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We consider the time evolution in two spatial dimensions of a double vorticity layer
consisting of two contiguous, infinite material fluid strips, each with uniform but generally
differing vorticity, embedded in an otherwise infinite, irrotational, inviscid incompressible
fluid. The potential application is to the wake dynamics formed by two boundary layers
separating from a splitter plate. A thin-layer approximation is constructed where each
layer thickness, measured normal to the common centre curve, is small in comparison
with the local radius of curvature of the centre curve. The three-curve equations of
contour dynamics that fully describe the double-layer dynamics are expanded in the small
thickness parameter. At leading order, closed nonlinear initial-value evolution equations
are obtained that describe the motion of the centre curve together with the time and
spatial variation of each layer thickness. In the special case where the layer vorticities
are equal, these equations reduce to the single-layer equation of Moore (Stud. Appl. Math.,
vol. 58, 1978, pp. 119-140). Analysis of the linear stability of the first-order equations
to small-amplitude perturbations shows Kelvin—Helmholtz instability when the far-field
fluid velocities on either side of the double layer are unequal. Equal velocities define a
circulation-free double vorticity layer, for which solution of the initial-value problem using
the Laplace transform reveals a double pole in transform space leading to linear algebraic
growth in general, but there is a class of interesting initial conditions with no linear growth.
This is shown to agree with the long-wavelength limit of the full linearized, three-curve
stability equations.
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1. Introduction

The study of thin-layer vortex dynamics has long provided insight into the complex
behaviour of shear layers, jets and wakes. In particular, vortex sheets provide a simple
model for infinitely thin shear layers (Moore 1978; Baker & Shelley 1990; Dhanak 1994;
Caflisch, Lombardo & Sammartino 2020). However, like most long-wave approximations,
difficulties arise in the behaviour of the small scales, in this case the presence of the
Kelvin—Helmholtz instability. Moore (1979) provides plausible evidence that an initially
straight vortex sheet subject to a small-amplitude initial disturbance develops a curvature
singularity in a finite (critical) time proportional to the logarithm of the inverse disturbance
amplitude. Supporting evidence comes from direct numerical simulations (Krasny 1986b;
Shelley 1992), from Taylor series expansions in time (Meiron, Baker & Orszag 1982)
and from asymptotic studies (Caflisch & Semmes 1990; Cowley, Baker & Tanveer 1999).
A clear picture emerges of the formation of a curvature singularity in the vortex sheet
as a consequence of the presence of 3/2-power singularities in the complex plane of the
Lagrangian marker that reach the real axis in finite time.

Of course, interest has turned to understanding the nature of the vortex sheet after the
singularity time. Rigorous mathematics (Delort 1991; Majda 1993) has established global
existence for vortex sheet motion in the classic weak sense, but the details of the weak
solution are elusive. Wu (2006) demonstrates that the weak solution is not simple; indeed
even a logarithmic spiral does not qualify. The most likely access to identifying the weak
solution is through the limit of an appropriate sequence of approximate solutions to the
Euler equations (Majda & Bertozzi 1992) and the most common choice is the vortex-blob
approximation (Krasny 1986a). Unfortunately, the limit of zero blob size still contains
several mysteries (Baker & Pham 2006); in particular, the arms of the spiral lie within an
area of overlapping blob size and the spiral appears to collapse to a point in the limit of
zero blob size (Baker & Pham 2006).

An alternative shear-layer model can be constructed from thin strips or infinitely long
patches of initially spatially uniform vorticity. Since in two-dimensional incompressible
inviscid Euler flow vorticity is conserved following a material particle, the vorticity
remains uniform in the subsequent patch motion, allowing a dimensional reduction
where the two-space-dimensional patch dynamics can be contracted to one-dimensional
integro-differential equations that describe the evolution of the patch boundaries or
contours (Zabusky, Hughes & Roberts 1979), an approach often described as ‘contour
dynamics’ (see Pullin (1992) for a review). An important property of this model is that
the motion exists globally in time (Yudovich 1963), while if the initial boundaries are
smooth, they remain smooth for all time (Chemin (1993); see Majda & Bertozzi (1992) for
areview).

For a single vortex layer, in the limit where the vorticity magnitude becomes large and
the layer thickness becomes small with the constraint that their product remains finite,
the uniform vorticity strip will converge to a vortex sheet (Majda & Bertozzi 1992).
Because the motion of the vortex patch exists for all time, a study of the limit provides a
different, physically based, approach to understanding the nature of the vortex sheet after
the singularity time. Moore (1978) explored the small-thickness limit using the method
of matched asymptotic expansions, obtaining a modified version of the Birkhoff—Rott
(BR) equation (Rott 1956; Birkhoff 1962) that describes the motion of a vortex sheet
in two-dimensional flow. A difficulty with the theory is that short waves are unstable
with growth rates that are even faster than Kelvin—Helmbholtz (square of the wavenumber).
Moore points out that while such waves lie outside the validity of the theory, their presence
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in a numerical calculation will lead to numerical difficulties similar to those encountered
in vortex sheet calculations.

The limit dynamics for thin vortex layers has been further studied by Baker & Shelley
(1990), Dhanak (1994) and Caflisch et al. (2020). Moore’s result is extended by Dhanak
(1994) to a higher order, who still finds the presence of spurious short-wave instabilities.
Numerical solutions by Baker & Shelley (1990) for a single uniform vortex layer reveal
interesting differences between vortex sheet and thin-vortex-layer dynamics. While a
perturbed vortex sheet shows the inevitable formation of a curvature singularity, a thin
vortex layer develops an elliptical core at the centre of roll-up whose size and total
circulation content, at a given time, reduces with reducing initial layer thickness. Within
the core a material curve that initially coincided with the layer’s centre curve forms a
double-branched spiral. The appearance of these structures invalidates assumptions in the
analytical small-thickness approximation, but are in accord with the suggestions by Wu
(2006) that the weak limit is not simple. These thin-layer numerical simulations bear
some resemblance to the so called §-regularization (Krasny 1986a) of the BR equation
that allows numerical computation of vortex-sheet-like evolution beyond the critical time.

Thin vortex layers with general vorticity distributions have received less attention. The
main result, due to Caflisch er al. (2020), establishes the existence of a vortex layer
structure for short times. The thin layer is assumed to be O(¢) wide — vorticity decays
exponentially along a distance normal to a centre curve — with vorticity intensity O(1/¢€);
its motion is well described by a modified BR equation. The approximate equations of
motion are rather intricate and it is difficult to assess the consequences.

Instead of a smooth vorticity distribution considered by Caflisch et al. (2020), we
consider a thin vortex layer composed of two adjacent strips of uniform, but possibly
different, vorticity. By adapting the techniques of contour dynamics, the motion of the
layer may be described in terms of three integrals, one each on the boundaries of the
layer and one on the interface that separates the vortex strips. These integrals may be
expanded in a layer-thickness parameter, leading to a set of evolution equations that
have the appearance of a modified BR equation and with clear analogies to the results
of Caflisch et al. (2020). The system that emerges is four coupled integro-differential
equations with a simple form, suggesting several new avenues of research.

Krasny (1989) constructed a two-dimensional model for a wake flow comprised of a
vortex sheet combined with a dipole sheet whose evolution is governed by an equation
adapted from the transport equation for the gradient of the vorticity in a continuous
vorticity field, but details are not provided. Desingularized numerical simulations show
the development of wake-like flow patterns. While complex dipole distributions in the
sense of potential theory (Jaswon & Symm 1977) are used in the development below to
derive equations of motion for the double vortex layer, the normal component of a vortex
dipole distribution does not appear in the limiting velocity equation. (Appendix A clarifies
the properties of tangential and normal components of vortex dipole distributions, and
shows that these two components correspond to real and imaginary vortex sheet strengths,
respectively.)

The results of a linear stability analysis for the two-layer system appear in Pozrikidis &
Higdon (1987). In general, the layers are susceptible to the Kelvin—Helmholtz instability,
as expected, and this instability is present in the thin-layer equations. The exception, of
course, is when there is no mean shear across the layers. While layers of finite thickness
still exhibit instability, the growth rates are very small for very thin layers. Indeed,
the thin-layer equations exhibit only a linear growth in time, a result that can only be
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Figure 1. An illustration of the asymptotic assumptions for a thin double layer. The bottom-left panel shows
a zoomed-in version of the layer with the regions R; indicated. The thicknesses A; are also given, along with
the mean thicknesses H;. The bottom-right panel shows the velocity profile corresponding to the mean layer
thicknesses when the interface is flat.

established by a full stability analysis based on an initial-value calculation. These results
open up the possible long-time existence of sufficiently thin layers.

