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We consider the time evolution in two spatial dimensions of a double vorticity layer
consisting of two contiguous, infinite material fluid strips, each with uniform but generally
differing vorticity, embedded in an otherwise infinite, irrotational, inviscid incompressible
fluid. The potential application is to the wake dynamics formed by two boundary layers
separating from a splitter plate. A thin-layer approximation is constructed where each
layer thickness, measured normal to the common centre curve, is small in comparison
with the local radius of curvature of the centre curve. The three-curve equations of

contour dynamics that fully describe the double-layer dynamics are expanded in the small
thickness parameter. At leading order, closed nonlinear initial-value evolution equations
are obtained that describe the motion of the centre curve together with the time and
spatial variation of each layer thickness. In the special case where the layer vorticities
are equal, these equations reduce to the single-layer equation of Moore (Stud. Appl. Math.,
vol. 58, 1978, pp. 119–140). Analysis of the linear stability of the first-order equations
to small-amplitude perturbations shows Kelvin–Helmholtz instability when the far-field
fluid velocities on either side of the double layer are unequal. Equal velocities define a
circulation-free double vorticity layer, for which solution of the initial-value problem using
the Laplace transform reveals a double pole in transform space leading to linear algebraic
growth in general, but there is a class of interesting initial conditions with no linear growth.
This is shown to agree with the long-wavelength limit of the full linearized, three-curve
stability equations.
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1. Introduction

The study of thin-layer vortex dynamics has long provided insight into the complex
behaviour of shear layers, jets and wakes. In particular, vortex sheets provide a simple
model for infinitely thin shear layers (Moore 1978; Baker & Shelley 1990; Dhanak 1994;
Caflisch, Lombardo & Sammartino 2020). However, like most long-wave approximations,

difficulties arise in the behaviour of the small scales, in this case the presence of the
Kelvin–Helmholtz instability. Moore (1979) provides plausible evidence that an initially
straight vortex sheet subject to a small-amplitude initial disturbance develops a curvature
singularity in a finite (critical) time proportional to the logarithm of the inverse disturbance
amplitude. Supporting evidence comes from direct numerical simulations (Krasny 1986b;
Shelley 1992), from Taylor series expansions in time (Meiron, Baker & Orszag 1982)
and from asymptotic studies (Caflisch & Semmes 1990; Cowley, Baker & Tanveer 1999).
A clear picture emerges of the formation of a curvature singularity in the vortex sheet
as a consequence of the presence of 3/2-power singularities in the complex plane of the
Lagrangian marker that reach the real axis in finite time.

Of course, interest has turned to understanding the nature of the vortex sheet after the
singularity time. Rigorous mathematics (Delort 1991; Majda 1993) has established global
existence for vortex sheet motion in the classic weak sense, but the details of the weak
solution are elusive. Wu (2006) demonstrates that the weak solution is not simple; indeed
even a logarithmic spiral does not qualify. The most likely access to identifying the weak
solution is through the limit of an appropriate sequence of approximate solutions to the
Euler equations (Majda & Bertozzi 1992) and the most common choice is the vortex-blob
approximation (Krasny 1986a). Unfortunately, the limit of zero blob size still contains
several mysteries (Baker & Pham 2006); in particular, the arms of the spiral lie within an
area of overlapping blob size and the spiral appears to collapse to a point in the limit of
zero blob size (Baker & Pham 2006).

An alternative shear-layer model can be constructed from thin strips or infinitely long
patches of initially spatially uniform vorticity. Since in two-dimensional incompressible
inviscid Euler flow vorticity is conserved following a material particle, the vorticity
remains uniform in the subsequent patch motion, allowing a dimensional reduction
where the two-space-dimensional patch dynamics can be contracted to one-dimensional
integro-differential equations that describe the evolution of the patch boundaries or
contours (Zabusky, Hughes & Roberts 1979), an approach often described as ‘contour
dynamics’ (see Pullin (1992) for a review). An important property of this model is that
the motion exists globally in time (Yudovich 1963), while if the initial boundaries are
smooth, they remain smooth for all time (Chemin (1993); see Majda & Bertozzi (1992) for

a review).
For a single vortex layer, in the limit where the vorticity magnitude becomes large and

the layer thickness becomes small with the constraint that their product remains finite,
the uniform vorticity strip will converge to a vortex sheet (Majda & Bertozzi 1992).
Because the motion of the vortex patch exists for all time, a study of the limit provides a
different, physically based, approach to understanding the nature of the vortex sheet after
the singularity time. Moore (1978) explored the small-thickness limit using the method
of matched asymptotic expansions, obtaining a modified version of the Birkhoff–Rott
(BR) equation (Rott 1956; Birkhoff 1962) that describes the motion of a vortex sheet
in two-dimensional flow. A difficulty with the theory is that short waves are unstable
with growth rates that are even faster than Kelvin–Helmholtz (square of the wavenumber).
Moore points out that while such waves lie outside the validity of the theory, their presence
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Equations of motion for thin double vorticity layers

in a numerical calculation will lead to numerical difficulties similar to those encountered
in vortex sheet calculations.

The limit dynamics for thin vortex layers has been further studied by Baker & Shelley
(1990), Dhanak (1994) and Caflisch et al. (2020). Moore’s result is extended by Dhanak
(1994) to a higher order, who still finds the presence of spurious short-wave instabilities.
Numerical solutions by Baker & Shelley (1990) for a single uniform vortex layer reveal
interesting differences between vortex sheet and thin-vortex-layer dynamics. While a
perturbed vortex sheet shows the inevitable formation of a curvature singularity, a thin
vortex layer develops an elliptical core at the centre of roll-up whose size and total
circulation content, at a given time, reduces with reducing initial layer thickness. Within
the core a material curve that initially coincided with the layer’s centre curve forms a
double-branched spiral. The appearance of these structures invalidates assumptions in the
analytical small-thickness approximation, but are in accord with the suggestions by Wu
(2006) that the weak limit is not simple. These thin-layer numerical simulations bear
some resemblance to the so called δ-regularization (Krasny 1986a) of the BR equation
that allows numerical computation of vortex-sheet-like evolution beyond the critical time.

Thin vortex layers with general vorticity distributions have received less attention. The
main result, due to Caflisch et al. (2020), establishes the existence of a vortex layer
structure for short times. The thin layer is assumed to be O(ε) wide – vorticity decays
exponentially along a distance normal to a centre curve – with vorticity intensity O(1/ε);
its motion is well described by a modified BR equation. The approximate equations of
motion are rather intricate and it is difficult to assess the consequences.

Instead of a smooth vorticity distribution considered by Caflisch et al. (2020), we
consider a thin vortex layer composed of two adjacent strips of uniform, but possibly
different, vorticity. By adapting the techniques of contour dynamics, the motion of the
layer may be described in terms of three integrals, one each on the boundaries of the
layer and one on the interface that separates the vortex strips. These integrals may be
expanded in a layer-thickness parameter, leading to a set of evolution equations that
have the appearance of a modified BR equation and with clear analogies to the results
of Caflisch et al. (2020). The system that emerges is four coupled integro-differential
equations with a simple form, suggesting several new avenues of research.

Krasny (1989) constructed a two-dimensional model for a wake flow comprised of a
vortex sheet combined with a dipole sheet whose evolution is governed by an equation
adapted from the transport equation for the gradient of the vorticity in a continuous
vorticity field, but details are not provided. Desingularized numerical simulations show
the development of wake-like flow patterns. While complex dipole distributions in the
sense of potential theory (Jaswon & Symm 1977) are used in the development below to
derive equations of motion for the double vortex layer, the normal component of a vortex
dipole distribution does not appear in the limiting velocity equation. (Appendix A clarifies
the properties of tangential and normal components of vortex dipole distributions, and
shows that these two components correspond to real and imaginary vortex sheet strengths,
respectively.)

The results of a linear stability analysis for the two-layer system appear in Pozrikidis &
Higdon (1987). In general, the layers are susceptible to the Kelvin–Helmholtz instability,
as expected, and this instability is present in the thin-layer equations. The exception, of
course, is when there is no mean shear across the layers. While layers of finite thickness
still exhibit instability, the growth rates are very small for very thin layers. Indeed,
the thin-layer equations exhibit only a linear growth in time, a result that can only be
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Figure 1. An illustration of the asymptotic assumptions for a thin double layer. The bottom-left panel shows

a zoomed-in version of the layer with the regions Ri indicated. The thicknesses hi are also given, along with

the mean thicknesses Hi. The bottom-right panel shows the velocity profile corresponding to the mean layer

thicknesses when the interface is flat.

established by a full stability analysis based on an initial-value calculation. These results
open up the possible long-time existence of sufficiently thin layers.

The organization of the paper is as follows. The flow is defined in § 2 and general
equations of motion are derived. Expansions in a layer-thickness parameter for thin layers
are developed in § 3. These are used to develop leading-order thin-layer equations for the
two-layer system in § 4. Special attention is given to the case of the circulation-free layer.
Analysis of the linearized stability behaviour of the thin-double-layer equations is given
in § 5. A discussion and conclusions are presented in § 6, while asymptotic expansions for
integrals and the interface velocities are outlined in Appendices B and C.

2. The equations of motion for a double layer

2.1. Flow configuration

Figure 1 is a companion to figure 2 of Baker & Shelley (1990). In Cartesian coordinates

(x, y) with x streamwise, this shows adjacent double vortex layers, each of uniform

vorticity, that extend to infinity in either x direction. The defining, constant parameters

are the layer mean thicknesses H1 > 0, H2 > 0; the fluid x velocities at y → ±∞ are U2

and U1, respectively. Regions R−∞, R1, R2 and R∞ denote, respectively, the irrotational
fluid below, extending to y → −∞, the bottom and top vortex layers and the irrotational
fluid above extending to y → ∞. In these regions the uniform vorticities are respectively
ω−∞ = 0, ω1 = U1/H1, ω2 = −U2/H2 and ω∞ = 0. The three bounding curves that

make vorticity discontinuities are denoted Cj, j = 1, 0, 2, whose shapes are described
by the corresponding complex functions zj( p, t). This choice of flow configuration is
motivated as a model for the boundary layers shed on either side of an infinitely thin
splitter plate.

