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Multiscale modeling in disease

Ashlee N. Ford Versypt

Abstract

Multiscale computational modeling aims to connect the
complex networks of effects at different length and/or time
scales. For example, these networks often include intracellular
molecular signaling, crosstalk, and other interactions between
neighboring cell populations, and higher levels of emergent
phenomena across different regions of tissues and among
collections of tissues or organs interacting with each other in
the whole body. Recent applications of multiscale modeling
across intracellular, cellular, and/or tissue levels are high-
lighted here. These models incorporated the roles of
biochemical and biomechanical modulation in processes that
are implicated in the mechanisms of several diseases including
fibrosis, joint and bone diseases, respiratory infectious dis-
eases, and cancers.
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Introduction

Chemical, physical, and biological processes interact
across multiple scales of organization—molecular,
cellular, tissue, organ systems, and whole-body scales.
These multiple scales lead to both localized and sys-
temic consequences for physiology, disease progression,
and medical therapeutics. Dynamic effects including
clinical outcomes emerge from the collective behavior
across multiple scales and cannot be explained simply by
studying the isolated parts at a single scale. Multiscale
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computational modeling allows for quantitative de-
scriptions of interconnected processes, which can aid in
understanding the mechanisms linking processes that
cannot be decoupled easily in experiments. Computa-
tional investigations of the mechanisms and conditions
that contribute to the progression from healthy to
diseased states of increasing severity and the effects of
treatments that may restore normal physiological func-
tion can greatly benefit clinical medicine and pharma-
cology. Multiscale modeling (MSM) aims to connect the
complex networks of effects at various scales. With
MSM, contributing factors can be tested in isolation and
in systematic combinations to generate hypotheses for
future experiments or to verify proposed mechanisms.
Having many interrelated processes presents a challenge
for gaining a full understanding of the progression of the
disease and the efficacy of new treatments. MSM has the
potential to translate reductionist theories, integrate
disparate data, and compile the multiple mechanistic
processes that contribute to the onset and progression of
a disease into a systematic framework. Ideally, the
framework is user-friendly and capable of taking the
interconnected chemical, physical, and biological factors
into account in a coupled fashion and in the appropriate
magnitudes and sequences to make testable predictions.
In the absence of such a framework, unraveling the
network of events in human diseases will continue to be
perplexing, and the development of effective treatments
will remain a piecemeal and slow process.

In this brief review, first, common MSM methods are
overviewed. Then, recent publications are highlighted
that feature MSM involving at least two biological
length scales to simulate a network of pathophysiolog-
ical effects of a disease. MSM in systems biology is a vast
field, and surveying every disease is beyond the scope of
the present review. MSM case studies for a subset of
diseases are discussed. These case studies are organized
by disease type: fibrosis, joint and bone diseases, respi-
ratory infectious diseases, and cancers. These were
selected as representative examples that contribute to
the fundamental understanding of pathology related to
the synchrony and interconnections between a)
biochemical signaling pathways in cells, b) tissue forma-
tion or degradation through extracellular matrix (ECM)
remodeling often in conjunction with heterogeneous cell
populations and secreted factors, and/or ¢) biomechanical
effects on tissues. ECM remodeling, inflammation, me-
chanical forces, and metabolic growth are all involved to

www.sciencedirect.com

Current Opinion in Systems Biology 2021, 27:100340


mailto:ashleefv@buffalo.edu
https://www.sciencedirect.com/journal/current-opinion-in-systems-biology/special-issue/10XJH6TWN4B
https://doi.org/10.1016/j.coisb.2021.05.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.sciencedirect.com/science/journal/24523100
www.sciencedirect.com/science/journal/24523100

2 Mathematical Modelling (2021)

various extents in diseases of tissue expansion, degrada-
tion, and fibrosis [1—4].

