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Abstract We propose solutions of the quantum Q-systems of types BN,CN,DN

in terms of q-difference operators, generalizing our previous construction for the Q-
system of type A. The difference operators are interpreted as q-Whittaker limits of
discrete time evolutions of Macdonald-van Diejen type operators. We conjecture
that these new operators act as raising and lowering operators for q-Whittaker
functions, which are special cases of graded characters of fusion products of KR-
modules.

1 Introduction

The characters of tensor products of KR-modules of Yangians, quantum affine
algebras, or affine algebras have fermionic formulas, generalizing Bethe’s original
counting formula of the Bethe eigenstates of the Heisenberg spin chain [Bet31].
The fermionic formulas, in the case of KR-modules of Yangians of the classical
Lie algebras g = ABCD, were conjectured by Kirillov and Reshetikin [KR87] and
further generalized in [HKO+99]. They were proved for the case of any simple Lie
algebra g in [AK07,DFK08]. In the course of the proof, it becomes clear that there is
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a close connection between solutions of recursion relations known as the Q-systems
and the fermionic formulas.

In [KR87, HKO+99], q-analogs of the fermionic characters of tensor products of
KR-modules, or graded characters, are also presented. There are several interpreta-
tions of the grading of these tensor products, which gives rise to these q-analogues,
or graded characters: (1) as linearized energy function for the corresponding
generalized inhomogeneous Heisenberg spin chain, (2) as a charge function for the
crystal limit of the corresponding quantum affine algebra modules, when it exists,
or (3) as the natural grading of the underlying affine algebra [FL99]. The latter
definition was used in [AK07, DFK14, Lin19] to prove the q-graded fermionic
character formulas. It turns out that there is a close connection between the graded
character formulas and q-deformed versions of Q-systems known as the quantum
Q-systems.

Quantum Q-systems are defined by quantizing [BZ05] the cluster algebraic
[FZ02] structure of the classical Q-systems [Ked08, DFK09]. They are recursion
relations for non-commuting variables {Qa,k}, with a running over the Dynkin
labels of g and k ∈ Z.

Graded characters are Weyl-symmetric functions with coefficients in Z+[q]. The
relation with the quantum Q-system can be schematically described as follows
(details can be found in [DFK14]). One can construct a linear functional φ from
the ordered product of (opposite, with parameter q−1) quantum Q-system solutions
Q∗

a,k to the graded characters of the corresponding tensor product:1

χn(q
−1; x) = φ




→∏

a,k

(Q∗
a,k)

na,k



 , (1.1)

where χn(q; x) is the graded character of the tensor product (or fusion product in the
sense of [FL99]) of KR-modules⊗a,kKR

⊗na,k
kωa

, n = {na,k} denoting the collection of
tensor powers, and x = (x1, x2, . . . , xN). Here, KRkωa is a g-module, the restriction
of the KR-module of the (quantum) affine algebra module, which has highest weight
kωa , k ∈ Z+ and ωa being one of the fundamental weights of g. The arrow on top of
the product sign refers to a specific ordering of the terms [DFK14, Lin19], in which
long and short roots play different roles.

Tensoring the tensor product above by an extra factor KRk′ωb
corresponds to the

insertion of the factor Q∗
b,k′ on the right in the product inside the functional, if k′ is

sufficiently large, so that the product remains ordered.
In the case of g = slN we introduced [DFK18, DFK17] a set of q-difference

operators Db,k′ , acting on the space of symmetric functions of x to the right, and
representing the insertion on the right of the factor Q∗

b,k′ in the linear functional of

1The functional uses only “half-space” solutions Q∗
a,k of the quantum Q-system for k ∈ Z+, with

a special prescription which amounts to evaluate Q∗
a,0 to 1.
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Eq. (1.1). The following diagram explains the action by difference operators on the
space of symmetric functions:

The result is an explicit expression for graded characters as the iterated action of
q-difference operators Da,k on the constant 1. The difference operators satisfy the
quantum Q-system.We refer to them as the functional representation of the quantum
Q-system.

In [DFK18], it was observed that the difference operators Da,k for k = 0 are the
t → ∞ limit of the Macdonald difference operators of type A, of which Macdonald
polynomials form a set of common eigenfunctions. Thus, in [DFK19], we identified
the t-deformation of the A type quantum Q-system as the spherical Double Affine
Algebra Hecke (sDAHA) of type A. This is the algebra which underlies Macdonald
theory [Mac95, Che05].

In the t → ∞ limit, in which Macdonald polynomials tend to (dual) q-
Whittaker functions with parameter q−1, we further identified in [DFK18] the
operator representation Da,k of the quantum Q-system when k = 1 (resp. k = −1)
as the t → ∞ limits of the Kirillov-Noumi [KN99] raising (resp. lowering)
operators. These operators, acting on a Macdonald polynomial indexed by some
Young diagram, have the effect of adding (resp. subtracting) a column of a boxes to
the Young diagram. Equivalently, using the correspondence of the Young diagram λ

with a dominant glN -weight, it corresponds to adding or subtracting the fundamental
weight ωa .

As a consequence, in the case where all KR-modules in the tensor product are
fundamental modules (na,k = 0 unless k = 1), the graded characters are identified
as limits of Macdonald polynomials as t → ∞ or t = 0 upon changing q → q−1,
and can therefore be identified with specialized q-Whittaker functions. See also
[LNS+17].

We remark that the above difference operators can be compared to the so-called
minuscule monopole operators representing the Coulomb branches of 4D N = 4
quiver gauge theories [BFN16] in the particular case of the “Jordan quiver” with a
single node, and when the equivariant parameter t is taken to infinity (with the result
of imposing that the representation N is trivial).

It is natural to look for the generalization of the functional representation of the
quantum Q-systems, corresponding to the affine algebras of types BCD. These
are described in terms of the root systems of the finite BCD type. Motivated by
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the results in type A, we expect the functional representation of the other type
quantum Q-systems to involve the t → ∞ limits of the corresponding BCD type
generalized Macdonald operators. In this paper, we present, without proof, a set of
such difference operators. Our main Conjecture 3 is that these operators satisfy the
relevant quantum Q-systems relations.

The construction of the BCD type difference operators is best understood by
thinking of the quantum Q-systems as evolution equations in the discrete time
variable k ∈ Z for the elements Qa,k . In type A, from the relation to sDAHA,
we noted in [DFK19] that the discrete time evolution k → k + 1 is given by the
adjoint action of a generator of the SL2(Z) symmetry of DAHA. The latter is also
expressed as the adjoint action of the “Gaussian” function γ −1 of the variables x,
where

γ ≡ γ (x) = e
∑N

i=1
Log(xi )
2Log(q) , (1.2)

and such that Da,k+1 ∝ γ −1Da,kγ .
The aim of the present paper is to present constructions of difference operator

solutions to the quantum Q-systems of types BCD, such that they coincide, at
k = 0, with the t → ∞ limit of suitable Macdonald operators, and which
have raising/lowering properties at k = ±1. To this end, we first identify the
t → ∞ limits of suitable Macdonald-type operators in types BCD by use of
works of Macdonald and van Diejen [Mac01, vD95, vDE11]. Next, we construct
their time evolution, by a suitable Gaussian conjugation. Our main result is the
Conjectures 3 and 5.1 stating that (1) these operators obey a renormalized version
of the quantum Q-systems in types BCD and (2) the operators at times k = ±1 act
as raising/lowering operators on the corresponding q-Whittaker functions.

2 Q-Systems and Quantum Q-Systems

2.1 Weights and Roots

Let g be a Lie algebra of classical type, g ∈ {AN−1,DN,BN,CN }. For each of
these, we list in Table 1 the standard data of fundamental weights ωa , the simple
roots αa , and the conditions on the non-increasing sequence λ = (λ1 ≥ λ2 ≥ · · · ≥
λN) corresponding to dominant weights

∑
a naωa = ∑

i λiei (na ∈ Z+). In Table 1,
the set {ea}Na=1 is the standard basis of RN , whereas {êa = ea − ε/N}N−1

a=1 where ε

is the sum over all the basis elements.
We also denote by ta the integers 2

||αa ||2 , so that ta = 1 for long roots and ta = 2
for the short roots in types BC.
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Table 1 Root and weight data for the classical Lie algebras

Algebra Fundamental weights ωa Simple roots αa λ

AN−1
ωa =

a∑

i=1

êi , a ∈ [1, N − 1]
ea − ea+1, a < N λa ∈ Z+

BN

ωa =






a∑

i=1

ei , a < N;

1
2

N∑

i=1

ei , a = N.

ea − ea+1, a < N

eN

λa ∈ Z+ for all a or
λa ∈ Z+ + 1

2 for all a

CN
ωa =

a∑

i=1

ei , a ∈ [1, N ]
ea − ea+1, a < N

2eN
λa ∈ Z+

DN ωa =
a∑

i=1

ei , a < N − 1

ωN−1 = 1
2 (ωN−2 + eN−1 − eN )

ωN = 1
2 (ωN−2 + eN−1 + eN )

ea − ea+1, a < N

ea + ea+1, a < N

λa ∈ Z for all a or
λa ∈ Z+ 1

2 for all a,
λN−1 ≥ |λN | ≥ 0.

2.2 The Classical Q-Systems for Untwisted Affine ABCD

The Q-systems are recursion relations for the variables {Qa,k} where a is a label
in the Dynkin diagram, and k is any integer. We list the Q-systems associated with
types ABCD [KR87, KNS94]. The boundary condition Q0,k = 0 is assumed in all
cases.

g = AN−1 : Qa,k+1Qa,k−1 = Q2
a,k − Qa+1,kQa−1,k, (a ∈ [1, N − 1]),

QN,k = 1. (2.1)

g = BN : Qa,k+1Qa,k−1 = Q2
a,k − Qa+1,kQa−1,k, (a ∈ [1, N − 2]),

QN−1,k+1QN−1,k−1 = (QN−1,k)
2 − QN,2k QN−2,k, (2.2)

QN,2k+1QN,2k−1 = (QN,2k)
2 − (QN−1,k)

2,

QN,2k+2QN,2k = (QN,2k+1)
2 − QN−1,k+1QN−1,k.

g = CN : Qa,k+1Qa,k−1 = Q2
a,k − Qa+1,kQa−1,k, (a ∈ [1, N − 2]),

QN−1,2k+1QN−1,2k−1 = Q2
N−1,2k − QN−2,2kQ

2
N,k, (2.3)

QN−1,2k+2QN−1,2k = Q2
N−1,2k+1 − QN−2,2k+1QN,k+1QN,k.