The stream function ψ(x, y, t) satisfies Poisson equations in each region:

∇2ψ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 in R−∞,

−U1/H1 in R1,

U2/H2 in R2,

0 in R∞.

(2.1)
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Equations of motion for thin double vorticity layers

A particular solution ψ̄ is generated by the case of flat interfaces defined by z1 =
p + U1t − iH1, z0 = p and z2 = p + U2, t + iH2, where p is a Lagrangian marker, with
the requirement that the stream function and its normal derivative be continuous at each
interface:

ψ̄ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

U1y + U1H1/2 in R−∞,

−U1y2/(2H1) in R1,

U2y2/(2H2) in R2,

U2y − U2H2/2 in R∞,

(2.2)

where constants have been chosen to make the x velocity in R−∞ equal to U1 and that in

R∞ equal to U2. The fluid velocity on z0 is then zero. The general solution is ψ = ψ̄ + ψ̃ ,

where ψ̃ satisfies the homogeneous equation

∇2ψ̃ = 0 (2.3)

in all regions. Here ψ̃ must satisfy certain jump conditions at the interfaces to ensure the
continuity of ψ and its normal derivative.

2.2. Complex velocity

Define Ψ = ψ̃ − iφ̃ and η = x + iy. Then the complex stream function Ψ (η) is analytic

in all regions, and φ̃ is a velocity potential. The complex velocity, w = u + iv, is given by

w∗ =
dψ̄

dy
+ i

dΨ

dη
, (2.4)

where the star superscript indicates complex conjugation. Since dΨ/dη must vanish as
y → ±∞, Ψ can be represented by a distribution of complex dipoles Λj (Jaswon & Symm
1977) along each interface Cj:

Ψ (η) =

2
∑

j=0

∫

Cj

Λj(q)K(η, zj(q))zj,q(q) dq, (2.5)

where the subscript q indicates differentiation with respect to q and

K(η, z) =
1

2πi

1

η − z
. (2.6)

An important property of K(η, z) arises when the complex dipole strength is constant,
Λ = 1 for example:

2

∫

K(η, z(q))zq(q) dq =

⎧

⎪

⎨

⎪

⎩

−1, η above interface,

0, η on interface and the principal value is taken,

1, η below interface.

(2.7)

This result is part of a more general result concerning the limiting values of the stream
function as the field point η approaches the surface at z(q) along its normal. Letting
η → z1( p) along the normal to C from below, we may indent the contour: this procedure
is akin to the derivation of the Plemelj formulae. The integral is split into two parts:

942 A5-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

34
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



G. Baker, C. Chang, S.G. Llewellyn Smith and D.I. Pullin

the interface without the semicircle which leads to a principal-valued integral and the

semicircular part which leads to a half-residue contribution. Following this procedure from

both above and below the interface and letting ψ (±) be the respective limiting values for
the stream function, we have

Ψ (±)(z( p)) = ±
1

2

Λp

zp

+ −

∫

C

Λ(q)K(z( p), z(q))zq dq, (2.8)

where the stroke indicates that the Cauchy principal value must be taken.
The complex dipole distributions for Ψ (2.5) lead to the contribution to the complex

conjugate of the velocity:

dΨ

dη
(η) =

2
∑

j=0

∫

Cj

Λj,q(q)K(η, zj(q)) dq, (2.9)

where an integration by parts has been done, based on the relation

d

dη
K(η, zj(q))zj,q(q) = −

d

dq
K(η, zj(q)). (2.10)

The derivatives of the complex dipole strength, Λj,q(q), are determined by requiring
continuity of velocity at Cj. The limiting values of the complex velocity jump across an
interface can be determined by (2.8). Consider the lower interface C1 as an example:

dΨ (±)

dη
( p) = ±

1

2

Λ1,p( p)

z1,p( p)
+ −

∫

C1

Λ1,q(q)K(z1( p), z1(q)) dq

+

∫

C0

Λ0,q(q)K(z1( p), z0(q)) dq +

∫

C2

Λ2,q(q)K(z1( p), z2(q)) dq. (2.11)

Continuity of velocity at the interface C1 then requires that

dψ̄ (+)

dy
( p) + i

dΨ (+)

dη
( p) =

dψ̄ (−)

dy
( p) + i

dΨ (−)

dη
( p), (2.12)

and so

Λ1,p( p) = iU1

(

1 +
y1( p)

H1

)

z1,p( p). (2.13a)

Similarly, continuity of velocity at the interface C2 implies that

Λ2,p( p) = −iU2

(

1 −
y2( p)

H2

)

z2,p( p). (2.13b)

On the middle interface C0,

Λ0,p( p) = −i

(

U1

H1
+

U2

H2

)

y0( p)z0,p. (2.13c)

From (2.2), (2.4) and (2.13), the complex conjugate of the velocity may be determined
anywhere in the fluid.
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Equations of motion for thin double vorticity layers

A convenient form for the velocity may be obtained by using (2.7). The complex fluid
velocity is given in the compact form

w∗(η) =
U1 + U2

2
−

U1

H1

∫

C1

( y1(q) − y))K(η, z1(q))z1,q(q) dq

−
U2

H2

∫

C2

( y2(q) − y)K(η, z2(q))z2,q(q) dq

+

(

U1

H1
+

U2

H2

) ∫

C0

( y0(q) − y)K(η, z0(q))z0,q(q) dq. (2.14)

This result is an obvious extension of the complex velocity in Baker & Shelley (1990).

2.3. Equations of motion

Since the interfaces must move with the fluid velocity, their equations of motion are

∂z0

∂t
( p, t) = w0( p, t) ≡ w(z0( p, t)), (2.15a)

∂z1

∂t
( p, t) = w1( p, t) ≡ w(z1( p, t)), (2.15b)

∂z2

∂t
( p, t) = w2( p, t) ≡ w(z2( p, t)), (2.15c)

where the partial time derivatives are taken keeping the Lagrangian variable, p, fixed.
The equations of motion may be transformed to any frame of reference moving with

uniform velocity in the x direction. For example, resetting

zj → −
U1 + U2

2
t + zj, w → −

U1 + U2

2
+ w, (2.16a,b)

then the far-field velocities become

w →
U2 − U1

2
as y → ∞, w →

U1 − U2

2
as y → −∞. (2.17a,b)

There are two particular situations of interest. Set U2 = U and U1 = −U with H1 = H2 =
H/2 and the result is just the same as for the single layer (Baker & Shelley 1990). This
result may be used as a check on the expansions for the double layer. The case more
relevant to double layers is U1 = U2 = U. Effectively, the mean vortex sheet strength has
been set to zero so focus can be placed on the effects of the internal structure of the double
layer.

3. Expansions for small thickness

In this section, the evolution of thin vortex layers is studied in the limit as their thicknesses

tend to zero. At any fixed time, the two exterior interfaces C1, C2 will collapse onto the
central interface C0 in this limit. As a starting point for the analysis of the behaviour
of thin layers, the exterior interfaces may be considered to lie a short distance on either
side of the central interface. However, the Lagrangian motion of points on the exterior
curves will result in their displacement tangentially to the limiting curve. Consequently,
the use of a parametrization based on Lagrangian motion is inconvenient. Instead, a new
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parametrization is introduced to ensure that points on the exterior interfaces with the same
label will converge to the same point on the central interface. The idea is to express the
exterior interfaces in terms of their distance along the normal to the central interface. The
definition for the motion of points on the exterior interfaces must be modified so that a
point on either exterior interface normal to a particular point on the central interface will
remain so subsequently.

3.1. Parametrization of exterior vorticity interfaces

The exterior interfaces are assumed to have the form

z1( p) = z0( p) − ih1( p)
z0,p( p)

s0,p( p)
, (3.1a)

z2( p) = z0( p) + ih2( p)
z0,p( p)

s0,p( p)
, (3.1b)

where s0,p = |z0,p| for which the subscript p refers to differentiation. The real functions
h1( p) and h2( p) give the distance of the exterior interfaces to the central interface z0( p)

along its normal and are assumed to be smooth.
The parametrization of the central curve z0( p) is valid provided it has a derivative z0,p

such that s0,p = |z0,p| is always positive and is never zero; the requirement is equivalent to
demanding the existence of a smooth tangent. The validity of the parametrization for the
exterior surfaces depends on the smoothness of the distances h1( p) and h2( p), but also on
the properties of the centre curve. In general, we require the derivatives of z1 and z2 to be
also well defined. The derivatives may be written as

z1,p

s0,p

=

[

1 − i
h1,p

s0,p

+ h1κ

]

z0,p

s0,p

, (3.2a)

z2,p

s0,p

=

[

1 + i
h2,p

s0,p

− h2κ

]

z0,p

s0,p

, (3.2b)

where

κ =
x0,py0,pp − ypx0,pp

s3
0,p

(3.3)

is the curvature of the centre curve.
The parametrization for the external surfaces can fail under several different

possibilities. Assume the centre curve is well defined; z0,p/s0,p (tangent) exists. Then it
is the quantities hp/sp and hκ that matter; here h stands for either h1 or h2.

(i) If hp blows up then it is a possible signal that the external surface folds over itself.
If this is the case, then h becomes multivalued and the limit of a thin layer does

not make sense. Note that the contour dynamics equations do allow for bounding
surfaces to fold over but the parametrization will be different from (3.1).

(ii) If the curvature is too large, then it is possible that there are places where �{z1,p} = 0
or �{z2,p} = 0 and the bounding surface may loop around on itself. This is akin to
the inability to extend the normal away from the centre curve without crossing itself.

(iii) Finally, we require 1 − ihp/sp + hκ /= 0. This condition is more difficult to phrase
in simple geometric terms.