Overview of multiscale modeling methods
The purpose of this section is to introduce key
terminology of popular MSM methods so that the later
discussion of MSM in the context of human diseases is
clear. This section is not intended to comprehensively
cover the history and scope of MSM methods. Others
have previously published overviews of MSM methods
and considerations for suitability at various scales for
immunology and infectious diseases [5—11], cancer
[12,13], tissue growth [14], and more generally for
biomedical systems [15—17]. There is also a relevant
issue of Current Opinion in Biomedical Engineering
themed on “Biomechanics: multiscale modeling” that will
likely be of interest to readers of this manuscript [18].

Computational models based on deterministic differ-
ential equations are well-suited for studying dynamics
and transport in complex systems. Differential equa-
tions can track populations, mass, forces, energy, mo-
mentum, and other quantities and the interactions
between them. Ordinary differential equations (ODEs)
are generally used to consider dynamic effects. Partial
differential equations (PDEs) consider spatial and
temporal effects. ODEs or PDEs can be converted to
delay differential equations to account for processes at
multiple time scales where the nonprimary time scales
occur after a lag time interval relative to the primary
time. The main drawbacks to deterministic differential
equations are that continuous collective responses are
built into the model assumptions and that the equations
do not account for the stochasticity inherent in biolog-
ical systems. To overcome the latter drawback, differ-
ential equations may be solved through stochastic
simulation algorithms to account for uncertainty in
parameter values and biological responses. This tech-
nique is still best suited for continuum-based modeling
where the concentrations of interacting species or
chemicals are sufficiently large. In contrast to equation-
based modeling paradigms, agent-based models (ABMs)
involve discrete individuals or “agents” with assigned
rules to describe interactions with other agents and how
each behaves stochastically in different scenarios (note
that these behavioral rules can be based on Boolean logic
or can use sampling from probability distributions).
ABMs can involve spatial variations and can capture

behaviors that emerge from many individuals
interacting  dynamically  without predetermined
collective properties. ABMs are best suited for

relatively small numbers of interacting agents (on the
order of a few thousand). The drawback of ABMs is
that they take much longer to simulate compared to

differential equations representing the same time
periods, spatial domains, and populations of species
[19]. A“hybrid” computational approach is often adop-
ted in MSM that takes advantage of the benefits of
PDEs to describe chemical species that react and
interact in large quantities in a background spatial
region or field and of ABMs to describe cells and
chemical species that interact in small quantities or in
logic-based upregulation or downregulation fashions.
"This approach reduces the limitations of either method
alone. Other hybrid approaches may also include using
intracellular networks described by systems of ODEs
combined with ABMs at the intercellular or tissue level.
Both the platforms CompuCell3D [20] and PhysiCell
[21] allow for hybrid coupling of ABMs to intracellular
ODEs and/or extracellular PDEs. In the following sec-
tions, combinations of equation-based models and/or
discrete ABMs at various scales will be discussed for
applications in human diseases.

Fibrosis

In healthy tissue homeostasis, the ECM regularly un-
dergoes remodeling that usually results in a net balance
between production and degradation of collagen and
other fibrous components. ECM is degraded by matrix
metalloproteinases (MMP) and other matrix degrading
enzymes, and this degradation is inhibited by tissue
inhibitor of metalloproteinases. Neighboring cells or
pathogen infections affect the ECM through secretions
of various chemicals that generally either a) promote
matrix accumulation and fibrosis or b) enhance matrix
degradation and inflammation. Fibrotic diseases char-
acterized by net matrix accumulation are considered in
this section. Arthritis and osteoporosis are examples of
diseases characterized by inflammation and enhanced
matrix degradation and are discussed in the next sec-
tion. More complex interplay between ECM remodeling
and inflammation in various disease conditions are
possible in respiratory infectious diseases and cancers,
which are discussed subsequently.

