstuhl, et al., 2005

The work of Rockstuhl et al. [16] studies the phonon-polariton response of silicon carbide (SiC)
nanoparticles using a two-dimensional (2D) boundary element method, previously developed in
their group [18]. They analyzed “cylindrical particles” (where they extend in the third dimension
to infinity) made of 6H-SiC, with varying cross-sections. We decided to attempt to replicate one
of the results presented on Fig.14 of their paper: the scattering cross-section of a SiC rectangular
cylinder for three different aspect ratios. To be well within our quasistatic approach (A > d where
d is the characteristic dimension of the geometry), we chose the case with a = 672 nm, b = 328 nm.

(i) Differences in method, mesh and dielectric data

Method: The main difference between the original simulations and ours is that they solve a 2D
problem with the full Maxwell equations, while we solve a 3D problem with the electrostatic
approximation. We lack any information about their code implementations, discretization
schemes, or solver. We computed extinction cross-section (scattering plus absorption) while
Rockstuhl et al. present only scattering cross-section. Absorption dominates in intensity over
scattering in the quasistatic regime, so these results are not generally comparable. When the
resonance peaks are sharp and narrow, however, the wavelengths at which they occur in the
scattering and absorption spectra are nearly the same. For example, Wiley et al. show simulation
results for a silver nanocube where the main peaks in the spectra are close [19]. Since silicon
carbide has more pronounced peaks than silver, the wavelength at which they occur in the
extinction and scattering spectra are more closely aligned.

Mesh: Rockstuhl et al. did not provide any details regarding the discretization of the geometries
or parameters involved in the simulations. We performed a grid-independence study as a form of
solution verification, and to ensure that we are minimizing errors due to discretization. Rockstuhl
et al. used a 2D geometry (infinite third dimension), while we treat the geometry in its full 3D
representation.

Dielectric data: The study uses 6H-SiC as material, and the authors obtained their data from a
source that we were not able to replicate. Instead we are using experimental data for 4H-SiC that
was provided to us via private communications from the authors of Ellis et al. [17].

(i) Grid-independence study

We performed a grid-independence study on a SiC cube of side L =535 nm submerged in air,
under a constant electric field aligned with the z-axis (a similar setup to the square cylinder on
Fig. 18 of Rockstuhl et al. [16]). Due to the nature of the geometry and its sharp edges, it was
challenging to see proper convergence. We have completed grid-convergence analysis for this
type of physics in a previous work, but using spherical geometries [12]. With that experience,
and given the difficulty caused by sharp edges, we are content with studying grid-independence
here instead. Figure 1 shows the grid-independence study, using meshes with 15,552 triangles
(density 9.05 x 10~° per A squared) to 19,200 triangles (density 1.11 x 10~* per A squared): the
computed results show no discernible difference.
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Figure 1: Grid-independence study for a SiC cube of side L = 535 nm submerged in air under a
constant electric field in the z-direction. The curves represent the extinction cross-section divided
by L? as a function of wavelength divided by L, for mesh sizes 19K = 19,200 triangles and 15K =
15,552 triangles. The label "diff" refers to the difference between the results of the two meshes.

It is worth noting that the extinction cross-section curve in Figure 1 has extra peaks compared
to the results of Figure 18 of Rockstuhl et al., due to the three-dimensional effects captured in our
simulation and the sharp edges, the latter effect also being mentioned by Rockstuhl et al. The 3D
effects will be addressed in the following results, where we attempt a replication of one of the
results on Figure 14 of Rockstuhl et al.

(iii) Replication of Figure 14 (case a1) of Rockstuhl et al., 2005

We chose to replicate a result of Rocksuthl et al. presented in Figure 14: the case where a =
672 nm and b= 328 nm, since these dimensions are well within the limits of the quasistatic
approximation used in PyGBe. Rockstuhl et al. present the normalized scattering cross-section
of a SiC rectangular cylinder, and they perform simulations for two different setups, sketched in
Figure 2. In their Figure 14 (left), they have the wave vector (illumination) along the long side
of the geometry, which means that the electric field is parallel to the short side of the rectangle,
like in Figure 2 (B). Following a similar analysis, in Figure 14 (right) of Rockstuhl et al., they have
the wave vector (illumination) along the short side of the geometry, which means that the electric
field is parallel to the long side of the rectangle, like in Figure 2 (A).