To avoid these potential difficulties, the long-wave limit will require both hp/sp and hκ to
be small. We also assume that h remains positive.
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Equations of motion for thin double vorticity layers

3.2. Motion with new parametrization

The motion of a point, labelled by p, on one of the exterior interfaces, labelled by j, will
no longer be with the fluid flow. Let wj( p) be the fluid velocity at that point; wj( p) =
w(zj( p)). Then the motion of the point will be given by

∂zj

∂t
( p) = wj( p) + αj( p)

zj,p( p)

sj,p( p)
, for j = 1, 2, (3.4)

where αj( p) is a real function controlling the speed that must be added to the fluid velocity
along the tangent to the exterior interface so that the point remains on the normal to the
internal curve at z0( p). The motion in the normal direction of any point on the bounding
curves will be that of the fluid for kinematic reasons.

The substitution of (3.1) into (3.4) gives two complex equations:

i
∂h1

∂t

z0,p

s0,p

− h1�

{

w0,p

z0,p

}

z0,p

s0,p

+ w1 − w0 + α1

z1,p

s1,p

= 0, (3.5a)

i
∂h2

∂t

z0,p

s0,p

− h2�

{

w0,p

z0,p

}

z0,p

s0,p

− w2 + w0 − α2

z2,p

s2,p

= 0, (3.5b)

where w0 is the velocity of z0. Dependence on p will no longer be shown unless important.
Given h1, h2 and z0, the location of the exterior interfaces z1 and z2 are known, and the
velocities w0, w1 and w2 may be calculated by (2.15). Then (3.5) are two complex equations
for the four real unknowns ∂h1/∂t, ∂h2/∂t, α1 and α2. Thus h1 and h2 may be advanced
and the location of the central interface z0 updated by (2.15a).

3.3. Thin-layer expansion

For double layers with mean thickness H = H1 + H2, the following expansions are

assumed. For j = 1, 2:

hj( p) = hj,1( p)H + hj,2( p)H2 + O(H3), (3.6a)

αj( p) = αj,0( p) + αj,1( p)H + O(H2), (3.6b)

wj( p) = wj,0( p) + wj,1( p)H + O(H2). (3.6c)

For the central interface, assume

z0( p) = z( p) + ẑ1( p)H + ẑ2( p)H2 + O(H3), (3.6d)

w0( p) = w( p) + ŵ1( p)H + O(H2). (3.6e)

The above expansions (3.6) are substituted into (3.1) to give

z1 = z +

(

ẑ1 − ih1,1

zp

sp

)

H +

(

ẑ2 − ih1,2

zp

sp

+ h1,1�

{

ẑ1,p

zp

}

zp

sp

)

H2 + O(H3), (3.7a)

z2 = z +

(

ẑ1 + ih2,1

zp

sp

)

H +

(

ẑ2 + ih2,2

zp

sp

− h2,1�

{

ẑ1,p

zp

}

zp

sp

)

H2 + O(H3). (3.7b)
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G. Baker, C. Chang, S.G. Llewellyn Smith and D.I. Pullin

Now (3.6) and (3.7) are substituted into (3.5) and the collection of terms with equal
powers in H are set to zero. For the first two orders,

w1,0 − w + α1,0

zp

sp

= 0, (3.8a)

w2,0 − w + α2,0

zp

sp

= 0, (3.8b)

and

w1,1 − ŵ1 +
zp

sp

[

α1,1 + i
∂h1,1

∂t
− h1,1�

{

wp

zp

}

− iα1,0

(

h1,1,p

sp

− �

{

ẑ1,p

zp

})]

= 0,

(3.9a)

w2,1 − ŵ1 +
zp

sp

[

α2,1 − i
∂h2,1

∂t
+ h2,1�

{

wp

zp

}

+ iα2,0

(

h2,1,p

sp

+ �

{

ẑ1,p

zp

})]

= 0.

(3.9b)

The next step is the substitution of (3.6) into (2.15) to provide relationships between the
coefficients of the expansion for wj and those for z0. The complex velocity at the interfaces
depends on integrals of the form

Ij,k( p) =
1

2πi

∫

yk(q) − yj( p)

zj( p) − zk(q)
zk,q(q) dq. (3.10)

The expansions of these integrals for each wj are derived in Appendix C.

3.4. Functions Γ and T

First, introduce the quantities

T1( p) =

(

U1h1,1

H1
+

U2h2,1

H2

)

H, (3.11a)

T2( p) =

(

U1h1,2

H1
+

U2h2,2

H2

)

H, (3.11b)

Γ1(q) =

(

U1h1,1

H1
−

U2h2,1

H2

)

H, (3.11c)

Γ2(q) =

(

U1h1,2

H1
−

U2h2,2

H2

)

H. (3.11d)

From (C8),

w∗ =
U1 + U2

2
−

T1( p)

2

z∗
p

sp

+
1

2πi
−

∫

Γ1(q)sq

z( p) − z(q)
dq, (3.12a)

ŵ∗
1 = P

(0)
2 +

1

2πi
−

∫

τ
(0)
2 zq

z( p) − z(q)
dq, (3.12b)
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Equations of motion for thin double vorticity layers

where P
(0)
2 and τ

(0)
2 are defined in (C10) and (C11). From (C17),

w∗
1,0 =

U1 + U2

2
+

Γ1( p)

2

z∗
p

sp

+
1

2πi
−

∫

Γ1(q)sq

z( p) − z(q)
dq, (3.13a)

w∗
1,1 = P

(1)
2 +

1

2πi

∫

τ
(1)
2 (q)zq

z( p) − z(q)
dq, (3.13b)

where P
(1)
2 and τ

(1)
2 are defined in (C19) and (C20). From (C26),

w∗
2,0 =

U1 + U2

2
−

Γ1( p)

2

z∗
p

sp

+
1

2πi
−

∫

Γ1(q)sq

z( p) − z(q)
dq, (3.14a)

w∗
2,1 = P

(2)
2 +

1

2πi
−

∫

τ
(2)
2 (q)zq

z( p) − z(q)
dq, (3.14b)

where P
(1
2 and τ

(1)
2 are defined in (C28) and (C29).

4. Limiting equations of motion

Before examining the limiting equations, it is worth understanding the connection between
the local thicknesses hj and the mean thicknesses Hj. This is most easily obtained by
considering the conservation of area of the two layers separately. The first step is to
establish a horizontal length scale. To that end, let P be the value of parameter such that

L =

∫ P

−P

x0,p dp. (4.1a)

In what follows, we consider the layer to be periodic with length L, or that the layer
becomes flat as p → ±∞. Then, the area of a segment of the lower layer (region R1) is

A1 =

∫ P

−P

[y0( p)x0,p( p) − y1( p)x1,p( p)] dp = H1L. (4.1b)

This statement may be interpreted as the definition of the mean thickness of the layer in
region R1 where either L is the periodic length, or the limit L → ∞ is taken. To lowest
order, the areas of both layers become

A1 = H

∫ P

−P

h1,1sp dp = H1L, A2 = H

∫ P

−P

h2,1sp dp = H2L. (4.1c)

In other words, an appropriate mean value of h1,1 and h2,1 will give H1 and H2,
respectively.

4.1. Vortex sheet limit

Before substituting the expansion for the velocities, (3.12), (3.13) and (3.14), into the
equations of motion for the interfaces, (3.8) and (3.9), it is worth confirming that the
limit of the vorticity in the layers is a vortex sheet. Consider a thin strip of the double
layer along the normal to the central interface and compute the total vorticity in the strip.
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G. Baker, C. Chang, S.G. Llewellyn Smith and D.I. Pullin

It must agree with the circulation around the strip or the Lagrangian vortex sheet strength.
In other words,

∫

ω dA =

∫

γ dp. (4.2)

Since
∫

ω dA =
U1

H1

∫

[y0x0,p − y1x1,p] dp −
U2

H2

∫

[y2x2,p − y0x0,p] dp, (4.3)

we need the following expansions:

y0x0,p − y1x1,p = h1,1spH +

[

h1,2sp + h1,1sp�

{

ẑ1,p

zp

}

+ h1,1

xp

sp

d

dp

(

h1,1

yp

sp

)]

H2,

(4.4a)

y2x2,p − y0x0,p = h2,1spH +

[

h2,2sp + h2,1sp�

{

ẑ1,p

zp

}

− h2,1

xp

sp

d

dp

(

h2,1

yp

sp

)]

H2,

(4.4b)

where integration by parts is used to shift the derivative from one quantity to another as
necessary. Thus,

∫

ω dA =

∫

Γ1sp dp + H

∫

Γ2sp dp + H

∫

Γ1sp�

{

ẑ1,p

zp

}

dp

+ H2

∫

U1h1,1

H1

xp

sp

d

dp

(

h1,1

yp

sp

)

dp + H2

∫

U2h2,1

H2

xp

sp

d

dp

(

h2,1

yp

sp

)

dp.

(4.5)

The implication of this result is that the limit of small H is a vortex sheet of strength

γ = Γ1 + HΓ2 + HΓ1�

{

ẑ1,p

zp

}

+ H2 U1h1,1

H1

xp

s2
p

d

dp

(

h1,1

yp

sp

)

+ H2 U2h2,1

H2

xp

s2
p

d

dp

(

h2,1

yp

sp

)

. (4.6)

The result is in accordance with Caflisch et al. (2020).

