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ABSTRACT

Single-cell sequencing (SCS) has emerged as a critical means of

discovering important biological knowledge. Data analysis plays

an essential role in extracting accurate and meaningful information

from SCS data. However, compared to bulk sequencing, SCS intro-

duces new challenges in data analysis. In this paper, we present a

novel CNV detection algorithm for SCS data. The proposed method,

first, finds the optimal window size for generating read count signal

using the AIC approach and removes outliers from the read count

signal. Then, using a novel segmentation method based on the To-

tal Variation approach, the method identifies significant change

points and detects CNV segments. Finally, it uses the hierarchi-

cal clustering of cells based on their CNV patterns and employs

Z-score to improve CNV detection across the cells. We used real

and simulated data to evaluate the performance of the proposed

method and compared its performance with those of other com-

monly used CNV detection methods. We show that the proposed

method outperforms the existing CNV detection methods in terms

of sensitivity and false discovery rate.
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1 INTRODUCTION

Single-cell sequencing (SCS) has gained rapid popularity as an

innovative technique and has been used in many biological and

medical studies [8, 25, 28]. Because of the shallow depth of cover-

age of SCS data, copy number variation (CNV) detection methods

based on split-read, paired-end, or single-nucleotide polymorphism

density cannot work properly for SCS data and read count based
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methods are usually used. Read count signals generated from both

bulk and SCS are distorted by many factors, such as GC content,

mappability, and sequencing errors. The main difference between

SCS and traditional bulk sequencing is that SCS requires further

steps to isolate a cell and to amplify a single-cell genome [17] that

introduces more biases. Due to the small amount of DNA in one

cell, an amplification step is performed before sequencing in SCS.

Fail to amplify entire segments results in whole-genome amplifica-

tion biases and significantly distorts read counts [14]. On the other

hand, the read coverage in SCS data is significantly lower than that

from bulk sequencing data, resulting in much lower signal-to-noise

ratios (SNR) in SCS read count signals compared to bulk sequenc-

ing read count signals. This low SNR makes CNV detection more

challenging. Another challenge in SCS data analysis is inflated read

counts because of poorly assembled regions of the genome and

low coverage. These biases that are specific to SCS data need to be

addressed [2, 6, 14] to extract meaningful and effective information

and to make the most of SCS data. As a result new computational

methods need to be developed for SCS data [3].

Although many computational tools are available for CNV anal-

ysis using bulk sequencing data, there are currently few completely

automated and open source CNV detection tools that are designed

for SCS data, including SCCNV [10], Ginkgo [14], AneuFinder [4],

SCOPE [27], SCICoNE [19], CHISEL [30]. A few CNV detection

methods for bulk sequencing data have also been applied/generalized

to DNA SCS data [18, 26, 31].

Most of the methods and tools introduced for detecting CNVs

from SCS data use circular binary segmentation (CBS) [22] or hid-

den Markov model (HMM) [12] for segmentation of read count

signals. This is mostly because their efficient implementations are

available, and they have been commonly used for bulk sequencing

data. They have also shown promising results in analyzing SCS

data [6, 15, 16]. These tools and methods are different in their pre-

processing steps where they generate and normalize read count

signals. Among these tools, SCOPE uses a cross-sample segmenta-

tion procedure to detect breakpoints that are shared across cells

from the same subclones.

In this work, we developed a novel method for more precise

and efficient detection of CNVs from SCS data called SCTSCNV.

This method consists of three parts: preprocessing, segmentation,

and cross-cell postprocessing. In the preprocessing part, first, the

proposed method removes GC bias. Then, using the AIC approach,

it finds the optimal window size for generating read count sig-

nals. Finally, it removes outlier from the read count signals. In the

segmentation part, the proposed method detects integer copy num-

bers using a novel segmentation method. Considering CNVs as
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piece-wise constant signals, we developed a segmentation method

by modifying the efficient implementation of the solution to the

change-point optimization problem, the Taut String (TS) algorithm

[33]. Using the new segmentation algorithm, the proposed method

first, detects change points, then it uses the Pettit test to assign

significant values to the detected change points. Finally, the method

filters out the low confidence change points to reduce false pos-

itive CNVs and assigns CNV segments for each individual cell.

In the cross-cell postprocessing part, the method employs a hi-

erarchical clustering to cluster cells base on their CNV pattern

and uses Z-score method to improve the detection of breakpoints

to further improve false positive rate. The codes are available at

https://github.com/NabaviLab/ TSCNV.