QN,k+1QN,k−1 = Q2
N,k − QN−1,2k,

g = DN : Qa,k+1Qa,k−1 = Q2
a,k − Qa+1,kQa−1,k, (a ∈ [1, N − 3]),

QN−2,k+1QN−2,k−1 = Q2
N−2,k − QN,kQN−1,kQN−3,k, (2.4)
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Qa,k+1Qa,k−1 = Q2
a,k − QN−2,k (a ∈ {N − 1, N}).

These recursion relations (for k ≥ 1) were originally observed [KR87] to be
relations satisfied by characters of finite-dimensional irreducible Yangian modules.

Each set of the Q-systems is associated with a cluster algebra:

(1,2k) (2,2k)

(1,2k+1) (2,2k+1) (N−2,2k+1)

(N−2,2k) (N−1,2k)

(N−1,2k+1)

ΓAN =

(N,4k)(1,2k) (2,2k) (N−1,2k)

(N,4k+1)(1,2k+1) (2,2k+1) (N−1,2k+1)

ΓBN =

(N,2k)(1,4k) (2,4k) (N−1,4k)

(N,2k+1)(1,4k+1) (2,4k+1) (N−1,4k+1)

ΓCN =

(N,2k)

(N−1,2k)

(1,2k) (2,2k) (N−2,2k)

(N−1,2k+1)

(N,2k+1)

(1,2k+1) (2,2k+1) (N−2,2k+1)

ΓDN =

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 1 The quivers for the AN−1,DN,BN ,CN Q-system cluster algebras. We have indicated a
generic Q-system cluster along the bipartite belt: each vertex labelled (a, k) corresponds to a cluster
variable Qa,k . Nodes corresponding to short roots are denoted by empty circles
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Theorem 2.1 ([Ked08, DFK09]) For each algebra g, the variables {Qa,k : a ∈
[1, r], k ∈ Z}, up to a simple rescaling which eliminates the minus sign on the right
hand side, are cluster variables in a corresponding cluster algebra. Each of the
Q-system relations is an exchange relation in the cluster algebra.

The cluster algebras are defined via a 2r × 2r skew-symmetric exchange matrix
B, (r being the rank of g), or quiver ( as in Fig. 1, which depends only on the Cartan
matrix C of g:

B =
(
CT − C −CT

C 0

)
. (2.5)

This exchange matrix, together with the initial cluster variables X =
(Qa,0;Qa,1)

r
a=1, defines the cluster algebra. The cluster variables {Qa,k} are

obtained from a generalized bipartite evolution of the initial cluster (X, B) [DFK09].
The subset of mutations on the (generalized) bipartite belt which generates all the
cluster variables corresponding to the Q-system algebra was given in [DFK09,
Theorem 3.6].

2.3 Quantum Q-Systems

One of the advantages of formulating the Q-system relations in terms of cluster
algebra mutations is that there is a canonical quantization of the cluster algebra,
using the canonical Poisson structure [GSV10] and its quantization [BZ05].

The quantum cluster algebra attached to a non-degenerate, skew-symmetric
matrix B is the non-commutative algebra generated by the cluster variables X =
(Xi) at an initial cluster and their inverses, with exchange matrix B, as well as the
cluster variables at all mutation equivalent clusters. Within the cluster (X, B) the
cluster variables q-commute according to a skew-symmetric ) proportional to the
inverse of B:

XiXj = q)ij XjXi.

The exchange relations are given by normal-ordering of the classical mutations:

X′
i =:

∏

j :Bij>0

X
Bij

j X−1
i : + :

∏

j :Bij<0

X
−Bij

j X−1
i : .

Here, given a monomial
∏

X
bi
i such that XiXj = qai,j XjXi , the normal ordered

product is

: Xb1
1 · · ·Xb*

* : = q− 1
2

∑
i<j ai,j bibj X

b1
1 · · ·Xb*

* .
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The exchange matrices (2.5) corresponding to the Q-system cluster algebras are
skew-symmetric and invertible. We use the associated quantum cluster algebra to
define the quantum Q-systems as the quantized exchange relations corresponding to
the exchange relations appearing in the classical Q-systems.

Let ) be a 2r×2r skew-symmetric matrix, with )T B = −D, a diagonal integer
matrix with negative integer entries. Then

) =
(

0 λ

−λT λT − λ

)
, (2.6)

where λ is proportional to the inverse Cartan matrix. We use the following
normalizations:

AN−1 : λab = C−1
ab = min(a, b) − ab

N

BN : λab = 2C−1
ab =

{
2min(a, b), 1 ≤ a ≤ N, 1 ≤ b ≤ N − 1;
min(a, b), 1 ≤ a ≤ N = b,

CN : λab = 2C−1
ab =

{
2min(a, b), 1 ≤ a ≤ N − 1, 1 ≤ b ≤ N;
min(a, b), 1 ≤ b ≤ N = a,

DN : λab = 2C−1
ab =






2min(a, b), 1 ≤ a, b ≤ N − 2,
b, 1 ≤ b ≤ N − 2, a ∈ {N − 1, N},
a, 1 ≤ a ≤ N − 2, b ∈ {N − 1, N},
1
2N, a = b ∈ {N − 1, N},
1
2 (N − 2), a -= b ∈ {N − 1, N}.

(2.7)

This choice of normalization results, in the cases BN,CN,DN , in the value λa,b =
2min(a, b) whenever a, b correspond to the part of the Dynkin diagram that forms
an A-type chain, that is, a, b ∈ [1, N − 1] for types BC and a, b ∈ [1, N − 2] for
type D.

The quantum Q-systems are recursion relations for the non-commuting variables
Qa,k . These take the form

AN−1 : Qa,k Qb,p = qλa,b(p−k)Qb,p Qa,k,

qλa,a Qa,k+1Qa,k−1 = Q2
a,k − q

1
2 Qa+1,k Qa−1,k, (a ∈ [1, N]), (2.8)

Q0,k = 1, QN+1,k = 0.

BN : Qa,k Qb,p = qpλa,b−kλb,a Qb,p Qa,k,

q2a Qa,k+1 Qa,k−1 = Q2
a,k − qQa+1,k Qa−1,k Qα−1,k, (α ∈ [1, N − 2]),

q2N−2 QN−1,k+1 QN−1,k−1 = (QN−1,k)
2 − qQN,2k QN−2,k, (2.9)
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qN QN,2k+1 QN,2k−1 = (QN,2k)
2 − q(QN−1,k)

2,

qN QN,2k+2 QN,2k = (QN,2k+1)
2 − qNQN−1,k+1 QN−1,n,

Q0,k = 1.

CN : Qa,k Qb,p = qpλa,b−kλb,a Qb,p Qa,k,

q2aQa,k+1 Qa,k−1 = Q2
a,k − qQa+1,k Qa−1,k, (α ∈ [1, N − 2]),

q2N−2QN−1,2k+1QN−1,2k−1 = Q2
N−1,2k − qQN−2,2kQ2

N,k, (2.10)

q2N−2QN−1,2k+2QN−1,2k = Q2
N−1,2k+1 − q1+

N
2 QN−2,2k+1QN,k+1QN,k,

qNQN,k+1 QN,k−1 = Q2
N,k − qQN−1,2k,

Q0,k = 1.

DN : Qa,k Qb,p = qλa,b(p−k)Qb,p Qa,k,

q2aQa,k+1Qa,k−1 = Q2
a,k − qQa+1,k Qa−1,k (a ∈ [1, N − 3]),

q2(N−2)QN−2,k+1QN−2,k−1 = Q2
N−2,k − qQN,k QN−1,k QN−3,k, (2.11)

q
N
2 QN−1,k+1QN−1,k−1 = Q2

N−1,k − qQN−2,k,

q
N
2 QN,k+1QN,k−1 = Q2

N,k − qQN−2,k,

Q0,k = 1.

In each case, the q-commutation relation, i.e. the first equation in each set, holds
only for variables within the same cluster, hence the restriction on possible values of
the second index. For example, in the caseAN−1, the restriction is |p−k| ≤ |a−b|+
1. In general, the clusters consisting of Q-system solutions only are parameterized
by generalized Motzkin paths [Lin19].

Remark 2.2 The general boundary condition in (2.8) the quantum Q-system of type
AN−1 is QN+1,k = 0, as opposed to the condition QN,k = 1 for the classical
system (2.1), which is compatible but more restrictive. This means that there is an
additional set of variables in the center of the quantum cluster algebra which satisfy
QN,k+1QN,k−1 = Q2

N,k . This is consistent with the extension of the definition (2.7)
of the matrix λa,b in type A to an N × N matrix using the same formula, so that
λa,N = 0. The most general solution subject to the boundary conditions hasQN,k =
Qk

N,1Q
k−1
N,0 , in terms of the two central elements QN,1 andQN,0. This more general

system can be embedded into a cluster algebra with coefficients.
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3 The AN−1 Case Solution: Generalized Macdonald
Difference Operators and Quantum Determinants

3.1 Renormalized Quantum Q-System

With the choice of boundary condition for the type A quantum Q-system as in
Remark 2.2, the quantum Q-system is homogeneous with respect to the grading
deg(Qa,k) := ak (a ∈ [1, N]). We adjoin an invertible degree operator +1/N to the
algebra, such that

+Qa,k = qak Qa,k +, a ∈ [1, N], k ∈ Z.

