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ABSTRACT: The reactions of bismuth(III) chloride, a diiminopyridine
ligand, and various stoichiometries of trimethylsilyl trifluoromethanesulfonate
(TMSOTY) generated the first bismuth complexes with this ubiquitous ligand.
The reaction with 0.5 equivalents of TMSOT( furnished a chloride bridged
Bi,Cl" complex, with each bismuth center complexed by a ligand; 1 equivalent
yielded a BiCl," chelated species; and 2 equivalents provided a ligated BiCI*"

cation.

B INTRODUCTION

Bismuth has a rich chemistry with coordination numbers
ranging from 2 to 10 and can be in oxidation states ranging from
—3 to +5." Recent studies have demonstrated bismuth
complexes with rigid nitrogen-containing pincer ligands to
have unusual properties and 2promote catalytic transformations
(e.g, A and B, Figure 1).” Cornella and co-workers have
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Figure 1. Bismuth pincer complexes with NCN (A) and NNN (B)
ligands. Known row 6 p-block diiminopyridine complexes C and D
(Dmp = 2,6-(CH;),C¢Hs, Ar = 2,5-tBu,CHs).

prepared a series of bismuth(I) complexes with an NCN ligand
scaffold (A) that can catalyze transfer hydrogenation to
unsaturated bonds and the deoxygenation of nitrous oxide as
well as the hydrodefluorination of fluoroarenes.”*®”" Other
tridentate chelates, including OCO and OCN, have been
reported by the Dostal and Evans groups to stabilize both
neutral and cationic bismuth complexes.””’ The NCN scaffold
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not only stabilizes low oxidation states of bismuth but also
affords interesting reactivity, including C—H activation, oxygen
bond cleavage, and insertion of small molecules.* Chitnis and
co-workers prepared a bismuth complex with a tethered triamide
ligand (B) that, based on reactivity and calculations, exhibits
characteristics of both Bi(I) and Bi(III).***™ Moreover, the
bismuth center is ambiphilic with the ability to act as a Lewis
acid or a Lewis base. These exemplify how rigid pincer ligands
can impart interesting properties and reactivity on bismuth
centers.

Diiminopyridine (DIMPY) ligands offer a rigid pincer
framework capable of stabilizing reactive metal centers
competent in activating bonds that have been applied in the
catalytic polymerization of olefins as well as promoting
cycloaddition and borylation reactions.” Almost all of the
heavy group 13—16 elements have been reported, but for row 6,
complexes exist only for TI and Pb.° The cationic lead complex
(C) bears an isothiocyanate ligand with an unusual geometry at
lead as the ligand retains planarity with the isothiocyanate
perpendicular to the PbNj plane rationalized by the Pb(II)
center having a stereochemically active lone pair.”® The
thallium(I) complex (D) could be crystallized as a dimer
through Tl-arene interactions with the ligand of another
molecule or could be co-crystallized with benzene or toluene
to form Tl#® arene complexes, with the arene bridging two
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Scheme 1. Reactions of L with BiCl; and TMSOTTf in Varying Stoichiometries; the Products Are Depicted as Their Structures in
Solution as 2 and 3 Exhibit Weak Interactions between the Triflate(s) and Bismuth in the Solid State
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Figure 2. Solid-state structures of 1—3 (left to right). Thermal ellipsoids are drawn at the 50% probability level. All hydrogen atoms and solvent
molecules are omitted for clarity. In species with disorder, only the major component is shown.
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thallium centers.”™ Thallium complex D has notably long TI-N
bonds that are classified as weak interactions and the ligand
binds lead more tightly in C [TI—N range = 2.739(2)—2.795(2)
cf. Pb—N range = 2.456(6)—2.577(6) A]. These unusual
structures motivated us to target bismuth diiminopyridine
complexes.

