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The mechanical properties of soft materials can be probed on small length scales by microrheology.
A common approach tracks fluctuations of micrometer-sized beads embedded in the medium to be
characterized. This approach yields results that depend on probe size when the medium has structure on
comparable length scales. Here, we introduce filament-based microrheology using high-aspect-ratio
semiflexible filaments as probes. Such quasi-1D probes are much less invasive than beads due to their
small cross sections. Moreover, by imaging transverse bending modes, we simultaneously determine the
micromechanical response of the medium on multiple length scales corresponding to the mode wave-
lengths. We use semiflexible single-walled carbon nanotubes as probes that can be accurately and rapidly
imaged based on their stable near-IR fluorescence. We find that the viscoelastic properties of sucrose,
polyethylene oxide, and hyaluronic acid solutions measured in this way are in good agreement with those
measured by conventional micro- and macrorheology.
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Soft materials such as polymer solutions display struc-
ture at many scales and exhibit relaxation times from ms to
> hrs. Conventional macroscopic rheology is mostly
appropriate for time scales ≳0.1 s [1], and for samples
with shear elastic moduli ≳1 Pa [2]. Various microrheol-
ogy (MR) techniques have been developed to probe soft
materials in the μs to s range, using μm-sized particles
[3–7]. Small probes also allow one to study small samples
in confined geometries. MR is sensitive to length scales
≳ probe size [8–10]. While simple continuum mechanics
might not always be appropriate to interpret data, MR can
be used to explicitly probe local structure in complex
media. Correlated fluctuations of pairs of particles can be
monitored to probe response on varying length scales
(particle distance) [5,11,12]. Probes can create artifacts,
and particular samples might not be accessible to the
probes. This holds for biological cells or tissues, where
beads are even actively expelled from, e.g., the cell nucleus,
the mitotic spindle, or the actin cortex [13–16].

Here, we introduce the use of slender filaments, semi-
flexible polymers, as local stealth probes. Filaments
embedded in a viscoelastic network, such as microtubules
in the cell cytoskeleton [17,18], undulate with the motions of
the network, but their bending stiffness also affects network
fluctuations. While the filament length is relevant for the
hydrodynamic interaction with the embedding medium, the
filament diameter determines local perturbations due to

excluded volume. We use minimally invasive single-walled
carbon nanotubes (SWNTs) with extreme aspect ratios:
diameters of ∼1 nm and lengths up to tens of μm [Fig. 1(a)].
SWNTs have precisely known chemical structures and
bending stiffnesses [19,20]. Semiconducting SWNTs exhibit
photostable near-IR fluorescence, permitting long-time,
high-resolution tracking of their positions and shapes [20].
We decompose shapes into dynamic bending eigenmodes
[Fig. 1(b)]. Each mode is sensitive to the medium properties
on the scale of its wavelength, similar to membranes
[21–25]. By resolving bending modes with wavelengths
up to tens of μm, we simultaneously measure medium
response on multiple length scales using a single filament.
Filament microrheology (FMR) offers advantages over
conventional MR: (1) multiple length scales can be probed
simultaneously; (2) the mechanical sensitivity can be varied
by varying filament stiffness; and (3) the method can even
use endogenous cytoskeletal biopolymers, such as actin
filaments and microtubules.
We parameterize the shape of a weakly undulating

filament at time t by the transverse deflection uðs; tÞ along
its arc length s. We describe transverse filament motion by
a generalized Langevin equation describing the net force
per unit length on the chain at position s [26,27]:

