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ABSTRACT: The reactions of boratabenzene and borataphenanthrene anions with group 11 Ph;PMCI reagents furnished 7>
coordination complexes, with the exception of the copper boratabenzene species that adopted an ° mode. The binding of arene
ligands to copper in an #° manner is rare, and altering the ancillary ligand on copper to an N-heterocyclic carbene switched the
binding of the boratabenzene to 77 indicating that such ligands are capable of vacating coordination sites. The 7> coordination
complexes bind side-on, akin to olefins, via a borataalkene unit, although with the carbon atom much more proximal to the metal

center than boron.

B INTRODUCTION

The bonding of unsaturated organic species to transition
metals has been known since the pioneering synthesis of
[PtCl;(C,H,)]™ in 1831 [A (Figure 1)]."* The advent of
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Figure 1. Hallmark organometallic compounds featuring organic 7-
ligands, boratabenzene, and the first boratabenzene metal complex.

metallocene chemistry is marked by the synthesis of ferrocene
(B) in 1951,”"7 and since these foundational discoveries, the
bonding of unsaturated hydrocarbons with transition metals
has been extensively studied.””"’ Substituting a carbon atom
for boron in benzene results in a six-membered anionic species,
boratabenzene (C), that contains six z-electrons and can be
considered a boron-containing hybrid of benzene and
cyclopentadienide.'* Cobalt boratabenzene complex D was
disclosed by Herberich in 1970,"> and these anionic BCj
heteroarenes have been investigated as ligands for transition
metals with complexes having diverse applications, including
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single-ion magnets as well as olefin polymerization and
hydrogenation catalysts.'®™*

Transition metal-bound monocyclic boratabenzene com-
plexes adopt 7°-BC; coordination™ " except in rare examples
in which z-donating substituents are bound to boron, resulting
in 7% or ° complexes.”">>~** Despite the vast array of known
metal boratabenzene complexes, the coordination of mono-
cyclic boratabenzenes to group 11 metals has remained
unexplored. A polycyclic variant of boratabenzene, 9-
borataphenanthrene (1), was recently demonstrated to
coordinate to Au(PPh;) in an #* manner, the first example
of an 7* binding mode for a boratabenzene-containing species
[1-AuPPh, (Figure 2)].* The central ring of the borataphe-
nanthrene anion is considerably less aromatic than borata-
benzene and has even been labeled as nonaromatic with a
distinct borataalkene moiety in an ensuing computational
study.*

In comparison to that in olefins, the 7-bond in borataalkenes
is highly polarized,""** and accordingly, the Au—C bond
distance in 1-AuPPh; is much shorter than the Au—B bond,
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Figure 2. ”-Borataphenanthrene gold complex 1-AuPPh, and group
11 borataalkene complexes reported by Crimmin and co-workers
(TMS, trimethylsilyl; Dipp, 2,6-diisopropylphenyl).

and the P—Au—C bond angle approaches linearity.”” This
species can be viewed as a relative to the a-boryl carbanions of
copper and silver that have been labeled as key intermediates
in coupling reactions.”” ®" In relation to 1-AuPPh;, Crimmin
and co-workers reported copper, silver, and gold complexes (E-
MIPr)®*~%* with a borataalkene not contained in an arene (E),
and in this series, the borataalkene carbon was more distal
from the metal in all three examples, which is the inverse of the
borataphenanthrene gold system 1-AuPPh;. In fact, the
Crimmin species was labeled as 7'-boron bound to the metal
for the gold, silver, and copper complexes, which contrasts the
structural assignment to copper and silver a-boryl carbanions.
Given the relevance of the copper and silver species to organic
synthesis and the differences in gold complexes 1-AuPPh; and
E-AulPr, we were inspired to pursue the other borataphenan-
threne species and to examine the chemistry of the monocyclic
system, boratabenzene, with coinage metals.