B RESULTS AND DISCUSSION

The reactions of trimethylsilyl trifluoromethanesulfonate
(TMSOTY) and bismuth(III) trichloride with a diiminopyridine
ligand featuring isopropyl groups on nitrogen and methyl
substituents on the a-carbon (L) in 0.5:1:1, 1:1:1, and 2:1:1
stoichiometries in CD;CN at room temperature were
monitored by in situ "H and '°F NMR spectroscopy (Scheme
1). Full conversion to single products was achieved at 1 h (0.5
equivalents of TMSOTH, 1), 6 h (1 equivalent of TMSOTT, 2),
and 0.5 h (2 equivalents of TMSOTT, 3). Upon conducting
reactions on scale to isolate materials, the trimethylsilyl chloride
(TMSCI) byproduct and solvent were removed in vacuo and all
three reaction products were isolated in quantitative yield as
yellow (1), pistachio green (2), and off-white (3) solids. Single-
crystal X-ray diffraction studies on the grown crystals revealed
their identities as k>-N,N’,N”-chelated bismuth(III) diimino-
pyridine cations, with the reaction of 0.5 equivalents furnishing a
chloride bridged Bi,Cly" complex, with each bismuth center
complexed by L (1, Figure 2); 1 equivalent yielding a BiCl,"
chelated complex (2), and 2 equivalents providing a BiCI*"
complex (3).

The 'H NMR spectra of 1—3 revealed protons on the
complexed ligand shifted downfield from L (Table 1). The

Table 1. 'H and ’F NMR Resonances for L and 1—3

" CHg?2 CHaab
H
CHQ‘"?kNl IN)<CH3""
N
CHg® | X CHg®
Hd = Hd
He
L 1 2 3
H* 1.18 1.69 1.67 1.67
H® 3.96 522 5.37 5.44
H* 239 2.71 273 273
H¢ 7.77 8.60 8.69 8.72
H* 8.05 8.86 8.96 9.00
F (triflate) —79.2 -79.2 -79.2

largest shifts were observed for the methine septets from the N-
bound isopropyl groups to the products (1: 5.22, 2: 5.37, and 3:
5.44 ppm c.f. L: 3.96 ppm) with all other peaks shifted between
0.49 and 0.95 ppm from L. The magnitude of the shifts of the
methine and pyridine protons are directly correlated to the
charge of the complex (3 > 2 > 1). The '°F NMR spectra of all
three products display resonances at —79.2 ppm, which
correspond to ionic triflate in solution (—78.3 to —79.2 ppm
ionic triflate versus covalent triflate CH;OTf = —76.3 ppm).°**
The supported ionic nature in the solution is consistent with
other known bismuth, antimony, and arsenic ionic complexes,
with triflates bearing similar "’F NMR shifts (—78.3 to —79.1
ppm) and weak interactions in the solid state attributed to
electrostatic interactions.” Attempts to access a tris(triflato)
complex by adding 3 equivalents resulted in the formation of 3
by 'H NMR spectroscopy with unreacted TMSOTf (Figures

$26—528). Reaction of 3 with silver trifluoromethanesulfonate
resulted in no reaction by "H NMR spectroscopy (Figures S29—
S31). Stoichiometric amounts of acetonitrile were added to
CD,Cl, solutions of 1—3. By 'H NMR spectroscopy, no change
in the resonance from free acetonitrile was observed (resonance
at 1.97 ppm).'"> The F NMR spectra display single peaks
corresponding to the triflate(s) for 1—3 ranging from —79.3 to
—79.5 ppm, which lie in the reported range of ionic triflates
(Figures S32—S40), disproving the possibility of acetonitrile
displacing triflate in CD;CN and indicating that the triflates are
not bound to bismuth.