Fibrosis affects many tissues, and MSM has been
applied to study fibrosis in the heart [22,23], lungs [24],
and kidneys [25]. In the heart, cardiac fibroblasts
respond to electrophysiological cues in addition to
chemical and biomechanical cues. Ref. [22] reviewed
computational modeling efforts for all three of these
areas as well as some early MSM applications to the
heart. MSM was used to study cardiac fibrosis following
myocardial infarction [23]. This model coupled a logic-
based ODE model for the intracellular signaling
network in fibroblasts to an ABM for migratory fibroblast
agents and discrete values of cytokines and collagen
across a spatial domain that respond dynamically to
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outputs from the network model. The discrete values
were assigned to individual grid cells and could not
diffuse. The network model integrated several
biochemical and mechanical inputs across signaling
pathways for fibroblast activation and ECM remodeling.
The collagen dynamics depended on collagen I and TII
mRNA from the network model for production and the
current value of collagen in the ABM for degradation.
MMP was not explicitly represented. Cytokine spatial
gradients were used to explore combinations of fibrotic
and inflammatory phenotypes.

A recent review [24] focused on MSM and covered
models for fibrosis, lung diseases, MSM, and the in-
tersections of these categories. A model was developed
for renal interstitial fibrosis [25] that was structurally
similar to several of the MSM works reviewed for the
lungs in Ref. [24]. In the kidney application, a hybrid
approach was used that coupled an ABM at the cellular
and tissue scale to a PDE for extracellular chemical
fields. Additionally, ODEs were used at the molecular
scale for the intracellular response to transforming
growth factor beta and ECM through integrin receptor
binding. The model explicitly incorporated the roles of
macrophages in addition to myofibroblasts, fibroblasts,
and epithelial cells. The effects of drugs were also
simulated.

Although not explicitly studying fibrotic diseases, two
recent MSM efforts accounted for dysregulated growth
mechanisms related to growth and remodeling in the
heart [26] and arteries [27]. Both [26,27] incorporated
intracellular network models comparable to those used
in for cardiac fibrosis [23] and renal interstitial fibrosis
[25]. In Ref. [26], cell signaling for hypertrophy subject
to mechanical inputs determined changes in cellular
area, and these changes were coupled to a PDE model
for the mechanics of growth of the left ventricle. Simi-
larly, in Ref. [27], a logic-based network model for cell
signaling was coupled to a mechanical model for growth
and remodeling of an artery. The mechanical model was
a constrained mixture model that incorporated the ef-
fects on three tissue constituents: elastin, collagen, and
smooth muscle. The proportions of these constituents
changed due to muscle cell proliferation and collagen
remodeling via multiple MMP species from the intra-
cellular model. Stresses resulting from growth and
remodeling were input to the signaling network model.

Joint and bone diseases

Computational modeling for joint degradation by
arthritis focusing primarily on mechanical signals at
various scales was recently reviewed [28]. From a
biochemical and cellular perspective, a multiscale model
was developed for joints subject to cartilage degradation
by rheumatoid arthritis using three compartments
representing synovial membrane, synovial fluid, and
cartilage [29]. Each compartment was described by a set
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of continuous reaction-diffusion PDEs for the popula-
tions of immune cells, fibroblasts, and chondrocytes and
concentrations of cytokines, drugs, MMP, and tissue
inhibitor of metalloproteinases. Both chondrocyte cells
and ECM were described by nonconstant volume pop-
ulation/mass balance equations. The degradation of
ECM resulted in an advection term in the cartilage
compartment to account for the velocity of the synovial
membrane interface.

For application to osteoporosis, a hybrid model for bone
osteoblast cells was developed that coupled an ABM to a
mechanical model [30]. The ABM was used to simulate
the intracellular molecular network through two com-
partments (cytoplasm and nucleus) for transduction of
mechanical stimuli into cellular responses. The tissue-
level mechanical model with an applied load was
coupled to the ABM through mechanosensing of the
tissue through integrin receptors on the cells and
through modulation of the ECM material properties,
particularly stiffness, through the expressed ECM pro-
teins. The dynamics of the model have been further
analyzed in subsequent studies [31,32].

Respiratory infectious diseases

Several more scales are relevant to modeling of infec-
tious diseases compared to noncommunicable diseases,
for example, pathogen, environment, and population
scales. Here, the focus is refined to MSM for the
immune system that covers at least two of the following
scales in the lungs of human hosts: intracellular, inter-
cellular, and tissue.