The constraints of mesh generation mean that we have only loose control on triangle density.
Our meshes for the rectangular prism all have densities like in the coarse case of the grid-
independence study of sub-section ii, or finer. For the third dimension, we needed to choose a
value that represents “infinity.” To achieve this, we studied the effects of elongating the cylinder
to the third dimension. In Figure 3, we present the results for two different values of the length
in the third dimension, y = 1344 nm (2 X a) and y = 2688 nm (4 x a). We see that as we make
y longer, the intensity of some peaks decreases, due to the fact that they are associated to this
component. Therefore, from now on we use y = 2688 nm. We did not explore larger values of y
because of the limitations imposed by the quasistatic limit model.

To generate the meshes for these simulations, we initially used the open source software
Trimesh (https://github.com/mikedh/trimesh), but we realized that it was not producing
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Figure 2: Configurations for the simulations corresponding to Fig. 14 of Rockstuhl et al., 2005.
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Figure 3: Effect of the elongation of the third dimension (y) on the extinction cross-section of a
rectangular prism of SiC of dimensions a = 672 nm and b = 328 nm, submerged in air and under
a constant electric field parallel to the z-axis. The left plot corresponds to a configuration such that
the electric field is parallel to b (configuration (A) on Figure 2), while the right plot corresponds
to a configuration such that the electric field is parallel to a (configuration (B) on Figure 2.

a uniform mesh and that it was not possible to obtain regular triangles with the functions available
when having a prism. To overcome this, we created our own mesh using Python scripts, and
obtained uniform meshes. We wanted to study the effect of a uniform mesh as well as the effect of
rounding the edges—Rockstuhl et al. mentioned rounded edges as a factor that introduces extra
peaks on the response. We were unable to control the roundness as a function of arc of curvature
or the dimensions of the rectangular prism, so we decided to use the default settings on Trimesh.
For reproducibility purposes, we provide all the mesh files, as described in sub-section (c). Figure
4 shows the results of the effect of uniformity and roundness. One can see that the second peak
located at ~ 10.6 pm is much diminished in the green curve for both the E || b the E || a plots.
These effects can be attributed to the roundness, consistent with the results in Rockstuhl et al.
Once we have found the “best” possible geometry construction, we show how our results
(green curve in Figure 4) compare with the original results from Rockstuhl’s Figure 14. We
obtained data from Rockstuhl’s curves by hand using the WebPlotDigitizer (https://apps.
automeris.io/wpd/). The replication results are presented in Figure 5: the main resonance
peaks presented in Rockstuhl et al. are closely matched. While we still have the presence of a third
peak in our results, we conjecture that this is a consequence of the 3D effects in our geometry.
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Figure 4: Effect of uniformity of the mesh and roundness of the edges on the extinction cross-
section of a rectangular prism of SiC of dimensions a =672 nm, b= 328 nm and y = 2688 nm,
submerged in air and under a constant electric field parallel to the z-axis. The labels are: Trimesh,
for a non-uniform mesh generated using Trimesh; Uniform, for a uniform mesh generated using
Python scripts; and Uni + round, for a uniform mesh generated using Python scripts with round
edges obtained using Trimesh.
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Figure 5: Replication of the results in Figure 14 of Rockstuhl et al., 2005. Extinction cross-section of
a rectangular prism of SiC of dimensions ¢ = 672 nm, b = 328 nm and y = 2688 nm, submerged in
air and under a constant electric field parallel to the z-axis (green line). The digitized curve from
Rockstuhl et al. corresponds to scattering (orange line).

(b) Replication of results from Ellis et al., 2016, and validation

The work of Ellis and coworkers [17] studies the aspect-ratio evolution of high-order modes
in localized surface phonon-polariton nanostructures. They study the excitation of multipolar
localized surface phonon polaritons (SPhP) resonances, by measuring and computing polarized
reflectance on 4H-SiC pillars of fixed height (H = 950 nm), fixed width (W = 400 nm) and varied
length (L = 400-4800 nm). These pillars are patterned on a square grid with a pitch P = L + 500
nm to reduce coupling. In both their simulations and experiments, they measured polarized
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reflectance with the incident polarization oriented parallel or perpendicular to the long axis of
the pillars.