Examining the solid-state structures of 1—3, each of the
bismuth centers are in octahedral environments with meridional
coordination of the tridentate ligand (Figure 2, see Table 2 for

Table 2. Salient Bond Lengths (in A) for 1-3

1 2 3
Bi(1)—-N(1) 2.339(6) 2.319(2) 2.290(13)
Bi(1)-N(2) 2.453(8) 2.423(3) 2.412(13)
Bi(1)-N(3) 2.446(8) 2.399(3) 2.428(11)
Bi(1)—-CI(1) 2.678(3) 2.5885(8) 2471(4)
Bi(1)-CI(2) 2.583(2) 2.6548(8)

Bi(1)—CI(3) 3.109(2)

Bi(1)—0(1) 2.906(3) 2.643(19)
Bi(1)-0(2) 2.764(34)

“For 2 and 3, the bond lengths are similar for both bismuth centers,
and accordingly, only values for one are listed

representative bond lengths). In 1, the octahedron is completed
with two terminal chlorides trans to each other and the bridging
chlorine trans to the pyridine nitrogen, with no interaction
between bismuth and the triflate counter anion. This chloride
bridged feature is similar to that of other pnictogen analogues
with NCN- and OCO-based pincer ligands."" In 2, the two
terminal chlorides are trans to each other, with a weak
interaction to a triflate oxygen [2: Bi—0 2.906(3) A c.f. covalent
Bi—O 2.14 A and sum of van der Waals radii = 3.59 A]"?
occupying the position trans to the pyridine nitrogen. In the
solid-state structure of 3, a triflate bridges to another bismuth
atom that forms a coordination polymer (Figures S47—
$48).""™" In 3, one of the chlorides in 2 is replaced by a
triflate, with the Bi—O contacts being closer but still far beyond a
covalent interaction, with the Bi—O bond of the triflate trans to
the strongly donating pyridine being slightly longer [3: Bi—O
2.643(19) and 2.764(34) A]. These weak interactions are not
detected in CD;CN solution as the '’F NMR resonances are
consistent with the ionic triflate. In all three complexes, the “lone
pair” is not stereochemically active, which is attributed to the
inert s-pair effect."* The Bi—Cl bond lengths of the trans
chlorides in 1 and 2 [2.678(3) and 2.583(2) A] are virtually
identical, while the bridging chloride bonds in 1 are the longest
[3.109(2) A] and the Bi—Cl bond in 3 is the shortest (2.471(4)
Al
The Lewis acidity of the bismuth cations was evaluated by the
Gutmann—Beckett method, with triethylphosphine oxide based
on the equation: acceptor number = 2.21 X (SgqypLs — 41.0
ppm)."> The acceptor number values for 1—3 obtained in
CD;CN are 27, 27, and 485, respectively, and acceptor numbers
in CD,Cl, are 29, 32, and 25. In comparison to the literature
values of the bismuth trihalides in CD,Cl,, they are stronger
Lewis acids than Bily (AN = 22), comparable to BiBr; (AN =
30), and weaker than BiCl, (AN = 49).'
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B CONCLUSIONS

Treatment of a diiminopyridine ligand with bismuth(III)
chloride and trimethylsilyl trifluoromethanesulfonate yielded
the first examples of bismuth diiminopyridine complexes. The
reaction stoichiometry of TMSOT( dictated the product with a
chlorine bridged Bi,Cl; cation obtained with 0.5 equivalents, a
ligated BiCl, cation from 1 equivalent, and a ligated BiCl
dication from 1 equivalent. The X-ray diffraction structures
revealed octahedral geometries at bismuth for all species with
stereochemically inactive lone pairs.