B RESULTS AND DISCUSSION

While several synthetic routes to boratabenzene exist,
we envisioned a ring expansion from an antiaromatic borole
with a carbene source featuring a proton on the carbon atom
and a subsequent deprotonation strategy could be a facile route
for accessing boratabenzene species. The carbene insertion of
diazomethane reagents into unsaturated BC, rings has been
effectlve in preparing six-membered systems with a proton on
an sp> carbon adjacent to boron.”>”® The five aryl groups in
the ring expansion product from pentaphenylborole would
likely be problematic in metal complexation due to steric bulk
and the potential of the phenyl substituents to interact with the
metal. Accordingly, we selected a borole bearing methyl groups
on the carbon atoms in the ring, 1-phenyl-2,3,4,5-tetrame-
thylborole, which exists as a dimer at room temperature but
upon heatmg sufﬁc1ently “‘cracks” and can undergo insertion
chemistry.”” =" The carbene insertion with trimethylsilyldiazo-
methane was complete after 16 h at 100 °C as confirmed by in
situ ''B NMR spectroscopy via the emergence of a singlet at
57.5 ppm in the spectrum and the disappearance of the peaks

16,18,65—74

for the dimer at 67.5 and —6.6 ppm (Scheme 1). In the 'H
NMR spectrum, a singlet at 3.77 ppm was assigned to the
allylic C—H proton for the six-membered boracycle Intl.
Deprotonation with KHMDS furnished the corresponding
boratabenzene with a diagnostic ''B resonance at 37.4 ppm,
and the "H NMR spectrum lacked the aliphatic C—H proton at
3.77 ppm. The identity was confirmed as the potassium
boratabenzene species 2-K by a single-crystal X-ray diffraction
study that featured a 1,4-dioxane solvate coordinating to
potassium (Figure 3).

Figure 3. Solid-state structure of 2-K with 1,4-dioxane coordinated to
potassium. Only the asymmetric unit is shown. Hydrogen atoms have
been omitted for the sake of clarity, and thermal ellipsoids are drawn
at the 50% probability level. Selected bond distances (angstroms) and
angles (degrees) are listed in Table 1.

The reactions of 2-K with [(PhyP)CuCl],, [(Ph,P)AgCl],,
and (PhyP)AuCl reagents resulted in *'P{'H} NMR signals at
18.2 ppm, 20.9 and 17.5 ppm ('”’Ag and '*Ag isotopomers),
and 36.2 ppm, respectively, as well as broad B NMR
resonances at 31.0, 32.4, and 33.4 ppm, respectively (Scheme
2). Single-crystal X-ray diffraction studies revealed complex-
ation of the B=C bond to silver(I) and gold(I) in an 7>
coordination mode (2-AgPPh; and 2-AuPPh,, Figure 4),
representing the first examples of 7> coordination for a
monocyclic boratabenzene. In contrast, the copper species, 2-
CuPPh;, features boratabenzene coordination in an #° mode.
Copper 7°-arene complexes are rare, only realized in 2015 by
Hayton and co-workers.”' To determine if the coordination of
n*-boratabenzene to copper could be achieved, a stronger
donating ancillary ligand on copper was examined; specifically,
the 1,3-bis(2,6- dusopropylphenyl)1m1dazol 2-ylidene (IPr)
ligand was selected. 82786 The reaction of (IPr)CuCl with 2-
K was complete after 15 min on the basis of in situ ''B NMR
spectroscopic monitoring as a new resonance at 32.4 ppm was
observed, similar to the phosphine complex (2-CuPPh,) at
31.0 ppm. A single-crystal X-ray diffraction study revealed that
the IPr ligand rendered #*-boratabenzene binding to copper
[2-CulPr (Figure 4)].

Scheme 1. Synthesis of Boratabenzene 2:K
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Figure 4. Solid-state structures of 2-CuPPh;, 2-AgPPh,, 2-AuPPh;, and 2-CulPr (from left to right, respectively). Hydrogen atoms and solvates
have been omitted for the sake of clarity, and thermal ellipsoids are drawn at the 50% probability level. Selected bond distances (angstroms) and

angles (degrees) are listed in Table 1.

Scheme 2. (a) Synthesis of 2:AgPPh,,” 2:AuPPh,,” and 2-
CuPPh; and (b) Synthesis of 2-CulPr
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“Conditions for the synthesis of 2-AgPPh;: benzene/THF (4:1), tt,
10 min, then —35 °C to rt, 45 min. *Conditions for the synthesis of 2-
AuPPh;: benzene/THF (4:1), rt, 3 h. “Conditions for the synthesis of
2-CuPPh;: benzene/THF (4:1), rt, 30 min.

