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Abstract—Single-cell RNA sequencing (scRNAseq) makes it
possible to analyze gene expression profiles at the individual cell
scale and to discover intrinsic and extrinsic cellular processes in
biological research. Cell clustering is one of the most important
steps in analyzing scRNAseq data. With rapid developments of
single cell sequencing technologies, scRNAseq data grow in size
and heterogeneity. However, traditional clustering methods like
Kmeans with or without dimension reduction methods, cannot
handle high sparse and massive scRNAseq data. Although some
deep learning based methods have been proposed to denoise the
data and cluster cells simultaneously, learning informative repre-
sentations of cells for accurate cell clustering is still a challenging
problem to be solved. In this work, we propose a deep learning
model that combines a deep graph convolutional network (GCN)
and a self-supervised mechanism. The GCN considers not only
the gene expressions but also the relationship between cells to
represent cells. The self-supervised mechanism is employed to
provide the clustering assignments of cells. Moreover, we utilize
the negative log-likelihood of the negative binomial (NB) function
as loss in the data reconstruction due to the assumption that
genes expression values can be represented by the NB model.
We compared the performance of our proposed method with
those of the existing clustering methods for scRNAseq data and
conventional clustering methods. Results show that our method
achieves better performance in terms of accuracy, adjusted
random index (ARI), and normalized mutual information (NMI).

Index Terms—Single cell RNA sequencing, single cell cluster-
ing, deep learning, self-supervised learning, graph convolutional
neural network.

I. INTRODUCTION

Single-cell RNA sequencing (scRNAseq) enables re-
searchers to study gene expressions at the cellular level. Cell
clustering is an essential step in scRNAseq data analysis.
Through the cell clustering analysis, new cell types and
cell states can be identified a nd ¢ haracterized. K means and
hierarchical clustering are popular basic clustering methods
that have been used for cell clustering. Dimension reduction
methods, like t-Distributed Stochastic Neighbor Embedding
(t-SNE) [12] and principal coordinate analysis (PCA), are
often used to reduce the dimension of gene expression data
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before performing Kmeans clustering. Recently, several soft-
ware tools have been proposed for cell clustering using scR-
NAseq data and employing Kmeans or hierarchical clustering
methods. CIDR [11] has been proposed to address both zero
imputation and cell clustering. CIDR first imputes zeros and
performs dimension reduction by PCA, then it applies the
hierarchical clustering on the gene expression matrix after
reducing the data dimension. The heart of this method is
designing a new dissimilarity metric based on the imputed
gene expression values. Seurat [14] is a package that includes
a series of processing steps: data normalization, transforma-
tion, decomposition, and Kmeans clustering, to cluster cells
using gene expression values. RaceID [5] proposes to use
the K-medoids instead of Kmeans, which can improve the
clustering performance. SIMLR [20] measures the pairwise
cell similarity based on multi-kernels. Then the learned cell-
cell similarity is used for visualization, dimension reduction,
and Kmeans clustering. SC3 [8] is an ensemble clustering
method that computes the consensus matrix using the cluster-
based similarity partitioning algorithm (CSPA) [16]. Tt first
reduces the dimension of the gene expression matrix and then
computes the pairwise cell distance for clustering. SAFE-
clustering [22] is an aggregating method that combines the
clustering results from multiple individual methods: CIDR,
SC3, Seurat, and t-SNE with Kmeans.

Recently, deep learning based methods have gained interest
in the bioinformatics field and several deep learning based
methods for cell culstering have been introduced such as
DEC, scDeepCluster, scziDesk and DESC. Deep embedded
clustering (DEC) [21] proposed to use a self-supervised
mechanism to learn feature representations and do clustering
analysis simultaneously. It uses a self-supervised mechanism
because, unlike the supervised classification problem that the
learning models are trained with labeled data, unsupervised
clustering models do not require labeled samples. In the self-
supervised training, the network is trained iteratively with
an auxiliary target distribution (P) that is derived from an
estimated distribution (Q). scDeepCluster [17] combines the
deep autoencoder method (DCA) [4] and the DEC method
for analyzing scRNAseq data. DCA is used to denoise the
data, and instead of using mean squared error (MSE) as the
loss function, DCA considers using the negative log likelihood
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of the zero inflated negative binomial (ZINB) model as the
loss. scziDesk [3], similar to scDeepCluster [17], combines
the DCA and DEC methods. Compared with scDeepCluster,
it proposes to preselect a subset of genes as features to reduce
the time consumption and considers the distance between
similar cells in the loss function. DESC [10] separates the
data denoising and data clustering. It firstly pretrains an
autoencoder network with MSE loss to denoise the data, and
secondly computes the KL. divergence as loss for clustering.