4.2. Thin-layer equations of motion

Now substitute the expansion for the velocities at the boundaries into the equations of
motion. First, substitute (3.12a), (3.13a) and (3.14a) into (3.8):

α1,0 = −
U1Hh1,1

H1
, α2,0 = −

U2Hh2,1

H2
. (4.7a,b)

What is significant is that the integrals in the expressions for the velocities cancel and the
real and imaginary parts are satisfied simultaneously.
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Equations of motion for thin double vorticity layers

The next set of equations, (3.9), is more difficult to simplify. It is best to proceed in
steps. We find

w∗
1,1 − w∗

1 =
U1h1,2H

H1

z∗
p

sp

− i
U1h1,1H

H1

z∗
p

sp

�

{

ẑ1,p

zp

}

− i
h1,1

2sp

∂

∂p

(

Γ1

z∗
p

sp

)

+ i
U1h1,1H

H1sp

∂

∂p

(

h1,1

xp

sp

)

+
U1H

2H1zp

∂

∂p

(

h2
1,1

ypzp

s2
P

)

+
1

2πi

∫

τ
(1)
2 − τ

(0)
2

z( p) − z(q)
zq dq (4.8a)

and

w∗
2,1 − w∗

1 =
U2h2,2H

H2

z∗
p

sp

− i
U2h2,1H

H2

z∗
p

sp

�

{

ẑ1,p

zp

}

− i
h2,1( p)

2sp

∂

∂p

(

Γ1( p)
z∗

p

sp

)

− i
U2h2,1

H2sp

∂

∂p

(

h2,1

xp

sp

)

H −
U2

2H2zp

∂

∂p

(

h2
2,1

ypzp

s2
p

)

H

+
1

2πi

∫

τ
(2)
2 − τ

(0)
2

z( p) − z(q)
zq dq, (4.8b)

where

τ
(1)
2 − τ

(0)
2 = −i

h1,1zp

zqsp

∂

∂q

(

Γ1

z∗
q

sq

)

, τ
(2)
2 − τ

(0)
2 = i

h2,1zp

zqsp

∂

∂q

(

Γ1(q)
z∗

q

sq

)

. (4.8c)

These results may now be substituted into the complex conjugate of (3.9):

z∗
p

sp

(

α1,1 − i
∂h1,1

∂t
− h1,1�

{

wp

zp

}

+ iα1,0

h1,1,p

sp

+
U1h1,2H

H1

)

= i
h1,1

2sp

∂

∂p

(

Γ1

z∗
p

sp

)

− i
U1h1,1H

H1sp

∂

∂p

(

h1,1

xp

sp

)

−
U1H

2H1zp

∂

∂p

(

h2
1,1

ypzp

s2
P

)

−
1

2πi

∫

τ
(1)
2 − τ

(0)
2

z( p) − z(q)
zq dq (4.9a)

and

z∗
p

sp

(

α2,1 + i
∂h2,1

∂t
+ h2,1�

{

wp

zp

}

− iα2,0

h2,1,p

sp

+
U2h2,2H

H2

)

= i
h2,1( p)

2sp

∂

∂p

(

Γ1( p)
z∗

p

sp

)

+ i
U2h2,1

H2sp

∂

∂p

(

h2,1

xp

sp

)

H +
U2H

2H2zp

∂

∂p

(

h2
2,1

ypzp

s2
p

)

−
1

2πi

∫

τ
(2)
2 − τ

(0)
2

z( p) − z(q)
zq dq. (4.9b)

These equations must be solved for α1,1, α2,1, and the time derivatives of h1,1 and h2,1.
Simply multiply the equations by zp/sp and separate the real and imaginary parts. To aid
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G. Baker, C. Chang, S.G. Llewellyn Smith and D.I. Pullin

in the calculation, introduce

Q1 =
1

2πi

∫

τ
(1)
2 − τ

(0)
2

z( p) − z(q)
zq dq, Q2 =

1

2πi

∫

τ
(2)
2 − τ

(0)
2

z( p) − z(q)
zq dq (4.10a,b)

and

R1 = i
h1,1

2sp

∂

∂p

(

Γ1

z∗
p

sp

)

− i
U1h1,1H

H1sp

∂

∂p

(

h1,1

xp

sp

)

−
U1H

2H1zp

∂

∂p

(

h2
1,1

ypzp

s2
P

)

, (4.11a)

R2 = i
h2,1

2sp

∂

∂p

(

Γ1

z∗
p

sp

)

+ i
U2h2,1H

H2sp

∂

∂p

(

h2,1

xp

sp

)

+
U2H

2H2zp

∂

∂p

(

h2
2,1

ypzp

s2
p

)

. (4.11b)

The expressions for R1 and R2 can be rewritten in terms of Γ1 and T1 by using

U1h1,1H

H1
=

T1 + Γ1

2
,

U2h2,1H

H2
=

T1 − Γ1

2
. (4.12a,b)

After further manipulation, we obtain

U1H

H1
R1 = −i

T1 + Γ1

4sp

∂T1

∂p

z∗
p

sp

+
Γ 2

1 − T2
1

8spzp

[

xp

∂

∂p

(

yp

sp

)

− yp

∂

∂p

(

xp

sp

)]

(4.13a)

and

U2H

H2
R2 = i

T1 − Γ1

4sp

∂T1

∂p

z∗
p

sp

−
Γ 2

1 − T2
1

8spzp

[

xp

∂

∂p

(

yp

sp

)

− yp

∂

∂p

(

xp

sp

)]

. (4.13b)

To solve (4.9) multiply (4.9a) by U1H/H1 and (4.9b) by U2H/H2, and then multiply the
results with zp/sp. After that it is easy to separate into real and imaginary parts:

U1H

H1
α1,1 =

T1 + Γ1

2
�

{

wp

zp

}

−
U1H

2H1
(T2 + Γ2)

+
Γ 2

1 − T2
1

8s2
p

[

xp

∂

∂p

(

yp

sp

)

− yp

∂

∂p

(

xp

sp

)]

−
U1H

H1
�

{

zpQ1

sp

}

, (4.14a)

U2H

H2
α2,1 = −

T1 − Γ1

2
�

{

wp

zp

}

−
U2H

2H2
(T2 − Γ2)

−
Γ 2

1 − T2
1

8s2
p

[

xp

∂

∂p

(

yp

sp

)

− yp

∂

∂p

(

xp

sp

)]

−
U2H

H2
�

{

zpQ2

sp

}

(4.14b)

and

U1H

H1

∂h1,1

∂t
= −

T1 + Γ1

4sp

∂Γ1

∂p
+

U1H

H1
�

{

zpQ1

sp

}

, (4.15a)

U2H

H2

∂h2,1

∂t
=

T1 − Γ1

4sp

∂Γ1

∂p
−

U2H

H2
�

{

zpQ2

sp

}

. (4.15b)
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Equations of motion for thin double vorticity layers

The lowest-order equations for z, Γ1 and T1 are

∂z∗

∂t
=

U1 + U2

2
−

T1

2

z∗
p

sp

+
1

2πi
−

∫

Γ1(q)sq

z( p) − z(q)
dq, (4.16a)

∂Γ1

∂t
= −

T1

2sp

∂Γ1

∂p
−

Γ1( p)

s2
p

�{iz2
pK}, (4.16b)

∂T1

∂t
= −

Γ1

2sp

∂Γ1

∂p
−

T1( p)

s2
p

�{iz2
pK}, (4.16c)

where

K =
1

2πi
−

∫

∂

∂q

(

Γ1(q)
z∗

q

sq

)

1

z( p) − z(q)
dq. (4.16d)

Equations (4.16) describe the evolution of z( p, t), T1( p, t) and Γ1( p, t) from some
prescribed condition z( p, 0), T1( p, 0) and Γ1( p, 0). The parameters H1/H and H2/h have
been absorbed into the definitions of T1 and Γ1 and do not appear explicitly in the evolution
equations. At any time during evolution, the dimensionless layer thickness h1,1 and h2,1

can be determined by (4.12a,b) and used to specify the first-order corrections to the surface
locations (3.7).

4.3. Conservation form

These equations can be restated in a form that reveals the conservation of circulation as
done in Baker & Shelley (1990) for the motion of a passive interface in a single layer of
vorticity. From

zpK =
zp

2πi
−

∫

∂

∂q

(

Γ1(q)
z∗

q

sq

)

1

z( p) − z(q)
dq =

∂

∂p

(

1

2πi
−

∫

Γ1sq

z( p) − z(q)
dq

)

, (4.17)

use (4.16a) to find

zpK =
∂

∂p

(

w∗ −
U1 + U2

2
+

T1

2

z∗
p

sp

)

. (4.18)

Substitute the result into (4.16b) and (4.16c):

∂Γ1

∂t
= −

1

2sp

∂

∂p
(T1Γ1) − Γ1�

{

w∗
p

z∗
p

}

, (4.19a)

∂T1

∂t
= −

1

4sp

∂

∂p
(Γ 2

1 + T2
1 ) − T1�

{

w∗
p

z∗
p

}

. (4.19b)

This set of equations constitutes an alternative set to (4.16b) and (4.16c). We can also
rewrite them in a way that highlights their nature as conservation laws:

∂

∂t
(Γ1sp) = −

1

2

∂

∂p
(T1Γ1), (4.20a)

∂

∂t
(T1sp) = −

1

4

∂

∂p
(Γ 2

1 + T2
1 ). (4.20b)

Unlike previous work (Moore 1978; Baker & Shelley 1990; Dhanak 1994), the system
(4.16) does not include the next order correction, but it does account for a distribution of
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G. Baker, C. Chang, S.G. Llewellyn Smith and D.I. Pullin

vorticity in the layer, albeit of a specific form. More general distributions are likely to lead
to similar results. Clearly, T1 represents an advection velocity and Γ1 gives a vortex sheet
strength. While h1,1 and h2,1 are also lowest-order quantities, they appear as first-order
corrections to the surface locations.

4.4. Special cases

The double layer becomes the single layer of Baker & Shelley (1990) with the choice U2 =
−U1 = U and H1 = H2 = H/2. This reduction allows a simple test on the derivation for
the double layer. Unfortunately, different notation has been used for the single and double
layers so care is need when converting one form to another. Specifically, from double to
single layer,

T1 =

(

U1h1,1

H1
+

U2h2,1

H2

)

−→ −2U	h1, (4.21a)

Γ1 =

(

U1h1,1

H1
−

U2h2,1

H2

)

−→ −2UT1. (4.21b)

Consider the evolution equation for the sheet location (4.16a), which becomes

∂z∗

∂t
= U	h1

z∗
p

sp

−
2U

2πi
−

∫

T1sq

z( p) − z(q)
dq, (4.22)

which agrees with (3.13b) of Baker & Shelley (1990). Next consider (4.19a): care must be
taken with the sign associated with w:

∂T1

∂t
=

U

sp

∂

∂p
(T1	h1) − T1�

{

w∗
p

z∗
P

}

, (4.23)

which agrees with (3.14) of Baker & Shelley (1990).
The second special case is the circulation-free layer U1 = U2 = U. In (4.16), (U1 +

U2)/2 is replaced by U. In addition, the total circulation of the double layer is always zero:

∫ P

−P

Γ1( p, t)sp dp = 0 (4.24)

as a consequence of (4.1c). The results for this case are new in that they highlight a
situation not previously considered in any detail. The unusual nature of this case becomes
more transparent when we consider its stability.