2 METHOD

The schematic diagram of the overall proposed CNV detection

method for DNA SCS data, called SCTSCNV, is shown in Figure 1.

The overall workflow of SCTSCNV is divided into preprocessing,

segmentation, and cross cell analysis parts. We discus these parts

in the following.

2.1 Preprocessing

The preprocessing part of the proposed method include GC bias

normalization, optimal window size identification, and outliner

read count filtration as described below.

2.1.1 GC bias normalization. After sorting BAM files and deleting

duplicated reads using SAMTools [20] and Picard [1], the proposed

preprocessing method uses Lowess regression [7] to normalize read

coverage values based on the GC contents of the reads. We used

deepTool [23], to apply the Lowess regression method introduced

in [7] to correct GC bias. The output of deepTool is a GC biased

normalized BAM file.

2.1.2 Optimal window size identification. To generate read count

signal, the genome needs to be divided into bins (genomic window)

after GC correction. To extract maximum genomic information

from very low-coverage sequencing (< 0.1𝑥), finding the optimal

window size for counting mapped reads is critical. If the size of the

window is too small, there will be zero counts in many windows,

and almost no pattern can be observed. Conversely, the patterns or

genomic features would be smoothed out if the window size is too

large.

In general, estimating the optimum window size is a model

selection problem, where the model parameter is the size of the

window,𝑤 (or, equivalently, the number of windows in the genome,

𝑚). Defining the size of the window, and hence the location of

breaks, is critical during constructing a histogram so that the his-

togram can reflect the true underlying density of the data. We use

a data-based method to estimate an optimal window size for gen-

erating read count signal proposed in [16]. Given the statistical

model, the window size is considered to be optimal if Akaike’s

information criterion (AIC) is minimized. The AIC model does not

need to approximate the underlying density of reads, which can

be poorly estimated in sequencing data. AIC is minimum at the

optimal window size, i.e., the expected distance of the model to

the underlying probability structure that generates the data is min-

imal. Assume 𝑓 (𝑛) is the true underlying density of reads in a

genome and 𝑛1, 𝑛2, ..., 𝑛𝑙 are the genomic position of reads in base

pair, which are randomly sampled from a density 𝑓 (𝑛) and 𝑙 is the
length of the genome. If𝑚 denotes the number of windows in the

genome, 𝐼𝑖 (𝑛) is an 𝑖
𝑡ℎ genomic window for 𝑖 = 1, 2, ...,𝑚, and 𝑡𝑖 (𝑛)

represents the left-hand point of 𝐼𝑖 (𝑛), we can define𝑤 = 𝑡𝑖+1−𝑡𝑖 to
be the width of the window. The width,𝑤 , depends on the number

of reads in the data. Assuming 𝑣𝑖 (𝑛) is the number of reads that fall

in the genomic window 𝐼𝑖 (𝑛), we can define 𝑓 (𝑛) as a step function
𝑓 (𝑛) = 𝑐𝑖 , 𝑛 ∈ 𝐼𝑖 (𝑛). For 𝑐𝑖 ≥ 0 and

∑
𝑖 𝑐𝑖 = 1/𝑤 , the maximum

likelihood estimation of the histogram will be the standardized

read counts in the 𝑖𝑡ℎ window: 𝑐𝑖 = 𝑣𝑖 (𝑛)/𝑙𝑤 . We calculate AIC

with different values of𝑚. The optimal𝑚 (number of windows) is

estimated when AIC as given in Equation 1 is minimized.

𝐴𝐼𝐶 =𝑚 −

𝑚∑
𝑖=1

𝑣𝑖 (𝑛) log

(
𝑣𝑖 (𝑛)

𝑙𝑤

)
. (1)

2.1.3 Filtering out outliers. After generating read count signals

using the optimal window size, we identify and remove bins that

have extremely high read count values compared to those of their

neighbor bins using the Hampel identifier [21]. The Hampel identi-

fier is robust against outliers and does not require prior knowledge

of the data distribution [33].