All the methods above only use the data itself to do the clus-
tering, but seldom consider the underlying relationships in the
data when learning the latent representation of cells. Inspired
by the work in [2], we propose to use a graph convolutional
network (GCN) [7] to consider both the relationship among
cells, through graph structure, and genes expression values,
through node (cell) attributes, for learning the representation of
cells. In our proposed end-to-end self-supervised deep learning
network, we combine the GCN and an unsupervised deep
clustering method. We first use the K nearest neighbors (KNN)
to construct the cell-cell input graph, which can reveal the
underlying structure of the cell relationship. Then, we use the
GCN and a fully-connected (FC) network module to learn the
latent representation of the cells. In the reconstruction part,
a hidden layer is used to form the target distribution that is
employed for computing the KL divergence, and the negative
binomial (NB) distribution is considered to model scRNAseq
data. We consider the dispersion and mean parameters of the
NB model in the reconstruction part. The code is available at
https://github.com/NabaviLab/sigDGCNb.

Our main contributions in this study are: i) employing
a parallel GCN and FC network to encode the scRNAseq
data, ii) considering both cell similarity and negative binomial
distribution to better model the data, and iii) using a novel self-
supervised approach to conduct the clustering assignments in
an end-to-end trained network.

The rest of the paper is organized as follows: Section II
presents the main methods. Section III introduces the real
datasets and data preprocessing. In Section IV, results are
discussed to show the effectiveness of the proposed method.
Section V concludes the paper.

II. METHODS

The overall structure of the proposed model is shown in
Fig. 1. The proposed clustering model consists of two parallel
networks —a GCN and an FC network— and a reconstruction
part. Gene expression values and the cell-cell network are the
inputs of the GCN; while the gene expression values are the
inputs of the FC network. The weighted sum of the features
learned by the GCN and those learned by the FC network
in each layer is used as the input of the next layer. In the
reconstruction part, there are three channels —clustering mod-
ule, self-supervised module, and negative binomial module—
in the output part that are corresponded to different parts of
the overall loss function. The output of the clustering module
indicates the clustering assignment for each cell.
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A. Cell-cell network

We use KNN to construct the cell-cell graph from gene ex-
pression data. Given the gene expression matrix X € RM*N
where M is number of cells and N is number of selected
genes, we first compute the distance between each pair of
cells. For each cell, we use KNN to select its top K(= 5)
nearest neighbors and construct the connections between them.
Thus, we construct the binary cell-cell adjacency matrix
A € RM*M_ where the ones in the matrix represent the
connections between pairs of cells. We examined the effect
of selecting different /X on the performance of the model that
is shown in the Results section.

B. Graph convolutional network and fully-connected network
modules

Although the GCN takes the structure (cell-cell graph) and
node attributes (gene expression values) as input and extracts
the community features for each cells with the influence of
the relationships between the neighbour cells, it lacks the
individual features inner the nodes (cells). Thus, we utilize a
parallel encoder network, GCN and FC with the same number
of layers L, to learn the individual latent representation for
the nodes. The FC layers are defined as:

0" = ReLU(O""V x W) +- b)), (1)
where OU~1) s the input of the FC layer  and we denote the
gene expression value matrix X as O(©). ngc) and b;lc) are
weight parameters of layer [ with [ € 1,...L.