We then turned our attention to the 9-borataphenanthrene
anion, 1. The reactions of 1-K with copper and silver
[(PhyP)MCI], reagents were monitored by in situ *'P{'H}
NMR spectroscopy (Scheme 3). Signals were observed at 8.9
and 13.3 ppm in the NMR spectra for the reactions with
[(PhyP)CuCl], and [(Ph;P)AgCl],, respectively, shifted
downfield from those of the starting materials {—2.3 ppm for
[(PhyP)CuCl], and 9.4 ppm for [(PhsP)AgCl],}. The ''B

Scheme 3. Reactions of 1'K with [(Ph;P)CuCl], and
[(Ph,P)AgCI],"
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“Conditions for the synthesis of 1-:CuPPh,: benzene/THF (3:1), rt,
10 min. Conditions for the synthesis of 1-AgPPh;: benzene/THF
(4:1), -35 °C to rt, 30 min.

NMR signals for the products are broad singlets at 40.1 and
40.3 ppm, respectively, virtually unchanged from that of 1-K
(40.4 ppm). Single-crystal X-ray crystallographic studies
revealed the identity as the #*-borataalkene complexes 1-
CuPPh; and 1-AgPPh; (Figure S).

In all species, the endocyclic metrical parameters of the BC;
rings are very similar for both potassium salts of the ligands
and coinage complexes (Table 1). For the copper 7*-
coordinated complexes, the copper is proximal to the
trimethylsilyl-substituted carbon with Cu—C(1) bond dis-
tances similar for both complexes [2.020(3) A for 1-CuPPh,
and 2.029(S) A for 2-CulPr] while the bond is notably longer
in the #%ligated boratabenzene complex [2.170(2) A for 2-
CuPPh,]. With regard to the Cu—B bond distances, the ;%
species has the shortest bond [2.248(2) A for 2-CuPPh;; cf.
2.289(3) A for 1-CuPPh; and 2.351(5) A for 2-CulPr]. The
ns-species, 2-CuPPh;, has a smaller discrepancy between the
Cu—C(1) and Cu—B bond distances [2.170(2) and 2.248(2)
A, respectively] due to the aromatic binding. The n*
coordinated species differ significantly from the E-CulPr
species (Figure 2), in which the boron interacted more
strongly with the metal [Cu—B, 2.121(2) A; Cu—C, 2.411(2)
A], and are related to the a-boryl carbanion complexes of
copper.®* The remaining Cu—C bond distances for the atoms
in the boratabenzene ring all exceed 2.45 A for 2-CulPr,
whereas in 7® complex 2-CuPPh,, they range from 2.292(2) to
2.344(2) A

Analogous to the copper n*-species, the gold centers are
much closer to the carbon center than the boron atom with the
bond distances in the boratabenzene complex being closer in
value [1-AuPPh;: Au—B, 2.427(8) A; Au—C(1), 2.188(7) A;
2-AuPPh;: Au—B, 2.397(2) A; Au—B, 2.247(2) A].*’ In the
silver species, the borataphenanthrene species (1-AgPPh,)
follows the aforementioned trend of the metal—boron bond
distances being greater than the metal—carbon bond distances,
with the longest bond distances for the group 11 metals [Ag—
B, 2.472(8) A; Ag—C(1), 2.272(7) A]. For the boratabenzene
complex (2-AgPPh,), the metal—ligand bond distances are
very close [Ag—B, 2.3839(16) A; Ag—C(1), 2.3586(14) A].
The E-AgIPr and E-AulPr complexes are significantly different
with very short metal—boron bonds and long metal—carbon
bonds [E-AgIPr: Ag—B, 2.287(3) A; Ag—C, 2.633(3) A; E-
AulPr: Au—B, 2.23(1) A; Au—C(1), 2.68(1) A].%

Theoretical studies were carried out to investigate the
bonding and electronic structure. MO06-2X/def2-TZVP*"**
(CPCM solvation with THF solvent)®” geometry optimiza-

https://doi.org/10.1021/acs.inorgchem.1c02800
Inorg. Chem. 2021, 60, 18981—18989


https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c02800?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c02800?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c02800?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c02800?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c02800?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c02800?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c02800?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c02800?fig=sch3&ref=pdf
pubs.acs.org/IC?ref=pdf
https://doi.org/10.1021/acs.inorgchem.1c02800?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Inorganic Chemistry

pubs.acs.org/IC

Figure S. Solid-state structures of 1-CuPPh; and 1-AgPPh;. Hydrogen atoms and the toluene solvate for 1-AgPPh; have been omitted for the sake
of clarity, and thermal ellipsoids are drawn at the 50% probability level. For disordered atoms, only the part with the highest occupancy is shown.
Selected bond distances (angstroms) and angles (degrees) are listed in Table 1.