2.2 Segmentation

A read count signal can be modeled as piece-wise constant (PWC)

data that are contaminated by noise as: r = f + N ,where N ∼

𝑁 (0, 𝜎2) is a vector of Gaussian noise, r is a vector of observed noisy
read counts, and f is a vector of the underlying read counts. The

Total Variation (TV) approach is a sparse-regularized optimization

that has shown outstanding performances in estimating change

points of a PWC signal [32, 33]. Given observed signal r the TV

denoising approach tries to compute the least square estimates for

some regularization parameter 𝜀 > 0 to estimate the desired signal

f as shown in Equation 2.

min
f ∈R𝑛

1

2
‖r − f ‖22 + 𝜀‖Df ‖1 , (2)

where D is the differencing matrix (all zeros except 𝐷𝑖𝑖 = −1 and

𝐷𝑖,𝑖+1 = 1(1 ≤ 𝑖 ≤ 𝑛 − 1)). By changing and defining a new set of

variables [5], we can write Equation 3 instead of Equation 2:

min
F

𝑛∑
𝑖=1

√
1 + (𝐹𝑖−1 − 𝐹𝑖 )2, 𝑠 .𝑡 . ‖F − R‖∞ ≤ 𝜀, (3)

where 𝑅𝑖 =
∑𝑖
𝑘=1 𝑟𝑘 and 𝐹𝑖 =

∑𝑖
𝑘=1 𝑓𝑘 are the cumulative sum of

signal r and f , respectively. Once F is found, it is possible to recover

the original read count signal f by observing that:

𝐹𝑖 − 𝐹𝑖−1 = 𝑅𝑖 − 𝑢𝑖 − (𝑅𝑖−1 − 𝑢𝑖−1) = 𝑟𝑖 − 𝑢𝑖 + 𝑢𝑖−1 = 𝑓𝑖 . (4)

According to 𝐹𝑖 =
∑𝑖
𝑘=1 𝑓𝑘 , 𝑓𝑖 is the slope of F between points 𝑖 and

𝑖 + 1. Therefore, 𝑓𝑖 represents the derivative of F between points 𝑖
and 𝑖 + 1. For a noisy signal with length 𝑙 and standard deviation

𝜎 , 𝜀 can be chosen as 𝜎
√
2 log 𝑙 [9, 11]. The Taut String algorithm

has been proposed to solve this optimization problem efficiently

with a complexity of 𝑂 (𝑛). Taut String generates upper and lower
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Figure 1: The overall workflow of SCTSCNV

bounds of the observed noisy data, 𝑅 + 𝜀 and 𝑅 − 𝜀 surrounding
𝑅 as a tube. This approach starts from the fixed point of 𝐹0 = 0

and gradually calculates the greatest convex minorant of the upper

bound and the smallest concave majorant of the lower bound on the

tube. When both curves (the greatest convex minorant and smallest

concave majorant) intersect, the first segment of Taut String is

fixed using the left-most point where either the majorant or the

minorant touched the tube. From the end of the identified segment,

the procedure is then resumed and iterated until all segments are

identified.

The conventional Taut String algorithm has twomain challenges:

staircase effect at change points [24] and choosing an effective

regularization parameter 𝜀. It is shown that the first change point

detected by Taut String does not show the staircase effect. Also,

it is shown that an appropriate 𝜀 depends on the variance of the

data. Build up on our previous modified Taut String algorithm

for addressing these challenges [33], we developed an algorithm

to also yield integer CNV values and assign significant values to

the change points. As shown in Algorithm 1, we modified Taut

String algorithm such that after detecting the first change point,

our algorithm makes Taut String to stop, stores the first change

point and resets Taut String again with the detected change point

as a new start point. It means that after each pause, Taut String

is applied to the rest of the signal with a new 𝜀 based on the new

length 𝑙 and standard deviation of the signal. In fact, after each

pause, the algorithm calculates a new 𝜀 adaptively based on the rest

of the signal. The algorithm repeats this procedure until the whole

signal is scanned and all the potential change points are detected.

However, some of the change points are not significant enough

to be considered as CNV segment breakpoints. In this step, the

algorithm calculates the detected change points’ 𝑝-𝑣𝑎𝑙𝑢𝑒s using the
Pettitt test to identify non-significant change points for filtering

them out. The Pettitt test does not require any assumption on the

distribution of data and provides a 𝑝-𝑣𝑎𝑙𝑢𝑒 to test the significance

of a detected change point. Finally, the algorithm calculates the

means of signal r between each pair of detected change points,

and round it to the nearest integer to assign copy number to the

detected segments.