Given graph G = (V, E), where V represents the nodes
(cells) and E represents the edges between the nodes, the
gene expression values across one cell can be regarded as
the node attributes. The adjacency matrix A € RM*M jg
used to represent the node connections (cell-cell adjacency
matrix). The adjacency matrix is further normalized to L =
D~'/2(A + I)D'/2, where D € RM*M js a diagonal matrix
and I € RM*M g the identity matrix. The GCN layer is
defined as following:

H = ReLULX""DW{) ), )
where X(—1 ¢ RMxFU'™V ¢ the input and Wg(]lc)n is the
parameter matrix that needs to be updated. For the first GCN
layer, X(9) is X while for the following GCN layers, X is
the weighted sum of the output of the GCN layer and the FC
layer:

XD =aHY + (1 - a)0W. 3)

Given the gene expression value matrix X, the encoder part
(GCN and FC network) outputs the latent representation of
cells X(B) ¢ RMxF™ " yhere F(L) is the dimension of the
feature map. We use H and H to denote the feature map X (%)
and H") in the following sections.
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Fig. 1. Structure of the proposed deep learning network (sigDGCNDb) for single cell clustering.

C. Self-supervised module

The GCN and FC network modules learn the latent repre-
sentation of the cells, however, they cannot be directly used for
clustering. We employ a self-supervised method to provide the
soft clustering labels for the cells. Given the embedded feature
map output by the last GCN layer (H), we use the Student’s t
distribution [12] as a kernel to measure the similarity between
the embedded feature of each cell h; and each cluster centroid
Cj.

(1+Ihi —c;*/t)"=

qij = S
2y (LA s —cjr[[2/1) 7

where h; is the i-th row in the latent feature map H and
c; is the feature of cluster j. For the initialization of c;, we
pretrain an autoencoder network and utilize Kmeans on the
latent features. ¢ is the degree of freedom of the Student’s
t-distribution where the default value is 1. Q = [g;;] is
the soft assignment of all the cells, which represents the
probability that cell 7 belongs to cluster j. Next, an auxiliary
target distribution (P) is defined as equation (5) to help
alternatively optimize the data representation. The components
of ) with higher values have more confidence in assigning
clustering labels which contribute more in generating the
target distribution P. The target distribution P is then used
to supervise ). P and @ are learned alternatively, as a result,
P an @ have higher confidence in clustering and the clusters
are refined alternatively.

“4)

. quj/ > i
Y )
g'#5\Qig | 22i T’
The auxiliary target distribution P puts more emphasis on

pairwise points with higher similarity, thus it makes cells
get closer to the cluster centroids. With the auxiliary target

&)
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distribution P and the estimated distribution (), we define the
KL-divergence loss between them as:

Z Z Dij lOg

By minimizing the KL-divergence loss, the target distribution
P and the estimated distribution () are updated alternatively,
which is regarded as a self-supervised mechanism.

Ly = KL(P||Q) = (6)

D. Clustering module

The parallel network of the GCN and FC network modules
learns the latent features of the nodes (cells) in the graph.
We implement a GCN layer that is activated by the softmax
function to generate the clustering assignment.

Z = softmaz(LAW), (7

where Z € RM*C represents a clustering assignment and C
is the number of the clusters. To supervise the updating of
distribution Z, we define the loss function as:

Z Zp”logp” .

Ly = KL(P||Z) = (8)

E. Negative binomial module

We assume gene expression value X;; follows the negative
binomial (NB) distribution with mean f;; and dispersion ;;:
_ (X5 +6i5)

I'(Xs; + 1)T(0s5)

0 y

(Gl

O + i

Pn(Xijlpiz, i)
_ 9
g

s
Oij + ki

)

where f1;; and 6;; are the parameters to be estimated. We
use a FC network as the decoder network to estimate these
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parameters. Given H = X@) as the embedded feature map,
the decoder network is defined as:

D = ReLU(f(H)),
p=0o1(DW,), (10)
0= UQ(DW9)7

where o1 and o9 are activation function. Since the mean p
and dispersion 0 are non-negative, we use ReLU(-) for oy
and exp(-) for oo. We take the negative log-likelihood of the
NB distribution with the estimated mean and dispersion pa-
rameters, and the MSE of the reconstruction between the input
gene expression values and the estimated mean parameters for
the loss functions:

DR

1j=1

M N
*ZZIOg PNB ijmzja ’LJ))

i=1 j=1

M:

7

(11)

where Xij is the reconstructed Xj;.

FE. Overall loss function

We utilize this self-supervised training mechanism to train
the proposed end-to-end deep network cell clustering model.
The total loss is a combination of the KL-divergence losses,
the reconstruction loss, and the loss of the NB model:

L=MXLi+ XLo+ A3L3 + Ay Ly, (12)

where A1, A2, A3, Ay are hyperparameters that controls the
relative importance of each part of the total loss. The default
value of A\; and A is 0.01, A3 is 1, and A4 is 0.001.