The SARS-CoV-2-induced COVID-19 pandemic has led
to multiple recent MSM efforts to understand the
infection and immune response in lung epithelial tissues
[33,34]. Both efforts considered that epithelial cells may
be killed by viral infection, immune response to control
infection, both, or neither depending on the dynamics
and magnitudes of and interplay between the infection
and immune response. Using the physics-based multi-
cellular simulator PhysiCell [21], a hybrid approach was
developed in Ref. [33] to model the lung epithelial cells
discretely with internal ODEs for intracellular receptor
trafficking, pathogen dynamics, and cell response to viral
load along with discrete agents for cells of the immune
response and PDEs for diffusing cytokines and virions
that spread through the tissue. Tissue damage in the
forms of epithelial cell death and fibrotic collagen
replenishment were incorporated. In Ref. [34], the
multiscale, multicell simulation environment Compu-
Cell3D [20] was used, and three compartments were
considered: a simplified epithelial compartment
compared to that Ref. [33], an extracellular compart-
ment for an immune response, and a lymph node
compartment from which immune cells are recruited.
Both of these MSM approaches made many assumptions
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in the absence of experimental data on SARS-CoV-2
infection, but both were formulated to easily incorpo-
rate future mechanistic refinements in a modular
fashion.

In tuberculosis, which results from a bacterial lung
infection, the formation and integrity of fibrous tissue
structures called granulomas are important for disease
outcomes. MSM of the regulation of these formations by
pro inflammatory and anti-inflammatory processes was
reviewed in Ref. [35]. The integrity of granulomas
controlled by ECM remodeling was modeled in Ref. [36].
Note that Ref. [35] reviewed an extensive history of
MSM in tuberculosis and other infectious diseases.

Cancers

Here, two areas of cancer research are highlighted where
the interactions between cancer cells and the neigh-
boring tissue are important: (1) cancer growth and (2)
metastatic invasion and related ECM remodeling.

Cancer growth

One MSM approach for tumor growth shows the influ-
ence of the intracellular metabolism on regulating
growth [37]. ODEs were used to simulate a kinetic
model of intracellular metabolic processes. The kinetic
model was coupled to a discrete ABM for cellular pro-
cesses such as growth, death, mitosis, and transitions
between discrete cell states (e.g., quiescent stem cells,
proliferating cancer cells, and necrotic). Additionally,
the model considered a third scale of influence from
extracellular tissue concentrations of nutrients using a
system of PDEs. This model used the Systems Biology
Markup Language (SBML) [38] standard formalism for
the ODE intracellular scale and CompuCell3D for
hybrid modeling of the cellular and extracellular scales.
The authors explicitly discussed how they handled the
disparate time scales in their simulations.

An alternative MSM approach considered heterogeneity
in intracellular metabolism and signaling mechanisms on
the emerging cellular phenotype within different mi-
croenvironments through a custom ABM framework
[39], which is generalized beyond just the application to
tumor growth. Nutrients were subject to reaction-
diffusion equations, metabolism was described by a
suite of rules, signaling was modeled via ODEs, and cell
dynamics were captured by discrete ABM rules.

Another MSM approach to simulate cancer growth
focused on the biomechanics of tumor cell proliferation
and invasion [40]. Discrete mechanics were used at the
cellular level to simulate cell—cell interactions among
tumor and host cells, adhesion to ECM, and cell migra-
tion. Proliferation of tumor cells was also considered in a
discrete fashion. These processes were averaged over a
lattice to connect to the tissue scale where the tumor

growth was considered as a moving boundary and con-
tinuum mechanics were used to calculate the resulting
solid stresses experienced in the tissue. The influences of
stiffness for the cellular-level ECM and tumor cells and
for the surrounding tissue stiffness were also explored.