2.3 Cross-cell analysis

Wemap back the CNV segments to genomic positions and generate

a matrix in which rows are cells, and columns are genomic positions

of CNV breakpoints. To find clusters of cells that share the same

CNV patterns we apply the hierarchical clustering method to the

matrix. For the hierarchical clustering we use Ward’s minimum

variance to find clusters of cells based on their ploidy. We assume

cells from the same cluster of ploidy share similar genomic locations

of breakpoints. For each identified cluster, we consider its own CNV

pattern matrix. The goal is to identify and adjust outlier breakpoints

based on the breakpoints of other cells in the same cluster. The

Z-score objective is to explain any data points by figuring out how

they contribute to the standard deviation and mean of the group

of data points. We calculate Z-score for a breakpoint of a cell 𝑖 at
location 𝑗 as: (𝑍𝑖 𝑗 = (𝑥𝑖 𝑗 − 𝜇)/𝜎), where 𝑥𝑖 𝑗 is a breakpoint of cell
𝑖 in location 𝑗 , and 𝜇 and 𝜎 are the mean and standard deviation of

all breakpoints in the cluster containing cell 𝑖 . At genomic location

𝑗 across the corresponding cluster, we look for outlier breakpoints

that have a 𝑍𝑖 𝑗 larger than a threshold. Then we replace the outlier

breakpoints with the average of non-outlier breakpoints.

3 DATA SETS

To investigate the performance of the proposed method, we used

three sets of data: 1) simulated read count signals, 2) simulated

sequencing data, and 3) real sequencing data.

3.1 Simulated read count signal

Inspired by the CNV patterns of real data we generated 390 simu-

lated read count signals (Cells), representing CNV segments with

no noise, with 6 deterrent average ploidies as gold standard CNV

data to evaluate the performance of our model. Using these data,

we generated noisy read count signals by adding different levels
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Algorithm 1 SCSegmentation

1: function RSCSegmentation(r)

2: 𝐶𝑁𝑉𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ← ∅

3: 𝑅 ← 𝐶𝑢𝑚𝑠𝑢𝑚(𝑟 )
4: 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝐹 ← ∅

5: while 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅) > 0 do

6: 𝑙 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅), 𝜎 ← 𝑠𝑡𝑑 (𝑅), 𝜖 ← 𝜎 ×
√
2 × log(𝑙)

7: Initialization

8: while 𝑖 < 𝑙 , 𝑙 is the length of noisy signal do

9: 𝑚𝑎𝑗𝑜𝑟𝑎𝑛𝑡ℎ𝑒𝑖𝑔ℎ𝑡 ← 𝜀
10: if 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 > 𝜀 then
11: Build valid segment up to last majorant breaking

point

12: Start new segment after break

13: Break

14: end if

15: Update minorant height

16: if 𝑢𝑛𝑑𝑒𝑟𝑏𝑜𝑢𝑛𝑑 < −𝜀 then
17: Build valid segment up to last minorant breaking

point

18: Start new segment after break

19: Break

20: end if

21: if 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 ≤ −𝜀 then
22: The majorant now touches the floor

23: end if

24: if 𝑢𝑛𝑑𝑒𝑟𝑏𝑜𝑢𝑛𝑑 ≥ 𝜀 then
25: The minorant now touches the ceiling

26: end if

27: 𝑖 = 𝑖 + 1

28: end while

29: build last valid segment

30: end while

31: 𝑓 ← 𝑆𝑙𝑜𝑝𝑒 (𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝐹 )
32: 𝐶ℎ𝑎𝑛𝑔𝑒𝑃𝑜𝑖𝑛𝑡𝑠 ← 𝑁𝑜𝑛𝑍𝑒𝑟𝑜𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 (𝐷𝑥 (𝑓 ))
33: 𝐶ℎ𝑎𝑛𝑔𝑒𝑃𝑜𝑖𝑛.𝑃𝑣𝑎𝑙 ← 𝑃𝑒𝑡𝑡𝑖𝑡𝑇𝑒𝑠𝑡 (𝐶ℎ𝑎𝑛𝑔𝑒𝑃𝑜𝑖𝑛𝑡𝑠, 𝑟 )
34: 𝐹𝑖𝑛𝑎𝑙𝐶𝑃 ← 𝐶ℎ𝑎𝑛𝑔𝑒𝑃𝑜𝑖𝑛.𝑃𝑣𝑎𝑙 < 𝑡ℎ𝑟
35: while 𝑘 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝐹𝑖𝑛𝑎𝑙𝐶𝑃) do
36: 𝐶𝑁𝑉𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 [𝑘] ← 𝑅𝑜𝑢𝑛𝑑 (𝑚𝑒𝑎𝑛(𝑓𝑘+1, 𝑓𝑘 )
37: end while

38: return CNVsegments

39: end function

of Gaussian white noise to each of the simulated read count sig-

nal. We used a range of signal to noise ratios (SNRs) from 1 to 10,

where SNR is defined as the ratio of the signal power (meaningful

information) to the background noise power (unwanted signal).