Experimental Section. General considerations: all manip-
ulations were performed under an inert atmosphere in a
nitrogen-filled MBraun Unilab glovebox or using standard
Schlenk techniques. Acetonitrile-d® for NMR spectroscopy was
purchased from Cambridge Isotope Laboratories, Inc., dried by
stirring for 5 days over CaH,, distilled, and stored over 4 A
molecular sieves. Dichloromethane-d* for NMR spectroscopy
was purchased from Aldrich Chemical and used directly from
ampules. All other solvents were purchased from commercial
sources as anhydrous grade, dried further using a JC Meyer
Solvent System with dual columns packed with solvent-
appropriate drying agents, and stored over 3 or 4 A molecular
sieves. Isopropylamine (Aldrich Chemical, 99.5%), 2,6-
diacetylpyridine (Chem-Impex International, 99.83%), p-
toluenesulfonic acid monohydrate (Alfa Aesar, 97%), bismuth
trichloride (Strem Chemicals, 99.9%), trimethylsilyl trifluor-
omethanesulfonate (Alfa Aesar, 99%), silver trifluoromethane-
sulfonate (Alfa Aesar, 98%), and triethylphosphine oxide (Alfa
Aesar, 99.3%) were purchased from the indicated commercial
sources and were used as received. Multinuclear NMR spectra
("H, BC{'H}, 'F) were recorded on a Bruker AVANCE III HD
400 MHz or 600 MHz instrument. ''F NMR spectra were
referenced to an internal standard, fluorobenzene. High-
resolution mass spectra (HRMS) were obtained in the Baylor
University Mass Spectrometry Center on a Thermo Scientific
LTQ Orbitrap Discovery spectrometer using + ESI. Melting
points were measured with a Thomas Hoover Uni-melt capillary
melting point apparatus and are uncorrected. FTIR spectra were
recorded on a Bruker Alpha ATR FTIR spectrometer on solid
samples. Single-crystal X-ray diffraction data were collected on a
Bruker Apex III-CCD detector using Mo-Ka radiation (4 =
0.71073 A). Crystals were selected under paratone oil, mounted
on MiTeGen micromounts, and immediately placed in a cold
stream of N,. Structures were solved and refined usin
SHELXTL,"” and figures were produced using OLEX2.'
Elemental analysis samples were sent to Atlantic Microlab and
were evaluated with a Carlo Erba 1108 Analyzer. The purity of
new complexes was established by multinuclear NMR ('H,
BC{'H}, and F); the spectra are available in the Supporting
Information.

L: This compound was synthesized by the literature
procedure reported by Chirik and co-workers;'” the NMR
data is reported in acetonitrile to enable comparison with 1-3.
'H NMR (400 MHz, CD;CN): & (ppm) 8.05 (d, J = 7.8 Hz,
2H),7.77 (t,] = 8.0 Hz, 1H), 3.96 (sept, ] = 6.2 Hz, 2H), 2.39 (s,
6H), 1.18 (d, ] = 6.0 Hz, 12H). *C{'H} NMR (101 MHz,
CD,CN): 5 (ppm) 164.14, 157.59, 137.46, 121.56, 52.28, 23.78,
13.36.

1: Bismuth trichloride (136.8 mg, 0.4338 mmol) was
dissolved in 2 mL acetonitrile, and neat trimethylsilyl
trifluoromethanesulfonate (39.5 uL, 0.2183 mmol) was added.
An acetonitrile solution (4 mL) of L (106.9 mg, 0.4357 mmol)

was added to the bismuth trichloride/trimethylsilyl trifluor-
omethanesulfonate mixture dropwise at room temperature and
stirred for 1 h. All volatiles were removed in vacuo, yielding a
yellow solid. Yield: quantitative (267.9 mg). Single crystals for
X-ray diffraction studies were grown via vapor diffusion of a
dichloromethane solution of 1 into toluene. d.p. 130—135 °C.
'H NMR (400 MHz, CD;CN): § (ppm) 8.86 (t, ] = 8.0 Hz, 1H),
8.60 (d,J = 8.0 Hz, 2H), 5.22 (sept, ] = 6.4 Hz,2H), 2.71 (s, 6H),
1.69 (d, J = 6.4 Hz, 12H); “C{'"H} NMR (101 MHz, CD,CN):
5 (ppm) 168.94, 155.78, 146.24, 132.02 56.43, 23.54, 18.72; 9F
NMR (376 MHz, CD,CN): & (ppm) —79.2; FT-IR [cm™!
(ranked intensity)]: 1683(9), 1584(12), 1457(8), 1373(13),
1256(2), 1209(10), 1156(5), 1066(15), 1026(3), 954(14),
814(4), 731(11), 637(1), 572(7), 517(6); High-resolution
mass spectrometry electrospray ionization (HRMS-ESI) for
C30H,NgBi,CL* [M]* calcd 1083.1834 m/z; found, 1083.1794
m/z.