Table 1. Selected Bond Distances (angstroms) of the Borataphenanthrene and Boratabenzene Complexes from X-ray

Diffraction Studies

1-K* 1-CuPPh, 1-AgPPh, 1-AuPPh;*
B(1)-C(1) 1.495(2) 1.508(4) 1.528(12) 1.504(11)
C(1)-C(2) 1.450(2) 1.485(4) 1.471(11) 1.501(12)
C(2)-C(3) 1.444(2) 1.438(4) 1.423(12) 1.435(11)
C(3)-C(4) 1.471(2) 1.468(4) 1.466(14) 1.485(11)
C(4)—C(5) 1.419(2) 1.409(4) 1.399(14) 1.424(12)
C(5)-B(1) 1.553(3) 1.554(4) 1.584(13) 1.545(11)
B(1)-M 2.289(3) 2.472(9) 2.427(8)
c(1)-M 2.020(3) 2.272(7) 2.188(7)
C(1)-si(1) 1.8736(18) 1.868(5) 1.877(8) 1.891(12)

2.K 2-CuPPh, 2-CulPr 2-AgPPh, 2-AuPPh,
1.530(5) 1.541(3) 1.573(7) 1.541(2) 1.547(3)
1.432(4) 1.443(2) 1.470(6) 1.443(2) 1.465(3)
1.418(4) 1.412(4) 1.403(7) 1.399(2) 1.391(4)
1.423(5) 1.437(4) 1.430(7) 1.420(2) 1.428(4)
1.400(5) 1.408(4) 1.391(7) 1.405(2) 1.389(3)
1.523(5) 1.528(3) 1.517(8) 1.528(2) 1.532(3)

2.248(2) 2.351(5) 2.3839(16) 2.397(2)
2.170(2) 2.029(5) 2.3586(14) 2.247(2)
1.884(3) 1.896(3) 1.862(5) 1.8870(16) 1.893(2)

Table 2. M06-2X/def2-TZVP(CPCM, THF)-Calculated Bond Distances (angstroms) and Binding Energies (AG, kilojoules
per mole) of the Borataphenanthrene and Boratabenzene Complexes

1 1-CuPPh, 1-AgPPh, 1-AuPPh;,
B(1)-C(1) 1.482 1.507 1.512 1.527
Cc(1)-C(2) 1.450 1.473 1.482 1.493
Cc(2)-C(3) 1433 1.437 1.433 1.430
C(3)-C(4) 1.466 1.476 1.476 1.481
C(4)—-C(5) 1.417 1.428 1421 1418
C(5)-B(1) 1.558 1.574 1.572 1.571
BE® 63.6 120.6 135.8

2 2-CuPPh, 2-CulPr 2-AgPPh, 2-AuPPh;
1.513 1.534 1.532 1.536 1.541
1415 1.434 1.445 1.432 1.460
1415 1.434 1.410 1.432 1.460
1.402 1421 1.429 1413 1.394
1.416 1.432 1.399 1.426 1.440
1.395 1.413 1.528 1.411 1.389

89.9 118.6 1332 121.3

“Binding energies are calculated for the 1-MPPh; — [MPPh,]* + [1]” or 2-MPPh; — [MPPh;]" + [2] reaction (M = Cu, Ag, or Au).

tions” for the phosphine-ligated boratabenzene complexes are
in good agreement with the solid-state structures for all three
metal complexes. The optimized geometries of the silver and
gold boratabenzene (2) complexes are consistent with 7>
bonding, while the geometry of 2-CuPPh; indicates n°
bonding. We were unable to locate a minimum for 2-
CuPPh; that was consistent with 7* bonding, with efforts
starting at a 7* bonding geometry optimizing to #7° This
indicates that the 7° geometry observed for 2-CuPPhy is the
thermodynamic minimum. In contrast, for the NHC-ligated
copper species 2-CulPr, minima corresponding to both 7* and
1n° could be optimized. Here the 7> structure is the energetic
minimum (consistent with the X-ray diffraction structure),
with the 7]6 complex being 5.0 kJ/mol higher in energy.