3.2 Simulated sequencing data

We used CNSC [29], a single-cell CNV simulator to simulates se-

quencing data with different ploidies. Using the simulator we gener-

ated 20 synthetic data sets with different ploidies of 1.55, 2.1, 3.3.8,
5.26. We benchmarked three CNV detection methods for DNA SCS

data: Our method (SCTSCNV), Ginkgo, and HMMcopy by using

these data.

Figure 2: Breakpoint accuracy before and after applying

cross-analysis for different level of noise, 𝜎2𝑁

Table 1: Overall Performance of the ProposedCNVdetection

Method Using the Real SCS data

Methods Sensitivity FDR

Our proposed method 53.14% 41.20%

HMMcopy 51.45% 53.52%

Ginkgo 55.2% 55.23%

3.3 Real data

We downloaded 67 cells generated by the study in [13]. Sequencing

data are available at SRA under accession code SRP188831. The

study also provides a CNV list of the data using the baseqCNV [13]

tool. Due to the lack of ground truth, we evaluated the performance

of our method using the provided CNV list. We also used another

real biological data set that is available at SRA under accession code

SRP114962. We do not have a CNV list as a benchmark for this

dataset. We compared the detected amplified and deleted genes by

HMMcopy, Ginkgo and our developed method.

4 RESULTS

4.1 Results on simulated read count signal

Using the simulated data, we evaluated the performance of the

proposed cross-cell analysis approach. The simulated data consists

of 6 clusters, and each cluster has cells with the same ploidy and

breakpoint locations. We applied the postprocessing part of the

proposed methods to the detected CNVs from the simulated read

count signal. Figure 2 shows the performance of our method in de-

tecting breakpoints. Breakpoints of each detected segment indicate

the start and end position of the segment in the genome. In this

analysis, breakpoint accuracy is defined as the percentage of the

number of times the start and end points of detected CNV segments

are exactly the same as those of the known CNV segments from the

gold standard. As can be seen in Figure 2, using the cross-cell anal-

ysis approach increases the breakpoint accuracy. It can be seen that

our proposed cross-cell model improves the breakpoint detection

accuracy significantly especially when the level of noise is high.
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Figure 3: The performance of CNV detection tools using

simulated sequencing data with different ploidies.

Figure 4: Venn diagrams of the average of the number of

truly detected CNV genes from 3 tools: SCTSCNV, Ginko

and HMMCopy, (a) amplified genes, (b) deleted genes.

4.2 Results on the simulated sequencing data

Using simulated sequencing data, we also compared the perfor-

mance of our proposed method with those of three popular CNV

detection tools: Ginkgo, HMMcopy and DNAcopy using simulated

data with different ploidy. We annotated the detected CNV seg-

ments to obtain gene lists. We used the "cghMCR" R package from

Bioconductor (http://bioconductor.org/packages/cghMCR/) to iden-

tify CNV genes using Refseq gene identifications. The average of

sensitivities, and FDRs are shown in Figure 3, when comparing

CNV genes. The data set contains 5 clusters with different ploidies.

As can be seen in Figure 3, all the methods provide high sensitivities.

The proposed model provide lower FDRs for most of the ploidies

compared to the other methods.

4.3 Results on the real data

We compared the performance of our proposed method with those

of the two popular SCS CNV detection tools, Ginko and HMMCopy

using the real sequencing data (67 cells) explained in the Data Sets

Section. The average sensitivity and FDR of the CNV detection

tools on real SCS data are shown in Table 1. Our proposed method,

SCTSCNV, outperforms HMMcopy and Ginkgo in detecting CNVs.

Ginkgo uses a variable size approach for binning, and HMMcopy

uses a fixed size to generate read count signal. These results show

that performing an optimal window size approach can lead to a

better performance of SCS CNV detection. Another reason for the

better performance of our approach is the use of statistical tests

to identify outliers and delete or modify them: the preprocessing

part contains a very efficient outlier bin removal approach, the seg-

mentation part identifies non-significant breakpoints and removes

them, and the postprocessing part uses Z-score to identify outlier

breakpoints and modifies them.