Using λa,a + a
N = a and λa+1,a+1 + λa−1,a−1 − 2λa,a = − 2

N , the renormalized
variables

Q̃a,k = q− 1
2 (k+N

2 )λa,a Qa,k +
a
N , a ∈ [1, N], k ∈ Z, (3.1)

satisfy the renormalized quantum Q-system:

Q̃a,k Q̃b,k′ = q(k
′−k)min(a,b) Q̃b,k′ Q̃a,k, |k − k′| ≤ |a − b| + 1,

qa Q̃a,k+1 Q̃a,k−1 = Q̃2
a,k − Q̃a+1,k Q̃a−1,k, (a ∈ [1, N]), (3.2)

Q̃0,k = 1, Q̃N+1,k = 0.

The choice QN,0 = 1 implies Q̃N,0 = +. Defining A = Q̃N,1Q̃−1
N,0, a

homogeneous element of degree N, we have Q̃N,k = Ak +. The quiver with
coefficients corresponding to this cluster algebra is illustrated in Fig. 2.

(N−1,0)(1,0) (2,0) (N−2,0)

(N−1,1)(1,1) (2,1) (N−2,1) ∆−1

A∆
. . .

. . .

Fig. 2 The typeA quantumQ-system quiver corresponding to the initial seed {Qa,0,Qa,1}. Square
nodes denote coefficients
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3.2 The Quantum Determinant

The exchange relations (3.2) define a quantum determinant: The variables Q̃a,k with
a > 1 are polynomials in the variables {Q̃1,k′ : |k′ − k| ≤ a − 1}. Below, we use
the notation Q̃k := Q̃1,k . The quantum determinant is best defined in terms of
generating functions.

Definition 3.1 Given a set of integers k1, . . . , ka ∈ Z, define the Hankel matrix

(Q̃ki+i−j )1≤i,j≤a. (3.3)

The quantum determinant of this matrix, denoted by |Q̃[k1, k2, . . . , ka]|q , is given
by the coefficients of the generating function:

∑

k1,...,ka∈Z
u
k1
1 · · · ukaa |Q̃[k1, . . . , ka]|q =

∏

1≤i<j≤a

(
1 − q

uj

ui

)
Q̃(u1)Q̃(u2) · · · Q̃(uα),

where

Q̃(u) :=
∑

k∈Z
uk Q̃k.

The quantum determinant |Q̃[k1, . . . , ka]|q is a homogeneous polynomial of degree
a in the Q̃ks.

Theorem 3.2 [DFK17] The solutions Q̃a,k of the system (3.2) with a ≥ 1 and
k ∈ Z are the quantum determinants

Q̃a,k = |Q̃[ k, k, . . . , k︸ ︷︷ ︸
a times

]|q .

3.3 The Functional Representation of the Quantum Q-System

We recall the functional representation of the renormalized quantum Q-system (3.2)
ρ(Q̃a,k) = Ma,k [DFK18], which act on the space of symmetric functions of N
variables x1, x2, . . . , xN .

Theorem 3.3 ([DFK18, DFK17]) Let (i be the q-shift operator acting on
the space of functions in N variables, defined by (if (x1, . . . , xi, . . . , xN) =
f (x1, . . . , qxi, . . . , xN). The q-difference operators

Ma,k =
∑

I⊂[1,N]
|I |=a

( ∏

i∈I
xi

)k ∏

i∈I
j -∈I

xi

xi − xj

∏

i∈I
(i , a ∈ [1, N], k ∈ Z (3.4)
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satisfy the quantum Q-system relations (3.2).

In this representation,

A = x1x2 · · · xN, + = (1(2 · · ·(N. (3.5)

Remark 3.4 For slN -characters, the products A and + are taken to be equal to 1.
The more general boundary condition here corresponds to glN -characters.

3.4 The Spherical Double Affine Hecke Algebra

The reader will have recognized that the difference operators Ma,0 in (3.4) are the
limit t → ∞ of the (renormalized) Macdonald difference operators in type A. This
is the main observation which led to the results of [DFK19], where it is shown
that the spherical DAHA [Che05] of type AN−1 is the natural t-deformation of the
quantum Q-system.

An important observation in [DFK19] is that the evolution in the discrete time
variable k is induced by the adjoint action of one of the generators of the SL2(Z)
symmetry of the DAHA.

Theorem 3.5 ([DFK19]) The discrete time evolution of the operators Ma,k is
induced by the adjoint action of the Gaussian γ −1, with γ as in (1.2):

Ma,k = q−ak/2 γ −k Ma,0 γ k. (3.6)

The difference operators {Ma,k}, together with the elementary symmetric func-
tions of x, are the image in the functional representation of the generators of the
spherical DAHA.

The double affine Hecke algebra and corresponding Macdonald operators are
defined for other Lie algebras. In the following sections, we will use this as the
inspiration to give conjectures for the functional representations of the quantum Q-
systems for the other classical types by following the inverse reasoning: Starting
from the appropriate choice of Macdonald difference operators, act with the adjoint
action of γ to obtain the discrete time-evolved operators, imitating the contents of
Theorem 3.5. The resulting q-difference operators, in the limit t → ∞, are (conjec-
turally) solutions of renormalized quantum Q-systems for the other classical types.

3.5 Raising and Lowering Operators

The dual q-Whittaker functions are defined as

-λ ≡ -λ(q
−1; x) = lim

t→∞Pλ(q, t; x),
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where the Pλ are the Macdonald polynomials for type AN−1 [Mac95]. Here, the
partition λ corresponds to a dominant integral weight of glN , λ = ∑N

i=1 λiei in the
standard basis of RN , with λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. The polynomials Pλ are
common monic eigenfunctions of the Macdonald operators Da

Da =
∑

I⊂[1,N]
|I |=a

∏

i∈I
j -∈I

txi − xj

xi − xj

∏

i∈I
(i , a ∈ [1, N], (3.7)

with

DaPλ = t−
a(a−1)

2 ea(q
λ1 tN−1, qλ2 tN−2, . . . , qλN )Pλ,

where ea are the elementary symmetric functions in N variables. Using
lim
t→∞ t−a(N−a) Da = Ma,0, this means that the q-Whittaker functions are

eigenfunctions of the difference operators Ma,0:

Ma,0 -λ = q(λ,ωa) -λ, a ∈ [1, N], (3.8)

where ωa = e1 + e2 + · · · + ea are the fundamental weights of glN .
In [DFK18] we showed that the operators Ma;±1 are the limit t → ∞ of the

raising and lowering operators for Macdonald polynomials constructed by Kirillov
and Noumi [KN99]. However, the commutation relations in (3.2) provide an easier
proof, which we present here.

Theorem 3.6 The operators Ma,±1 act on the polynomials -λ as follows:

Ma,1 -λ = q(λ,ωa) -λ+ωa , (3.9)

Ma,−1 -λ = q(λ,ωa)
(
1 − q−(λ,αa)

)
-λ−ωa , (3.10)

where αa = ea − ea+1 are the simple roots of slN .

Note that if λ is a partition, λ+ωa is also a partition, and if λ−ωa is not a partition,
the scalar factor (1 − q(λ,αa)) vanishes.

Proof Up to scalar multiple, the polynomials -λ are uniquely determined by
the collection of eigenvalues q(ωa,λ) corresponding to the diagonal action of the
operators Ma,0, a = 1, 2, . . . , N . The commutation relations in (3.2) are

Ma,0Mb,±1 = q±min(a,b) Mb,0±1Ma,0.

Applying this to -λ and using (3.8),

Ma,0Mb,±1-λ = q(λ,ωa)±min(a,b) Mb,±1-λ = q(λ±ωb,ωa)Mb,±1-λ,
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since min(a, b) = (ωb,ωa). That is, Mb,±1-λ is an eigenfunction of Ma,0 with
eigenvalue q(λ±ωb,ωa). Therefore there exist scalars c±λ,b such that Mb,±1-λ =
c±λ,b -λ±ωb .

Recall that the Macdonald polynomials Pλ, and therefore -λ, have a triangular
decomposition with respect to the monomial symmetric functions with leading term
mλ. The following analysis provides the scalar factor c+λ,b. When |x1| / |x2| /
· · · / |xN |, -λ = x

λ1
1 · · · xλN

N + lower order andMb,1 = x1x2 . . . xb (1(2 · · ·(b+
lower order. Thus,

Mb,1 -λ = qλ1+···+λbx
λ1+1
1 · · · xλb+1

b x
λb+1
b+1 · · · xλN

N + lower order

= q(λ,ωb)-λ+ωb + lower order,

and thus c+λ,b = q(λ,ωb).
Applying the exchange relation in (3.2) with k = 0 to -λ, we get

qa Ma,1Ma,−1 -λ = qa c+λ−ωa,a
c−
λ,a-λ = (q2(λ,ωa) − q(λ,ωa+1+ωa−1))-λ,

which shows that c−
λ,a = q(λ,ωa) − q(λ,ωa+1+ωa−1−ωa) and the Theorem follows. 01

3.6 Graded Characters in Terms of Difference Operators

The difference operators (3.4) can be used to efficiently generate graded charac-
ters (1.1). Theorem 3.3 is a necessary condition for the following theorem:

Theorem 3.7 ([DFK18], Corollary 18): Starting with the trivial character χ0 = 1,
the difference operators (3.4) act consecutively to generate the character of the
graded tensor product of KR-modules ⊗a,iKR

⊗na,i
iωa

as follows:

χn(q
−1, x) = q− 1

2Q(n)
N−1∏

a=1

(Ma,k)
na,k

N−1∏

a=1

(Ma,k−1)
na,k−1 · · ·

N−1∏

a=1

(Ma,1)
na,1 1,

(3.11)

where

Q(n) =
N−1∑

a,b=1

∑

i,j≥1

na,i min(i, j)min(a, b) nb,j −
N−1∑

a=1

∑

i≥1

i a na,i .
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Alternatively, when k ≥ max{j : na,j > 0},

Da,kχn(q
−1; x) = q(ωa,

∑
b,j jnb,jωb)χn+εa,k (q

−1; x),

where we write n = ∑
b,j nb,j εb,j .