0 ¼ −κ
∂4

∂s4 uðs; tÞ −
Z

t

−∞
dt0αðt − t0Þuðs; t0Þ þ ξðs; tÞ: ð1Þ
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The first term accounts for the elastic restoring force [27],
with bending rigidity κ. The second term is the viscoelastic
drag, where the resistance per unit length is given by the
memory function αðtÞ, whose Fourier transform αðωÞ
is proportional to the complex shear modulus of the
medium, GðωÞ [28,29]. For the transverse displacement
of a rigid rod of length L and diameter d in a viscous
liquid, αðωÞ ≃ −4πiωη= lnðAL=dÞ, where A ≃ 2.3, and η is
the viscosity [30–33]. The Brownian force ξðs; tÞ
has a zero mean hξðs; tÞi ¼ 0 and a power spectrum
satisfying hξðs;ωÞξðs0;ωÞi¼ð2kBT=ωÞδðs−s0ÞIm½αðωÞ�,
with Boltzmann’s constant kB and temperature T, as
required by the fluctuation dissipation theorem (FDT).
We expand uðs; tÞ into orthogonal dynamic eigenmodes

yqðsÞ as uðs; tÞ ¼ P
q aqðtÞyqðsÞ with wave number q ¼

αk=L ¼ ðkþ 1
2
Þπ=L for free-end boundary conditions [26]

(see Supplemental Material [34]). The projection of Eq. (1)
onto a particular spatial mode yqðsÞ gives the equation
of motion 0 ¼ −

R
t
−∞ dt0αðt − t0Þaqðt0Þ − κq4aqðtÞ þ ξqðtÞ.

Assuming linear response to the Fourier component of the
force fq, the mode amplitude will be aqðωÞ ¼ χqðωÞfqðωÞ,
with the response function χqðωÞ ¼ (κq4 þ αðωÞ)−1.
The FDT relates the amplitude autocorrelation function
CqðtÞ ¼ haqðtÞaqð0Þi of each mode k to the corresponding
time-dependent response function χqðtÞ for t > 0: [38,39]

kBTχqðtÞ ¼ −
d
dt

haqðtÞaqð0Þi ¼
1

2

d
dt

MqðtÞ; ð2Þ

where the mean-squared amplitude difference (MSAD) is
defined as MqðtÞ¼h½aqðtÞ−aqð0Þ�2i¼h½ΔaqðtÞ�2i. Fourier
transformation gives the frequency-dependent response
function χqðωÞ ¼ χ0qðωÞ þ iχ00qðωÞ ¼

R∞
0 dtχqðtÞeiωt. We

applied the five-point stencil method to accurately calculate
the numerical derivative and Simpson’s rule for the
subsequent integral [39]. The response function χqðωÞ is
thus calculated from direct integral transforms of the
MSAD using the FDT. Alternatively, χqðωÞ and GðωÞ
can be derived from the bending fluctuations using a
Kramers-Kronig integral (KK integral) [4] (Fig. S11). In
order to avoid bias, we do not use functional fitting [3] or
interpolation [40,41]. The complex functions αðωÞ and
GðωÞ can be evaluated from χqðωÞ via

χqðωÞ−1 − κq4 ¼ αðωÞ ≃ 4πGðωÞ= lnðALeff=dÞ; ð3Þ

where Leff ≃ L=ðkþ 1
2
Þ is the characteristic length of the

undulation [29]. For a SWNT diameter of ∼1 nm and Leff
of ∼3 μm, α ≃ 1.4GðωÞ.
We assume small undulations, i.e., slope jdu=dsj ≪ 1

and mode amplitudes jqaqj ≪ 1 (Fig. S3). Equation (3)
shows that for high q, the energy is dominated by bending
and becomes insensitive to the modulus of the surrounding
medium (Fig. S3). This limits the bending stiffness that can
be used to probe a specific material. Conversely, this also
permits to adapt the technique for diverse soft materials,
largely independent of the length scale probed. By contrast,
the mechanical sensitivity and the characteristic length
scale probed with particle-based MR is determined by just
one parameter, the particle size.
We tested our method on three materials: a viscoelastic

hyaluronic acid (HA) (Mw¼2−2.4MDa) solution, a purely
viscous sucrose solution, and a polyethylene oxide (PEO)
solution (Mv ∼ 8 MDa) as a well-established standard.
Surfactant-wrapped SWNTs were mixed into these solutions
and illuminated with a 561 nm laser (see Supplemental
Material [34]). This wavelength resonantly excited SWNTs
of (6,5) chirality and 0.78 nm diameter [20,42,43].