The proposed model has 4 layers in the GCN and FC
network modules (L = 4) and the dimension in each layer
is 128, 64, 32, 10, respectively. The decoder NB module has
2 layers that have the dimensions of half of the number of
genes (IN/2) and the original input size N. Note that we did
not use all the genes as input, instead we chose top N = 500
genes with high variance. Similar to the other methods we
need to define the number of clusters C first.

III. DATASETS

To evaluate the performance of the proposed clustering
method, we used five datasets: Usoskin , Baron Human, Baron
Mouse, Muraro, and Segerstolpe. First, we preprocessed all
the datasets by removing genes that are not expressed across
all the cells. Then, we normalized all the datasets by min-max
scaling and applied log-transformation. We used the cell labels
given by the authors as the ground truth for these datasets.

The Usoskin dataset [18] is available in Gene Expression
Omnibus (GEO) dataset with accession number GSE59739.
This dataset contains 622 cells which are classified into 4
groups: 139 neurofilament containing (NF), 81 peptidergic
nociceptors (PEP), 169 non-peptidergic nociceptors (NP), and
233 tyrosine hydroxylase containing (TH). The filtered dataset
has 13776 genes expressed in 622 cells after preprocessing.
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The Baron Mouse [1] and the Baron Human [1] datasets
are available on GEO with access number GSE84133. They
are from the mouse and human pancreas, respectively. The
cells are sequenced using the inDrop protocol. The filtered
BaronMouse dataset has expression data of 1,886 cells and
14,861 genes from 13 cell populations. In the BaronHuman
dataset, there are expression data of 8,569 cells and 17,499
genes from 14 cell populations after filtering.

The Muraro [13] and Segerstolpe [15] datasets are from the
human pancreas. The Muraro dataset is available on GEO with
access number GSE85241 and sequenced by the CEL-Seq2
protocol. After filtering the dataset, there are expression data
of 2,122 cells and 18,915 genes, where the cells are annotated
to 9 classes. The Segerstolpe dataset includes expression data
of 2,133 cells and 22,757 genes, sequenced by the SMART-
Seq2 protocol, from 13 cell populations.

IV. RESULTS
A. Metrics to evaluate the clustering performance

We used three metrics to evaluate the performance of
cell clustering: Adjusted Random Index (ARI) [6], Normal-
ized Mutual Information (NMI) [19], and clustering accuracy
(ACC). ACC, ARI, and NMI evaluate the consistency between
the true clustering labels and the predicted clustering labels of
cells. The higher values of ACC, ARI, and NMI (closer to 1)
for a clustering method represent that the method has better
clustering performance. Assume we have two groups of clus-
ters X and Y of N data points, where X = X;,..., X;, .. X,
and Y =Y3,...Y;, .Y,

ARI is defined as following:

> () — 12 (5) 2 (9)1/(5)
32 (3) 5 (D1 -2 (D X, (5)/()]
where n;; is the number of common points in both cluster X;
and cluster Yj, a; = >, nyy, and bj = >, ny;.

NMI is defined as the mutual information (MI) between X
and Y normalized by the mean of the entropy of X and Y:

ARI = , (13)

_ MI(X,Y)
NMI = mean(H (X), H(Y))
'i%'x Nyl Moy Y
2.2 X))

where X; and Y are the number of elements in the i-th and j-
th cluster, respectively. The entropy of each cluster is defined
as:
| X
H(X)=- —1
(X) ; N

vl 1)
V)==) Glesr
j=1

To compute the clustering accuracy, we first employed
Hungarian [9] method to find the best match that map the

oo Xl
EN
(15)
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estimated clusters to the true clusters. The clustering accuracy

is defined as:

N 1if u; == MAP(v;)
N

where u; is the true clustering label for data point ¢, v; is
the assigned clustering label for data point i, MAP(v;) is the
mapping from v; to u,.