Our first aim was to replicate the computational result presented in Figure S4 of their
supplementary material, corresponding to the black curve on their plot. In this figure, they show
simulation results for the resonance spectral position of the lower-frequency mode when having

parallel polarization (Eloo) with an incidence angle of 22 degrees. We attempted to replicate
this result since the gap between the pillars is 5000 nm (10 times larger than in the other cases),
diminishing the effects of coupling, which makes it a better candidate to replicate using PyGBe.
In our calculations, the setup consists of a single pillar, with no substrate. Our second attempted
replication is for the results presented in Figure 2a, corresponding to reflectance measurements
across wave number for pillars with aspect ratio AR =4, angle of incidence 22 degrees, and
incoming polarization parallel to the length of the pillars. For this case, the authors also reported
experimental results that we will use for validation of our solver.

(i) Differences in method, mesh and dielectric data

Method: Ellis et al. ran experiments using reflectance spectroscopy and they computed the
solution of Maxwell’s equations via the RF package of the finite element solver in the commercial
software COMSOL. In their simulations, they used one pillar over a portion of substrate, with
periodic boundary conditions to represent an array of pillars and their interactions. We use the
boundary element method in the quasistatic approximation, which is suitable in this case since
the pillar’s size is small compared to the wavelengths involved in the simulations: in the range
10000-12500 nm. We measured extinction cross section, which will express as peaks instead of
dips (shown in the reflection plots of Ellis et al.). The intensity of the peaks is not comparable, but
we are looking to match the wave number (quantity of interest) at which these events happen.

Mesh: For the case with aspect ratio AR =4, we have a non-uniform triangular surface
mesh (N =4398) provided to us by the authors of Ellis et al., which we used for validation
and replication of Figure 2a of their paper. However, for the replication of Figure S4 of the
supplementary material, we needed the remaining aspect ratio meshes. We generated uniform
meshes using our Python script, and we determined the density of these meshes by comparing
the extinction cross-section for the case with AR = 4 of our mesh and the one provided by Ellis et
al. We noticed that using around double the number of elements (N = 8564) than in the original
mesh and rounding the edges, the relative errors for the extinction cross-section were, on average,
smaller than 3%, and the variation on the wavelength peak posmon was smaller than 1 cm 1.
This analysis led us to a density of ~ 1.7 x 10~ 5 triangles per A squared to create the meshes for
the aspect ratio variation study.

Dielectric data: The dielectric data for the simulations was given to us by the authors of the
paper via a private communication (CTE & JGT, 2019), and corresponds to experimental values
of the dielectric.

(i) Replication of Figure S4 in the supplementary materials of Ellis et al., 2016

To be able to replicate the result of Figure 54 of the supplementary materials of Ellis et al., we
need to identify the lower-frequency mode for each of the aspect ratios in our computations. For
each aspect ratio (AR) value from 1 to 7, we computed the extinction cross-section Cez¢ across

the wave numbers in the range 800-1000 cm ™ L. We identified the lower-frequency mode (E|1|00
for Ellis et al.) that is not a longitudinal mode. The longitudinal modes appear only when we
have an incidence angle that is off-normal, since they are associated with the height of the pillar.
Figure 7 shows the results of the extinction cross-section of a SiC pillar of fixed height (H = 950
nm), fixed width (W = 400 nm) and varied length (L = 400-2800 nm), for normal and 22-degrees
angle of incidence. The simulations were performed for the long-edge orientation, meaning that
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Figure 6: Diagram showing the angles of incidence in our simulation setups to comply with the
configuration in the case from Ellis et al.

Table 1: Wavelength at which peaks happen for different aspect ratios, for runs where the electric
field is parallel to the length (L) of the pillar. We have normal incidence and 22-degree incidence.
The wavelengths in bold correspond to the lowest mode that is not a longitudinal one.

AR
1 L 917.73  934.092 949.604 957.325
22° 883926 917.73 935.052 949.604 957.325
5 1 903.233 926.395 944.762 958.242
22°  896.517 903.233 926.395 944.762  958.242
3 1 888.793 922552 931.223 948.613 958.242
22° 888.793 899.418 922552 931.223 958.242
4 1 876.186 92932  946.639 958.242
22° 876.186 901.281 921.618 92932 945745 958.242
5 1 865.576 926.395 945.745 958.242
22°  865.576 901.281 921.618 958.242
6 1 856.904 914.793 923.489  929.32  946.639 958.242
22°  856.904 901.281 920.6  958.242
7 1 850.134 910963 921.618 928.372 946.639 958.242

22°  850.134 901.281 910.963  920.6 958.242

the electric field is aligned with the length of the pillar when having normal incidence as shown
on Figure 6. From these results, we selected the lowest mode that is not a longitudinal one and
extracted its wavelength (see Table 1) to replicate Figure 8. This figure shows the results from Ellis
et al. (digitized by hand using the WebPlotDigitizer) and the results obtained with PyGBe, and
Table 2 shows that the percentage error is below 2% for all cases. (Note that Ellis et al. changed the
angle of incidence of the illuminating vector while in PyGBe we rotated the geometry instead.)