Cancer metastasis

In cancer metastasis, remodeling of collagen fibers in the
ECM facilitates the migration of cancer cells from the
primary tumor to the vasculature and then to distant
metastatic sites. Matrix degrading enzymes including
MMP are secreted by cells in the tumor microenviron-
ment to prepare the domain to be favorable for cellular
dissemination. Tumor invasion and spread due to in-
teractions with and remodeling of the ECM have been
frequently studied with mathematical models. MSM is
appropriate for addressing cancer metastasis as it involves
intercellular tumor cell processes, secreted factors,
nonsoluble ECM components, and mobile cells that
traverse or even leave a local tissue. Three popular MSM
approaches have emerged. In approach 1, reaction-
diffusion PDEs are defined for concentrations of one or
more matrix degrading enzyme(s) such as MMP, popu-
lations of tumor cells, and density of ECM [41—43] (see
references cited in Ref. [42] for historical overview).
Approach 2 involves continuous modeling at the macro-
scale and microscale with a moving boundary front
representing where ECM remodeling occurs at the
microscale at the edge of the macroscopic tumor mass
[44—48]. Approach 3 employs hybrid modeling using
ABMs at the cellular level and PDEs for ECM and
chemical factors [49—51].

Three recent contributions using approach 1 are high-
lighted. Ref. [41] considered the effects of the enzyme
lysyl oxidase on cross-linking collagen fibers of the ECM
to influence haptotaxis towards cross-linked and aligned
fibers. Ref. [42] compared two mathematical formula-
tions for haptotaxis via local gradient-based and nonlocal
adhesion-based terms. Ref. [43] incorporated a function
termed “contractivity” to couple microscale biochemical
remodeling events to the cell motility. The contractivity
function implicitly accounted for variations in cellular
adhesion and resulting haptotaxis due to ECM
remodeling-induced changes in material properties.

A line of research using approach 2 has continued to
develop in the last few years from the same groups of
authors. In Ref. [45], careful consideration of cell
adhesion and microscopic fiber dynamics was added to a
previous model [44]. The fiber and nonfiber constitu-
ents of ECM allowed for dynamic biochemical remod-
eling of the fibers at the microscale. Cell adhesion and
cell-scale mechanical fiber redistribution were also
included. A cell-scale cross-talk interaction between cell
migration and ECM remodeling along the moving
boundary was refined in Ref. [46]. Heterogeneous
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tumor cell populations were simulated in Ref. [47]. The
model was extended to consider the influence of tumor-
associated macrophages on ECM remodeling in
Ref. [48].

Several papers have used approach 3 via CompuCell3D.
Ref. [49] considered both tumor cells and ECM fibers as
discrete in the ABM and used PDEs to describe the
secretion and diffusion of MMP to degrade ECM fibers.
In Ref. [50], the ABM described the tumor cell behav-
iors, and the fibers of the ECM were modeled as a
continuous field subject to microscopic biochemical
remodeling by MMP and cross-linking by lysyl oxidase.
Haprtotaxis in the presence and absence of cross-linked
fiber gradients were explored. Another model was
developed to study the process of endothelial to
mesenchymal transition due to mechanical signals that
results in remodeling in a metastatic tumor microenvi-
ronment [51]. This model used a 3D spatial domain
compared to the 2D domain used in most of the models
reviewed here. An ABM tracked quiescent, activated,
and metastatic cancer cells; quiescent endothelial cells;
and fibroblasts activated via the endothelial to mesen-
chymal transition. The ECM was considered to be a
continuous medium along with another nonmatrix
medium representing the extracellular void space. Nu-
trients, cytokines, ECM proteins, and matrix degrading
enzymes were modeled by reaction-diffusion equations.
The role of inflammation was included. Substrate ECM
stiffness was modulated through the ratio of the ECM
and the void space medium.

MSM for the whole-body scope of metastatic cancer
spread was formulated in Ref. [52]. ECM and MMP
were modeled by PDEs to capture remodeling on spatial
domains presenting primary tumor and secondary site
tissue scales. PDEs are used to prescribe the diffusion
and haptotaxis of two populations of cancer cell phe-
notypes. To this point, the MSM was consistent with
approach 1. However, the cells were modeled with a
more elaborate hybrid discrete-continuum approach. A
rule-based ABM framework was used at the whole-body
scale to move cancer cells and clusters between the
primary and secondary tissue domains through the
vasculature. The movement and cell proliferation at
different scales was determined through rules and
probabilities determined from the PDE formulations.