AC’C:Z

(16)

B. Evaluation of the clustering performance

To evaluate the performance of our proposed clustering
model, we compared the clustering results of our model with
those of six clustering tools developed for scRNAseq data
and three classical clustering methods: CIDR [11], SOUP
[23], SIMLR [20], RaceID [5], scziDesk [3], DESC [10],
t-SNE+Kmeans, PCA+Kmeans, and PCA-+hierarchical in
terms of ARI, NMI and accuracy. For t-SNE+Kmeans and
PCA+Kmeans/hierarchical, we first apply t-SNE [12] or PCA
to the datasets to reduce the dimension and then apply the
Kmeans or hierarchical methods for clustering.

0.8 1

0.0 —

Usoskin Muraro Segerstolpe BaronHuman  BaronMouse

[ sigDGCNb B DESC BB SOUP [T RacelD [IPCA+Kmeans
[ scziDesk HEEECIDR BB SIMLR BN t-SNE+Kmeans EEEE PCA-+hierachical

Fig. 2. Bar plots of the ARI values to show the performance of the scRNAseq
data clustering tools on five datasets.
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Fig. 3. Bar plots of the NMI values to show the performance of the scRNAseq
data clustering tools on five datasets.

Fig. 2 and Fig. 3 show the barplots of ARIs and NMIs of the
seven methods using the five datasets. As can be seen in Fig.
2, our proposed method, sigDGCND, achieves the best ARIs
across all the datasets except one. On the Usoskin dataset,
sigDGCND performs the best ARI of 0.693 and improves more
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TABLE I
COMPARISON OF ACCURACY BETWEEN SEVEN METHODS USING FIVE
REAL DATASETS

Methods Usoskin | Muraro Seger | Baron Baron
stolpe | Human | Mouse
sigDGCNb 0.792 0.852 0.786 0.686 0.793
scziDesk 0.545 0.812 0.478 0.55 0.654
DESC 0.523 0.594 0.566 0.556 0.624
CIDR 0.439 0.666 0.4 0.452 0.419
SOUP 0.373 0.627 0.279 0.688 0.532
SIMLR 0.288 0.699 0.336 0.407 0.315
RacelD 0.513 0.801 0.632 0.748 0.571
ESNE'" 0.562 0.721 0.406 0.569 0.550
means
ECA+ 0.547 0.783 0.433 0.543 0.536
means
PCA+ 0573 | 0641 | 0426 | 0607 | 0491
hierarchical

than 20% compared with the other methods. All the methods
perform relatively well on the Muraro dataset. RaceID has a
comparable ARI with that of our method on the Muraro dataset
and a better ARI on the Baron Human dataset, however, it
does not perform well on the Usoskin, Segerstolpe, and Baron
Mouse datasets. The same for SOUP that shows a better ARI
on the Baron Human dataset compared to our model, but much
worse on the other datasets. Compared with the autoencoder
based method scziDesk, our proposed model, sigDGCNDb, has
a better performance in terms of ARI. It indicates that the
integration of the data structure helps improving the learning
of latent features. As shown in Fig. 3, sigDGCNb also shows
the best performance in terms of NMI on the Usoskin and
Segerstolpe datasets and achieves the second best on the Baron
Mouse dataset. On the Muraro dataset, compared with the best
NMI of 0.831 our method has a comparable performance with
the NMI of 0.825.

In terms of clustering accuracy our proposed method also
shows a strong performance. The clustering accuracy, de-
scribed in the previous section (ACCs), of all the clustering
methods on the five datasets are shown in Table I. As can
be seen, sigDGCND provides higher accuracy on four datasets
and the third best accuracy (comparable with the best and the
second best) on the baron Human dataset. On the Usoskin
dataset, the ACC of our method is 21.9% more than the
second best of the other method. On the Segerstolpe, Baron
Mouse, and Muraro datasets, our method achieves the best
ACCs, which are 15.4%, 13.9%, and 4% more than the second
best ACCs, respectively. Especially compared to the other
authoencoder based model, scziDesk, our model has higher
clustering accuracy.

Fig. 4 shows the visualization of cells using the six clus-
tering methods on the Usoskin dataset. The dots represent
the cells and the colors represent the true labels of the cells
in the figure. For our proposed sigDGSNb method, we first
applied t-SNE on the learned 10-dimension features of the
cells. Then we used the two components of applying t-SNE
for the visualization. We did the same process for scziDesk
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Fig. 5. ARI values of selecting (a) different numbers of genes (V), (b) different number of nearest neighbors (K), (c) different A\; and A2 values.

method because it is an autoencoder-based method and it
outputs the learned features. For the other methods, we used
the outputs from their R packages to generate the visualization.
We can observe that our method can separate the groups better
for the cell clustering compared with the other methods.