The organization of the paper is as follows. The flow is defined in §2 and general
equations of motion are derived. Expansions in a layer-thickness parameter for thin layers
are developed in § 3. These are used to develop leading-order thin-layer equations for the
two-layer system in § 4. Special attention is given to the case of the circulation-free layer.
Analysis of the linearized stability behaviour of the thin-double-layer equations is given
in § 5. A discussion and conclusions are presented in § 6, while asymptotic expansions for
integrals and the interface velocities are outlined in Appendices B and C.

2. The equations of motion for a double layer
2.1. Flow configuration

Figure 1 is a companion to figure 2 of Baker & Shelley (1990). In Cartesian coordinates
(x,y) with x streamwise, this shows adjacent double vortex layers, each of uniform
vorticity, that extend to infinity in either x direction. The defining, constant parameters
are the layer mean thicknesses H; > 0, H» > 0; the fluid x velocities at y — o0 are U;
and Uy, respectively. Regions R_,, R1, Ry and Ry, denote, respectively, the irrotational
fluid below, extending to y — —oo, the bottom and top vortex layers and the irrotational
fluid above extending to y — oo. In these regions the uniform vorticities are respectively
w_xo =0, w1 = Uy1/Hy, wp = —Uy/Hy and ws, = 0. The three bounding curves that
make vorticity discontinuities are denoted Cj, j = 1,0, 2, whose shapes are described
by the corresponding complex functions z;j(p, t). This choice of flow configuration is
motivated as a model for the boundary layers shed on either side of an infinitely thin
splitter plate.
The stream function ¥ (x, y, 7) satisfies Poisson equations in each region:

0 inR_so,
— Hy inR
Vi = Ui/H; in Ry, Q.0
Uy/Hy  inRp,
0 in Reo.
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A particular solution v is generated by the case of flat interfaces defined by z; =
p+ Uit —iHy, z0 = p and zo = p + Uj, t + iH,, where p is a Lagrangian marker, with
the requirement that the stream function and its normal derivative be continuous at each
interface:

Uy+UH/2 inR_«,
—Uy*/QH,)  inRy,
Uny?/(2Hs) in Ry,
Uxy — UH/2  in R,

(2.2)

<
I

where constants have been chosen to make the x velocity in R_, equal to U; and that in
Roo equal to Us. The fluid velocity on zg is then zero. The general solution is ¢ = ¥ + v,
where 1 satisfies the homogeneous equation

V2 =0 (2.3)

in all regions. Here v must satisfy certain jump conditions at the interfaces to ensure the
continuity of ¥ and its normal derivative.

2.2. Complex velocity

Define ¥ = ¥ — i¢ and i = x + iy. Then the complex stream function ¥ (i) is analytic
in all regions, and ¢ is a velocity potential. The complex velocity, w = u + iv, is given by

. dy dw

= - 2.4
& +1dn 2.4)

w

where the star superscript indicates complex conjugation. Since d¥/dn must vanish as
y — F00, ¥ can be represented by a distribution of complex dipoles A; (Jaswon & Symm
1977) along each interface C;:

2
v =Y [ M@K 50540 da. 25)
: C;
j=0 J
where the subscript ¢ indicates differentiation with respect to ¢ and
1 1
K(n,z) = P . (2.6)
min -z

An important property of K(7,z) arises when the complex dipole strength is constant,
A =1 for example:

—1, n above interface,
2 / K(n, z2(q))z4(q) dg = {0, n on interface and the principal value is taken, (2.7)
1, n below interface.

This result is part of a more general result concerning the limiting values of the stream
function as the field point n approaches the surface at z(g) along its normal. Letting
n — z1(p) along the normal to C from below, we may indent the contour: this procedure
is akin to the derivation of the Plemelj formulae. The integral is split into two parts:
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the interface without the semicircle which leads to a principal-valued integral and the
semicircular part which leads to a half-residue contribution. Following this procedure from

both above and below the interface and letting v/ be the respective limiting values for
the stream function, we have

v (p) = £5 =+ A@KE(p). 2(9)z dg. (2.8)
Zp C

where the stroke indicates that the Cauchy principal value must be taken.
The complex dipole distributions for ¥ (2.5) lead to the contribution to the complex
conjugate of the velocity:

2

dw

o (n)ZE /(;Aj,q(CI)K(U,Zj(‘]))d‘Ia (2.9)
=076

where an integration by parts has been done, based on the relation

d d
aK(n, 3j(@)zj,q(q) = —@K(n, zj(q)). (2.10)
The derivatives of the complex dipole strength, A; ,(g), are determined by requiring
continuity of velocity at C;. The limiting values of the complex velocity jump across an
interface can be determined by (2.8). Consider the lower interface C; as an example:

dy&® 1 A1 p(p) ][
=42 A K , d
a7 (p) 2 2, + . 1,¢(@K(z1(p), z1(q)) dg
+/C Ao,q(q)K(a(p),zo(q))qur/C A2 (@K (z1(p), 22(¢)) dg. (2.11)
0 2

Continuity of velocity at the interface C; then requires that

dy ) Ay dy ) dw
a (p)+i a (p) = a (p) +1i a (p), (2.12)
and so
Ay p(p) =1U; <1 + yl};f”) 21,p(P). (2.13a)

Similarly, continuity of velocity at the interface C, implies that

. 2(p)
A p(p) = —iU; (1 . f )zz,p(p). (2.13b)
On the middle interface Co,
(U U
Aop(p) = —1 (E + H_z) yo(P)20.p- (2.13¢)

From (2.2), (2.4) and (2.13), the complex conjugate of the velocity may be determined
anywhere in the fluid.
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A convenient form for the velocity may be obtained by using (2.7). The complex fluid
velocity is given in the compact form

Ui+U, U
Wi =252 - fc (y1(@) — YK, 21(@)21.0(q) dg
U

A (y2(q) — )K(, 22(9))z2,4(q) dg
2 C2
U U

+ <—1 + —2> f (0(g) — MK (1, 20(9)20,4(¢) dg. (2.14)
Hy  Hy) Jc,

This result is an obvious extension of the complex velocity in Baker & Shelley (1990).

2.3. Equations of motion
Since the interfaces must move with the fluid velocity, their equations of motion are

020

W(p’ 1) =wo(p,t) = w(zo(p, 1)), (2.15q)
0

%(p, ) =wi(p.H) = wzi(p. 1), (2.15b)
d

§<p, 1) = wa(p, D) = w(za(p, 1), (2.15¢)

where the partial time derivatives are taken keeping the Lagrangian variable, p, fixed.
The equations of motion may be transformed to any frame of reference moving with
uniform velocity in the x direction. For example, resetting

U +U U +U
7 — —szt +2z, w— —ITZ +w, (2.16a,b)
then the far-field velocities become
U, — Uy U -
w— Tasy—ﬂao, w—>Tasy—>—oo. (2.17a,b)
There are two particular situations of interest. Set U, = U and U; = —U with H} = Hy =

H /2 and the result is just the same as for the single layer (Baker & Shelley 1990). This
result may be used as a check on the expansions for the double layer. The case more
relevant to double layers is U; = U, = U. Effectively, the mean vortex sheet strength has
been set to zero so focus can be placed on the effects of the internal structure of the double
layer.

3. Expansions for small thickness

In this section, the evolution of thin vortex layers is studied in the limit as their thicknesses
tend to zero. At any fixed time, the two exterior interfaces Ci, C; will collapse onto the
central interface Cy in this limit. As a starting point for the analysis of the behaviour
of thin layers, the exterior interfaces may be considered to lie a short distance on either
side of the central interface. However, the Lagrangian motion of points on the exterior
curves will result in their displacement tangentially to the limiting curve. Consequently,
the use of a parametrization based on Lagrangian motion is inconvenient. Instead, a new
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parametrization is introduced to ensure that points on the exterior interfaces with the same
label will converge to the same point on the central interface. The idea is to express the
exterior interfaces in terms of their distance along the normal to the central interface. The
definition for the motion of points on the exterior interfaces must be modified so that a
point on either exterior interface normal to a particular point on the central interface will
remain so subsequently.