HA is an anionic glycosaminoglycan with nontrivial
viscoelasticity prevalent in the pericellular matrix of cells
[44]. Figure 2(a) shows bending mode dynamics of a
∼5 μm long SWNT in a 3 mg=ml HA solution. Mode
amplitudes fluctuated around 0 (intrinsically straight fila-
ments) and decreased for the higher modes as expected
for thermal modes. Figure 2(b) shows MSADs for modes 1
to 3. The bending fluctuations of SWNTs exceeded noise
for the first three modes (Fig. S2). At times < 1 s, all
MSADs exhibit a power law slope < 1, reflecting the
viscoelasticity of the system [Fig. 2(b)]. At long times,
MSADs reach a plateau because filament bending modulus
dominates over medium response. Note that this is also
observed in a purely viscous medium. MSADs of higher
modes reach the plateau earlier due to the higher bending
energy for a given amplitude. From equipartition, the total
variance of mode amplitude fluctuations haqð0Þ2i should be
inversely proportional to bending rigidity and scale with
wave number as [27,33] haqð0Þ2i ¼ kBT=κq4. This pre-
diction is plotted in the inset of Fig. 2(b), matching our data
using κ ¼ 1.26 × 10−25 Jm from Ref. [20] (this value used
for further analysis).
Thermal SWNT fluctuations and tracking results in a

4.5 mg=ml HA solution are shown in Fig. S6. It is
important to take into account that the higher modes of
shorter SWNTs are not suitable to measure G0ðωÞ because
κq4=k0 ≫ G0ðωÞ (Fig. S3). Since the low-frequency G0ðωÞ
was ∼0.1 Pa, we chose mode numbers that fulfill κq4=k0 ≲
0.1 Pa with q ¼ ðkþ 1=2Þπ=L to estimate G0ðωÞ.
Complex shear moduli calculated from different modes
agree as expected since HA response is not scale dependent

(a) (b) 1st

2nd

3rd

3 µm

FIG. 1. (a) A near-infrared fluorescence image of a SWNT in a
4.5 mg=ml hyaluronic acid solution. (b) The first three spatial
dynamic eigenmodes of an elastic beam with free ends.
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in the μm range. Filament and bead MR show good
agreement [Fig. 3(a), Fig. S7, and Fig. S8]. Gfil calculated
from the first bending mode and Gbead agree and scale with
concentration from 1 to 4.5 mg=ml (Fig. S8), confirming
that FMR sensitively captures the concentration depend-
ence of the viscoelasticity of HA solutions. At high
frequencies, Gbead extends beyond Gfil because of different
recording frame rates: 50 Hz for bead MR and 10=20 Hz
for FMR. To demonstrate consistency, real and imaginary
parts of Gbead were fitted by power laws, and both
components of Gfil derived from multiple bending modes
were normalized by the bead results (Fig. S10).
Complex shear moduli increase with increasing HA

concentration as expected [Fig. 3(a), Fig. S7, and
Fig. S8]. To analyze the frequency dependence at different
polymer concentrations, we fitted G00

bead with power laws
[Fig. 3(a), Fig. S7]. For 1 mg=ml HA the slope is close to 1,
reflecting purely viscous response. The slope decreases
with increasing HA concentration, reflecting increasing
viscoelastic response, consistent with previous studies [44].
We did not observe a plateau, even in the 4.5 mg=ml HA
solution, implying at most weak entanglement. This is
expected since the overlap concentration c� for the HAwe
used is ∼0.3 mg=ml. An elastic plateau is expected only at
around 10 mg=ml [44].