4 The Quantum Q-System Conjectures for Types BCD

In order to formulate the conjectures for the functional representation of the
quantum Q-systems of types DN,BN,CN , we start with the results of Macdonald
and van Diejen. There are N algebraically independent commuting Hamiltonians
in the sDAHA of those types. Our goal is to find a set that will be the seed, in the
q-Whittaker limit, of the Q-system solutions.

4.1 Macdonald and van Diejen Operators

In [Mac01], Macdonald constructed certain difference operators for types
DN,BN,CN , corresponding to minuscule coweights. For these types, there are,
respectively, 3, 1, and 1 minuscule coweights, indexed by some of the extremal
nodes of the Dynkin diagrams. The corresponding Macdonald operators are

DN : E (DN )
1 =

∑

ε=±1

N∑

i=1

∏

j -=i

1 − txε
i xj

1 − xε
i xj

txε
i − xj

xε
i − xj

(2ε
i , (4.1)

E (DN )
N−1 =

∑

ε1,...,εN=±1
ε1ε2 ···εN=−1

∏

1≤i<j≤N

1 − tx
εi
i x

εj
j

1 − x
εi
i x

εj
j

N∏

i=1

(
εi
i , (4.2)

E (DN )
N =

∑

ε1,...,εN=±1
ε1ε2 ···εN=1

∏

1≤i<j≤N

1 − tx
εi
i x

εj
j

1 − x
εi
i x

εj
j

N∏

i=1

(
εi
i . (4.3)

BN : E (BN )
1 =

∑

ε=±1

N∑

i=1

1 − txε
i

1 − xε
i

∏

j -=i

1 − txε
i xj

1 − xε
i xj

txε
i − xj

xε
i − xj

(2ε
i . (4.4)

CN : E (CN )
N =

∑

ε1,...,εN=±1

N∏

i=1

1 − tx
2εi
i

1 − x
2εi
i

∏

1≤i<j≤N

1 − tx
εi
i x

εj
j

1 − x
εi
i x

εj
j

N∏

i=1

(
εi
i . (4.5)
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The Macdonald operator for CN is of “order” N , namely acts by shifts of N
variables in each term, as opposed to the operators E (DN )

1 and E (BN )
1 , which are

linear combinations of shifts of a single variable. A first order difference operator for
CN , E (CN )

1 , can be obtained using the commuting operators constructed in [vD95,
vDE11]. We choose the following first order CN operator, which is a particular
linear combination of the identity and the first order van Diejen operator:

E (CN )
1 = (1+ tN+1)

1 − tN

1 − t
+

∑

ε=±1

N∑

i=1

1 − tx2εi

1 − x2εi

1 − tq2x2εi

1 − q2x2εi

×
∏

j -=i

1 − txε
i xj

1 − xε
i xj

txε
i − xj

xε
i − xj

((2ε
i − 1) (4.6)

This particular choice ensures that the corresponding eigenfunctions are the
Macdonald polynomials Pλ(x) of type CN with eigenvalues

tN ê1({tN+1−iq2λi }Ni=1), where ê1(z1, z2, . . . , zN) =
N∑

i=1

(zi + z−1
i ).

In particular, for P0(x) = 1, we have E (CN )
1 1 = tN ê1({t, t2, . . . , tN }) = (1 +

tN+1) 1−tN

1−t .

4.2 The q-Whittaker Limit

Each of the operators E (g)
i in Eqs. (4.1)–(4.6) have suitable limits as t → ∞,

denoted by

M
(g)
i,0 := lim

t→∞ t−a
(g)
i E (g)

i ,

where:

a
(DN)
1 = 2(N − 1), a

(DN)
N−1 = a

(DN)
N = N(N − 1)

2
,

a
(BN )
1 = 2N − 1,

a
(CN )
1 = 2N, a

(CN)
N = N(N + 1)

2
.
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It is also necessary to define the additional operator in type CN :

M
(CN)
1,1 :=

∑

ε=±1

N∑

i=1

x2εi

x2εi − 1

q2x2εi

q2x2εi − 1

∏

j -=i

xε
i xj

xε
i xj − 1

xε
i

xε
i − xj

x−ε
i (x2εi (2ε

i − q−2).

(4.7)

4.3 Discrete Time Evolution by Adjoint Action of the Gaussian

By analogy with the AN−1 case (see Theorem 3.5), define the Gaussian function for
types BCD:

γ := e
∑N

i=1
(Log(xi ))

2

4Log(q) . (4.8)

Note the slight modification q → q2 compared to the A type Gaussian (1.2).
The adjoint action of Gaussian function on the difference operators of Sect. 4.2

induces a discrete time evolution:

Definition 4.1 Let k ∈ Z. The difference operators M(g)
a,k are defined as follows:

DN : M
(DN)
1,k := q−k γ −k M

(DN)
1,0 γ k

M
(DN)
N−1,k := q−kN/4 γ −k M

(DN)
N−1,0 γ k

M
(DN)
N,k := q−kN/4 γ −k M

(DN)
N,0 γ k

BN : M
(BN)
1,k := q−k γ −k M

(BN)
1,0 γ k

CN : M
(CN)
1,2k := q−2k γ −2k M

(CN)
1,0 γ 2k

M
(CN)
1,2k+1 := q−2k γ −2k M

(CN)
1,1 γ 2k

M
(CN)
N,k := q−kN/2 γ −2k M

(CN)
N,0 γ 2k.

Note that in type C, the definition for the time evolution of M(CN)
1,k splits into two

separate evolutions for even and odd k, involving the operators M(CN)
1,0 for even k

andM(CN)
1,1 of (4.7) for odd k. This is due to the fact that α1 is a short root in type C.

The same parity phenomenon is expected for the short root αN of BN .
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Using the simple relation γ −1 (2
i γ = qxi (

2
i for γ as in (4.8), we see that

Definition 4.1 results immediately in the following explicit expressions:

Type DN : M
(DN)
1,k =

∑

ε=±1

N∑

i=1

∏

j -=i

xε
i xj

xε
i xj − 1

xε
i

xε
i − xj

xkεi (2ε
i

M
(DN)
N−1,k =

∑

ε1,...,εN=±1
ε1ε2 ···εN=−1

∏

1≤i<j≤N

x
εi
i x

εj
j

x
εi
i x

εj
j − 1

N∏

i=1

x
kεi
2

i

N∏

i=1

(
εi
i (4.9)

M
(DN)
N,k =

∑

ε1,...,εN=±1
ε1ε2 ···εN=1

∏

1≤i<j≤N

x
εi
i x

εj
j

x
εi
i x

εj
j − 1

N∏

i=1

x
kεi
2

i

N∏

i=1

(
εi
i (4.10)

Type BN : M
(BN)
1,k =

∑

ε=±1

N∑

i=1

xε
i

xε
i − 1

∏

j -=i

xε
i xj

xε
i xj − 1

xε
i

xε
i − xj

xkεi (2ε
i

Type CN : M
(CN)
1,2k = q−2k +

∑

ε=±1

N∑

i=1

x2εi

x2εi − 1

q2x2εi

q2x2εi − 1

×
∏

j -=i

xε
i xj

xε
i xj − 1

xε
i

xε
i − xj

(x2kεi (2ε
i − q−2k)

M
(CN)
1,2k−1 =

∑

ε=±1

N∑

i=1

x2εi

x2εi − 1

q2x2εi

q2x2εi − 1

∏

j -=i

xε
i xj

xε
i xj − 1

xε
i

xε
i − xj

x−ε
i (x2kεi (2ε

i − q−2k)

M
(CN)
N,k =

∑

ε1,...,εN=±1

N∏

i=1

x
2εi
i

x
2εi
i − 1

∏

1≤i<j≤N

x
εi
i x

εj
j

x
εi
i x

εj
j − 1

N∏

i=1

x
kεi
i

N∏

i=1

(
εi
i . (4.11)

These expressions motivate the main conjectures of this paper.

4.4 Other Macdonald Operators via Quantum Determinants

The list of operators defined in the previous section can be completed to include
M

(g)
a,k for the Dynkin labels a which are not in the list above, by using quantum

determinants.
Comparing the commutation relations and mutation relations of the quantum

BCD Q-systems involving only the Dynkin labels {1, . . . , N − 1} (types BC) and
{1, . . . , N −2} (typeD), we see that the relations are the same as in type A of (3.2),
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expressed in the variable Ma,k , up to the change of parameter q 2→ q2 (which
results in a change in the first factor qa 2→ q2a , and the commutation relations
qmin(a,b) 2→ q2min(a,b)). This observation leads to the following definitions:

Definition 4.2 For types BCD, define the difference operatorsM(g)
a,k by the follow-

ing quantum determinants:

M
(g)
a,k := |M(g)[ k, k, . . . , k︸ ︷︷ ︸

a times

]|q2 = M
(g)
k,k,...,k (a = 1, 2, . . . , ng), (4.12)

where nDN = N − 2, and nBN = nCN = N − 1. Here the matrix M(g)({a})
is obtained by replacing M1,k with M

(g)
1,k in the defining expression (3.3), and the

quantum determinant has parameter q2 instead of q in the Vandermonde factor.

By homogeneity of the quantum determinant as a polynomial in the variables
M

(g)
1,k , Definition (4.12) is compatible with the discrete time evolution relations:

M
(DN)
a,k = q−ka γ −k M

(DN)
a,0 γ k, (a = 1, 2, . . . , N − 2);

M
(BN)
a,k = q−ka γ −k M

(BN)
a,0 γ k, (a = 1, 2, . . . , N − 1);

M
(CN)
a,2k+η = q−2ka γ −2k M(CN)

a,η γ 2k, (a = 1, 2, . . . , N − 1, η = 0, 1),

with the Gaussian function γ as in (4.8).