3.1. Parametrization of exterior vorticity interfaces

The exterior interfaces are assumed to have the form

2 (p) = 20(p) — i (p) 222 (3.1a)
sO,p(p)
2(p) = 20(p) + iha(py 222 (3.1b)

SO,p(p) '

where 59 , = |z0,,| for which the subscript p refers to differentiation. The real functions
hi1(p) and hy(p) give the distance of the exterior interfaces to the central interface zo(p)
along its normal and are assumed to be smooth.

The parametrization of the central curve zo(p) is valid provided it has a derivative z¢
such that 5o, = |z0,p| is always positive and is never zero; the requirement is equivalent to
demanding the existence of a smooth tangent. The validity of the parametrization for the
exterior surfaces depends on the smoothness of the distances /1 ( p) and iy (p), but also on
the properties of the centre curve. In general, we require the derivatives of z; and z; to be
also well defined. The derivatives may be written as

h
e _ [1 ity hm} D, (3.20)
S(),p S()’p S()’p
h
2p _ [1 Lilee h2/<1| Dy (3.2b)
50.p 50.p 50,p
where
 — X0,pY0.pp — YpX0.,pp 3.3)

is the curvature of the centre curve.

The parametrization for the external surfaces can fail under several different
possibilities. Assume the centre curve is well defined; zo ,/s0,, (tangent) exists. Then it
is the quantities /,,/s, and hx that matter; here & stands for either h; or h;.

(i) If Ay, blows up then it is a possible signal that the external surface folds over itself.
If this is the case, then 4 becomes multivalued and the limit of a thin layer does
not make sense. Note that the contour dynamics equations do allow for bounding
surfaces to fold over but the parametrization will be different from (3.1).

(ii) If the curvature is too large, then it is possible that there are places where Ji{z; ,} = 0
or M{zz,p} = 0 and the bounding surface may loop around on itself. This is akin to
the inability to extend the normal away from the centre curve without crossing itself.

(iii) Finally, we require 1 —ihy/s, + hk # 0. This condition is more difficult to phrase
in simple geometric terms.

To avoid these potential difficulties, the long-wave limit will require both A, /s, and hx to
be small. We also assume that /# remains positive.
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3.2. Motion with new parametrization

The motion of a point, labelled by p, on one of the exterior interfaces, labelled by j, will
no longer be with the fluid flow. Let w;(p) be the fluid velocity at that point; w;(p) =
w(z;j(p)). Then the motion of the point will be given by

Zj,p(p)
sj,p(P)

0z; .
8—;<p> = wj(p) + &i(p) , forj=1,2, (3.4)

where «;( p) is a real function controlling the speed that must be added to the fluid velocity
along the tangent to the exterior interface so that the point remains on the normal to the
internal curve at zo(p). The motion in the normal direction of any point on the bounding
curves will be that of the fluid for kinematic reasons.

The substitution of (3.1) into (3.4) gives two complex equations:

.0hy 20 wo.p | 20 71

i— 22 =22 o —wo+ o =2 =0, (3.5a)
At s0p 20,p ) S0.p St,p

L0l 20 wo.p | 20 o)

i— =2 =R 4wy — a2 =0, (3.5b)
ot so,p 20,p J S0.p $2.p

where wy is the velocity of zg. Dependence on p will no longer be shown unless important.
Given hj, hy and zg, the location of the exterior interfaces z; and zp are known, and the
velocities wo, wi and wo may be calculated by (2.15). Then (3.5) are two complex equations
for the four real unknowns dh/9d¢, dhy/0dt, o; and ap. Thus A; and Ay may be advanced
and the location of the central interface zg updated by (2.15a).

3.3. Thin-layer expansion

For double layers with mean thickness H = H; + H», the following expansions are
assumed. Forj =1, 2:

hi(p) = hj1(p)H + hj2(p)H* + O(H?), (3.6a)
aj(p) = aj0(p) + ;.1 (p)H + OH?), (3.6b)
wi(p) = wio(p) +wj1(p)H + OH?). (3.6¢)

For the central interface, assume

20(p) = 2(p) + 21 (p)H + %2(p)H? + O(H?), (3.6d)
wo(p) = w(p) + wi(p)H + O(H?). (3.6¢)

The above expansions (3.6) are substituted into (3.1) to give

P / . . Z [z1p)] 2
1=z+ (Zl - 1h1,1—p> H+ <Z2 — il 4 S iﬁ} —p> H? + O(H?), (3.7a)
Sp Sp %

‘gh

.. Z .. Z Z Z
n=z+ (zl + 1h2,1—”> H+ <Zz +iho 2 — hy {i} —”) H?> + OH?). (3.7b)
Sp Sp Zp ) Sp
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Now (3.6) and (3.7) are substituted into (3.5) and the collection of terms with equal
powers in H are set to zero. For the first two orders,

Wio—w+ai ol =0, (3.84)
Sp

W0 —w+ otzpi—p —0, (3.8b)
P

and

oh w h Z
Wi —wi + a4 [061,1 +1 L1 —hl,ﬁ{—p} —iot1,o( Llr {i})} =0,
Sp 31‘ Zp SP Zp
(3.9a)

. g .0 w , iy |2
W2,1—W1+—p[a2,1—1 21 —i—hz,lﬁ{—p}%-lotz,o( Pyt =0.
Sp at Zp Sp Zp

(3.90)

The next step is the substitution of (3.6) into (2.15) to provide relationships between the
coefficients of the expansion for w; and those for zo. The complex velocity at the interfaces
depends on integrals of the form

1 - v
/ Mzk,q(q) dg. (3.10)

I -
i P) =55 ] S =@

The expansions of these integrals for each w; are derived in Appendix C.

3.4. Functions I' and T

First, introduce the quantities

Uithin Ushy
T = : H, 3.11
1(p) ( H1 0 ) (3.11a)
Uithip  Ushyp
T = : H, 3.116
2(p) ( H1 0 ) ( )
Uithin Usho
I’ = — — — | H, 3.11
1(q) ( H 0 ) (3.11¢)
Uihip  Ushap
I = = — H. 3.11d
2(q) ( H 0 ) ( )
From (C8),
U +U, T z 1 r
ot TPy ' 1(q)s4 dg. (3.124)
2 2 s, 27i) z(p) —zq)
)
1 T, 2
~ 0) 2 <q
wi="pP —I——,][—d , 3.12b
T 5] W (120
942 A5-10



https://doi.org/10.1017/jfm.2022.342 Published online by Cambridge University Press

Equations of motion for thin double vorticity layers

where P;O) and rz(o) are defined in (C10) and (C11). From (C17),

U U I z 1 I
iy = U +0 LDy 1 1(9)s4 dg. (3.130)
’ 2 2 sp 2mi) z(p) —z(q)
(1)
1 T
wh =P+ — / 2 @ (3.13b)
’ 2ni ) z(p) —z2(q)
where Pél) and rz(l) are defined in (C19) and (C20). From (C26),
U U I z 1 I
Who = 1+ Ti(p)% 1 1(@)sq dg. (3.140)
2 2 s, 2mi) z(p) —zg)
(2)
1 7,7 (9)z
(2) 2 q
wh, =P+ —][ —2 T 4, (3.14b)
21702 T ani) z2(p) —2(g)

where Pgl and 12(1) are defined in (C28) and (C29).

4. Limiting equations of motion

Before examining the limiting equations, it is worth understanding the connection between
the local thicknesses /; and the mean thicknesses H;. This is most easily obtained by
considering the conservation of area of the two layers separately. The first step is to
establish a horizontal length scale. To that end, let P be the value of parameter such that

P
L=/ xo,p dp. 4.1a)
—-P

In what follows, we consider the layer to be periodic with length L, or that the layer
becomes flat as p — Fo00. Then, the area of a segment of the lower layer (region R1) is

P
Ay = /P[yo(P)xo,p(p) —y1(p)x1p(p)1dp = HiL. (4.1b)

This statement may be interpreted as the definition of the mean thickness of the layer in
region R| where either L is the periodic length, or the limit L — oo is taken. To lowest
order, the areas of both layers become

P P
A1 = H/ hl,lsp dp = H1L, A2 = H/ hz,lsp dp = H2L. (4.1C)
P —P

In other words, an appropriate mean value of Ay ; and hp; will give H; and H»,
respectively.

4.1. Vortex sheet limit

Before substituting the expansion for the velocities, (3.12), (3.13) and (3.14), into the
equations of motion for the interfaces, (3.8) and (3.9), it is worth confirming that the
limit of the vorticity in the layers is a vortex sheet. Consider a thin strip of the double
layer along the normal to the central interface and compute the total vorticity in the strip.
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It must agree with the circulation around the strip or the Lagrangian vortex sheet strength.