C. Evaluation of the sensitivity to hyperparameters

In our method, we selected N = 500 genes that have the
highest variances across the dataset as input by default. We
evaluated the sensitivity of the proposed method to the number
of input genes. We selected the top 250, 500, 750, 1000, 1250,
1500 highest variant genes as the input for each dataset. The
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ARI values are shown as a heatmap in Fig. 5(a), where the red
color shows the higher ARI score and the blue color shows
the lower ARI score. The model performance for using 500
and 750 high variant genes does not show much difference.
Considering the time complexity, we selected the top 500
variable genes as the default input in our method. We need to
assign the number of nearest neighbors (/) when constructing
the cell-cell network. We varied the parameter K from 3 to
30 to see how this parameter affects the performance of the
clustering. It is observed that the ARIs using each dataset
do not change notably with changing parameter K as can be
seen in Fig. 5(b). Therefore, we can see that selecting a larger

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on May 16,2022 at 17:18:47 UTC from IEEE Xplore. Restrictions apply.



number of nearest neighbors does not add more information
and does not have a huge impact on the performance. We
also evaluated the sensitivity of choosing the hyperparameter
A1 and A9, mentioned in Section II. We varied A\; and Ao
(A1 = Ag) from 0.001 to 0.1 to examine the clustering
performance. From Fig. 5(c) we can see by selecting larger
A1 and Ao the proposed model performs better in terms of
ARI than by selecting smaller ones. It indicates that the model
benefits from the self-supervised module and the clustering
module.

V. CONCLUSION

In this study, we proposed a novel deep learning method,
named sigDGCNb, based on the self-supervised learning
mechanism for single-cell clustering. We developed an end-
to-end trained model that combines a graph convolutional
network and a fully connected networks to consider both the
relationship among cells —through a cell-cell network— and
gene expressions —through the node attributes in the graph.
To learn a powerful representation of cells, we considered
the negative binomial distribution to model scRNAseq gene
expression values and employed the negative log-likelihood of
the NB function as loss in the learning process in addition to
the conventional MSE loss. To provide the clustering assign-
ments of cells, we employed the self-supervised mechanism
and computed the KL divergence between the target and
estimated distributions as the self-supervised loss.

We compared the performance of our proposed method with
those of nine other clustering methods (six cell clustering tools
for scRNAseq data and three conventional clustering methods)
using five real datasets. To evaluate the clustering performance,
we used standard metric ARI, NMI, and clustering accuracy on
all the datasets. Results show that our method outperforms the
other methods. Compared with the other deep learning based
method, our method shows better ARI, NMI, and clustering
accuracy, which indicates that the model benefits from the
integration of the data structure and data attributes.

In conclusion, the proposed deep learning model which
integrates data structure and considers data likelihood shows
better performance. In future work, we will introduce the
attention mechanism to enhance the weights of the data
structure.

REFERENCES

[1] M. Baron, A. Veres, S. L. Wolock, A. L. Faust, R. Gaujoux, A. Vetere,
J. H. Ryu, B. K. Wagner, S. S. Shen-Orr, A. M. Klein, D. A. Melton,
and I. Yanai, “A Single-Cell Transcriptomic Map of the Human and
Mouse Pancreas Reveals Inter- and Intra-cell Population Structure,” Cell
Systems, vol. 3, no. 4, pp. 346-360.e4, Oct. 2016. [Online]. Available:
https://www.cell.com/cell-systems/abstract/S2405-4712(16)30266-6

D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, “Structural
Deep Clustering Network,” in Proceedings of The Web Conference
2020, ser. WWW °’20. New York, NY, USA: Association for
Computing Machinery, Apr. 2020, pp. 1400-1410. [Online]. Available:
https://doi.org/10.1145/3366423.3380214

L. Chen, W. Wang, Y. Zhai, and M. Deng, “Deep soft K-means
clustering with self-training for single-cell RNA sequence data,” NAR
Genomics and Bioinformatics, vol. 2, no. 2, Jun. 2020. [Online].
Available: https://doi.org/10.1093/nargab/lqaa039