18984

The impact of complexation of 1 and 2 by MPPh;* or
CulPr* was investigated by computational means, with key
bond distances and binding energies documented in Table 2.
In general, complexation leads to a minor increase in the bond
distances within the BCj; ring, with the increase in bond
distance generally larger in the 1-MPPh; complexes than in the
2-MPPh; complexes. For 1, with a B(1)—C(1) distance of
1.482 A, complexation with the group 11 metals increases the
bond distance monotonically with the atomic number of the
metal (2-AuPPh,, 1.527 A, A = 0.045 A). Almost identical
increases in bond distance are noted for the C(1)—C(2) bond,
for which that of 2-AuPPh, is the greatest (Ar = 0.043 A).
Other bonds in the central borataphenanthrene ring do
lengthen, but the changes are much less pronounced (at
most 0.016 A). In 2, the B(1)—C(1) bond distance (1.513 A)
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also increases upon complexation, with the greatest increase for
2-AuPPh; (1.541 A, A = 0.028 A). The C(1)—C(2) bond
increases slightly by 0.021 and 0.023 A for Cu and Ag,
respectively, but by nearly double that with Au (0.045 A).
Interestingly, in 2-AuPPh; the C(2)—C(3) and C(4)—C(S)
bond distances decrease upon complexation (A values of 0.006
and 0.008 A, respectively) while they increase in 2-CuPPh, and
2-AgPPh; (A values of 0.011-0.019 A). We hypothesize that
complexation in 2-AuPPh; enhances localized diene character.
The variation in C—C bond distances in 2-AuPPh; supports
this hypothesis, with the diene bonds [C(2)—C(3) and C(4)—
C(S)] being significantly shorter by 0.05—0.07 A than the
C(1)-C(2) and C(3)-C(4) bonds. In 2-CuPPh; and 2
AgPPh;, the variation in C—C bond distances is much smaller
(<0.02 A), which suggests greater delocalization and less diene
character.

Metal binding energies were determined from MO06-2X/
def2-TZVP(CPCM, THF)-calculated AG values for the 2
MPPh, — [MPPh,]* + [2]” and 1-MPPh, — [MPPh,]" +
[1]™ reactions (Table 2). In general, the metals bind more
strongly to boratabenzene 2 than to borataphenanthrene 1. For
1-MPPh;, there is a general trend of the binding energy
increasing with the atomic number of group 11 metals (Cu,
63.6 kJ/mol; Ag, 120.6 kJ/mol; Au, 135.8 kJ/mol). The same
trend is not observed for 2-MPPh, (Cu, 89.9 kJ/mol; Ag, 133.2
kJ/mol; Au, 121.3 kJ/mol). Upon comparison of 1-MPPh; and
2-MPPh;, for Cu and Ag the binding energy is greater in 2-
MPPh;, while that trend is reversed for Au. The different
coordination of 2-CuPPh, (77°) compared to that of 2-AgPPh,
and 2-AuPPh, (both 7*) may be hypothesized to impact this
trend. However, for 2-CulPr the energy difference between 7
and 7° complexes is only 5.0 kJ/mol, and hence, it is expected
that the binding energy of 2-CuPPh; will remain smaller than
those of 2-AgPPh; and 2-AuPPh;. It is suggested that 2-
AuPPh; is the exception, although high-level calculations
together with explicit solvation would be required to provide
definitive binding energies. As outlined above, bonding in 2-
AuPPh; increases the level of diene character in contrast to
those of 2-:CuPPh; and 2-AgPPh;, which may rationalize the
smaller than expected binding energy in 2-AuPPh,.