In other words,
/a)dA = / y dp. “4.2)

Uj U
/wdA =— /[Yoxo,p —yixipldp — — /[yzxz,p — Yoxo,pl dp, 4.3)
Hj H;

Since

we need the following expansions:

Z xp d y
YoXo,p — Y1X1,p = hi,15pH + |:h1 28p + hi15pR {z_p} +h1,1s—p— (hl,l_p):|H2»
P

p dp Sp
(4.4a)
§ 4 Lp xp d yp 2
Y2X2,p — YoXo,p = Mo 1SpH + | hopsp + ho1spMy —— ¢ —ho1—— 21— | | H”,
Zp sp dp Sp
(4.4b)

where integration by parts is used to shift the derivative from one quantity to another as
necessary. Thus,

/a)dA=/Flspdp+H/F2spdp+H/Flspf)'t{zl—’p} dp
p

Uih11x, d Ushy 1 x, d
L2 [ Yix 4 (hl,ly_p) g [Piwd (h2 1_> a.
Hy spdp Sp Hy spdp Sp
(4.5)
The implication of this result is that the limit of small H is a vortex sheet of strength
21,[)
14 =F1+HF2+HF13R{—}
ip
Uihy1xp, d Ushy 1 x, d
22 (hl,ly—") FHAE A (hz,ly—”> . (4.6)
Hy s;dp Sp Hy s;dp Sp

The result is in accordance with Caflisch ef al. (2020).

4.2. Thin-layer equations of motion

Now substitute the expansion for the velocities at the boundaries into the equations of
motion. First, substitute (3.12a), (3.13a) and (3.14a) into (3.8):

UHh U,Hh
a0 = —A, a20=—M. 4.7a,b)
’ H ’ H>

What is significant is that the integrals in the expressions for the velocities cancel and the
real and imaginary parts are satisfied simultaneously.
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The next set of equations, (3.9), is more difficult to simplify. It is best to proceed in
steps. We find

Uhi,HZ, Uhi HZ, (2 hiq 9 z
TR S b N i M il ) L0 S i S (M
’ Hy s Hy s % 25, dp Sp
Uih11H 0 X UH 93 Z
it —(hll—”> + 0
His, dp 2H,zp ap \' " 5p
1 _ (0)
1 7, 7,
+— | ——=—z,dgq (4.8a)
2mi ) 2p) — @)™
and
UshypHZy UshoHZ, (2 h ] z
Wit = Dol Ualn _ps{zl_,p}_i 2,1(p)_(1-,1(p)_p)
' Hy, s Hy, s Zp 2s, dp
Uzhzl 0 X U, 0 YpZ,
<h21—p)H— 2 (g )y
stp 8p Sp 2H»z, Op vy
(2) (0)
1 T, =1,
_|__. _— y 48b
2mi ) wp - Y (4.80)
where
h 9 z o1z, 0 =
AL (1"1—") R R s (n (q)—") . (4.80)
Z¢8p 0q Sq Z¢8p 0q Sq
These results may now be substituted into the complex conjugate of (3.9):
z; oh h UyhyoH
£ (061,1 — i —hy, 1\9{WP} +iag o Llp 21012 )
Sp ot Zp Sp H,
.hl,l 0 z; _U1h1’1H 0 X UH 0o Y%
IR (1“1—” LR A A L
2s, dp Sp Hys, Oop Sp 2Hz, dp sy
(1) (0)
1 T T
b / 2 "B . dq (4.9a)
27i ] 2(p) — @)
and
z oh w . h UshyoH
2 (0621—1-1 21 —l—hz,ﬁ{—p} — 1oz 0 2lp 4 2222 )
D at Zp Sp H>
hzl(p) 0 U2h2,1 0 X UH 9 Yp%
- F() — (a2 )H+ —— | m, 2
2sp 8p Sp stp ap Sp 2H»zp, Op TSy
(2 (0)
1 T, —T
- — f 22 ., dg. (4.9b)
2ni J z(p) —z(q)

These equations must be solved for o 1, o2, 1, and the time derivatives of /1 1 and A2 j.
Simply multiply the equations by z,/s, and separate the real and imaginary parts. To aid
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in the calculation, introduce

01

) _ _© 2 _ O
1 T, —T 1 T, —T
22 / 22 ;.dg (4.10a,b)

=— [ 22 ;g =— | —————
2mi z(p)—z(q)zq ¢ & 2ni ) z(p) —z2(q)

and

hip 0 Z Uihi H 9 UH 9
Ry =it ™ (1“1—”) B (h],l)i) -2 2k, 2), e
2s, dp Sp Hys, op Sp 2H\zp dp S

oy 0 2\ . Ushp H 3 X U,H 9 z
R2=1ﬂ—<n—”)+1&—(h2,1—”)+ > (hjly”—z”) (4.11b)

Sp Hys, dp Sp 2H>z, % 55

The expressions for Ry and R, can be rewritten in terms of 7 and 77 by using

UhiH _Ti+ 1 Ushp H T — 1IN

, (4.12a,b)
H 2 H> 2

After further manipulation, we obtain

U\H T+ o7y 2, I'2—T? 9 9
L O e 1—1—”+¥[x—<y—”>—y—<@>} (4.13a)

H ds,  dp sp 8sp2p ”ap Sp Sp
and
UH Ty—TaT1z, TP—T] @ 3
i SR Rl S B SN W ) IV (/2 IR (57 | ORE VA
H> 4s,  Op sp 8sp2p op \'sp op \'sp

To solve (4.9) multiply (4.9a) by UiH/H1 and (4.9b) by U>H /H3, and then multiply the
results with z,,/s,. After that it is easy to separate into real and imaginary parts:

U H T + I Wp UH
— R AL Gl Y o
I, oy 5 S{Zp} 2H1(2+ 2)
rg—1m>1 9 9 UH
LT [x,,— (y_p) - (@)] _ ;m{zpﬂ}, (4.14a)
852 ap \sp ap \sp Hy Sp
UH T, — I w UH
— 0 = — 3 £ —— (T —1?)
rg—721 % 9 U2H
S [xp— (y_l’) — (@)] _ 22y {Zp&} (4.14b)
852 ap \sp ap \sp Hy Sp
and
UH oh T I or; U H
Hom, - Ti+hoh  UH [501 , (4.15a)
Hi ot 4s, dp  H Sp
U>H dh T\— 00 UH
Homy _T—Non  UH [5O] (4.15b)
Hy dt 4sp  Op  H Sp
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The lowest-order equations for z, I and 77 are

iz Uy+Uy T3 1 r
B _Uirt Ty L[ N@se g (4.164)
ot 2 25, 2mi) z(p) —zq)
ar Ty 97 I
an _ 7o l(p)~{ 2K), (4.16D)
ot 25, Op sp
aT norn T
i _ i Tip) . 2K}, (4.16¢)
ot 25, Op sp
where
ke [0 ( (@) ) ! (4.164)
=— @)= ) —————dq. -
2nif ag z2(p) —z(q)

Equations (4.16) describe the evolution of z(p,t), T1(p,t) and I'1(p,t) from some
prescribed condition z(p, 0), T (p, 0) and I'1(p, 0). The parameters H{/H and H»/h have
been absorbed into the definitions of 7’1 and I'1 and do not appear explicitly in the evolution
equations. At any time during evolution, the dimensionless layer thickness 4 1 and A2 |
can be determined by (4.12a,b) and used to specify the first-order corrections to the surface
locations (3.7).

4.3. Conservation form

These equations can be restated in a form that reveals the conservation of circulation as
done in Baker & Shelley (1990) for the motion of a passive interface in a single layer of
vorticity. From

ko [P < ] );dq:i<i][idq) 4.17)
P 27 z2(p) — z2(q) op \27niJ z(p) —z(q) '

use (4.16a) to find
0 U+U T3
k=" (W* SOt 31—')) . “.18)
P Sp
Substitute the result into (4.165) and (4.16¢):
aI 19 wy
o - ~5 5, (T = 1%k s (4.19a)
ot 25, dp z
aT 19 w,
S . o (4.19b)
at 4s, dp %

This set of equations constitutes an alternative set to (4.16b) and (4.16¢). We can also
rewrite them in a way that highlights their nature as conservation laws:

0 10
—I1sp) = —=— (T 1), 4.20
8t( 15p) 28p( 111) (4.20a)

9 19 5
5100 = =3 (T +TD. (4.20b)

Unlike previous work (Moore 1978; Baker & Shelley 1990; Dhanak 1994), the system
(4.16) does not include the next order correction, but it does account for a distribution of
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vorticity in the layer, albeit of a specific form. More general distributions are likely to lead
to similar results. Clearly, 7' represents an advection velocity and I"} gives a vortex sheet
strength. While /11 and hp ;1 are also lowest-order quantities, they appear as first-order
corrections to the surface locations.