(iii) Validation of PyGBe against experimental results in Fig. 2a of Ellis et al., and
replication of the corresponding computations

The results of Figure 2a in Ellis et al. were obtained on a pillar of aspect ratio AR = 4. For this case,
we have the original mesh, provided to us by the authors. We also know that our computation

for the mode Elll00 compares well with theirs (percentage error 0.16%), therefore we attempted to
validate our simulations with their experimental results (red curve on their paper), as well as to
replicate their simulations (green curve on their paper). Figure 2a of Ellis et al. presents measured
and simulated reflectances of SiC pillar arrays with a 500-nm gap. All their measurements and
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Figure 7: Extinction cross-section across wavenumbers for SiC pillars of varying aspect ratios,
(H =950 nm, W =400 nm, L = 400-2800 nm, AR = 1-7), with both normal incidence and a 22-
degree incidence.
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Figure 8: Replication of figure S4 in the supplementary materials of Ellis et al., 2016. Wave number
at which the E!OO mode happens for different aspect ratios.

Table 2: Percentage error for different aspect ratios.

AR % error
0.95
0.67
0.35
0.16
0.72
1.20

1.59

N O U W N

simulations were performed with 22° off-normal angle of incidence and incoming polarization
parallel to the elongated side of the pillar.

Using PyGBe, we computed the extinction-cross section of an isolated SiC pillar (AR = 4) with
no substrate, submerged in air under a constant electric field in the z-direction, and rotated the
orientation of the pillar to match the angle of incidence used by Ellis et al. (see Figure 6). In
Figure 9, we present a comparison of our simulations and the experimental results of Ellis et al.
A difference in the wavelengths of the peaks is noticeable. This may be attributed to the fact that
in their experiments the separation between pillars is 500 nm, which implies there are coupling
effects that in our simulations are not considered.

First-order correction. Since our simulations do not take into account coupling effects in an
array of prisms, we cannot strictly match the conditions to validate our solver. However, from
Figure 54 in the supplementary materials of Ellis et al., we know that coupling effects affect the

E|1|00 mode by a shift of 12.17 cm™!. Therefore, as a first-order correction we can subtract this
amount from our simulations to account for coupling effects. In Figure 10, we present the result
after applying this correction for coupling effects. It is worth mentioning that the far-left (837
cm_l) and far-right (964 cm_l) peaks on the results of Ellis et al., are peaks associated with
zone-folded LO (longitudinal) phonons of 4H-SiC, an effect they say is beyond the scope of their
analysis [17]. They concentrate their analysis on the peaks that occur between 864 and 961 cm™*.
If we use the same approximation and compare the results with the simulations of Ellis et al. on
Figure 2 (green curve on their paper) we obtain Figure 11.
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Figure 9: PyGBe vs. the experiments presented in Figure 2a of Ellis et al., 2016 (we obtained the

data digitizing by hand from their figure using WebPlotDigitizer).
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Figure 10: Validation against experiments in Figure 2a of Ellis,

correction, as explained in the text.
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Figure 11: Replication of the simulations in Figure 2a of Ellis et al., 2016, using the first-order
correction, as explained in the text.

(c) Reproducibility and data management

Barba (2019) describes the elements of reproducible computational research that we have adopted
in our practice [20]. A key element is professional software management and engineering, and
the central technology solution is version control. Preserving a complete history of changes is
the only way to manage complex software projects that can support reproducibility. Moreover,
all our research software is developed in the open, and shared under permissive public licenses,
such as BSD-3 or MIT License. These open licenses permit all uses, as well as derivative works,
only subject to attribution. Another key element of transparent and reproducible computational
modeling is automation. Automating every step means turning protocols into code. For example,
simulations are launched with parameters fed from a configuration file rather than an interactive
prompt, and all figures and plots are produced by writing scripts, rather than pointing-and-
clicking on a graphical interface. The goal is to create complete “recipes” in code, which can be
run, versioned, and shared.