Also, using the other data set with 371 cells explained in the the

Data Sets section, we compared amplified and deleted genes identi-

fied by SCTSCNV, Ginko and HMMCopy. Using a Venn diagram as

shown in Figure 4, we observed that the proposed method has the

largest shares of amplified and deleted genes compared to Ginko

and HMMCopy. It means that our method can identify more true

CNV genes, because compared to the other tools, more of its de-

tected CNV genes are also detected by the other tools. Nevertheless,

as also reported by studies on CNV tools for bulk sequencing data,

the consistency among tools in calling CNV genes using SCS data

is not high.

5 CONCLUSION

Single-cell DNA sequencing has emerged as a popular and powerful

tool to assess genomic heterogeneity. This technology is widely

used in stem cell, neuron, and cancer studies. One fundamental con-

cern in analysing SCS data is the existence of high level of noise and

biases in the data. Numerous technological errors can be introduced

during the three major stages of cell isolation, genome amplifica-

tion, and sequencing. Also, the lack of coverage and the extremely

non-uniform genome-wide read counts is often observed in raw

SCS coverage data. In this work, we developed a comprehensive

pipeline to identify CNVs using SCS data. Our proposed method

consists of preprocessing, segmentation, and postprocessing parts.

For the preprocessing part, we developed a method to estimate the

optimal window size for counting reads by minimizing AIC across

different window sizes. For the segmentation part, we developed a

method based on the Taut String algorithm to detect CNV segments

and to assign p-values to change points based on the Pettitt test. For

the postprocessing part of our method, we clustered cells using a

cross-cell analysis based on Z-score to improve CNV detection. We

showed that using advanced segmentation methods and applying



BCB ’21, August 1-4, 2021, Virtual Event, USA Fatima Zare, et al.

pre/postprocessing analysis such as using optimal window size for

generating read count signals, filtering outlier read counts, filtering

low significant breakpoints, adjusting outlier breakpoints using

breakpoints of similar cells, can help improving CNV detection for

SCS data. We conclude that CNV detection in SCS data is still in its

early stage. Single Cell DNA sequencing data are being more preva-

lent and interest in analysing CNV using SCS data is increasing.

As a result, because SCS technology introduces unique challenges

in data analysis and unlike bulk sequencing, SCS data sets contain

many cells (thousands of cells), developing new approaches to ad-

dress the new challenges and take advantage of information across

cells to identify CNVs is necessary.

ACKNOWLEDGMENTS

This study was supported by the National Institutes of Health (NIH)

grant No. R00LM011595, PI: Nabavi and the National Science Foun-

dation (NSF) under grant No. 1942303, PI: Nabavi.

REFERENCES
[1] [n.d.]. Picard Tools - By Broad Institute. http://broadinstitute.github.io/picard/
[2] Can Alkan, Bradley P. Coe, and Evan E. Eichler. 2011. Genome structural variation

discovery and genotyping. Nature Reviews Genetics 12, 5 (May 2011), 363–376.
https://doi.org/10.1038/nrg2958

[3] Philipp Angerer, Lukas Simon, Sophie Tritschler, F Alexander Wolf, David Fis-
cher, and Fabian J Theis. 2017. Single cells make big data: New challenges and
opportunities in transcriptomics. Current Opinion in Systems Biology 4 (2017),
85–91.

[4] Bjorn Bakker, Aaron Taudt, Mirjam E. Belderbos, David Porubsky, Diana C. J.
Spierings, Tristan V. de Jong, Nancy Halsema, Hinke G. Kazemier, Karina
Hoekstra-Wakker, Allan Bradley, Eveline S. J. M. de Bont, Anke van den Berg,
Victor Guryev, Peter M. Lansdorp, Maria Colomé-Tatché, and Floris Foijer. 2016.
Single-cell sequencing reveals karyotype heterogeneity in murine and human ma-
lignancies. Genome Biology 17, 1 (Dec. 2016), 115. https://doi.org/10.1186/s13059-
016-0971-7

[5] Álvaro Barbero and Suvrit Sra. 2014. Modular proximal optimization for multidi-
mensional total-variation regularization. arXiv:1411.0589 [math, stat] (Nov. 2014).
http://arxiv.org/abs/1411.0589 arXiv: 1411.0589.