4.4. Special cases

The double layer becomes the single layer of Baker & Shelley (1990) with the choice U, =
—Uy = U and H; = H, = H/2. This reduction allows a simple test on the derivation for
the double layer. Unfortunately, different notation has been used for the single and double
layers so care is need when converting one form to another. Specifically, from double to
single layer,

Uihin  Usho
T = ’ : —2UAhy, 4.21
: ( H; * H; ) — : @21
Uih Us>h
o= (=22 222y oy (4.21b)
H, H;

Consider the evolution equation for the sheet location (4.16a), which becomes

a7 o 2U T
% a2 e g, (4.22)
ot sp 2mi) z(p) —z(q)

which agrees with (3.13b) of Baker & Shelley (1990). Next consider (4.19a): care must be
taken with the sign associated with w:

T, U 9 Wy
—1=——(T1Ah1)—T1m{—f}, (4.23)
ot sp op Zp

which agrees with (3.14) of Baker & Shelley (1990).
The second special case is the circulation-free layer U; = U, = U. In (4.16), (U1 +
U») /2 is replaced by U. In addition, the total circulation of the double layer is always zero:

P
f I'(p,t)spdp =0 (4.24)
P

as a consequence of (4.1c). The results for this case are new in that they highlight a
situation not previously considered in any detail. The unusual nature of this case becomes
more transparent when we consider its stability.

5. Stability

The linear stability of the thin-layer equations (4.16) helps determine whether they provide
a useful approach in the study of thin shear layers with distributed vorticity. At the same
time, our aim is to compare the results with the linearized stability of a special case of the
full three-contour profile ¥ in (2.2), henceforth referred to as the ‘broken-line’ profile, in
the long-wave limit k — 0. This will provide a useful verification of the dynamical content
of the thin-layer equations.
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5.1. Stability of thin-layer equations

We linearize the system (4.16) about the basic state given by v in (2.2). The dependent
variables, expressed in terms of the expansion in H, become

Z=p+Xx+1iy, (5.1)
hiH=H + ]:ll,]H, hy\H = Hy + ilz’lH, (5.2a,b)
N=U-U+I, Ti=U+Us+T. (5.3a,b)
The resulting linear equations are
% T U —-U . dq
ok _ T ][yq , (5.4a)
at 2 2w pP—q
A U+ U, 1 . d
R S I i A (5.4b)
at 2 21 pP—q
ar U+ 080 (U —U)? . d
or _ U 2_+(1 2)][qq 61, (5.4¢)
ot 2 ap 2w pP—q
T  Ui—Uydal UI-U3[, d
AT 2][yqq 7 (5.4d)
at 2 ap 2n p—q

after an integration by parts. As these are linear equations, we can consider solutions
proportional to X (% = %', for example). Using the property

eikq ‘
][ oo qdq = —in(sgnk)e'®”, (5.5)

the system (5.4) becomes the ordinary differential equation system

dx T U —-U .
— =—=———k|y, 5.6
O > o Ikl (3.6a)
dy U+ U 1 -
d_f _ —%(ik))"z +5(isgn (5.6b)
ar U +U = (U =U)? .
— = ———=(@{k) [+ ———(klk 5.6
” ;oI + > (ik|k])y, (5.6¢)
dT Uy—-U, .~ U=U3
— = ———({k) [ + ———=(ik|k|). 5.6d
m 5 (I + ———=(klk]y (5.6d)
Normal modes of this system correspond to solutions proportional to e°’. (This is
equivalent to calculating the dispersion relation for the wave speed ¢ with o = —ikc.)
The resulting growth rates are the eigenvalues of the matrix
0 —(U —Uylkl/2 0 —1/2
0 —i(Uy + Ux)k/2 —i(sgnk)/2 0

0 iU — Un)2klkl/2 —i(Uy +Unk/2 0 5.7)

0 i(U?—UDkkl/2 —i(Uy —Uk/2 0
The four eigenvalues are found to be 0, 0 and —ik(U; + U3)/2 £ (U1 — Up)k/2. As
expected, the Kelvin—-Helmholtz instability is present if U; #= U, with exponentially
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growing modes; the growth rate increases linearly with k. Since the thin-layer equations
do not contain the next order contributions, there is no cut-off or spurious instabilities as
in Moore (1978).

The circulation-free flow corresponds to U; = U, = U, where the last two eigenvalues
coalesce to give —ikU, corresponding to neutrally stable modes moving at the speed of the
background flow. They are repeated eigenvalues, leading to the possibility of algebraic
growth. A proper stability analysis now requires the system (5.6) to be treated as an
initial-value problem:

x 0 0 0 —1/2\ (*
dIy|_|0 —ikU —i(sgnk)/2 0 y (5.8)
w11~ o o —ikU 0 r :
T 0 0 0 0 7
This system has the solution
T, : I
=¥ — 7‘);, § = e kUt (yo —i(sen k)t%) , (5.9a,b)
M= *, T=T, (5.10a,b)

where the subscript 0 refers to initial values.

The Fourier mode of the thickness 7' remains constant in time but induces a horizontal
translation in x. The Fourier mode of the local vortex sheet strength I" propagates with
speed U and induces a growth in the perturbation of the centre curve that is only linear in

time. The consequences for the fully nonlinear system are not yet clear.
An alternative approach to constructing a solution to the system (5.8) is through the
Laplace transform. The solution in the Laplace variable s is

(s) = ? - ZTTOZ 7(s) = - er(i’kU - i(sgnk)z(s:+mz, (5.11a,b)
Fy= -0 F=T0 (5.12a.,b)
s+ ikU s
This has double poles at s = 0 and s = —ikU leading to a linear variation in time.

5.2. Linear stability of broken-line profile

We now address the long-wavelength stability of the broken-line profile (2.2) for U; =
U, = U. The calculation is lengthy and we summarize the main results. Interfaces at y =
v1,y = yo and y = y, separate the regions of constant vorticity w1 = U/H| (y1 <y < Yo)
and wy = —U/H> (yo < y < y2). The perturbations take the form

Yo = Jolx, f) = 8(r)e'*”, (5.130)
yi = —H +31(x, 1) = —H) + a(t)e’™, (5.13b)
y2 = Hy + $a(x, 1) = Hy + B0, (5.13¢)

where the norms of hatted quantities are small compared with H. The method is to first
write expressions for the perturbation stream functions 1 satisfying V24=0 in each of
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the four regions Ry, R2, Ry and R_,. Boundary conditions that both the linearized
normal and tangential velocity components must be continuous across yo = 0, y; = —Hj
and yp, = Hp give six homogeneous equations containing six unknown, but constant,
real coefficients. Substituting solutions into the linearized equations of motion for the y
component of velocity at each of the three interfaces then gives three constant-coefficient
ordinary differential equations for («(¢), B(?), 5(2)).

5.3. Circulation-free layer; Hy = Hj

We consider the initial-value problem with corresponding initial conditions («g, Bo, o).
Taking Laplace transforms then gives three algebraic equations for the transformed
functions (a(s), B(s), 6(s)). For simplicity we consider the special case with H; = Hy =
H /2, with the result that

(s + iUk — @) als) = 1US i g B(s) — USe—'k'H/zé(s) + o, (5.14a)
H H

(s + iUk — —> B(s) = 103 e MHg(s) — 21%{'“”/28@) + Bo. (5.14b)

(s + 21%5) 5(s) = LB g-winr2 [@(s) + B(s)] + So. (5.14c)

where S = |k|/k = sgn(k).

The symmetry in (5.14a) and (5.14D) is clear. The three equations are most easily
solved with the transformation g(s) = a(s) — B(s), 7(s) = a(s) + B(s). Solving for
q(s), 7(s), §(¢) and then taking the inverse Laplace transform then gives the solution to
the full initial-value problem.