5. Stability

The linear stability of the thin-layer equations (4.16) helps determine whether they provide
a useful approach in the study of thin shear layers with distributed vorticity. At the same
time, our aim is to compare the results with the linearized stability of a special case of the
full three-contour profile ψ̄ in (2.2), henceforth referred to as the ‘broken-line’ profile, in
the long-wave limit k → 0. This will provide a useful verification of the dynamical content
of the thin-layer equations.
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Equations of motion for thin double vorticity layers

5.1. Stability of thin-layer equations

We linearize the system (4.16) about the basic state given by ψ̄ in (2.2). The dependent
variables, expressed in terms of the expansion in H, become

z = p + x̂ + iŷ, (5.1)

h1,1H = H1 + ĥ1,1H, h2,1H = H2 + ĥ2,1H, (5.2a,b)

Γ1 = U1 − U2 + Γ̂, T1 = U1 + U2 + T̂. (5.3a,b)

The resulting linear equations are

∂ x̂

∂t
= −

T̂

2
−

U1 − U2

2π

−

∫

ŷq

dq

p − q
, (5.4a)

∂ ŷ

∂t
= −

U1 + U2

2
ŷp +

1

2π

−

∫

Γ̂
dq

p − q
, (5.4b)

∂Γ̂

∂t
= −

U1 + U2

2

∂Γ̂

∂p
+

(U1 − U2)
2

2π

−

∫

ŷqq

dq

p − q
, (5.4c)

∂T̂

∂t
= −

U1 − U2

2

∂Γ̂

∂p
+

U2
1 − U2

2

2π

−

∫

ŷqq

dq

p − q
, (5.4d)

after an integration by parts. As these are linear equations, we can consider solutions

proportional to eikp (x̂ = x̃eikp, for example). Using the property

−

∫

eikq

p − q
dq = −iπ(sgn k)eikp, (5.5)

the system (5.4) becomes the ordinary differential equation system

dx̃

dt
= −

T̃

2
−

U1 − U2

2π

|k|ỹ, (5.6a)

dỹ

dt
= −

U1 + U2

2
(ik)ỹ +

1

2
(−i sgn k)Γ̃, (5.6b)

dΓ̃

dt
= −

U1 + U2

2
(ik)Γ̃ +

(U1 − U2)
2

2
(ik|k|)ỹ, (5.6c)

dT̃

dt
= −

U1 − U2

2
(ik)Γ̃ +

U2
1 − U2

2

2
(ik|k|)ỹ. (5.6d)

Normal modes of this system correspond to solutions proportional to eσ t. (This is
equivalent to calculating the dispersion relation for the wave speed c with σ = −ikc.)
The resulting growth rates are the eigenvalues of the matrix

⎛

⎜

⎜

⎝

0 −(U1 − U2)|k|/2 0 −1/2
0 −i(U1 + U2)k/2 −i(sgn k)/2 0

0 i(U1 − U2)
2k|k|/2 −i(U1 + U2)k/2 0

0 i(U2
1 − U2

2)k|k|/2 −i(U1 − U2)k/2 0

⎞

⎟

⎟

⎠

. (5.7)

The four eigenvalues are found to be 0, 0 and −ik(U1 + U2)/2 ± (U1 − U2)k/2. As
expected, the Kelvin–Helmholtz instability is present if U1 /= U2 with exponentially
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G. Baker, C. Chang, S.G. Llewellyn Smith and D.I. Pullin

growing modes; the growth rate increases linearly with k. Since the thin-layer equations

do not contain the next order contributions, there is no cut-off or spurious instabilities as
in Moore (1978).

The circulation-free flow corresponds to U1 = U2 = U, where the last two eigenvalues
coalesce to give −ikU, corresponding to neutrally stable modes moving at the speed of the
background flow. They are repeated eigenvalues, leading to the possibility of algebraic
growth. A proper stability analysis now requires the system (5.6) to be treated as an
initial-value problem:

d

dt

⎛

⎜

⎜

⎝

x̃

ỹ

Γ̃

T̃

⎞

⎟

⎟

⎠

=

⎛

⎜

⎝

0 0 0 −1/2
0 −ikU −i(sgn k)/2 0
0 0 −ikU 0
0 0 0 0

⎞

⎟

⎠

⎛

⎜

⎜

⎝

x̃

ỹ

Γ̃

T̃

⎞

⎟

⎟

⎠

. (5.8)

This system has the solution

x̃ = x̃0 −
T̃0

2
t, ỹ = e−ikUt

(

ỹ0 − i(sgn k)t
Γ̃0

2

)

, (5.9a,b)

Γ̃ = e−ikUtΓ̃0, T̃ = T̃0, (5.10a,b)

where the subscript 0 refers to initial values.

The Fourier mode of the thickness T̃ remains constant in time but induces a horizontal
translation in x̃. The Fourier mode of the local vortex sheet strength Γ̃ propagates with
speed U and induces a growth in the perturbation of the centre curve that is only linear in

time. The consequences for the fully nonlinear system are not yet clear.

An alternative approach to constructing a solution to the system (5.8) is through the

Laplace transform. The solution in the Laplace variable s is

x̄(s) =
x̃0

s
−

T̃0

2s2
, y(s) =

ỹ0

s + ikU
− i(sgn k)

Γ̃0

2(s + ikU)2
, (5.11a,b)

Γ̄ (s) =
Γ̃0

s + ikU
, T̄(s) =

T̃0

s
. (5.12a,b)

This has double poles at s = 0 and s = −ikU leading to a linear variation in time.

5.2. Linear stability of broken-line profile

We now address the long-wavelength stability of the broken-line profile (2.2) for U1 =
U2 = U. The calculation is lengthy and we summarize the main results. Interfaces at y =
y1, y = y0 and y = y2 separate the regions of constant vorticity ω1 = U/H1 (y1 < y < y0)
and ω2 = −U/H2 (y0 < y < y2). The perturbations take the form

y0 = ŷ0(x, t) = δ(t)eikx, (5.13a)

y1 = −H1 + ŷ1(x, t) = −H1 + α(t)eikx, (5.13b)

y2 = H2 + ŷ2(x, t) = H2 + β(t)eikx, (5.13c)

where the norms of hatted quantities are small compared with H. The method is to first

write expressions for the perturbation stream functions ψ̂ satisfying ∇2ψ̂=0 in each of
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Equations of motion for thin double vorticity layers

the four regions R∞, R2, R1 and R−∞. Boundary conditions that both the linearized
normal and tangential velocity components must be continuous across y0 = 0, y1 = −H1

and y2 = H2 give six homogeneous equations containing six unknown, but constant,
real coefficients. Substituting solutions into the linearized equations of motion for the y

component of velocity at each of the three interfaces then gives three constant-coefficient
ordinary differential equations for (α(t), β(t), δ(t)).

5.3. Circulation-free layer; H1 = H2

We consider the initial-value problem with corresponding initial conditions (α0, β0, δ0).
Taking Laplace transforms then gives three algebraic equations for the transformed
functions (ᾱ(s), β̄(s), δ̄(s)). For simplicity we consider the special case with H1 = H2 =
H/2, with the result that

(

s + iUk −
iUS

H

)

ᾱ(s) =
iUS

H
e−|k|Hβ̄(s) − 2i

US

H
e−|k|H/2δ̄(s) + α0, (5.14a)

(

s + iUk −
iUS

H

)

β̄(s) =
iUS

H
e−|k|Hᾱ(s) − 2i

US

H
e−|k|H/2δ̄(s) + β0, (5.14b)

(

s + 2i
US

H

)

δ̄(s) =
iUS

H
e−|k|H/2

[

ᾱ(s) + β̄(s)
]

+ δ0, (5.14c)

where S = |k|/k = sgn(k).
The symmetry in (5.14a) and (5.14b) is clear. The three equations are most easily

solved with the transformation q̄(s) = ᾱ(s) − β̄(s), r̄(s) = ᾱ(s) + β̄(s). Solving for
q̄(s), r̄(s), δ̄(t) and then taking the inverse Laplace transform then gives the solution to
the full initial-value problem.

Solutions for r̄(s), δ̄(s) are

Dr̄(s) =

(

s + 2i
US

H

)

r0 − 4i
US

H
e−|k|H/2δ0, (5.15a)

Dδ̄(s) =

[

s + iUk − i
US

H
(1 + e−|k|H)

]

δ0 + i
US

H
e−|k|H/2r0, (5.15b)

where

D = s2 + iUks + i
US

H
(1 − e−|k|H)s + 2

U2

H2
(1 − |k|H − e−|k|H). (5.15c)

The denominator is a quadratic in s and its zeros give pole locations in the s-plane for the
inverse transform. For k → 0 these are

s1,2 = −ikU ±
U

H

√

(|k|H)3/6 + O(|k|2), (5.16)

and for small enough k, the poles coalesce, a result that appears in (5.11a,b).
The solution for q(s) is

[

s + iUk − i
US

H
(1 − e−i|k|H)

]

q(s) = α0 − β0, (5.17)

and it has only a simple pole at

s = −iUk + i
US

H
(1 − e−i|k|H) = −iUk|k|H + O(|k|3), (5.18)

as k → 0.
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G. Baker, C. Chang, S.G. Llewellyn Smith and D.I. Pullin

The poles given by (5.16) and (5.18) form the discrete spectrum and can be obtained from
the results for the classical triangular jet configuration (e.g. Drazin 2002), even though
they do not give the full details of the initial-value problem. The limits of small |k|H are
consistent with the general asymptotic results for the inviscid growth rates of parallel shear
flow obtained in Drazin & Howard (1962). Our asymptotic results hold for the general case
with H1 /= H2, so the choice made here gives the general behaviour.