4.5 The Quantum Q-System Conjectures

The main conjecture of this paper is the following:

Conjecture 3 For G = DN,BN,CN , the Macdonald operators M
(g)
a,n obey the

following renormalized versions (we omit the superscript g for simplicity) of the
quantum Q-systems (2.12–2.10):

Type DN : Ma,k Mb,p = q)a,b(p−k) Mb,p Ma,k

q2aMa,k+1Ma,k−1 = M2
a,k − Ma+1,kMa−1,k (a ∈ [1, N − 3])

q2(N−2)MN−2,k+1MN−2,k−1 = M2
N−2,k

−q− (N−2)k
2 MN,kMN−1,kMN−3,k (4.13)

q
N
2 MN−1,k+1MN−1,k−1 = M2

N−1,k − q
(N−4)k

2 MN−2,k

q
N
2 MN,k+1MN,k−1 = M2

N,k − q
(N−4)k

2 MN−2,k
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Type BN : Ma,k Mb,p = q)a,bp−)b,ak Mb,p Ma,k

q2a Ma,k+1Ma,k−1 = (Ma,k)
2 − Ma+1,k Ma−1,k (a ∈ [1, N − 2])

q2N−2MN−1,k+1MN−1,k−1 = (MN−1,k)
2 − MN,2k MN−2,k (4.14)

qN MN,2k+1MN,2k−1 = (MN,2k)
2 − q−2k(MN−1,k)

2

qN MN,2k+2MN,2k = (MN,2k+1)
2

−qN−1−(2k+1)MN−1,k+1MN−1,k (4.15)

Type CN : Ma,k Mb,p = q)a,bp−)b,ak Mb,p Ma,k

q2aMa,k+1Ma,k−1 = M2
a,k − Ma+1,kMa−1,k (a ∈ [1, N − 2])

q2N−2MN−1,2k+1MN−1,2k−1 = M2
N−1,2k − q−Nk MN−2,2kM

2
N,k

q2N−2MN−1,2k+2MN−1,2k = M2
N−1,2k+1 − q−Nk MN−2,2k+1MN,k+1MN,k

qNMN,k+1MN,k−1 = M2
N,k − q(N−2)k MN−1,2k (4.16)

In the case ofBN we have not given an a priori definition of the orderN operators
MN,k . They can be constructed as a suitable linear combination of the limits at t →
∞ of van Diejen operators [vD95, vDE11], compatible with the quantum Q-system
in type B. These operators can be defined also by taking the quantum Q-system as
the defining set of equations. First, defineMN,2k = |M({k, k, . . . , k})|q2 (k repeated
N times), compatible with Eq. (4.14), in whichMN,2k plays the role of the quantum
determinant of size N . Then Eq. (4.15) gives information about MN,2k+1:

(MN,2k+1)
2 = qN MN,2k+2MN,2k + qN−1−(2k+1)MN−1,k+1MN−1,k.

This can be used to determine the relevant difference operators. The fact that all the
other equations of the system are satisfied is a highly non-trivial check.

These conjectures have been checked numerically up to N = 6. We illustrate
them in cases of small rank in Appendix A.

Lemma 4.4 The difference operators Ma,k are a functional representation of the
quantum Q-system (2.12–2.10) up to the following rescaling:

DN : Ma,k = q
a(a+1)

2 −a(N+k)Qa,k (α ∈ [1, N − 2])

MN−1,k = q−N(N−1)
4 −Nk

4 QN−1,k

MN,k = q−N(N−1)
4 −Nk

4 QN,k (4.17)

BN : Ma,k = q
a2
2 −a(N+k)Qa,k (a ∈ [1, N − 1])

MN,k = q−N2
2 −Nk

2 QN,k (4.18)
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CN : Ma,k = q
a(a−1)

2 −a(N+k)Qa,k (a ∈ [1, N − 1])

MN,k = q−N(N+1)
4 −Nk

2 QN,k (4.19)

Proof By straightforward inspection. 01

5 The Raising/Lowering Operator Conjectures for Types
BCD

In this section, we present conjectures that extend the result of Theorem 3.6 to types
BCD. These involve the action of the difference operators Ma,k on the dual q-
Whittaker functions:

-
(g)
λ (q−1; x) := lim

t→∞P
(g)
λ (q, t; x).

The general idea is that while the operators M(g)
a,0 are all limits of Macdonald oper-

ators, for which the q-Whittaker functions -
(g)
λ are common eigenfunctions, the

operatorsM(g)
a,±1 are simple raising and lowering operators on those eigenfunctions.

Conjecture 5.1 The operators M(g)
a,0 and M

(g)
a,±1 have the following action on the

q-Whittaker functions -
(g)
λ , valid for all a ∈ [1, N]:

DN,BN : Ma,0 -λ = q2ta(λ,ωa) -λ

Ma,1 -λ = q2ta(λ,ωa) -λ+ωa

Ma,−1 -λ = q2ta(λ,ωa)
(
1 − q−2ta(αa,λ)

)
-λ−ωa (5.1)

CN : Ma,0 -λ = qta(ωa,λ) -λ

Ma,1 -λ = qta (ωa,λ) -λ+ωa

Ma,−1 -λ = qta(ωa,λ)
(
1 − q−ta(αa,λ)

)
-λ−ωa , (5.2)

where ωa and αa are the fundamental weights and simple roots of the corresponding
algebras, ta = 2 for the short roots in types BC, and ta = 1 otherwise.

The eigenvalue equations (the first equation in each set) are a consequence of the
Macdonald eigenvalue equations of the finite t case. As in type A, up to a scalar
multiple, the raising equations (the second equation in each set) are a consequence
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of the quantum commutation relationsM(g)
a,0 M

(g)
b,1 = qλ

(g)
a,b M

(g)
b,1 M

(g)
a,0 . When applied

to the q-Whittaker functions, this gives

M
(g)
a,0

(
M

(g)
b,1 -

(g)
λ

)
= qλ

(g)
a,b M

(g)
b,1 M

(g)
a,0 -

(g)
λ = qε(g)t

(g)
a (ω

(g)
a ,λ+ω

(g)
b ) M

(g)
b,1 -

(g)
λ ,

where we have defined ε(g) = 2 for g = BN,DN and ε(g) = 1 for g = CN , and used
the fact that λ

(g)
a,b = ε(g)t

(g)
a (ω

(g)
a ,ω

(g)
b ). As the simultaneous eigenvalue property

for the action of all Ma,0 determines the eigenvectors uniquely, up to a scalar
multiple, we deduce thatM(g)

b,1 -
(g)
λ must be proportional to -

(g)
λ+ωb

. The conjecture

concerns simply the explicit value of the proportionality factor qε(g)t
(g)
a (ω

(g)
a ,λ), which

we checked numerically up to N = 6.
Similarly, the action of the lowering operator (third equation in each set)

follows from the eigenvalue and raising operator actions and the quantum Q-system
equations (4.13–4.16) of Conjecture 3. This is readily seen by applying the exchange
relations involving Ma,1 and Ma,−1 to -λ.

Examples of q-Whittaker functions and raising/lowering difference operators are
given in Appendix A.

6 The Graded Character Conjectures for Types BCD

The main Conjecture 3 is a necessary ingredient in proving the following conjecture
about the expression of the graded characters in terms of difference operators. Let
I< be the subset labels of the short roots the Dynkin diagram in types BC. Recall
that ta = 2 for a ∈ I<, and ta = 1 otherwise.

Conjecture 6.1 The graded characters of the tensor products of KR-modules in
types BCD can be expressed using the iterated action of the difference operators in
types BCD on the polynomial 1:

χ
(g)
n (q−1; x) = q− 1

2Q
(g)(n)

1∏

*=k




∏

a∈I
(M

(g)
a,ta*

)na,ta*
∏

a∈I<
(M

(g)
a,ta*−1)

na,ta*−1



 · 1,

where k is chosen large enough to cover all the non-zero n’s, and

Q(g)(n) :=
N∑

a,b=1

∑

i,j≥1

na,i
λ
(g)
a,b

t
(g)
a

min(t(g)b i, t (g)a j) nb,j −
N∑

a=1

∑

i≥1

i λ(g)a,a na,i .

The ordering of the difference operators in Conjecture 6.1 is consistent with
[DFK14, Lin19] and is determined by the order of mutations in the bipartite belt
of the quantum cluster algebra.
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In particular, Conjecture 6.1 allows one to interpret the so-called level 1 graded
characters corresponding to only possibly non-zero na = na,1, as the limiting Mac-
donald polynomials (or dual q-Whittaker functions) -λ, with the correspondence:

χ
(g)
{na}(q

−1, x) = q− 1
2Q

(g)({na})
∏

a∈I>

(
M

(g)
a,1

)na ∏

a∈I<

(
M

(g)
a,1

)na · 1 = -
(g)
λ (q−1; x),

(6.1)

where I> = I \ I< is the set of long root labels, λ = ∑
a naωa , and the quadratic

formQ(g) is

Q(g)({na}) =
N∑

a,b=1

na
λ
(g)
a,b

t
(g)
a

min(t(g)a , t
(g)
b ) nb −

N∑

a=1

λ(g)a,a na

= ε(g)






N∑

a,b=1

na (ω
(g)
a ,ω

(g)
b )min(t(g)a , t

(g)
b ) nb −

N∑

a=1

t (g)a (ω(g)
a ,ω(g)

a ) na




 .

Alternatively, for a fixed n, acting with M
(g)
a,k such that tak ≥ max{tbj : nb,j > 0}

on χn gives

M
(g)
a,k χ

(g)
n (q−1; x) = qε(g)

∑
j,b(ω

(g)
a ,ω

(g)
b )min(t(g)b k,t

(g)
a j)nb,j χ

(g)
n+εa,k

(q−1; x),

where, again, n = ∑
nb,j εb,j .