Solutions for 7(s), 8(s) are

US US
Di(s) = (s + 2iﬁ> ro — 4ige_|k|H/250, (5.15a)
. US
DS (s) =[ +1Uk—1 (1 +e|kH)i| 50+iﬁe*'k'H/2r0, (5.15b)
where
2 . ~US —|k|H f|k\H
D=s +1Uks—|—1?(1 )s+2 (1 — |k|H — ). (5.15¢)

The denominator is a quadratic in s and its zeros give pole locations in the s-plane for the
inverse transform. For k — 0 these are

s12 = —ikU + —,/(|k|H) /6 4+ O(k|%), (5.16)

and for small enough £, the poles coalesce, a result that appears in (5.11a,b).
The solution for g(s) is

[s + iUk — 1%5(1 - ei|k|H):| q(s) = ao — Po, (5.17)
and it has only a simple pole at
= —iUk + 1%9(1 — e KHY — _jUk|k|H + O(k]?), (5.18)
ask — 0.
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The poles given by (5.16) and (5.18) form the discrete spectrum and can be obtained from
the results for the classical triangular jet configuration (e.g. Drazin 2002), even though
they do not give the full details of the initial-value problem. The limits of small |k|H are
consistent with the general asymptotic results for the inviscid growth rates of parallel shear
flow obtained in Drazin & Howard (1962). Our asymptotic results hold for the general case
with Hy # H», so the choice made here gives the general behaviour.

Solutions for r(¢) and ¢(¢), and then («(¢), B(?), 6(¢)), can be obtained in closed form by
taking the inverse Laplace transforms of (5.15a), (5.15b) and (5.17) but are cumbersome
and are not reproduced here. Our interest is in the limit for small |k| of the initial-value
solution. After some algebra we obtain

1 —ikUt U
at) = 3 [ao —pPo+e <ao + Bo + 211—{ sgn(k)ty0> + O(lkl)} , (5.19q)
1 —ikUt U
B(t) = 5 [—ao +pBo+e (0!0 + Bo + 2lﬁ sgn(k)tyo) + 0(|k|)} ; (5.190)
—ikUt U
(1) =e [80 + i sgn(k)tyy + 0(|k|)} , (5.19¢)
where
y (@) = a() + B(1) — 26(), (5.19d)

and only the lowest term for small k has been retained in the complex exponential.

There is linear growth in all profiles if yp = ag + Bo — 280 7~ 0. The importance of y
as a physical quantity is revealed in the connection between the stability results for the
thin-layer equations and those for the broken-line profile.

5.4. Equivalence with the thin-layer equations

Comparison with (5.9a,b) and (5.10a,b) requires a mapping from (¥(¢), T(t), r (1) to
(x (1), B(1), 8(¢)) variables. With the identification p — x in the linear approximation, this
mapping can be obtained by first solving (3.11a) and (3.11c¢) for i | and hy 1 in terms of
T, I'. Expressing the broken-line perturbations in terms of y, and perturbations to 7" and
I" then gives

s H - .

a(t) = y(1) — E(T(’) + I'(1)), (5.20a)
H - N

B = y() + E(T([) —I'(n), (5.20D)

8(1) = y(1). (5.20¢)

These equations may be inverted to give

~ 2U ~ 2U
W) = =7 (@) = p@). I'()=-—7v®. (5.21a,b)

When the second equation of (5.11a,b) and both equations of (5.12a,b) are substituted
into (5.20a)—(5.20¢), agreement with (5.19a)—(5.19d) is obtained bearing in mind that
the initial values may be expressed in terms of «g, Bp and yp through (5.21a,b). Hence
the long-wavelength linear stability of the thin-layer equations agrees with that of the
broken-line profile.
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The connections in (5.21a,b) reveal that y is proportional to the local vortex sheet
strength. The choice yy = 0 requires the initial perturbations to contain no local vortex
sheet strength. This requirement is not as restrictive as may seem. For example, the
following two examples satisfy the constraint:

H H
yo = €sinkx, y; = ) + esin(kx), y2 = 5 + € sin(kx) (5.22a—c)

gives a sinusoidal perturbation to the layer, while
H H
yvo=0, y = -3~ esin(kx), yr = 3 ~+ € sin(kx) (5.23a—c)

describes a bulge in the layer.

6. Discussion and conclusion

Equations (4.16a)—(4.16d), or the equivalent version (4.19), are the principal results of
this study. They form a closed, nonlinear set of initial-value evolution equations for the
motion for a long-wavelength approximation of a thin double vorticity layer. They have
been obtained from a thin-layer expansion, where the layer thicknesses are smooth and
vary slowly, and are small compared with the local curvature of the centre curve. They are
derived from the full contour-dynamics equations describing the nonlinear three-contour
evolution. Specifically, the thin-layer equations describe the motion of the centre curve
together with the evolution of the sum and difference of the layer thickness as measured
along the normal to the centre curve.

Derivation of (4.16a)—(4.16d) requires careful asymptotic expansions for certain
integrals as described in the appendices. The final thin-layer equations obey the
conservation relations appropriate for the full nonlinear system. For the special case where
the vorticity in each of the two component layers is equal with U, = —U; = U and
H1 = Hy = H/2 the double layer becomes a single layer where our evolution equations
agree with the single-layer, long-wavelength equations of Baker & Shelley (1990).

A detailed linearized stability analysis has been developed for the thin-layer equations.
In the general case U; # U, this shows classical Kelvin—-Helmholtz instability with
unbounded growth rate in the short-wave limit k — oco. Because of the linearly ill-posed
nature of the instability, it is likely that curvature singularities will form in finite time
as occurs for the case of the standard vortex sheet. However, the thin-layer equations
are different and it will be interesting to determine whether the nature of the singularity
is the same. Attempts at numerical solutions of (4.16a)—(4.16d) are likely to encounter
difficulties with the growth of round-off errors unless some filtering techniques are
introduced.

One motivation for the present work is to develop a tractable nonlinear model for
describing thin-body wake dynamics. This corresponds to the circulation-free choice
Uy = Uy = U. Our linear stability analysis for this flow shows a double pole in the Laplace
transform plane generally giving linear growth where the growth rate depends only on the
choice of initial conditions and is independent of wavenumber. It occurs when there is local
variation in the vortex sheet strength initially; it is not yet clear what the consequences are
of this growth in the full nonlinear regime. When the perturbations contain no initial local
vortex sheet strength, and there are many such interesting examples, there is no growth
and the thin layer persists indefinitely. Obviously nonlinear effects may influence this
conjecture.
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The stability properties of the thin-layer equations agree with the stability behaviour
of the initial-value problem for the full broken-line profile in the long-wavelength
limit £k — 0. This is important because it shows that the thin-layer equations capture
the small-disturbance, long-wavelength behaviour of the full profile. Owing to the
non-normality of the linear operator, a normal mode analysis does not capture the
consequences of the s-plane double pole that produces leading-order, long-wavelength,
temporal linear growth, independent of &, a result that appears to have been missed in
previous work.

This temporal linear growth behaviour suggests interesting properties of the behaviour
of the fully nonlinear system (4.16a)—(4.16d) when U; = U,. First, these may be quite
different from both the single-layer case (Baker & Shelley 1990) and the present
double-layer configuration with U; # U,, owing to the complete absence, in the linear
theory with U; = Ua, of short-wavelength instabilities of Kelvin—Helmholtz type with
unbounded growth rate as k — 0. Hence we might reasonably expect tractable and
well-behaved numerical solutions of the nonlinear equations. This is different from
previous contour dynamics simulations (Pozrikidis & Higdon 1987), which did not reach
the thin-layer regime and did not show a range in possible behaviours associated with
different initial conditions. Reaching the thin limit poses a computational challenge for
contour dynamics approaches, whereas our model for the thin layer would allow the study
of the response to various initial conditions. Second, the linearized linear growth in time
may indicate the presence of translation-invariant structures and, more generally, of a rich
wake-like nonlinear behaviour of the finite-amplitude initial-value problem to be explored.
These features indicate that numerical investigation of the nonlinear system is merited.