Solutions for r(t) and q(t), and then (α(t), β(t), δ(t)), can be obtained in closed form by
taking the inverse Laplace transforms of (5.15a), (5.15b) and (5.17) but are cumbersome
and are not reproduced here. Our interest is in the limit for small |k| of the initial-value
solution. After some algebra we obtain

α(t) =
1

2

[

α0 − β0 + e−ikUt

(

α0 + β0 + 2i
U

H
sgn(k)tγ0

)

+ O(|k|)

]

, (5.19a)

β(t) =
1

2

[

−α0 + β0 + e−ikUt

(

α0 + β0 + 2i
U

H
sgn(k)tγ0

)

+ O(|k|)

]

, (5.19b)

δ(t) = e−ikUt

[

δ0 + i
U

H
sgn(k)tγ0 + O(|k|)

]

, (5.19c)

where

γ (t) = α(t) + β(t) − 2δ(t), (5.19d)

and only the lowest term for small k has been retained in the complex exponential.
There is linear growth in all profiles if γ0 = α0 + β0 − 2δ0 /= 0. The importance of γ

as a physical quantity is revealed in the connection between the stability results for the
thin-layer equations and those for the broken-line profile.

5.4. Equivalence with the thin-layer equations

Comparison with (5.9a,b) and (5.10a,b) requires a mapping from (ỹ(t), T̃(t), Γ̃ (t)) to
(α(t), β(t), δ(t)) variables. With the identification p → x in the linear approximation, this
mapping can be obtained by first solving (3.11a) and (3.11c) for h1,1 and h2,1 in terms of
T , Γ . Expressing the broken-line perturbations in terms of ỹ, and perturbations to T and
Γ then gives

α(t) = ỹ(t) −
H

4U
(T̃(t) + Γ̃ (t)), (5.20a)

β(t) = ỹ(t) +
H

4U
(T̃(t) − Γ̃ (t)), (5.20b)

δ(t) = ỹ(t). (5.20c)

These equations may be inverted to give

T̃(t) = −
2U

H
(α(t) − β(t)), Γ̃ (t) = −

2U

H
γ (t). (5.21a,b)

When the second equation of (5.11a,b) and both equations of (5.12a,b) are substituted
into (5.20a)–(5.20c), agreement with (5.19a)–(5.19d) is obtained bearing in mind that
the initial values may be expressed in terms of α0, β0 and γ0 through (5.21a,b). Hence
the long-wavelength linear stability of the thin-layer equations agrees with that of the
broken-line profile.
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Equations of motion for thin double vorticity layers

The connections in (5.21a,b) reveal that γ is proportional to the local vortex sheet
strength. The choice γ0 = 0 requires the initial perturbations to contain no local vortex
sheet strength. This requirement is not as restrictive as may seem. For example, the
following two examples satisfy the constraint:

y0 = ε sin kx, y1 = −
H

2
+ ε sin(kx), y2 =

H

2
+ ε sin(kx) (5.22a–c)

gives a sinusoidal perturbation to the layer, while

y0 = 0, y1 = −
H

2
− ε sin(kx), y2 =

H

2
+ ε sin(kx) (5.23a–c)

describes a bulge in the layer.

6. Discussion and conclusion

Equations (4.16a)–(4.16d), or the equivalent version (4.19), are the principal results of
this study. They form a closed, nonlinear set of initial-value evolution equations for the
motion for a long-wavelength approximation of a thin double vorticity layer. They have
been obtained from a thin-layer expansion, where the layer thicknesses are smooth and
vary slowly, and are small compared with the local curvature of the centre curve. They are
derived from the full contour-dynamics equations describing the nonlinear three-contour
evolution. Specifically, the thin-layer equations describe the motion of the centre curve
together with the evolution of the sum and difference of the layer thickness as measured
along the normal to the centre curve.

Derivation of (4.16a)–(4.16d) requires careful asymptotic expansions for certain
integrals as described in the appendices. The final thin-layer equations obey the
conservation relations appropriate for the full nonlinear system. For the special case where
the vorticity in each of the two component layers is equal with U2 = −U1 = U and
H1 = H2 = H/2 the double layer becomes a single layer where our evolution equations
agree with the single-layer, long-wavelength equations of Baker & Shelley (1990).

A detailed linearized stability analysis has been developed for the thin-layer equations.
In the general case U1 /= U2 this shows classical Kelvin–Helmholtz instability with
unbounded growth rate in the short-wave limit k → ∞. Because of the linearly ill-posed
nature of the instability, it is likely that curvature singularities will form in finite time
as occurs for the case of the standard vortex sheet. However, the thin-layer equations
are different and it will be interesting to determine whether the nature of the singularity
is the same. Attempts at numerical solutions of (4.16a)–(4.16d) are likely to encounter
difficulties with the growth of round-off errors unless some filtering techniques are
introduced.

One motivation for the present work is to develop a tractable nonlinear model for
describing thin-body wake dynamics. This corresponds to the circulation-free choice
U1 = U2 = U. Our linear stability analysis for this flow shows a double pole in the Laplace

transform plane generally giving linear growth where the growth rate depends only on the
choice of initial conditions and is independent of wavenumber. It occurs when there is local
variation in the vortex sheet strength initially; it is not yet clear what the consequences are
of this growth in the full nonlinear regime. When the perturbations contain no initial local
vortex sheet strength, and there are many such interesting examples, there is no growth
and the thin layer persists indefinitely. Obviously nonlinear effects may influence this
conjecture.
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G. Baker, C. Chang, S.G. Llewellyn Smith and D.I. Pullin

The stability properties of the thin-layer equations agree with the stability behaviour
of the initial-value problem for the full broken-line profile in the long-wavelength
limit k → 0. This is important because it shows that the thin-layer equations capture
the small-disturbance, long-wavelength behaviour of the full profile. Owing to the
non-normality of the linear operator, a normal mode analysis does not capture the
consequences of the s-plane double pole that produces leading-order, long-wavelength,
temporal linear growth, independent of k, a result that appears to have been missed in
previous work.

This temporal linear growth behaviour suggests interesting properties of the behaviour
of the fully nonlinear system (4.16a)–(4.16d) when U1 = U2. First, these may be quite
different from both the single-layer case (Baker & Shelley 1990) and the present
double-layer configuration with U1 /= U2, owing to the complete absence, in the linear
theory with U1 = U2, of short-wavelength instabilities of Kelvin–Helmholtz type with
unbounded growth rate as k → 0. Hence we might reasonably expect tractable and
well-behaved numerical solutions of the nonlinear equations. This is different from
previous contour dynamics simulations (Pozrikidis & Higdon 1987), which did not reach
the thin-layer regime and did not show a range in possible behaviours associated with
different initial conditions. Reaching the thin limit poses a computational challenge for
contour dynamics approaches, whereas our model for the thin layer would allow the study
of the response to various initial conditions. Second, the linearized linear growth in time
may indicate the presence of translation-invariant structures and, more generally, of a rich
wake-like nonlinear behaviour of the finite-amplitude initial-value problem to be explored.
These features indicate that numerical investigation of the nonlinear system is merited.

An analogy might be the Richtmyer–Meshkov instability where a shock wave impacts
a perturbed interface separating two fluids of different densities (see the review of
Brouillette (2002)). The linear initial-value problem also shows time-wise linear growth
while numerical solutions of nonlinear models show that this is followed by complex
interface evolution. A third possibility is the existence of non-trivial, nonlinear solutions
that bifurcate from the equilibrium state. A further question is whether the double
layer develops singularities even if it initially satisfies the long-wave ansatz. These are
interesting topics for future research.
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Appendix A. Vortex dipole distributions on a sheet in two dimensions

We discuss the stream function ψ produced by a vortex-dipole distribution on a curve z(q)

with marker variable q. We follow the convention of Milne-Thomson (1968, p. 361) that
the orientation of the vortex dipole is defined by the vector connecting the negative to the
positive vortex element, giving

ψ = −

∫

[D1(q)t(q) + D2(q)n(q)] · ∇qG(x − x(q)) ds, (A1)

where t and n are tangential and normal unit vectors on z(q) in the positive sense and to its
left, respectively. The corresponding vortex-dipole components are, in complex notation,
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Equations of motion for thin double vorticity layers

D1(q) and D2(q), respectively. Taking

G(x − x(q)) = −
1

4π

ln[(x − x(q))2 + ( y − y(q))2], (A2)

we find

t(q) · ∇qG(x − x(q)) =
1

2πsq

(x − x(q))xq + ( y − y(q))yq

(x − x(q))2 + ( y − y(q))2

=
1

2πsq

�

{

zq

z − z(q)

}

. (A3)

So the stream function corresponding to D1(q) is

ψ = −
1

2π

∫

D1(q)�

{

zq

z − z(q)

}

dq. (A4)

Now introduce the complex velocity potential Φ = φ + iψ . Since �{f (z)} = �{if (z)},

Φ1 =
1

2πi

∫

D1(q)
zq

z − z(q)
dq, (A5)

and the complex velocity w = u + iv becomes

w∗
1 =

dΦ

dz
= −

1

2πi

∫

D1(q)
zq

(z − z(q))2
dq. (A6)

The result may also be written as

w∗
1 = −

1

2πi

∫

D1(q)
∂

∂q

(

1

z − z(q)

)

dq, (A7)

and an integration by parts is obvious.