[2]

[3]

2169

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and
F. J. Theis, “Single-cell RNA-seq denoising using a deep
count autoencoder,” Nature Communications, vol. 10, no. 1,
p.- 390, Jan. 2019, bandiera_abtest: a Cc_license_type: cc_by
Cg_type: Nature Research Journals Number: 1 Primary_atype:
Research Publisher: Nature Publishing Group Subject_term: Compu-
tational models;Machine learning;Statistical methods Subject_term_id:
computational-models;machine-learning;statistical-methods. ~ [Online].
Available: https://www.nature.com/articles/s41467-018-07931-2

D. Griin, M. Muraro, J.-C. Boisset, K. Wiebrands, A. Lyubimova,
G. Dharmadhikari, M. van den Born, J. van Es, E. Jansen, H. Clevers,
E. de Koning, and A. van Oudenaarden, “De Novo Prediction of
Stem Cell Identity using Single-Cell Transcriptome Data,” Cell Stem
Cell, vol. 19, no. 2, pp. 266-277, Aug. 2016. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985539/

L. Hubert and P. Arabie, “Comparing partitions,” Journal of
Classification, vol. 2, no. 1, pp. 193-218, Dec. 1985. [Online].
Available: https://link.springer.com/article/10.1007/BF01908075

T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” arXiv:1609.02907 [cs, stat], Feb. 2017,
arXiv: 1609.02907. [Online]. Available: http://arxiv.org/abs/1609.02907
V. Y. Kiselev, K. Kirschner, M. T. Schaub, T. Andrews, A. Yiu,
T. Chandra, K. N. Natarajan, W. Reik, M. Barahona, A. R. Green,
and M. Hemberg, “SC3 - consensus clustering of single-cell RNA-Seq
data,” Nature methods, vol. 14, no. 5, pp. 483—486, May 2017. [Online].
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410170/

H. W. Kuhn, “The Hungarian method for the
assignment  problem,” Naval Research  Logistics  Quarterly,
vol. 2, no. 1-2, . 83-97, 1955, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800020109.  [On-

line]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
X. Li, K. Wang, Y. Lyu, H. Pan, J. Zhang, D. Stambolian,
K. Susztak, M. P. Reilly, G. Hu, and M. Li, “Deep learning
enables accurate clustering with batch effect removal in single-
cell RNA-seq analysis,” Nature Communications, vol. 11, no. 1,
p. 2338, May 2020, bandiera_abtest: a Cc_license_type: cc_by
Cg_type: Nature Research Journals Number: 1 Primary_atype:
Research Publisher: Nature Publishing Group Subject_term: Machine
learning;RNA sequencing;Software;Statistical methods Subject_term_id:
machine-learning;rna-sequencing;software;statistical-methods. [Online].
Available: https://www.nature.com/articles/s41467-020-15851-3

P. Lin, M. Troup, and J. W. K. Ho, “CIDR: Ultrafast and
accurate clustering through imputation for single-cell RNA-seq data,”
Genome Biology, vol. 18, p. 59, Mar. 2017. [Online]. Available:
https://doi.org/10.1186/s13059-017-1188-0

L. v. d Maaten and G. Hinton, “Visualizing Data
using  t-SNE,”  Journal of Machine  Learning  Research,
vol. 9, no. Nov, pp. 2579-2605, 2008. [Online]. Available:

http://www.jmlr.org/papers/v9/vandermaaten08a.html

M. Muraro, G. Dharmadhikari, D. Griin, N. Groen, T. Dielen, E. Jansen,
L. van Gurp, M. Engelse, F. Carlotti, E. de Koning, and A. van Oude-
naarden, “A Single-Cell Transcriptome Atlas of the Human Pancreas,”
Cell Systems, vol. 3, no. 4, pp. 385-394.e3, Oct. 2016. [Online].
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5092539/

R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, and A. Regev,
“Spatial reconstruction of single-cell gene expression data,” Nature
Biotechnology, vol. 33, no. 5, pp. 495-502, May 2015, bandiera_abtest:
a Cg_type: Nature Research Journals Number: 5 Primary_atype:
Research  Publisher: Nature Publishing Group Subject_term:
Gastrulation;Machine learning;Statistical methods Subject_term_id:
gastrulation;machine-learning;statistical-methods. [Online]. Available:
https://www.nature.com/articles/nbt.3192