Commentary, conclusions, and future
directions

Several of the case studies discussed in the prior sec-
tions demonstrated use of ABM for at least one of the
modeling scales. The inclusion of biological variability
through stochastic simulations is often a compelling
motivation to use ABM. While ABM is not required to
integrate multiple scales of components, software plat-
forms such as CompuCell3D and PhysiCell have
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facilitated the adoption of ABM for MSM in biomedical
systems by streamlining and modularizing model con-
struction. These tools have lowered the barrier for re-
searchers new to MSM in much the same way that
computational fluid dynamics software such as
COMSOL and ANSYS Fluent fostered widespread use
of multiphysics modeling. It is worth noting that many
other valid MSM methods exist that do not incorporate
ABM, such as those referred to as approach 1 and
approach 2 applied to cancer metastasis.

Many challenges and opportunities still remain for MSM
researchers. The first challenge to MSM that most re-
searchers face is training and communicating across
disparate biological and/or computational backgrounds.
Recent commentaries have highlighted some important
challenges to overcome regarding standards for devel-
oping interoperable and reusable tools for MSM [53,54]
and opportunities to pursue for integrating modern
machine learning efforts into MSM [54—56]. Others
have previously provided perspectives on efforts at
integrating complex and varied data obtained from
multiple experiments, models, and/or scales [57]. Prior
knowledge of disease mechanisms is being curated into
static multiscale network representations through
various disease mapping projects [58,59], which could
provide rich information for the development of future
spatial and temporal MSM modules. Another limitation
is a lack of opportunities that incentivize MSM re-
searchers to work collaboratively. While it is very
common for MSM projects to involve collaborations
between experimental and computational labs, it is
much less common for multiple computational labs to
work together without large center funding. However,
such productive computational collaborations have
emerged by combining the modeling expertise at various
scales or from different approaches, for example,
Refs. [23,33].

As with all modeling approaches, MSM certainly has
tradeoffs and limitations. Large integrated models have
greater computational expense and generally take longer
to develop than models at a single scale. Training, vali-
dation, and uncertainty quantification, particularly of
stochastic processes, is not as straightforward for MSM
as for a single model scale. See Ref. [60] for a clear
overview of the similarities and differences between
some of these techniques at single and multiple scales.
Even with the challenges and complexities, MSM en-
ables insights into the mechanisms that explain how
various higher level physiological phenomena are
connected and modulated by interventions at lower
scales (i.e., genetic or molecular). A long-term vision for
the MSM field is to provide a suite of configurable
computational biology building blocks that describe the
rules of life at various scales and are informed by the
entire range of molecular biology data types. The com-
ponents should be able to be assembled for predictive
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simulations much like the computational chemistry and
physics first principles modeling approaches that are
very powerful in materials science.

Another promising more near-term future direction that
is already underway in the cancer-immunology research
area [61—66] is to include the interplay of the immune
system along with tissue and organ-specific diseases
models to better consider both local and systemic im-
pacts of diseases and treatments. For example, modeling
the infection dynamics and proliferation sites of SARS-
CoV-2 connected to the mechanisms of the damage
inflicted to several organs would be helpful for designing
treatments for and understanding short-term severity
and long-term effects of COVID-19. Deciphering the
role of the immune system in mediating gut-induced
changes in bone [67] in inflammatory or sex-hormone
depletion diseases is another area ripe for such MSM.
MSM is also promising for other important problems in
diseases such as diabetes where the roles of chronic
inflammation on regulation, comorbidities, and local
complications in a number of tissues including the
kidneys are still being elucidated [68,69]. For these di-
rections, standards for reproducible research computing
and for reusability of existing models become critical for
enabling feasibility and reliability of such MSM efforts.
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