Now consider the vortex-dipole direction to be along the normal

ψ = −

∫

D2(q)n(q) · ∇qG(x − x(q)) ds. (A8)

Since

n(q) · ∇qG(x − x(q)) =
1

2πsq

−(x − x(q))yq + (y − y(q))xq

(x − x(q))2 + ( y − y(q))2

=
1

2πsq

�

{

izq

z − z(q)

}

, (A9)

we find

ψ = −
1

2π

∫

D2(q)�

{

izq

z − z(q)

}

dq, (A10)

and following the steps in (A5),

Φ2 =
1

2π

∫

D2(q)
zq

z − z(q)
dq. (A11)

This is the complex potential for a distribution of dipoles that are everywhere normal to
z(q).
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G. Baker, C. Chang, S.G. Llewellyn Smith and D.I. Pullin

Taking the limit as z → z( p),

Φ2( p) =
1

2π

P

∫

D2(q)
zq

z( p) − z(q)
dq ∓

iD2( p)

2
, (A12)

where the positive sign corresponds to the limit from below the curve and the negative
sign to that from above. The important point is that the stream function ψ = �(Φ2) jumps
in value across the surface and since the arclength derivative of the stream function gives
the normal velocity, it too will jump in value, violating the kinematic condition.

For a general vortex-dipole distribution,

Φ =
1

2πi

∫

(D1(q) + iD2(q))
zq

z − z(q)
dq, (A13)

with the complex velocity

w∗ = −
1

2πi

∫

(D1(q) + iD2(q))
zq

(z − z(q))2
dq

=
1

2πi

∫

d

dq
(D1(q) + iD2(q))

1

z − z(q)
dq. (A14)

The derivative of D2 gives an imaginary vortex sheet strength. The consequence for the
velocity at the interface may be assessed by taking the limit as z → z( p):

w∗( p) =
1

2πi
P

∫

d

dq
(D1(q) + iD2(q))

1

z( p) − z(q)
dq

∓
1

2zp

d

dp
(D1( p) + iD2( p)). (A15)

The velocity above and below the interface (minus and plus signs, respectively) is

zp

sp

w∗ = ∓
1

2sp

d

dp
(D1( p) + iD2( p)), (A16)

showing the jump explicitly. Since �{zpw∗/sp} is the tangential component of the velocity,
the contribution of the derivative of D1 is just a standard vortex sheet. On the other hand,
the jump in the normal velocity is given by �{zpw∗/sp} which depends on the derivative
of D2. Hence if D1( p) + iD2( p) is constant on the curve, it follows from (A14) that w∗ is
everywhere zero in the whole plane. This is the trivial case.

Appendix B. Asymptotic expansions for integrals

To obtain asymptotic expansions for the complex velocities at the boundaries, integrals of
the following form must be expanded (see (3.10)):

I( p) =
1

2πi

∫

µ( p, q)
zq(q) + Dq( p, q)

z( p) − z(q) − D( p, q)
dq, (B1)

where µ( p, q) and D( p, q) have expansions in the mean layer thickness, H, of the
following form:

µ( p, q) = µ0( p, q) + µ1( p, q)H + µ2( p, q)H2 + O(H3), (B2)

D( p, q) = D1( p, q)H + D2( p, q)H2 + O(H3). (B3)
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Equations of motion for thin double vorticity layers

The form of (B1) allows the interpretation of an integration along the complex contour
z(q) + D( p, q) and that the limit of vanishing H is well defined and given by

I0( p) = ±
µ0( p, p)

2
+

1

2πi
−

∫

µ0( p, q)zq(q)

z( p) − z(q)
dq, (B4)

where the positive or negative sign must be used when D shifts the contour above or below
the field point z( p), respectively. Note that D shifts the contour either up or down for all
p, depending upon which integral is being performed.

Since the integral in (B1) actually defines an analytic function in each region away from
the contour z(q) + D( p, q), I( p) may be expanded in a Taylor series:

I( p) = I0( p) + I1( p)H + I2( p)H2 + O(H3), (B5)

where

j!Ij( p) = lim
H→0

d jI

dH j
( p). (B6)

The derivatives may be determined recursively. Assume the form

d jI

dH j
( p) =

1

2πi

∫

fj( p, q)
zq(q) + Dq( p, q)

z( p) − z(q) − D( p, q)
dq, (B7)

then its derivative is given by

dj+1I

dHj+1
( p) =

1

2πi

∫

dfj

dH
( p, q)

zq(q) + Dq( p, q)

z( p) − z(q) − D( p, q)
dq

+
1

2πi

∫

fj( p, q)
d

dH

[

zq(q) + Dq( p, q)

z( p) − z(q) − D( p, q)

]

dq. (B8)

Since

d

dH

[

zq(q) + Dq( p, q)

z( p) − z(q) − D( p, q)

]

=
∂

∂q

[

dD

dH
( p, q)

1

z( p) − z(q) − D( p, q)

]

, (B9)

an integration by parts may be performed on the second integral, leading to the recursive
formula for fj:

fj+1( p, q) =
dfj

dH
( p, q) −

fj,q( p, q)

zq(q) + Dq( p, q)

dD

dH
( p, q). (B10)

Clearly, f0( p, q) = µ( p, q). The integrals Ij( p) may be determined from

j!Ij( p) = ±
1

2
f̄j( p, p) +

1

2πi
−

∫

f̄j(p, q)zq(q)

z( p) − z(q)
dq, (B11)

where

f̄j( p, q) = lim
H→0

fj( p, q). (B12)

For the purposes of this paper, only the first few terms are needed. To lowest order,

f̄0( p, q) = µ0( p, q). (B13)
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G. Baker, C. Chang, S.G. Llewellyn Smith and D.I. Pullin

Application of the recursive formula (B10) gives

f1( p, q) =
dµ

dH
( p, q) −

µq( p, q)

zq(q) + Dq( p, q)

dD

dH
( p, q), (B14)

and so

f̄1( p, q) = µ1( p, q) −
µ0,q( p, q)

zq(q)
D1( p, q). (B15)

Repeating the process:

f2( p, q) =
d2µ

dH2
( p, q) +

1

zq(q) + Dq( p, q)

∂

∂q

[

µq( p, q)

zq(q) + Dq( p, q)

(

dD

dH
( p, q)

)2
]

−
1

zq(q) + Dq( p, q)

(

µq( p, q)
d2D

dH2
( p, q) + 2

dµq

dH
( p, q)

dD

dH
( p, q)

)

(B16)

and

f̄2( p, q) = 2µ2( p, q) − 2
µ0,q( p, q)D2( p, q) + µ1,q( p, q)D1( p, q)

zq(q)

+
1

zq(q)

d

dq

[

µ0,q( p, q)D2
1( p, q)

zq(q)

]

. (B17)

Appendix C. Asymptotic expansions for velocities at interfaces

Each velocity contains a combination of three integrals (2.14). Each integral is related to
(3.10) and has the form (B1). We treat the expansions for each velocity separately.

C.1. Expansion of w0

There are three integrals that require expansion. They contain common parts that will

cancel when they are combined to compose w∗
0:

w∗
0 =

U1 + U2

2
−

U1

H1
I0,1 −

U2

H2
I0,2 +

(

U1

H1
+

U2

H2

)

I0,0. (C1)

Adopt the approach followed for the single layer (Baker & Shelley 1990) by grouping
the integrals for U1/H1 and U2/H2.

(i) Integrals associated with U1/H1. Consider I0,0 and write it in the form appropriate
for the integrals in Appendix B but identify the common parts with I0,1. From the

results in Appendix B, one obtains f̄1 and f̄2 to insert in the integrals I0,0 and I0,1.

Before substituting, perform the subtraction I0,0 − I0,1 and let ρ be the difference of
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Equations of motion for thin double vorticity layers

f for I0,0 and I0,1. We obtain

ρ
(1)
1 ( p, q) = h1,1

z∗
q

sq

(C2)

and

ρ
(1)
2 ( p, q) = 2h1,2(q)

z∗
q

sq

−
2

zq

[ẑ1(q) − ẑ1( p)]
∂

∂q

(

h1,1(q)
z∗

q

sq

)

− 2ih1,1(q)
z∗

q

sq

�

{

ẑ1q

zq

}

+ 2i
h1,1(q)

sq

∂

∂q

(

h1,1(q)
xq

sq

)

+
1

zq

∂

∂q

(

h2
1,1(q)

yqzq

s2
q

)

. (C3)

The principal-value correction has a negative sign. Thus

I0,0 − I0,1 =

[

−
ρ

(1)
1 ( p, p)

2
+

1

2πi

∫

ρ
(1)
1 ( p, q)zq

z( p) − z(q)
dq

]

H

+

[

−
ρ

(1)
2 ( p, p)

4
+

1

4πi

∫

ρ
(1)
2 ( p, q)zq

z( p) − z(q)
dq

]

H2. (C4)

(ii) The next integrals to consider are those associated with U2/H2, i.e. I0,0 − I0,2. By
following the same steps, we arrive at

ρ
(2)
1 ( p, q) = −h2,1

z∗
q

sq

(C5)

and

ρ
(2)
2 ( p, q) = −2h2,2(q)

z∗
q

sq

+
2

zq

[ẑ1(q) − ẑ1( p)]
∂

∂q

(

h2,1(q)
z∗

q

sq

)

+ 2ih2,1(q)
z∗

q

sq

�

{

ẑ1q

zq

}

+ 2i
h2,1(q)

sq

∂

∂q

(

h2,1(q)
xq

sq

)

+
1

zq

∂

∂q

(

h2
2,1(q)

yqzq

s2
q

)

. (C6)

The principal-value correction has a positive sign. Thus

I0,0 − I0,2 =

[

ρ
(2)
1 ( p, p)

2
+

1

2πi

∫

ρ
(2)
1 ( p, q)zq

z( p) − z(q)
dq

]

H

+

[

ρ
(2)
2 ( p, p)

4
+

1

4πi

∫

ρ
(2)
2 ( p, q)zq

z( p) − z(q)
dq

]

H2. (C7)
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G. Baker, C. Chang, S.G. Llewellyn Smith and D.I. Pullin

(iii) We are now ready to state the results for the expansion of w∗
0:

w∗
0 =

U1 + U2

2
+

U1

H1
(I0,0 − I0,1) +

U2

H2
(I0,0 − I0,2). (C8)