Our signature reproducibility practice is to organize and share in an archival-quality repository
(providing a global identifier) all digital artifacts associated with the results in the paper. This
includes input files, configuration files, post-processing scripts, files specifying the build process
and containerization (e.g., Docker files), and even cloud computing machine definitions, if
applicable [21]. We call these openly shared file sets reproducibility packages, or repro-packs for
short, and we have been doing this for many years and improving the process iteratively. The
basic steps were already contained in the “Reproducibility PI Manifesto” of 2012 [22], where
Barba pledged to always share a manuscript’s data, plotting scripts and figures under CC-BY
(Creative Commons Attribution license). Notably, this makes the figures re-usable by readers,
without requiring them to ask permissions from the publisher, even if there was a transfer of
copyright of the paper (the figures are included in the paper under the conditions of the public
license). We later extended the practice to include all other digital artifacts associated with the
results, beyond secondary data and figures. As in our previous papers, readers can reproduce all
the figures in this paper using the repro-packs shared in the manuscript GitHub repository, and

10000000 V 008 "H ‘SUBLL “lud Bio-BuiysigndAiaroosiesor-els)



archived separately in Zenodo. They include Jupyter notebooks with all the plotting code, and
also the manually digitized data from the figures in the source articles for our replication cases.
Barba and Thiruvathukal, 2017 [23], explain that it is not enough to provide these materials in a
GitHub repository (the owner of a repository is always able to delete it), and one should deposit
the reproducibility packages in an archival service providing a global identifier and permanent
link (like a digital object identifier, DOI).
The following items of archived digital artifacts accompany this paper:
> The software repository for PyGBe is at https://github.com /barbagroup/pygbe.

> The repository for this paper is at https:/ / github.com/barbagroup /pygbe_validation_paper, :

which also includes the manuscript source files in LaTeX.

> The problem datasets for replication of Rockstuhl et al., 2005, are in the manuscript
repository, but also archived in Zenodo at 10.5281/zenod0.3962534 [24].

> Execution files for all runs are archived in Zenodo at 10.5281/zen0do0.3962576 [25].

> The problem datasets for validation and replication of results from Ellis et al., 2016 are
archived in Zenodo at 10.5281/zenodo0.3962584 [26].

> The file sets for reproducing the figures for the replication of results from Rockstuhl et al.,
2005 are archived in Zenodo at 10.5281/zenodo. 3962791 [27].

> The file sets for reproducing the figures for the validation and replication of results from
Ellis et al., 2017 are arhived in Zenodo at 10.5281 /zenodo0.3962797 [28].

4. Discussion

We have presented several results that replicate previous published findings in the general
area of nanostructure responses to electromagnetic waves. Our field of interest is computational
nanoplasmonics for applications in biosensors, and in a previous publication we developed the
mathematical formulation and reported both solution verification activities, and an application
demo with our software PyGBe, extended to treat complex dielectrics and imposed electric fields
[12]. The search for a physical context and published results that would allow us to undertake
validation studies with PyGBe is what led us to this work. Even if we finally do have validation
and replication cases, neatly presented here, the path to obtain these results was nonlinear,
iterative, and arduous.

In the first case, we sought to replicate a result from Rockstuhl et al., 2005 [16], where
they computed the scattering cross-section as a function of wavelength for a silicon carbide
rectangular nanostructure. They present their results as a plot (Figure 14 in their paper), and
report the numeric value of the resonance wavelengths in the text. Lacking access to the secondary
data behind the plots—computed from two-dimensional simulations with a boundary element
solver—we were forced to manually digitize the values from the figure. Our results are presented
in Figure 5, together with the curve we obtain from digitizing the source image. We were
successful at replicating the strong peaks reported by Rockstuhl et al. at wavelengths 10.42 ym
and 10.7 p m, when the electric field E is parallel to the short side of the rectangle, and 10.42 pm
and 10.82 ;x m when F is parallel to the long side. Our results contain extra (small) peaks that are
not present in the work of Rockstul et al. The first one, located between the main two peaks, we
attribute to the the effect of sharp edges (see Figure 4), as when we introduce a level of roundness,
it diminishes. The second extra peak is the far right one, and we believe this peak is a consequence
of the 3D nature of our geometry; as observed in Figure 3, this peak intensity decreases as the third
dimension of the geometry lengthens. The quantity of interest in these findings is the wavelength
of the resonance peaks, and our results do indeed match the findings.