An analogy might be the Richtmyer—Meshkov instability where a shock wave impacts
a perturbed interface separating two fluids of different densities (see the review of
Brouillette (2002)). The linear initial-value problem also shows time-wise linear growth
while numerical solutions of nonlinear models show that this is followed by complex
interface evolution. A third possibility is the existence of non-trivial, nonlinear solutions
that bifurcate from the equilibrium state. A further question is whether the double
layer develops singularities even if it initially satisfies the long-wave ansatz. These are
interesting topics for future research.
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Appendix A. Vortex dipole distributions on a sheet in two dimensions

We discuss the stream function i produced by a vortex-dipole distribution on a curve z(q)
with marker variable g. We follow the convention of Milne-Thomson (1968, p. 361) that
the orientation of the vortex dipole is defined by the vector connecting the negative to the
positive vortex element, giving

V= —/[Dl(q)t(q) + Da(g)n(9)] - V4G (x — x(q)) ds, (AL)

where ¢ and n are tangential and normal unit vectors on z(g) in the positive sense and to its
left, respectively. The corresponding vortex-dipole components are, in complex notation,
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D1(g) and D7 (q), respectively. Taking

1
Glx = x(q) = =~ Inl(x - (@) + (y — y(@)*, (A2)

we find
I (x—=x(g)xg + (y —y(@)yq
21sg (x —x(9)? + (y — y(@))?
s { “q } . (A3)

- 2nsg |z —2z2(q)

t(q) - VoG(x —x(q) =

So the stream function corresponding to D1(g) is

1/f———/Dl(q)‘ { 2 )} q. (A4)
Now introduce the complex velocity potential @ = ¢ + 1. Since R{f (2)} = I{if (2)},

o =5 [ D10~ da (A5)
and the complex velocity w = u + iv becomes
Wi =— = ——/ 1(61) (q))2 dg. (A6)
The result may also be written as
wi=-- [ Dt ( ) dq, (A7)
2mi dg \z—z(q)

and an integration by parts is obvious.
Now consider the vortex-dipole direction to be along the normal

= / Da(g)n(q) - V,Glx — x(q)) ds. (A8)
Since
—(x = x(q@)yg + O — y(@)xy
) VGl = X@) = e @) T (- (@)
1 . izq
B quﬁ {Z — 2(q) } ’ A9
we find
1 izq
Y= —z—ng(q)ﬂi{ } dqg, (A10)
E1 z—2(q)
and following the steps in (AS),
qb—i/D() g (A11)
2_275 zqz—z(q) q-

This is the complex potential for a distribution of dipoles that are everywhere normal to
2q).
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Taking the limit as z — z(p),

1 Zq iDy(p)
(e =—P (D d , Al2
20 = 32 [ Dre) a2 (A12)

where the positive sign corresponds to the limit from below the curve and the negative
sign to that from above. The important point is that the stream function ¥ = J(®2) jumps
in value across the surface and since the arclength derivative of the stream function gives
the normal velocity, it too will jump in value, violating the kinematic condition.

For a general vortex-dipole distribution,

1

D = T/(DI(C]) +iD2(q)) “ dq, (A13)
T z—z(q)

with the complex velocity
f=——— | (D +1iD —_—
w /( 1(g) +1i 2(61))( (q))2 dg
1
5 —(Dl(CI) +i 2(61)) dg. (Al4)

= 2mi dg ( )

The derivative of D> gives an imaginary vortex sheet strength. The consequence for the
velocity at the interface may be assessed by taking the limit as z — z(p):

1 d
w(p) = ?P/ —(D1(q) +1D2(g)) dg

1
z2(p) —z2(q)

1
F z—d—(Dl(P) +iD2(p)). (A15)

The velocity above and below the interface (minus and plus signs, respectively) is
Zp 1
—wh = :F——(D1(p) +1iD2(p)), (Al6)
Sp 2s, dp

showing the jump explicitly. Since R{z,w* /s, } is the tangential component of the velocity,
the contribution of the derivative of D is just a standard vortex sheet. On the other hand,
the jump in the normal velocity is given by J{z,w"/s,} which depends on the derivative
of Dy. Hence if D1(p) + iD>( p) is constant on the curve, it follows from (A14) that w™* is
everywhere zero in the whole plane. This is the trivial case.

Appendix B. Asymptotic expansions for integrals

To obtain asymptotic expansions for the complex velocities at the boundaries, integrals of
the following form must be expanded (see (3.10)):

1 24(q) + Dy(p, q)
dg, Bl
1= /M( )z(p)—z(q)—D(p, 9! (BD

where w(p, q) and D(p, q) have expansions in the mean layer thickness, H, of the
following form:

1w(p, @) = no(p, q) + w1 (p, PH + p2(p, QH* + OH?), (B2)
D(p, q) = Di(p, @)H + Da(p, g H*> + O(H?). (B3)
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The form of (B1) allows the interpretation of an integration along the complex contour
2(g) + D(p, q) and that the limit of vanishing H is well defined and given by

Io(p) = jEuo(g,p) n 2L mo(p, 4)z4(q) dg. (B4)
miJ  z(p) —z2(q)
where the positive or negative sign must be used when D shifts the contour above or below
the field point z( p), respectively. Note that D shifts the contour either up or down for all
p, depending upon which integral is being performed.
Since the integral in (B1) actually defines an analytic function in each region away from
the contour z(q) + D(p, g), I( p) may be expanded in a Taylor series:

I(p) = Io(p) + [, (p)H + L(p)H* + O(H?), (B5)
where
, dir
JUi(p) = 1-111210 @(p). (B6)

The derivatives may be determined recursively. Assume the form

er 1 [
W(‘D) = ﬁ /ﬁ(l?a q)

24(q) + Dy(p, q)
z2(p) —z(q@) — D(p, q)

dg, (B7)

then its derivative is given by

d;+11( )_L/i ) 24(q) + Dg(p. q)
dirt T = omi | am' " P o(p) — 2(g) — D(p. )

1o d [ z4(q) +Dy(p. q) ] BS
t o /ff(p’Q)dH |:z(p)—Z(q)—D(P,CI) (B5)
Since
d [ z(q@) +Dy(p, q) ]:ﬁ[d_D } B9
dH |:z(p)—z(q)—D(P,61) a1 -ppal

an integration by parts may be performed on the second integral, leading to the recursive
formula for f}:

df
dH

fap.@)  dD
—(p, q). B10
2@+ Dyp gy ar " ? G10)

Clearly, fo(p, q) = u(p, ). The integrals /;( p) may be determined from

. 1 L [ i, 9)z(@)
i(p) = £-f; — L Bl
JMi(p) = £5fi(p.p) + 5~ 2(p) — 20) dg, (B11)

fir1(p.g) = —=(p,q) —

where
fi(p.@) = Jim £i(p, ). (B12)
For the purposes of this paper, only the first few terms are needed. To lowest order,
fop. @) = po(p. 9. (B13)
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Application of the recursive formula (B10) gives

mq(p, @) dD
724(q) + Dy(p, q) dH

Nlp,q) = —(p q) — —(p,q), (B14)

and so
ﬂ@ﬂ%ﬂan—ﬂM&QQWJ) (B15)
Z4(q)

Repeating the process:

d*u 1 9 1g(p. @) ( y
P9 = Gp(r. 0+ @@+mwm&4@@+qu) (P

- ! ( 2 gy 423 92 Q (B16)

2@ + Dy(p. gy P Vg P VT g Vg4

and
2MO,q(Pa QD2(p, q) + 1,4(p, 9)D1(p, q)
Zq(Q)

I d | pog(p.9)Di(p.q)
%(q) dg 2(9) '

H(p, @) =2ua(p, q) —

B17)

Appendix C. Asymptotic expansions for velocities at interfaces

Each velocity contains a combination of three integrals (2.14). Each integral is related to
(3.10) and has the form (B1). We treat the expansions for each velocity separately.

C.1. Expansion of wg

There are three integrals that require expansion. They contain common parts that will
cancel when they are combined to compose wy:

wi= 2= oy = s+ (- + (@)

U+U, U U, U Ui Uz I

2 H, H> H 1 H; 0.0

Adopt the approach followed for the single layer (Baker & Shelley 1990) by grouping
the integrals for Uy /H and Uy /H>.