2: Bismuth trichloride (264.1 mg, 1.076 mmol) was dissolved
in 6 mL acetonitrile, and neat trimethylsilyl trifluoromethane-
sulfonate (194.5 uL, 1.075 mmol) was added. The mixture was
added dropwise to an acetonitrile solution (6 mL) of L (341.0
mg, 1.081 mmol) at room temperature and stirred for 6 h. All
volatiles were removed in vacuo, yielding a pistachio green solid.
Yield: quantitative (724.8 mg). Single crystals for X-ray
diffraction studies were grown via slow evaporation of an
acetonitrile solution of 2. d.p. 116—120 °C. "H NMR (400 MHz,
CD,;CN): 6 (ppm) 8.96 (t, ] = 8.0 Hz, 1H), 8.69 (d, ] = 8.0 Hz,
2H), 5.37 (sept, ] = 6.4 Hz, 2H), 2.73 (5, 6H), 1.67 (d, ] = 6.4 Hz,
12H); “C{'H} NMR (101 MHz, CD;CN): § (ppm) 169.30,
155.37, 146.98, 132.59, 56.41, 23.27, 18.79; ’F NMR (376
MHz, CD,CN): § (ppm) —79.2; FT-IR [cm™" (ranked
intensity)]: 2967 (11), 1642 (13), 1587 (9), 1462 (10),
1376(12),1257 (15),1209 (3), 1158 (6), 1021 (1), 812(4), 758
(14), 733 (8), 634 (2), 572 (7), 515 (5); high-resolution mass
spectrometry electrospray ionization (HRMS-ESI) for
CysHyNLBICL* [M]* caled $24.1073 m/z; found, 524.1078
m/z; Anal. caled (found) (%): C 28.50 (28.40); H 3.44 (3.54);
N 6.23 (6.14).

3: Bismuth trichloride (295.1 mg, 1.203 mmol) was dissolved
in 14 mL acetonitrile, and neat trimethylsilyl trifluoromethane-
sulfonate (43S.5 uL, 2.407 mmol) was added. The mixture was
then added dropwise to an acetonitrile solution (2 mL) of L
(379.9 mg, 1.20S mmol) at room temperature and stirred for 0.5
h. All volatiles were removed in vacuo, yielding an off-white
solid. Yield: quantitative (947.6 mg). Single crystals for X-ray
diffraction studies were grown via vapor diffusion of a
dichloromethane solution of 3 into benzene. d.p. 98—101 °C.
'HNMR (400 MHz, CD;CN): § (ppm) 9.00 (t, ] = 8.0 Hz, 1H),
8.72 (d,] = 8.0 Hz, 2H), 5.44 (sept, ] = 6.4 Hz, 2H), 2.73 (s, 6H),
1.67 (d,] = 6.4 Hz, 12H); “C{'H} NMR (101 MHz, CD,CN):
8 (ppm) 170.97, 156.62, 147.90, 132.63. 56.28, 22.91, 18.96; '°F
NMR (376 MHz, CD,CN): & (ppm) —79.2; FT-IR [cm™
(ranked intensity)]: 2981 (13), 1643 (12), 1589 (9), 1463 (10),
1376 (11), 1282 (15), 1205 (3), 1157 (6), 1014 (2), 813 (5),
759 (14), 733 (8), 633 (1), 572 (7), 515 (4); High-resolution
mass spectrometry electrospray ionization (HRMS-ESI) for
C,¢H,3N;BiClIO5S,F;* [M]* caled 638.0905 m/z; found,
638.0911 m/z.
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CCDC2152623-2152625 contain the supplementary crystallo-
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