The second replication case is from a paper by Ellis and co-workers [17] studying the effect
of aspect ratio on the excitation of high-order modes in localized surface phonon-polariton
nanostructures (Figure S4 of their supplementary material and Figure 2 of their paper). Figure
8 shows the results for this replication, where the relative errors between our computations and
theirs is always smaller than 2%. The smallest error is for the case with AR = 4 and we proceeded
to study the results on Figure 2 of their work, corresponding to this same aspect ratio. Their
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results in Figure 2a include both experiments and simulations with the commercial software
COMSOL, so we sought to both validate PyGBe using their experimental results, and replicate
their computational findings. Again, we lack access to the data behind the plots, and we had to
digitize the curves by hand. The quantity plotted in the original figures is reflectance as a function
of wavenumber, whereas we compute the extinction—on the figures, they show inverted peaks,
where we show positive peaks. We can compare the results, nevertheless, because the quantity of
interest is the wavenumber position of the peaks. Figure 9 shows the results of our simulations
using PyGBe on an isolated pillar, compared with the experimental results of Ellis et al. on an
array of pillars. The results with PyGBe do not account for the effect of coupling among the
pillars, which explains the noticeable discrepancy on the wave numbers at which the peaks occur.
We proposed a correction, based on the results reported on Figure 5S4 of Ellis et al. for the AR =4
case, where the shift on the wave number due to coupling is 12.17 em L (difference between
black and red curves for AR = 4 on figure 54 of the supplementary materials). We subtracted this
value to that obtained with our simulations and we show the comparison of our corrected results
against those of Ellis et al.: the experimental data on Figure 10, and the computational data on
Figure 11. When comparing with their experiments, after the correction was applied, we observe
a good match of the wavenumber for the lower (and stronger) mode, as well as a good match
for the third and fourth peaks. The wave number of the second peak, related to a longitudinal
excitation (mode Lgqg in Ellis et al.), presents a discrepancy that we believe is related to the fact
that our pillar does not have a substrate underneath. The remaining (fifth) peak, also presents a
discrepancy, but in this case we can not identify the reason. We did not analyze the peaks out of
the range 864-961 em !, since Ellis et al. describe these peaks to be associated with zone-folded
LO (longitudinal) phonons of 4H-SiC, and outside the scope of their study. After considering all
these details, we can say that we have validated our solver PyGBe against the experimental results
of Figure 2a, as well as replicated their computational results.

Throughout all these activities aiming to replicate previous results and validate our
computational model, we faced multiple challenges, starting with the complexity of the system
under study. In both our source papers, we have systems that we were unable to fully model
using PyGBe. For the case of Rockstuhl et al., even though they used a boundary element method,
it was a 2D model instead of 3D like the one implemented in PyGBe. The computational work
presented in Ellis et al. used a volumetric formulation (finite element method), whereas PyGBe
implements a boundary integral one. Both works computed (or measured) quantities different
from the extinction cross-section (computed in PyGBe), but given the relationship between their
quantities (scattering cross-section and reflection) and ours (extinction cross-section), via the
wavelength (wavenumber) at which resonance happens, this was not a problem. To produce the
end results for comparing against these works, however, we went through an exhaustive process
of modeling, making assumptions, and even corrections. We were lacking any information
regarding the solvers, discretization, meshes, etc., in the original papers. In the case of Ellis et al.,
we benefited from multiple communications with the authors, who made available the geometry
and mesh of the pillar, as well as the dielectric data used as input for the simulations. Even
though we appreciate this helpful interaction, replication studies should ideally not depend on
communications with the original authors. In both cases, the secondary data presented in their
results were not publicly available and we relied on a manually digitized version, obtained from
the plots. This work is tedious and introduces uncertainties that would be avoided by releasing
the secondary data.

Validation has been a hard goal to achieve for our solver since the field does not have
benchmarks that are meant to be used for this purpose. Multiple times, we encountered
experimental results that we aspired to use for validation, but due to the insufficient reporting
of the experimental conditions, the setup and the geometries involved, we have been unable to
validate until this moment. Even though we were not modeling the same experimental setup, the
communications with the authors of Ellis et al., made the validation possible.
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After all the challenges faced to achieve code validation and replication of results, we can say
that the process was far from linear, and the complexity involved increases if the work to be
replicated or used for validation was not conducted and published using reproducible practices,
and made open at the time of publication. We conclude that reproducible practices are needed
not only for the work to be reproduced, but also replicated and even used for validation studies,
if applicable.
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