It is a non-trivial exercise to check the compatibility between (6.1) and the raising
operator conditions on the second lines of (5.1) and (5.2). Indeed, we note that for a
short root label a, we may only act withM(g)

a,1 on characters obtained themselves by

short root raising operators say
∏

b∈I<(M
(g)
b,1 )

nb · 1:

M
(g)
a,1 χ

(g)
{nb}(q

−1, x) = q− 1
2Q

(g)({nb})
∏

b∈I<
(M

(g)
b,1 )

nb+δa,b · 1

= q
1
2 (Q

(g)({nb+δa,b})−Q(g)({nb}))χ (g)
{nb+δa,b}(q

−1, x).

We compute

Q(g)({nb + δa,b}) − Q(g)({nb}) = ε(g)
∑

b∈I<
nb min(t(g)a , t

(g)
b )(ω(g)

a ,ω
(g)
b )

= ε(g) t (g)a (ω(g)
a ,

∑

b

nbω
(g)
b ) = ε(g) t (g)a (ω(g)

a , λ)
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by use of t (g)a = t
(g)
b = 2. This is in agreement with (5.1) and (5.2), upon writing

λ = ∑
nbωb. For a long root label a, we have similarly:

Q(g)({nb + δa,b}) − Q(g)({nb}) = ε(g)
∑

b∈I
nb min(t(g)a , t

(g)
b )(ω(g)

a ,ω
(g)
b )

= ε(g) (ω(g)
a ,

∑

b

nbω
(g)
b ) = ε(g) t (g)a (ωa, λ)

by use of t (g)a = 1. This is again in agreement with (5.1) and (5.2).
This special case is also in agreement with [LNS+17].

7 Conclusion

7.1 Summary: Macdonald Operators and Quantum Cluster
Algebra

In this paper we have presented two main conjectures about the difference operators
M

(g)
a,k corresponding to root systems of types BCD.

The first conjecture states that the difference operators {M(g)
a,k } satisfy renor-

malized quantum Q-systems of types BCD. The commuting difference operators
{M(g)

a,0} can be obtained as the limits t → ∞ of appropriate Macdonald operators

for the relevant Lie root systems. The operators M
(g)
a,k are their SL2(Z) “discrete

time evolution.”
The second conjecture is that the difference operatorsM(g)

a,±1 at times k = ±1 act

as raising and lowering operators on q-Whittaker functions -
(g)
λ .

The quantum Q-systems are mutations in the corresponding quantum cluster
algebras. From this point of view, the sets S± := {M(g)

a,0 ,M
(g)
a,±1} are two possible

valid initial cluster seeds, and the conjectures state that, as in type A, these are
formed of the Macdonald and raising (reps. lowering) operators, at t → ∞. This
raises a number of questions regarding cluster variables in general: from preliminary
inspection, it appears that all cluster variables in the corresponding cluster algebra
are difference operators as well, a quite surprising property which goes way beyond
the usual Laurent property of quantum cluster algebra, which would only imply that
all cluster variables are Laurent polynomials of those in an initial cluster. These
other difference operators should tell us something new about Macdonald theory
(including in type A).

Finally we note that the second conjecture, if true, gives a perturbative starting
point for constructing generalizations of finite t , A-type raising operators of Kirillov
and Noumi for other types. Indeed, we expect the finite t operators to have
a finite 1/t expansion, whose coefficients are themselves difference operators.
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Conjecture 5.1 provides the leading order term in this expansion. We will return
to this question in a future publication.

7.2 Towards Proving the Conjectures

The second conjecture of this paper offers a possible strategy for proving both
conjectures which goes as follows. The second conjecture indeed can be restated
as follows: the Macdonald and raising operatorsM(g)

a,0 andM(g)
a,1 act on the basis -λ

of Weyl-symmetric polynomials of x as very simple dual operators Xa, Pa :

M
(g)
a,0 -

(g)
λ = -

(g)
λ Xa, M

(g)
a,1 -

(g)
λ = -

(g)
λ Pa,

where the operators Xa, Pa act to the left on the variables )a = q2λa . More
precisely the operators Xa acts diagonally on the basis -

(g)
λ with eigenvalues

qε
(g)
a (ω

(g)
a ,λ), whereas Pa includes a multiplicative shift of ) variables. As a result,

the operators Xa, Pa obey the simple (opposite) commutation relations: Xa Pb =
q−λ

(g)
a,b Pb Xa .
Reversing the logic entirely, we may start from the data of operators Xa, Pa , and

define the left action of the operatorsM(g)
a,k via the (opposite) renormalized quantum

Q-systems of this paper. To identify the left action and the right one, we need to
construct the Gaussian operator in Xa, Pa variables, and the conjectures will follow
from the anti-homomorphism mapping left and right actions. We will pursue this
program elsewhere.

7.3 sDAHA, EHA and the t-Deformation of Quantum
Q-Systems

In [DFK19], we investigated the natural t-deformation of the A type quantum Q-
system provided by the type A sDAHA, also expressed as a quotient of the elliptic
Hall algebra (EHA) [Sch12], or the quantum toroidal algebra of gl1. There exist
sDAHAs for all classical types [Che05], and this would be the natural candidate
for a generalization of the A type results. We may use as starting points the (q, t)-
Macdonald operators of Sect. 4.1, and their time evolution via the suitable SL2(Z)
action, to derive current algebra relations that will generalize EHA or quantum
toroidal algebra relations, ideally giving rise to new interesting algebras.

Acknowledgments RK and PDF acknowledge support by NFS grant DMS18-02044. PDF is
partially supported by the Morris and Gertrude Fine endowment. RK thanks the Institut de
Physique Théorique of CEA/Saclay for hospitality.
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Appendix A: Examples

This appendix gathers a few inter-connected examples, which give non-trivial
checks of the conjectures of this paper. We give here the examples of the B2 and
C2 cases, that of the A3 and D3, and finally the D4 case. We verify in particular
that the symmetries of the Dynkin diagrams are also reflected on our difference
operators.

A.1 Weyl-Invariant Schur Functions

Definition A.1 We define the Weyl-invariant Schur functions s
(g)
λ (x) for g =

AN−1, BN,CN,DN to be the characters of the irreducible representations of
corresponding weight [Miz03]:2

s
(AN−1)
λ (x) =

det1≤i,j≤N

(
x
N−j+λj
i

)

det1≤i,j≤N

(
x
N−j
i

) (A.1)

s
(BN )
λ (x) =

det1≤i,j≤N

(

x
N−j+λj+ 1

2
i − 1

x
N−j+λj+ 1

2
i

)

det1≤i,j≤N

(

x
N−j+ 1

2
i − 1

x
N−j+ 1

2
i

) (A.2)

s
(CN )
λ (x) =

det1≤i,j≤N

(
x
N−j+λj+1
i − 1

x
N−j+λj+1
i

)

det1≤i,j≤N

(
x
N−j+1
i − 1

x
N−j+1
i

) (A.3)

s
(DN )
λ (x) =

det1≤i,j≤N

(
x
N−j+λj
i − 1

x
N−j+λj
i

)

det1≤i,j≤N

(
x
N−j
i + 1

x
N−j
i

) +
det1≤i,j≤N

(
x
N−j+λj
i + 1

x
N−j+λj
i

)

det1≤i,j≤N

(
x
N−j
i + 1

x
N−j
i

) .

(A.4)

The Weyl-invariant Schur functions form a basis of the space of Weyl-invariant
(Laurent) polynomials. In the following sections, we write the dual q-Whittaker
functions -λ in this Schur basis. We drop the superscript (g) for simplicity.

2In [Miz03], the author restricts the definition to λ’s that are actual partitions. Here we include all
possible dominant weights.
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Remark A.2 Note that Eq. (A.1) for glN Schur functions gives the slN Schur
functions, upon restriction to x1x2 · · · xN = 1 and then noting that sλ = sλ−ε where
ε = e1 + e2 + · · · + eN .

A.2 The B2 Case

A.2.1 M Operators

M1,k =
∑

ε=±1

xkε1
xε
1

xε
1 − 1

xε
1x2

xε
1x2 − 1

xε
1

xε
1 − x2

(2ε
1

+xkε2
xε
2

xε
2 − 1

xε
2x1

xε
2x1 − 1

xε
2

xε
2 − x1

(2ε
2

M2,2k = q−2k +
∑

ε1,ε2=±1

x
ε1
1

x
ε1
1 − 1

x
ε2
2

x
ε2
2 − 1

x
ε1
1 x

ε2
2

x
ε1
1 x

ε2
2 − 1

q2x
ε1
1 x

ε2
2

q2x
ε1
1 x

ε2
2 − 1

×(x
kε1
1 x

kε2
2 (

2ε1
1 (

2ε2
2 − q−2k)

M2,2k−1 =
∑

ε1,ε2=±1

x
ε1
1

x
ε1
1 − 1

x
ε2
2

x
ε2
2 − 1

x
ε1
1 x

ε2
2

x
ε1
1 x

ε2
2 − 1

q2x
ε1
1 x

ε2
2

q2x
ε1
1 x

ε2
2 − 1

×(x
ε1
1 x

ε2
2 )−

1
2 (x

kε1
1 x

kε2
2 (

2ε1
1 (

2ε2
2 − q−2k)

Here M1,k is given by the k-th iterate conjugation of (4.4) w.r.t. the Gaussian, and
M2,2k by the quantum determinant M2

1,k − q2M1,k+1M1,k−1.