(1) Integrals associated with U;/H;. Consider Iy o and write it in the form appropriate
for the integrals in Appendix B but identify the common parts with /o, ;. From the
results in Appendix B, one obtains f; and f> to insert in the integrals oo and I ;.
Before substituting, perform the subtraction /o o — /o1 and let p be the difference of
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S for Ipo and Iy ;. We obtain

*

1 Z
oM (p,q) = ha (C2)
q

and

* ) P *
P (p ) = 2h2@ 2 — Z1(q) — 2 ()] (hl,lm)z—")
s aq s,

9 Zq q

Z* 21
— 2ihy 1 (q) LS {—"}
Sq

2q

h 0 1 0
4 oL@ (h11() )+—— Ri@ist) . @
Sq Bq Sq anq q

The principal-value correction has a negative sign. Thus

o M
(p,p) 1 (p, 9z
10,0—10,1:|: P '/m p.q qdqi|H

2 2ni ) z(p) —z(q)
(1) )
P (p.p) L/ Py (P, @zg >
+ |: 4 + 4ni J z(p) — z(q) dq | H°. 4

(i1) The next integrals to consider are those associated with Uy /H», i.e. Iy o — lp.2. By
following the same steps, we arrive at

Z
PP (p,q) = —ho1 2 (C5)
and

/Oéz)(P, q) = —2h2,2(q)z—q + —lz21(g) —21(p)]— (hz,l(CI)Z—q)
s aq s

9 Zq q

Zy [ 214
+ 2ihy1(9) =S {—}

Sq 2q
h 0 1 0
4 2i2 1(@) (hz 1(@)— ) hs. 1( )yqzq ) (C6)
Sq 8q Sq Zq 8q q

The principal-value correction has a positive sign. Thus

2 @)
= [2D L [0y
loo—1o2 = |: 2 + 27i ) z(p) —z2(q) da | H
@) 2
P L)z
+ |: 4 + 4mi / 2(p) — z(q) d i| 7
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(iii) We are now ready to state the results for the expansion of wy:

ur+U; U U>
A= 2+ — (g0 — I — oo —1p2). C8
wo 5 + H (lo,0 — 1o,1) + Hz( 0,0 —1o,2) (C3)

Introduce the quantities T1(p), T>(p), I'1(p) and I>(p) defined in (3.11). Then the
lowest non-zero contribution is (3.12a). The next order contribution is

1 0)

~ 0) D %
wi =P — | —=———dg, (C9)
P02 T ami ) adp) - 2e)
where
To(p)z, .T 2 z
PO = _ 2D I(P)Sizl_,p}_p
2 s 2 p ) Sp
JUihi 1H 0 X .Uxhy1H 0 X
_Jvmat 9 ha?) +i 21 0 o2
2Hs, Op Sp 2Hys, Op Sp
UH 0 U,H 9
- D (g o) 22 12, (C10)
4H1zp ap sp 4H>z, ap slz7

* d g 1
@ = B N L) - 2ol g (o)
q q

Sq q q
Uihy1H 0 X Uxho 1H 0 X
PPCILE _<h1’1_p>+1 2o 1 _(hz’l_p>
Hisqy 9q Sq Hysqy dq Sq
UH 9 Vg2 UH 0 Y4z,
+———(n, 5 )+ — (3,22, (C11)
2H\z, 0q vy 2H>z, 0q vy

C.2. Expansion of wi
(i) Consider first the integrals associated with U;/H7, namely /1,0 — I1,1. We find

*
pV) =hy L (C12a)
q
(1)—2//112 —21h11— {Zl—q}—i-zl— <h1’1&>
Sq Sq 2q sq 9q Sq
2 (. . . z 0 z
- = [m@ —21(p) +1h1,1<p>—”] — (hl,l—")
Zq sp | 0q Sq
19
+——(n3, 2. (C12b)
zgdg \' " S5

Since the contour for /; ¢ is above, the results may be stated as

1 1
L M+L/Md H
1,0 — 11,1 2 2ni ) z(p) —z(q) I

1) (1)
0y (p,p) L/pz (P, Dzq ’ !
* [ r tam) w0 YT (9
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(i1) Next, consider the integrals associated with U, /H>. We obtain
k

Z
PP (p,q) = ~h1@) (C14)
q

and

*

@ g 2
Py (P q) = —2h2,2(f1)s— [21(4) —21(p) +im 1 (p)— :| ( 2 1(¢])—>

9 Zq dq
. 7 z h 8
+21h2,1(61)—qs{ 1q}-|-2 21(9) (hzl( )
Sq 2q Sq
I d YqZq
o9 . Cl15
2 94 ( 21 @)= ) (C15)

Since the contour is also above, we have

2 (2)
o1 (p,p) 1 0,7 (p, @)z
,1,0_,1,2:[1_M+_./wdq Y

2 2ni ) z(p) —z(q)
(2) 2)
1
L en +—./—(p Va4 1 (C16)
4 4ni ) z2(p) —z2(q)
(iii)) By combining the results,
U+ Uy U U,
e+ — (1 o—1 — (10 —112), C17
wi 5 + H1( 1,0 —111)+ Hz( 1,0 —112) (C17)
we obtain (3.13a). The next order contribution is
(1
1 T
wi | =P+ /&dq, (C18)
2ni ) z(p) —z2(q)

where

p _ DT NG (hp) (g
2 2 s 2 s |z 2sp Op Sp

Uthi 1 0 Ushy1 0
+i L] hy 1)2 H+1 2721 2 hzl)2 H
2Hs), 8p 2H>sp, Op TS

U 9 Z U, 9 Z
w2 ey (B2 (1)
4H1z, dp vy 4H5z, dp vy
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and

1 21,
V= (q) - m(q)—s {—‘1}
Sq Sq Zq

1 0 p
- - [mq) —3(p) +ih1,1(p)z—p} Z (n(q)z—‘f)
Z sp | 0g S,

q P q
Uihy1 0 Ushy 0 X,

+1 ! 1’1—(/11’1&)H+i 2 2,1_(]12’1_&1)[_1
His; dq Sq Hjs, 0q Sq

U9 z U, 9 z
() m e (3,25 (C20)
2H]Zq aq ’ Sq 2H2Zq aq ’ Sq

C.3. Expansion of wy

(i) Consider the integrals associated with U;/H>, namely I» o — I 2. Calculate the
difference in the integrals:

*

Z
i) =—hy L, (C21a)
Sq
2 hay 0
ps" = —2h 2—+21h21 {Zl—’q}+2i£— <h2,1ﬁ>
Sq sq g Sq 9q Sq
2 1. R . z 0 z
+ = [m(q) —Z1(p) — 1h2,1<p>—”} — (hz,l—‘f)
2y sp | 9q Sq
19
+—— (3,252 ). (C21b)
Zq ag \'* S5

Since the contour for /5 ¢ is below, the results may be stated as

(1) (1)
(p,p) 1 (p, 9z
by [_M+_./qu}q

2 2ni ) z(p) — z2(q)
(D (€Y
1 ,
T T p)+—./—p2 (P D% 4 | 1. (€22)
4 dri ) z(p) —z2q)
(i1) Next, consider the integrals associated with U1 /H. We obtain

Z*
pi” (@) = ha (@) (C23)

q

and
270, R , 2] 0 7
P2 (poq) = 2h2(9) L — = [m(q) —21(p) — 1h2,1<p>—”] — (h1,1<q)—")
Sq  Zg sp ] g Sq
: 7z, (% hi,1(q) 0
—21h1,1<q)—%{ “} + 21 2y (2
Sqg | 2g Sq Bq Sq
10 VgZ.
+ —— 11( ) —— qq (C24)
74 0q q
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Since the contour is also below, we have

2) )
9 1 b
ARG /wd}q

ho—hi=|- 27t
2,0 =121 [ 2 2ni ) z2(p) —z(q)

() 2)
py (p,p) 1 / Py (P, @2y 2
_n AR, - B2 BT g | g2 C25
* [ 4 + 4ni J z(p) —z(q) 1 (€23

(iii)) By combining the results,

U+ U
2

we obtain (3.14a). The next order contribution is

>k

U Uy
— (Lo —T —(ho—1»), C26
Wy + H1( 20—1D1)+ Hz( 2,0 —12) (C26)

2
« _po | 5 @)z

= — —=—"—dg, Cc27
2T 00 ) wp) -2 ! (€27

where

D(p s  Ti(p [z h g %
Pg):_ 2(P)_p+i 1(P)_ps{zl_,p}_i 2,1(P)_(1-.1(p)_P)
2 Sp 2 Sp Zp 2Sp ap Sp

Uihy1 0 Ushy1 0
_ Y 0 h“@ Y21 d hmﬁ o
2Hs, dp TS 2H>s), dp TS

U 0 VpZ U, 0 VpZ,
— — | | H- — (m, | H (C28)
4H\z, op S5 4H>z, op S5

and

) z [z
o = D@L — M@y {—"}
Sq Sq 2q

1 9 p
_ L [zl<q) —i(p) — ihz,l(p)z—”} < (n@z—")
sp] g Sq

2q

Uihi1 0 Uihy1 0
+1 ! 1’1—<h1,1ﬁ>H+i ! 2’1—<h2,1ﬁ)H
Hysq 0q Sq Hysq 0q Sq

Uy 9 Z U, 0 z
w2 ) m e 2 (1,2 e (29
2H\z4 Op vosg 2H»z4 0q vosg
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