Figure 3(a) also shows data obtained from a single
19 μm long SWNT in the 4.5 mg=ml HA solution. We
could evaluate 8 modes. For modes 1–4, the recording time
was too short to allow full equilibration (see Supplemental
Material and Fig. S12 [34]).Gfil calculated frommodes 5–8
is consistent with Gbead. The effective length of mode 8
(Leff ¼ 2.2 μm) is 5.7 times shorter than that of mode 1
(Leff ¼ 12.7 μm), illustrating the unique possibility to
simultaneously measure medium response over a range
of length scales with a single filament.
We next quantitatively confirmed FMR in a 60 wt%

sucrose solution, a Newtonian fluid. We analyzed 24 movies
of 8 fluctuating SWNTs with lengths of 4.5–6 μm. Resulting
complex shear moduli are shown in Fig. S5. As expected for
a Newtonian fluid, the values of G00ðωÞ from both modes
collapse onto a single curve with a power-law slope of ∼1,
while G0ðωÞ from the first mode fluctuates around 0. G00ðωÞ
of this solution obtained by macroscopic rheology with
parallel-plate geometry agrees well (Fig. S5).
To further confirm FMR in a standard viscoelastic

material, we studied a semidilute solution of high-molecu-
lar-weight polyethylene oxide (PEO). We again chose the
appropriate mode numbers, such that κq4=k0 ≲ 0.1 Pa to
estimate G0ðωÞ. Results from filament bending dynamics
(Gfil) agree with those obtained from bead MR (Gbead) and
bulk rheology [Fig. 3(b)]. Note that bulk rheology may not
give reliable results for soft materials with moduli below
∼1 Pa (Fig. S9). Therefore, we here consider the compari-
son of our new FMR method with an established MR
method as most relevant.
FMR can also be used to characterize the fluctuating

filaments. Equation (3) shows that filament dynamics
depend on medium response and filament bending stiff-
ness. When bending stiffness is known, FMR can measure
medium response. Alternatively, we can obtain filament
stiffness if medium response is known. To demonstrate this,
we performed a global 2D fit of power spectral densities
(PSDs) hjaqðωÞj2i of mode amplitude time series from
several filaments. The PSD is the Fourier transform of the
MSAD. The scale-dependent PSDs plotted in Fig. 3(c)
can be described starting from the generalized Langevin
equation, Eq. (1). With the PSD of the Brownian force:
hξðs;ωÞξðs0;ωÞi ¼ ð2kBT=ωÞδðs − s0ÞIm½αðωÞ�, we find:
hjaqðωÞj2i ¼ ðkBT=ωÞIm½χqðωÞ� ¼ ðkBT=ωÞ½α00ðωÞ=jκq4þ
αðωÞj2� (4) with q ¼ ðkþ 1=2Þπ=L for mode number k.
We can thus globally fit all the scale-dependent PSDs
with a single 2D plane defined by Eq. (4), with just one
free parameter, κ, having fixed the memory function
αðωÞ ¼ k0GðωÞ with the power-law fitting results of
Gbead [Fig. 3(c)]. We used modes 1,2,3 of three SWNTs
with lengths of 9.15, 6.13, and 5.03 μm in 3 mg=ml HA to
obtain SWNT bending stiffness. At low frequencies,
PSDs level off for the higher q modes when the filament
bending modulus restricts thermal bending amplitudes.
Slices through the fitted plane at the respective q values

(a)

(b)

FIG. 2. (a) Amplitudes of modes 1 to 3 of a 5 μm SWNT in a
3 mg=ml HA solution. (b) MSADs for the same modes (5
recordings). Inset: variance of mode amplitudes plotted vs wave
number (18 recordings from five SWNTs in the same solution,
lengths 4.5 ∼ 8.5 μm) black (blue lines). Averages smoothed by
binning (red circles). Expected dependence haqð0Þ2i ¼ kBT=κq4

with κ ¼ 1.26 × 10−25 J · m [20] (black dashed line).
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can be compared with the data. From this fit, we find
κ ¼ ð7.09� 1.04Þ × 10−26 Jm, close to the reported value
κ ¼ 1.26 × 10−25 Jm [20].
Thermal bends of a filament in a polymer network can