A. Segerstolpe, A. Palasantza, P. Eliasson, E.-M. Andersson, A.-
C. Andréasson, X. Sun, S. Picelli, A. Sabirsh, M. Clausen,
M. K. Bjursell, D. Smith, M. Kasper, C. Ammala, and
R. Sandberg, “Single-Cell Transcriptome Profiling of Human
Pancreatic Islets in Health and Type 2 Diabetes,” Cell Metabolism,
vol. 24, no. 4, pp. 593-607, Oct. 2016. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069352/

A. Strehl and J. Ghosh, “Cluster ensembles — a knowledge reuse
framework for combining multiple partitions,” The Journal of Machine
Learning Research, vol. 3, no. null, pp. 583-617, Mar. 2003. [Online].
Available: https://doi.org/10.1162/153244303321897735

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on May 16,2022 at 17:18:47 UTC from IEEE Xplore. Restrictions apply.



[17] T. Tian, J. Wan, Q. Song, and Z. Wei, “Clustering single-
cell RNA-seq data with a model-based deep learning approach,”
Nature Machine Intelligence, vol. 1, no. 4, pp. 191-198,
Apr. 2019, bandiera_abtest: a Cg_type: Nature Research Journals
Number: 4 Primary_atype: Research Publisher: Nature Publishing
Group  Subject_term: Computational —models;Machine learning
Subject_term_id: computational-models;machine-learning.  [Online].
Available: https://www.nature.com/articles/s42256-019-0037-0

[18] D. Usoskin, A. Furlan, S. Islam, H. Abdo, P. Lonnerberg, D. Lou,
J. Hjerling-Leffler, J. Haeggstrom, O. Kharchenko, P. V. Kharchenko,
S. Linnarsson, and P. Ernfors, “Unbiased classification of sensory
neuron types by large-scale single-cell RNA sequencing,” Nature
Neuroscience, vol. 18, no. 1, pp. 145-153, Jan. 2015. [Online].
Available: https://www.nature.com/articles/nn.3881

[19] N. X. Vinh, J. Epps, and J. Bailey, “Information Theoretic Measures
for Clusterings Comparison: Variants, Properties, Normalization and
Correction for Chance,” Journal of Machine Learning Research,
vol. 11, no. 95, pp. 2837-2854, 2010. [Online]. Available:
http://jmlr.org/papers/v11/vinh10a.html

[20] B. Wang, J. Zhu, E. Pierson, D. Ramazzotti, and S. Batzoglou,
“Visualization and analysis of single-cell RNA-seq data by kernel-based
similarity learning,” Nature Methods, vol. 14, no. 4, pp. 414-416,
Apr. 2017, bandiera_abtest: a Cg_type: Nature Research Journals
Number: 4 Primary_atype: Research Publisher: Nature Publishing
Group Subject_term: Gene expression;Genome informatics;Machine
learning;Statistical methods Subject_term_id: gene-expression;genome-
informatics;machine-learning;statistical-methods. [Online]. Available:
https://www.nature.com/articles/nmeth.4207

[21] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised Deep Embedding
for Clustering Analysis,” arXiv:1511.06335 [cs], May 2016, arXiv:
1511.06335. [Online]. Available: http://arxiv.org/abs/1511.06335

[22] Y. Yang, R. Huh, H. W. Culpepper, Y. Lin, M. I. Love, and Y. Li, “SAFE-
clustering: Single-cell Aggregated (from Ensemble) clustering for single-
cell RNA-seq data,” Bioinformatics, vol. 35, no. 8, pp. 1269-1277, Apr.
2019. [Online]. Available: https://doi.org/10.1093/bioinformatics/bty793

[23] L. Zhu, J. Lei, L. Klei, B. Devlin, and K. Roeder, “Semisoft clustering
of single-cell data,” Proceedings of the National Academy of Sciences,
vol. 116, no. 2, pp. 466471, Jan. 2019.

2170

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on May 16,2022 at 17:18:47 UTC from IEEE Xplore. Restrictions apply.