A.2.2 Dual q-Whittaker Functions

-0,0 = s0,0

-1,0 = s1,0

-2,0 = s2,0 + q−2s1,1 + q−4s0,0

-1,1 = s1,1 + q−2s1,0 + q−2s0,0

-3,0 = s3,0 +
1+ q2

q4
s2,1 + q−6s1,1 +

1+ q2 + q4

q8
s1,0

-2,1 = s2,1 + q−2s2,0 +
1+ q2

q4
s1,1 +

1+ q2

q4
s1,0 + q−6s0,0

- 1
2 ,

1
2
= s 1

2 ,
1
2
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- 3
2 ,

1
2
= s 3

2 ,
1
2
+ q−2s 1

2 ,
1
2

- 5
2 ,

1
2
= s 5

2 ,
1
2
+ q−2s 3

2 ,
3
2
+ 1+ q2

q4
s 3
2 ,

1
2
+ 1+ q2

q6
s 1
2 ,

1
2

- 3
2 ,

3
2
= s 3

2 ,
3
2
+ 1+ q2

q4
s 3
2 ,

1
2
+ 1+ q2 + q4

q6
s 1
2 ,

1
2

A.3 The C2 Case

A.3.1 The B2 ↔ C2 Symmetry

The B2 case can be mapped onto the C2 case, by interchanging the roles of the two
fundamental weights. More precisely, let us denote by ωa = ω

(B2)
a (resp. ω′

a =
ω
(C2)
a ). The variables x1, x2 of the B2 case can be thought of as xi = eei , with

e1 = ω1 and e2 = 2ω2 − ω1, and similarly for C2, where x′
i = ee

′
i , e′

1 = ω′
1 and

e′
2 = ω′

2 − ω′
1. The mapping (ω1,ω2) 2→ (ω′

2,ω
′
1) sends

x1 = eω1 2→ eω′
2 = x′

1 x
′
2, x2 = e2ω2−ω1 2→ e2ω

′
1−ω′

2 = x′
1

x′
2
. (A.5)

Similarly, we have

(2
1 2→ (′

1 (′
2, (2

2 2→ (′
1 (′

2
−1

. (A.6)

The map (A.5–A.6) sends the operators M(B2)
a,k 2→ M

(C2)
3−a,k for a = 1, 2 and k ∈ Z,

and the Macdonald polynomials P (B2)
λ1,λ2

2→ P
(C2)
λ1+λ2,λ1−λ2

and similarly for the q-
Whittaker functions, using

λ = λ1e1 + λ2e2 = (λ1 − λ2)ω1 + 2λ2ω2 2→ (λ1 − λ2)ω
′
2 + 2λ2ω′

1

= (λ1 + λ2)e
′
1 + (λ1 − λ2)e

′
2.

A.3.2 M Operators

From the definitions in type C,

M1,2k = q−2k +
∑

ε=±1

{
x2ε1

x2ε1 − 1

q2x2ε1

q2x2ε1 − 1

xε
1x2

xε
1x2 − 1

xε
1

xε
1 − x2

(x2kε1 (2ε
1 − q−2k)

+ x2ε2

x2ε2 − 1

q2x2ε2

q2x2ε2 − 1

xε
2x1

xε
2x1 − 1

xε
2

xε
2 − x1

(x2kε2 (2ε
2 − q−2k)

}

,
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M1,2k−1 =
∑

ε=±1

{
x2ε1

x2ε1 − 1

q2x2ε1

q2x2ε1 − 1

xε
1x2

xε
1x2 − 1

xε
1

xε
1 − x2

x−ε
1 (x2kε1 (2ε

1 − q−2k)

+ x2ε2

x2ε2 − 1

q2x2ε2

q2x2ε2 − 1

xε
2x1

xε
2x1 − 1

xε
2

xε
2 − x1

x−ε
2 (x2kε2 (2ε

2 − q−2k)

}

,

M2,k =
∑

ε1,ε2=±1

x
2ε1
1

x
2ε1
1 − 1

x
2ε2
2

x
2ε2
2 − 1

x
ε1
1 x

ε2
2

x
ε1
1 x

ε2
2 − 1

(x
kε1
1 x

kε2
2 )(

ε1
1 (

ε2
2 .

The expected symmetry between M
(B2)
1,k 2→ M

(C2)
2,k and M

(B2)
2,k 2→ M

(C2)
1,k is easily

checked.

A.3.3 Dual q-Whittaker Functions

-0,0 = s0,0

-1,0 = s1,0

-2,0 = s2,0 + q−2s1,1 + q−2s0,0

-1,1 = s1,1

-3,0 = s3,0 +
1+ q2

q4
s2,1 +

1+ q2 + q4

q6
s1,0

-2,1 = s2,1 + q−2s2,0 + q−2s1,0

-4,0 = s4,0 +
1+ q2 + q4

q6
s3,1 +

1+ q4

q8
s2,2 +

(1+ q2 + q4)(1+ q4)

q10
s2,0

+1+ 2q2 + q4 + q6

q10
s1,1 +

1+ q4 + q8

q12
s0,0

-3,1 = s3,1 + q−2s2,2 +
(1+ q2)

q4
s2,0 +

1+ q2

q4
s1,1 + q−6s0,0

-2,2 = s2,2 + q−2s2,0 + q−4s0,0.

The expected symmetry relations between B2 and C2 q-Whittaker functions are
easily checked, using the explicit expressions for the relevant Schur functions (A.2–
A.3).
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A.4 The sl4 and D3 Cases

A.4.1 The sl4 ↔ D3 Symmetry

Compared to the gl4 case, the symmetric functions of the case sl4 involve the extra
condition that x1x2x3x4 = 1, and accordingly (1(2(3(4 = 1 (see Remark 3.4).
This is implemented by imposing the extra condition e1 + e2 + e3 + e4 = 0 under
which:

e1 = ω1, e2 = ω2 − ω1, e3 = ω3 − ω2, e4 = −ω3.

Primed variables are used for D3:

e′
1 = ω′

1, e
′
2 = ω′

2 + ω′
3 − ω′

1, e
′
3 = ω′

3 − ω′
2.

We use the mapping

ω1 2→ ω′
3, ω2 2→ ω′

1, ω3 2→ ω′
1.

This is equivalent to the changes of variables (using xi = eei , x′
i = ee

′
i ):

x1 2→
√
x′
1x

′
2x

′
3, x2 2→

√
x′
1

x′
2x

′
3
, x3 2→

√
x′
2

x′
1x

′
3
, x4 2→

√
x′
3

x′
1x

′
2
. (A.7)

Moreover, to account for our choice of normalization we must also take q 2→ q2,
which results in

(1 2→ (′
1(

′
2(

′
3, (2 2→ (′

1

(′
2(

′
3
, (3 2→ (′

2

(′
1(

′
3
, (4 2→ (′

3

(′
1(

′
2
. (A.8)

The above transformations send the sl4 Macdonald operators to the D3 ones,
namely M1,k 2→ M ′

3,k , M2,k 2→ M ′
1,k and M3,k 2→ M ′

2,k . The corresponding
mapping of Macdonald polynomials is

P
(sl4)
λ1,λ2,λ3,λ4

2→ P
(D3)
λ1+λ2−λ3−λ4

2 ,
λ1−λ2+λ3−λ4

2 ,
λ1−λ2−λ3+λ4

2

. (A.9)
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A.4.2 M Operators

The sl4 operators are

M
(sl4)
1,k =

4∑

i=1

xki

∏

j -=i

xi

xi − xj
(i

M
(sl4)
2,k =

4∑

1≤i<j≤4

(xixj )
k

∏

m-=i,j

xm

xm − xi

xm

xm − xj
(i(j

M
(sl4)
3,k =

4∑

i=1

x−k
i

∏

j -=i

xj

xj − xi
(−1
i ,

where x1x2x3x4 = 1 and (1(2(3(4 = 1.
The D3 operators are

M
(D3)
1,k =

∑

ε=±1

3∑

i=1

xki

∏

j -=i

xε
i xj

xε
i xj − 1

xε
i

xε
i − xj

(2ε
i

M
(D3)
2,k =

∑

ε1,ε2,ε3=±1
ε1ε2ε3=−1

3∏

i=1

x
kεi
i

∏

1≤i<j≤3

x
εi
i x

εj
j

x
εi
i x

εj
j − 1

3∏

i=1

(
εi
i

M
(D3)
3,k =

∑

ε1,ε2,ε3=±1
ε1ε2ε3=1

3∏

i=1

x
kεi
i

∏

1≤i<j≤3

x
εi
i x

εj
j

x
εi
i x

εj
j − 1

3∏

i=1

(
εi
i .

It is straightforward to see that the change of variables (A.7) and (A.8) map the
M operators as follows:M(sl4)

1,k 2→ M
(D3)
3,k ,M(sl4)

2,k 2→ M
(D3)
1,k , and M

(sl4)
3,k 2→ M

(D3)
2,k .

A.4.3 Dual q-Whittaker Functions

In terms of the Schur functions (A.1), the first few A3 dual q-Whittaker functions
are

-0,0,0,0 = 1

-1,0,0,0 = s1,0,0,0

-2,0,0,0 = s2,0,0,0 + q−1 s1,1,0,0

-1,1,0,0 = s1,1,0,0
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-3,0,0,0 = s3,0,0,0 +
1+ q

q2
s2,1,0,0 + q−3 s1,1,1,0

-2,1,0,0 = s2,1,0,0 + q−1 s1,1,1,0

-1,1,1,0 = s1,1,1,0

-4,0,0,0 = s4,0,0,0 +
1+ q + q2

q3
s3,1,0,0 +

1+ q2

q4
s2,2,0,0

+1+ q + q2

q5
s2,1,1,0 + q−6s1,1,1,1

-3,1,0,0 = s3,1,0,0 + q−1s2,2,0,0 +
1+ q

q2
s2,1,1,0 + q−3s1,1,1,1

-2,2,0,0 = s2,2,0,0 + q−1s2,1,1,0 + q−2s1,1,1,1

-2,1,1,0 = s2,1,1,0 + q−1s1,1,1,1

-1,1,1,1 = s1,1,1,1.