[6] Timour Baslan, Jude Kendall, Linda Rodgers, Hilary Cox, Mike Riggs, Asya
Stepansky, Jennifer Troge, Kandasamy Ravi, Diane Esposito, B Lakshmi, Michael
Wigler, Nicholas Navin, and James Hicks. 2012. Genome-wide copy number
analysis of single cells. Nature Protocols 7, 6 (June 2012), 1024–1041. https:
//doi.org/10.1038/nprot.2012.039

[7] Daniel J Benjamin, David Cesarini, Matthijs JHM van der Loos, Christopher T
Dawes, Philipp DKoellinger, Patrik KEMagnusson, Christopher F Chabris, Dalton
Conley, David Laibson, Magnus Johannesson, and others. 2012. The genetic
architecture of economic and political preferences. Proceedings of the National
Academy of Sciences 109, 21 (2012), 8026–8031.

[8] Hao Chen, John M. Bell, Nicolas A. Zavala, Hanlee P. Ji, and Nancy R. Zhang.
2015. Allele-specific copy number profiling by next-generation DNA sequencing.
Nucleic Acids Research 43, 4 (Feb. 2015), e23–e23. https://doi.org/10.1093/nar/
gku1252

[9] Haeran Cho and Piotr Fryzlewicz. 2011. Multiscale interpretation of taut string
estimation and its connection to Unbalanced Haar wavelets. Statistics and Com-
puting 21, 4 (Oct. 2011), 671–681. https://doi.org/10.1007/s11222-010-9200-5

[10] Xiao Dong, Lei Zhang, Xiaoxiao Hao, Tao Wang, and Jan Vijg. 2019. SCCNV: a
software tool for identifying copy number variation from single-cell whole-genome
sequencing. preprint. Bioinformatics. https://doi.org/10.1101/535807

[11] Lutz Dümbgen, Arne Kovac, et al. 2009. Extensions of smoothing via taut strings.
Electronic Journal of Statistics 3 (2009), 41–75.

[12] Jane Fridlyand, Antoine M. Snijders, Dan Pinkel, Donna G. Albertson, and Ajay N.
Jain. 2004. Hidden Markov models approach to the analysis of array CGH data.
Journal of Multivariate Analysis 90, 1 (July 2004), 132–153. https://doi.org/10.
1016/j.jmva.2004.02.008

[13] Yusi Fu, Fangli Zhang, Xiannian Zhang, Junlong Yin, Meijie Du, Mengcheng Jiang,
Lu Liu, Jie Li, Yanyi Huang, and Jianbin Wang. 2019. High-throughput single-
cell whole-genome amplification through centrifugal emulsification and eMDA.

Communications Biology 2, 1 (Dec. 2019), 147. https://doi.org/10.1038/s42003-
019-0401-y

[14] Tyler Garvin, Robert Aboukhalil, Jude Kendall, Timour Baslan, Gurinder S Atwal,
James Hicks, Michael Wigler, and Michael C Schatz. 2015. Interactive analysis
and assessment of single-cell copy-number variations. Nature Methods 12, 11
(Nov. 2015), 1058–1060. https://doi.org/10.1038/nmeth.3578

[15] Charles Gawad, Winston Koh, and Stephen R Quake. 2016. Single-cell genome
sequencing: current state of the science. Nature Reviews Genetics 17, 3 (2016),
175.

[16] Arief Gusnanto, Charles C. Taylor, Ibrahim Nafisah, Henry M. Wood, Pamela
Rabbitts, and Stefano Berri. 2014. Estimating optimal window size for analysis of
low-coverage next-generation sequence data. Bioinformatics 30, 13 (July 2014),
1823–1829. https://doi.org/10.1093/bioinformatics/btu123

[17] Byungjin Hwang, Ji Hyun Lee, andDuhee Bang. 2018. Single-cell RNA sequencing
technologies and bioinformatics pipelines. Experimental & Molecular Medicine
50, 8 (Aug. 2018), 96. https://doi.org/10.1038/s12276-018-0071-8

[18] Kristin A. Knouse, Jie Wu, and Angelika Amon. 2016. Assessment of megabase-
scale somatic copy number variation using single-cell sequencing. Genome
Research 26, 3 (March 2016), 376–384. https://doi.org/10.1101/gr.198937.115

[19] Jack Kuipers, Mustafa Anıl Tuncel, Pedro Ferreira, Katharina Jahn, and Niko
Beerenwinkel. 2020. Single-cell copy number calling and event history reconstruc-
tion. preprint. Cancer Biology. https://doi.org/10.1101/2020.04.28.065755

[20] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,
Gabor Marth, Goncalo Abecasis, Richard Durbin, and others. 2009. The sequence
alignment/map format and SAMtools. Bioinformatics 25, 16 (2009), 2078–2079.