relax either by following the relaxation of the surrounding
network or by reptation, i.e., anisotropic diffusion through
the network [45–50]. Reptation contributes to mode-
amplitude relaxation if it occurs rapidly enough to compete
with network dynamics [47,51]. We neglect reptation here
since in the viscous or weakly elastic solutions we probed,
medium relaxation was dominant. In more strongly
entangled polymer networks, reptation needs to be taken
into account or suppressed by crosslinking the probe
filament to the network. Shorter-wavelength modes should
be less affected by reptation artifacts than longer-
wavelength modes. In our data, moduli calculated from
different modes coincide, and the results also coincide with
those from conventional micro- and macrorheology, prov-
ing that reptation was indeed negligible here.
To quantify the stealth character of FMRwe can estimate

how local depletion and nonaffine deformations around
the probe [13–16], affect results. Probe geometry enters
through Eq. (3) in the relation αðωÞ ¼ k0GðωÞ with, k0 ≈
4π= lnðALeff=dÞ for a filament. For a SWNT with 0.78 nm
diameter and 10 μm length, the error of the shape factor k0
would be less than 8% even if the effective diameter of the
filament were to double due to local nonaffine deforma-
tions. Because k0 is inversely proportional to the logarithm
of its aspect ratio, FMR is thus quite insensitive to local
perturbations due to the filament cross section.
In conclusion, we have introduced and tested filament

microrheology (FMR), evaluating the bending dynamics of
embedded filaments as a new method to measure shear
elastic moduli in soft viscoelastic media. Slender filaments
with two dimensions on the nm scale and lengths on the μm
scale cause minimal local perturbations, easily penetrate
dense media such as cell-internal structures or the nucleus,
while still coupling to mesoscopic medium dynamics on
the μm scale. Furthermore, filaments report complex shear
moduli at multiple length scales simultaneously. FMR is
thus uniquely useful to measure the scale-dependent
viscoelasticity of soft materials with hierarchical structures,
for example the cytoskeleton of living cells. In our samples
we found good agreement with conventional MR over
almost 2 orders of magnitude in frequency and with
standard rheology. We expect that other semiflexible
filaments such as actin filaments or microtubules can be
used as probe filaments in biological systems, which would
completely avoid the introduction of foreign objects into
cells. Our approach also suggests possible extensions using
the shape fluctuations of other extended objects such as
membranes [21–25] to quantify the rheological properties
of the surrounding medium.
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FIG. 3. (a) Viscoelasticity of HA solutions measured from the
bending dynamics of SWNTs. HA concentrations given in
graphs. Upper row: 18 recordings from 5 SWNTs, lengths
4.5 ∼ 8.5 μm. Middle row: 14 recordings from 8 SWNTs, lengths
4.5 ∼ 7.5 μm. Bottom row: 1 SWNT, length 19 μm. Shear elastic
moduli of each HA solution were also measured by conventional
bead MR (black crosses). Power-law fits of G00

bead MR are shown
as solid light blue lines. (b) Viscoelasticity of a 5 mg=ml 8 MDa
PEO solution measured from the bending dynamics of SWNTs
(20 recordings from three SWNTs averaged). (c) Global 2D fit of
PSDs as a function of wave number q and frequency fð¼ ω=2πÞ
(10 recordings from three SWNTs with lengths of 9.15, 6.13, and
5.03 μm). Three modes (1 to 3) of each SWNTare plotted. The fit
with Eq. (4) is shown as light-blue mesh plane. Black solid lines
represent slices of the fitted plane at q ¼ 0.515, 0.769, 0.858,
0.937, 1.20, 1.28, 1.56, 1.79, and 2.19 μm−1, which correspond
to the wave numbers of three modes (1 to 3) of SWNTs with
lengths of 9.15, 6.13, and 5.03 μm, respectively.
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