Introduce the quantities T1( p), T2( p), Γ1( p) and Γ2( p) defined in (3.11). Then the
lowest non-zero contribution is (3.12a). The next order contribution is

ŵ∗
1 = P

(0)
2 +

1

2πi

∫

τ
(0)
2 zq

z( p) − z(q)
dq, (C9)

where

P
(0)
2 = −

T2( p)

2

z∗
p

sp

+ i
T1( p)

2
�

{

ẑ1,p

zp

}

z∗
p

sp

− i
U1h1,1H

2H1sp

∂

∂p

(

h1,1

xp

sp

)

+ i
U2h2,1H

2H2sp

∂

∂p

(

h2,1

xp

sp

)

−
U1H

4H1zp

∂

∂p

(

h2
1,1

ypzp

s2
p

)

+
U2H

4H2zp

∂

∂p

(

h2
2,1

ypzp

s2
p

)

, (C10)

τ
(0)
2 = Γ2(q)

z∗
q

sq

− iΓ1(q)�

{

ẑ1,q

zq

}

z∗
q

sq

−
[

ẑ1(q) − ẑ1( p)
] d

dq

(

Γ1(q)
z∗

q

sq

)

1

zq

+ i
U1h1,1H

H1sq

∂

∂q

(

h1,1

xp

sq

)

+ i
U2h2,1H

H2sq

∂

∂q

(

h2,1

xp

sq

)

+
U1H

2H1zp

∂

∂q

(

h2
1,1

yqzq

s2
p

)

+
U2H

2H2zq

∂

∂q

(

h2
2,1

yqzp

s2
q

)

. (C11)

C.2. Expansion of w1

(i) Consider first the integrals associated with U1/H1, namely I1,0 − I1,1. We find

ρ
(1)
1 = h1,1

z∗
q

sq

, (C12a)

ρ
(1)
2 = 2h1,2

z∗
q

sq

− 2ih1,1

z∗
q

sq

�

{

ẑ1,q

zq

}

+ 2i
h1,1

sq

∂

∂q

(

h1,1

xq

sq

)

−
2

zq

[

ẑ1(q) − ẑ1( p) + ih1,1( p)
zp

sp

]

∂

∂q

(

h1,1

z∗
q

sq

)

+
1

zq

∂

∂q

(

h2
1,1

yqzq

s2
q

)

. (C12b)

Since the contour for I1,0 is above, the results may be stated as

I1,0 − I1,1 =

[

ρ
(1)
1 ( p, p)

2
+

1

2πi

∫

ρ
(1)
1 ( p, q)zq

z( p) − z(q)
dq

]

H

+

[

ρ
(1)
2 ( p, p)

4
+

1

4πi

∫

ρ
(1)
2 ( p, q)zq

z( p) − z(q)
dq

]

H2. (C13)
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Equations of motion for thin double vorticity layers

(ii) Next, consider the integrals associated with U2/H2. We obtain

ρ
(2)
1 ( p, q) = −h2,1(q)

z∗
q

sq

(C14)

and

ρ
(2)
2 ( p, q) = −2h2,2(q)

z∗
q

sq

+
2

zq

[

ẑ1(q) − ẑ1( p) + ih1,1( p)
zp

sp

]

∂

∂q

(

h2,1(q)
z∗

q

sq

)

+ 2ih2,1(q)
z∗

q

sq

�

{

ẑ1q

zq

}

+ 2i
h2,1(q)

sq

∂

∂q

(

h2,1(q)
xq

sq

)

+
1

zq

∂

∂q

(

h2
2,1(q)

yqzq

s2
q

)

. (C15)

Since the contour is also above, we have

I1,0 − I1,2 =

[

ρ
(2)
1 ( p, p)

2
+

1

2πi

∫

ρ
(2)
1 ( p, q)zq

z( p) − z(q)
dq

]

H

+

[

ρ
(2)
2 ( p, p)

4
+

1

4πi

∫

ρ
(2)
2 ( p, q)zq

z( p) − z(q)
dq

]

H2. (C16)

(iii) By combining the results,

w∗
1 =

U1 + U2

2
+

U1

H1
(I1,0 − I1,1) +

U2

H2
(I1,0 − I1,2), (C17)

we obtain (3.13a). The next order contribution is

w∗
1,1 = P

(1)
2 +

1

2πi

∫

τ
(1)
2 (q)zq

z( p) − z(q)
dq, (C18)

where

P
(1)
2 =

Γ2( p)

2

z∗
p

sp

− i
Γ1( p)

2

z∗
p

sp

�

{

ẑ1,p

zp

}

− i
h1,1( p)

2sp

∂

∂p

(

Γ1( p)
z∗

p

sp

)

+ i
U1h1,1

2H1sp

∂

∂p

(

h1,1

xp

sp

)

H + i
U2h2,1

2H2sp

∂

∂p

(

h2,1

xp

sp

)

H

+
U1

4H1zp

∂

∂p

(

h2
1,1

ypzp

s2
p

)

H +
U2

4H2zp

∂

∂p

(

h2
2,1

ypzp

s2
p

)

H (C19)
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G. Baker, C. Chang, S.G. Llewellyn Smith and D.I. Pullin

and

τ
(1)
2 = Γ2(q)

z∗
q

sq

− iΓ1(q)
z∗

q

sq

�

{

ẑ1,q

zq

}

−
1

zq

[

ẑ1(q) − ẑ( p) + ih1,1( p)
zp

sp

]

∂

∂q

(

Γ1(q)
z∗

q

sq

)

+ i
U1h1,1

H1sq

∂

∂q

(

h1,1

xq

sq

)

H + i
U2h2,1

H2sq

∂

∂q

(

h2,1

xq

sq

)

H

+
U1

2H1zq

∂

∂q

(

h2
1,1

yqzq

s2
q

)

H +
U2

2H2zq

∂

∂q

(

h2
2,1

yqzq

s2
q

)

H. (C20)

C.3. Expansion of w2

(i) Consider the integrals associated with U2/H2, namely I2,0 − I2,2. Calculate the
difference in the integrals:

ρ
(1)
1 = −h2,1

z∗
q

sq

, (C21a)

ρ
(1)
2 = −2h2,2

z∗
q

sq

+ 2ih2,1

z∗
q

sq

�

{

ẑ1,q

zq

}

+ 2i
h2,1

sq

∂

∂q

(

h2,1

xq

sq

)

+
2

zq

[

ẑ1(q) − ẑ1( p) − ih2,1( p)
zp

sp

]

∂

∂q

(

h2,1

z∗
q

sq

)

+
1

zq

∂

∂q

(

h2
2,1

yqzq

s2
q

)

. (C21b)

Since the contour for I2,0 is below, the results may be stated as

I2,0 − I2,2 =

[

−
ρ

(1)
1 ( p, p)

2
+

1

2πi

∫

ρ
(1)
1 ( p, q)zq

z( p) − z(q)
dq

]

H

+

[

−
ρ

(1)
2 ( p, p)

4
+

1

4πi

∫

ρ
(1)
2 ( p, q)zq

z( p) − z(q)
dq

]

H2. (C22)

(ii) Next, consider the integrals associated with U1/H1. We obtain

ρ
(2)
1 ( p, q) = h1,1(q)

z∗
q

sq

(C23)

and

ρ
(2)
2 ( p, q) = 2h1,2(q)

z∗
q

sq

−
2

zq

[

ẑ1(q) − ẑ1( p) − ih2,1( p)
zp

sp

]

∂

∂q

(

h1,1(q)
z∗

q

sq

)

− 2ih1,1(q)
z∗

q

sq

�

{

ẑ1q

zq

}

+ 2i
h1,1(q)

sq

∂

∂q

(

h1,1(q)
xq

sq

)

+
1

zq

∂

∂q

(

h2
1,1(q)

yqzq

s2
q

)

. (C24)
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Equations of motion for thin double vorticity layers

Since the contour is also below, we have

I2,0 − I2,1 =

[

−
ρ

(2)
1 ( p, p)

2
+

1

2πi

∫

ρ
(2)
1 ( p, q)zq

z( p) − z(q)
dq

]

H

+

[

−
ρ

(2)
2 ( p, p)

4
+

1

4πi

∫

ρ
(2)
2 ( p, q)zq

z( p) − z(q)
dq

]

H2. (C25)

(iii) By combining the results,

w∗
2 =

U1 + U2

2
+

U1

H1
(I2,0 − I2,1) +

U2

H2
(I2,0 − I2,2), (C26)

we obtain (3.14a). The next order contribution is

w∗
2,1 = P

(2)
2 +

1

2πi

∫

τ
(2)
2 (q)zq

z( p) − z(q)
dq, (C27)

where

P
(2)
2 = −

Γ2( p)

2

z∗
p

sp

+ i
Γ1( p)

2

z∗
p

sp

�

{

ẑ1,p

zp

}

− i
h2,1( p)

2sp

∂

∂p

(

Γ1( p)
z∗

p

sp

)

− i
U1h1,1

2H1sp

∂

∂p

(

h1,1

xp

sp

)

H − i
U2h2,1

2H2sp

∂

∂p

(

h2,1

xp

sp

)

H

−
U1

4H1zp

∂

∂p

(

h2
1,1

ypzp

s2
p

)

H −
U2

4H2zp

∂

∂p

(

h2
2,1

ypzp

s2
p

)

H (C28)

and

τ
(2)
2 = Γ2(q)

z∗
q

sq

− iΓ1(q)
z∗

q

sq

�

{

ẑ1,q

zq

}

−
1

zq

[

ẑ1(q) − ẑ( p) − ih2,1( p)
zp

sp

]

∂

∂q

(

Γ1(q)
z∗

q

sq

)

+ i
U1h1,1

H1sq

∂

∂q

(

h1,1

xq

sq

)

H + i
U1h2,1

H1sq

∂

∂q

(

h2,1

xq

sq

)

H

+
U1

2H1zq

∂

∂p

(

h2
1,1

yqzq

s2
q

)

H +
U2

2H2zq

∂

∂q

(

h2
2,1

yqzq

s2
q

)

H. (C29)
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