In terms of the Schur functions (A.4), the first fewD3 dual q-Whittaker functions
are

-0,0,0 = 1

-1,0,0 = s1,0,0

-2,0,0 = s2,0,0 + q−2 s1,1,0 + q−4 s0,0,0

-1,1,0 = s1,1,0 + q−2 s0,0,0

-3,0,0 = s3,0,0 +
1+ q2

q4
s2,1,0 + q−6 (s1,1,1 + s1,1,−1)+

1+ q2 + q4

q8
s1,0,0

-2,1,0 = s2,1,0 + q−2 (s1,1,1 + s1,1,−1)+
1+ q2

q4
s1,0,0

-1,1,ε = s1,1,ε + q−2 s1,0,0

- 1
2 ,

1
2 ,

ε
2
= s 1

2 ,
1
2 ,

ε
2

- 3
2 ,

1
2 ,

ε
2
= s 3

2 ,
1
2 ,

ε
2
+ q−2 s 1

2 ,
1
2 ,− ε

2

- 5
2 ,

1
2 ,

ε
2
= s 5

2 ,
1
2 ,

ε
2
+ q−2 s 3

2 ,
3
2 ,

ε
2
+ 1+ q2

q4
s 3
2 ,

1
2 ,− ε

2
+ 1+ q2

q6
s 1
2 ,

1
2 ,

ε
2

- 3
2 ,

3
2 ,

ε
2
= s 3

2 ,
3
2 ,

ε
2
+ q−2 s 3

2 ,
1
2 ,− ε

2
+ 1+ q2

q4
s 1
2 ,

1
2 ,

ε
2

- 3
2 ,

3
2 ,

3ε
2
= s 3

2 ,
3
2 ,

3ε
2
+ 1+ q2

q4
s 3
2 ,

1
2 ,

ε
2
+ q−6 s 1

2 ,
1
2 ,− ε

2
.
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The relations (A.9) are easily checked for these polynomials. First we note that
the mapping (A.9) extends to the Weyl-invariant Schur functions as well. We then
simply have to check that the coefficients in the D3 case match those in the sl4 case
up to q → q2. For instance, we have-

(sl4)
2,1,0,0 2→ -

(D3)
3
2 ,

1
2 ,

1
2
as the coefficient of s(sl4)1,1,1,0

(resp. s(D3)
1
2 ,

1
2 ,− ε

2
) is q−1 (resp. q−2). Similarly the coefficients in -

(sl4)
3,0,0,0 and -

(D3)
3
2 ,

3
2 ,

3
2

also agree up to q → q2.

A.5 The D4 Case

A.5.1 Symmetries

There are two simple symmetries of the Dynkin diagram which induce symmetries
of the Macdonald operators and polynomials:

• The Z2 automorphism of the Dynkin diagram under which 1 → 1, 2 → 2 and
3 ↔ 4,

• The Z3 automorphism of the Dynkin diagram under which 1 → 3 → 4 → 1 and
2 → 2.

Recall the relations

e1 = ω1, e2 = ω2 − ω1, e3 = ω4 + ω3 − ω2, e4 = ω4 − ω3.

The Z2 symmetry under:

ω1 2→ ω1, ω2 2→ ω2, ω3 2→ ω4, ω4 2→ ω3

induces the transformations

x1 2→ x1, x2 2→ x2, x3 2→ x3, x4 2→ 1
x4

. (A.10)

Similarly, we have

(1 2→ (1, (2 2→ (2, (3 2→ (3, (4 2→ (−1
4 .

We will check that under these transformations, we have M1,k 2→ M1,k , M2,k 2→
M2,k ,M3,k 2→ M4,k and M4,k 2→ M3,k for Macdonald operators, and

Pλ1,λ2,λ3,λ4 2→ Pλ1,λ2,λ3,−λ4

for Macdonald polynomials as well as q-Whittaker functions.
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The Z3 symmetry sends

ω1 2→ ω3, ω2 2→ ω2, ω3 2→ ω4, ω4 2→ ω1

therefore induces the transformations

x1 2→
√
x1x2x3

x4
, x2 2→

√
x1x2x4

x3
, x3 2→

√
x1x3x4

x2
, x4 2→

√
x1

x2x3x4
. (A.11)

Similarly, we have

(2
1 2→ (1(2(3

(4
, (2

2 2→ (1(2(4

(3
, (2

3 2→ (1(3(4

(2
, (2

4 2→ (1

(2(3(4
.

We expect that under these transformations, we have M1,k 2→ M3,k 2→ M4,k 2→
M1,k as well asM2,k 2→ M2,k for Macdonald operators, and

Pλ1,λ2,λ3,λ4 2→ P λ1+λ2+λ3+λ4
2 ,

λ1+λ2−λ3−λ4
2 ,

λ1−λ2+λ3−λ4
2 ,

−λ1+λ2+λ3−λ4
2

for Macdonald polynomials as well as q-Whittaker functions.
The fact that our operators/polynomials obey these symmetry relations is a highly

non-trivial check of our construction.

A.5.2 M Operators

M1,k =
∑

ε=±1

4∑

i=1

∏

j -=i

xε
i xj

xε
i xj − 1

xε
i

xε
i − xj

xkεi (2ε
i

M2,k = M2
1,k − q2M1,k+1M1,k−1

M3,k =
∑

ε1,ε2,ε3,ε4=±1
ε1ε2ε3ε4=−1

∏

1≤i<j≤4

x
εi
i x

εj
j

x
εi
i x

εj
j − 1

4∏

i=1

x
kεi
2

i

4∏

i=1

(
εi
i

M4,k =
∑

ε1,ε2,ε3,ε4=±1
ε1ε2ε3ε4=1

∏

1≤i<j≤4

x
εi
i x

εj
j

x
εi
i x

εj
j − 1

4∏

i=1

x
kεi
2

i

N∏

i=1

(
εi
i .

The expected symmetry relations under bothZ2 andZ3 automorphisms are easily
checked. For instance, in the Z2 case, we see immediately that M3,k and M4,k are
interchanged under the transformation (x4,(4) → (x−1

4 ,(−1
4 )while all other xi,(i

remain unchanged, as the transformation amounts to changing ε4 → −ε4 in the
summation.
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In the general DN case, the Z2 symmetry of the Dynkin diagram that inter-
changes the two end-nodes N − 1 and N implies the symmetry under xN 2→ 1/xN
while all other x’s remain unchanged, together with (N 2→ (−1

N . It is clear that
under this transformation, we have M

(DN)
N−1,k 2→ M

(DN)
N,k and M

(DN)
N,k 2→ M

(DN)
N−1,k

Indeed, Eqs. (4.9) and (4.10) are interchanged under the change of summation
variable εN → −εN , which amounts exactly to xN → 1/xN and (N → (−1

N .

A.5.3 Dual q-Whittaker Functions

-0,0,0,0 = s0,0,0,0

-1,0,0,0 = s1,0,0,0

-2,0,0,0 = s2,0,0,0 + q−2s1,1,0,0 + q−4s0,0,0,0

-1,1,0,0 = s1,1,0,0 + q−2s0,0,0,0

-3,0,0,0 = s3,0,0,0 +
1+ q2

q4
s2,1,0,0 + q−6s1,1,1,0 +

1+ q2 + q4

q8
s1,0,0,0

-2,1,0,0 = s2,1,0,0 + q−2s1,1,1,0 +
1+ q2

q4
s1,0,0,0

-1,1,1,0 = s1,1,1,0 + q−2s1,0,0,0

-4,0,0,0 = s4,0,0,0 +
1+ q2 + q4

q6
s3,1,0,0 +

1+ q4

q8
s2,2,0,0 +

1+ q2 + q4

q10
s2,1,1,0

+q−12(s1,1,1,1 + s1,1,1,−1)+
(1+ q4)(1+ q2 + q4)

q12
s2,0,0,0

+ (1+ q4)(1+ q2 + q4)

q14
s1,1,0,0 +

1+ q4 + q8

q16
s0,0,0,0

-3,1,0,0 = s3,1,0,0 + q−2s2,2,0,0 +
1+ q2

q4
s2,1,1,0 + q−6(s1,1,1,1 + s1,1,1,−1)

+1+ q2 + q4

q6
s2,0,0,0 +

1+ q2 + 2q4

q8
s1,1,0,0 +

1+ q4

q10
s0,0,0,0

-2,2,0,0 = s2,2,0,0 + q−2s2,1,1,0 + q−4(s1,1,1,1 + s1,1,1,−1)

+q−4s2,0,0,0 +
1+ q2 + q4

q6
s1,1,0,0 +

1+ q4

q8
s0,0,0,0

-2,1,1,0 = s2,1,1,0 + q−2(s1,1,1,1 + s1,1,1,−1)+ q−2s2,0,0,0

+1+ q2

q4
s1,1,0,0 + q−6s0,0,0,0
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-1,1,1,ε = s1,1,1,ε + q−2s1,1,0,0 + q−4s0,0,0,0

- 1
2 ,

1
2 ,

1
2 ,

ε
2
= s 1

2 ,
1
2 ,

1
2 ,

ε
2

- 3
2 ,

1
2 ,

1
2 ,

ε
2
= s 3

2 ,
1
2 ,

1
2 ,

ε
2
+ q−2s 1

2 ,
1
2 ,

1
2 ,− ε

2

- 5
2 ,

1
2 ,

1
2 ,

ε
2
= s 5

2 ,
1
2 ,

1
2 ,

ε
2
+ q−2s 3

2 ,
3
2 ,

1
2 ,

ε
2
+ 1+ q2

q4
s 3
2 ,

1
2 ,

1
2 ,− ε

2
+ 1+ q2

q6
s 1
2 ,

1
2 ,

1
2 ,

ε
2

- 3
2 ,

3
2 ,

1
2 ,

ε
2
= s 3

2 ,
3
2 ,

1
2 ,

ε
2
+ q−2s 3

2 ,
1
2 ,

1
2 ,− ε

2
+ 1+ q2

q4
s 1
2 ,

1
2 ,

1
2 ,

ε
2

for ε = ±1.
The expected symmetry relations under the Z3 Dynkin automorphism are

easily checked using the explicit expressions for Weyl-invariant D-type Schur
functions (A.4). As an illustration, the reader can check that -2,0,0,0 2→ -1,1,1,−1,
as a consequence of s2,0,0,0 2→ s1,1,1,−1, s1,1,0,0 2→ s1,1,0,0 and s0,0,0,0 2→ s0,0,0,0
under the transformation (A.11). The Z2 symmetry is simply the covariance of -

under ε → −ε.
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