[21] Hancong Liu, Sirish Shah, and Wei Jiang. 2004. On-line outlier detection and
data cleaning. Computers & Chemical Engineering 28, 9 (Aug. 2004), 1635–1647.
https://doi.org/10.1016/j.compchemeng.2004.01.009

[22] Adam B Olshen, ES Venkatraman, Robert Lucito, and Michael Wigler. 2004.
Circular binary segmentation for the analysis of array-based DNA copy number
data. Biostatistics 5, 4 (2004), 557–572.

[23] Fidel Ramírez, Devon P Ryan, Björn Grüning, Vivek Bhardwaj, Fabian Kilpert,
Andreas S Richter, Steffen Heyne, Friederike Dündar, and Thomas Manke. 2016.
deepTools2: a next generation web server for deep-sequencing data analysis.
Nucleic Acids Research 44, W1 (July 2016), W160–W165. https://doi.org/10.1093/
nar/gkw257

[24] Cristian R. Rojas and Bo Wahlberg. 2015. How to monitor and mitigate stair-
casing in L1 trend filtering. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, South Brisbane, Queensland, Aus-
tralia, 3946–3950. https://doi.org/10.1109/ICASSP.2015.7178711

[25] Jeremy J. Shen and Nancy R. Zhang. 2012. Change-point model on nonho-
mogeneous Poisson processes with application in copy number profiling by
next-generation DNA sequencing. The Annals of Applied Statistics 6, 2 (June
2012), 476–496. https://doi.org/10.1214/11-AOAS517

[26] Sarah A Vitak, Kristof A Torkenczy, Jimi L Rosenkrantz, Andrew J Fields, Lena
Christiansen, Melissa H Wong, Lucia Carbone, Frank J Steemers, and Andrew
Adey. 2017. Sequencing thousands of single-cell genomes with combinatorial
indexing. Nature Methods 14, 3 (March 2017), 302–308. https://doi.org/10.1038/
nmeth.4154

[27] RujinWang, Dan-Yu Lin, and Yuchao Jiang. 2019. SCOPE: a normalization and copy
number estimationmethod for single-cell DNA sequencing. preprint. Bioinformatics.
https://doi.org/10.1101/594267

[28] Xuefeng Wang, Hao Chen, and Nancy R. Zhang. 2018. DNA copy number
profiling using single-cell sequencing. Briefings in Bioinformatics 19, 5 (2018),
731–736. https://doi.org/10.1093/bib/bbx004

[29] Nickolas Navin Luay Nakhleh Xian Fan, Mohammadamin Edrisi. 2019. CNSC.
https://bitbucket.org/xianfan/cnsc_simulator/src/master/

[30] Simone Zaccaria and Benjamin J. Raphael. 2020. Characterizing allele- and
haplotype-specific copy numbers in single cells with CHISEL. Nature Biotechnol-
ogy (Sept. 2020). https://doi.org/10.1038/s41587-020-0661-6

[31] Hans Zahn, Adi Steif, Emma Laks, Peter Eirew, Michael VanInsberghe, Sohrab P
Shah, Samuel Aparicio, and Carl L Hansen. 2017. Scalable whole-genome single-
cell library preparation without preamplification. Nature Methods 14, 2 (Feb.
2017), 167–173. https://doi.org/10.1038/nmeth.4140

[32] Fatima Zare, Sardar Ansari, Kayvan Najarian, and Sheida Nabavi. 2018. Copy
number variation detection using partial alignment information. In 2018 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, Madrid,
Spain, 2435–2441. https://doi.org/10.1109/BIBM.2018.8621529

[33] Fatima Zare and Sheida Nabavi. 2019. Copy Number Variation Detection Using
Total Variation. In Proceedings of the 10th ACM International Conference on Bioin-
formatics, Computational Biology and Health Informatics. ACM, Niagara Falls NY
USA, 423–428. https://doi.org/10.1145/3307339.3342181