Energy decomposition analysis (EDA) was carried out at the
B3LYP-D3(BJ)/TZ2P level of theory to probe the metal—
complex interactions.”””” The results indicate that the
interaction between the anionic heterocycle (boratabenzene
or borataphenanthrene) and the metal cation is donor—
acceptor in nature and predominantly electrostatic [AE g, =
60—65% (see the Supporting Information for numerical
results)]. The electrostatic nature of these interactions enabled
noncovalent interaction (NCI) analysis” of the bonding
character (hapticity), which employed the M06-2X/def2-
TZVP(THF, CPCM) geometries and electron density. For
the borataphenanthrene complexes, the NCI surface is
localized to the B—C(1) bond (analogous to the HOMO),
consistent with 7* bonding localized to the B=C bond. The
NCI surface (Figure 6) for 2-CuPPh, is equally distributed
across all central ring atoms of boratabenzene, consistent with
n° coordination. The 2-AuPPh; and 2-CulPr complexes may
be characterized as 7> (localized to the B=C bond); for 2
CulPr, this description is consistent with the 7> configuration
being lower in energy than the #° configuration. The 2-AgPPh,
complex is intermediate between copper and gold and could be
considered 1* according to EDA.

Figure 6. (a) HOMOs of [2]™ (left) and [1]™ (right). (b) NCI
surfaces for 2-CuPPh; (left) and 2-CulPr (right). Hydrogen atoms
have been omitted for the sake of clarity. Iso value of 0.03.

The B3LYP-D3(BJ)/def2-TZVP(PCM solvation, SMD,
THF solvent)-calculated NBO partial charges”” of anions
1 and 2 indicate that the negative charge is more evenly
distributed over the ring in 2, which is consistent with the
greater aromaticity of 2. For 1, there is a larger negative charge
on the C-TMS carbon atom [—0.86 e vs —0.93 e (Table 3)].
This may help explain why boratabenzene allows for 7° binding
to copper in 2-CuPPh,, while for 1, 7> binding is observed for
all complexes. Complexation of 1 by MPPh; consistently
increases the magnitude of the charge on both the carbon and
boron of the borataalkene moiety [C(1) and B(1)]. For 2,
complexation to copper and silver has little effect on the charge
on C(1) and B(1) while binding to gold has a pronounced
increase. The variation in atomic charges is consistent with the
analysis of bond distances and the increased diene character for
2-AuPPh;. The frontier molecular orbitals (MOs) of
uncomplexed anionic boracycles 1 and 2 indicate that the
HOMO is z-symmetric, extended over the entire ring in the
boratabenzene moiety but more localized to the endocyclic
B=C bond in borataphenanthrene (Figure 6). The HOMO of
2 is higher in energy (—3.96 eV) than that of 1 (—4.18 eV), in
line with the formation of more tightly bound complexes with
2.%° Finally, nucleus-independent chemical shift (NICS) scan’®
calculations at the B3LYP-D3(BJ)/def2-TZVP(PCM solva-
tion, SMD, THF solvent) level of theory indicate that the
boratabenzene ligand is more aromatic than the boron-
containing ring of borataphenanthrene with NICS(1),, values
of —19.5 and —15.4 ppm, respectively. The increased
aromaticity in boratabenzene is also consistent with it being
able to accommodate #° coordination for Cu with PPh;, while
the less aromatic borataphenanthrene accommodates only 7*
coordination.

B CONCLUSION

This study provides significant insight into the chemistry of
boratabenzene and borataphenanthrene anions. An expedient
synthesis of a monocyclic boratabenzene is disclosed via the
insertion of carbene into a borole and a subsequent
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Table 3. Calculated NPA Charges of 1, 2, and Their Respective Metal Complexes

1 1-CuPPh, 1-AgPPh,
B(1) charge 0.45 0.46 0.52
C(1) charge -0.93 —0.96 —1.00

1-AuPPh, 2 2-CuPPh, 2-AgPPh, 2-AuPPh,
0.62 0.40 0.38 0.36 045
-1.03 -0.86 —0.87 —0.87 —0.95

deprotonation. The reactions of the group 11 PPh;MCl
reagents with the anions yielded 7* coordination complexes for
all borataphenanthrene species as well as for the gold and silver
boratabenzene complexes with the general trend of shorter
M-C bonds than M—B bonds. This is consistent with the
polarization of the B=C bond, and the complexes can be
related to complexed a-boryl anions proposed as catalytic
intermediates in copper and silver coupling reactions. The
triphenylphosphine copper boratabenzene complex binds in an
1° manner but can be coaxed to 7* upon modifying the ligand
to a stronger N-heterocyclic carbene. These changes in
hapticity suggest that 1° boratabenzene species can free
coordination sites by slippage, which could have implications
for reactivity and catalysis.
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