
Convolution Padding in Recurrent Neural Networks
for Image Denoising with Limited Data

Alex Ho
Department of Applied Mathematics

University of California, Merced
Merced, CA 95343 USA

aho38@ucmerced.edu

Jacqueline Alvarez
Department of Applied Mathematics

University of California, Merced
Merced, CA 95343 USA
jalvarez94@ucmerced.edu

Roummel F. Marcia
Department of Applied Mathematics

University of California, Merced
Merced, CA 95343 USA

rmarcia@ucmerced.edu

Abstract—Recurrent neural networks are widely used in appli-
cations for time sequence prediction, such as speech recognition,
text prediction, and target tracking. These networks are not popu-
lar for image restoration tasks due to the fact that there is no time
dependency on images. In this paper, we repurpose a recurrent
neural network to recover images from noisy observations and
investigate convolutional padding to improve the results. Our
proposed method artificially creates a time dependency between
the image reconstructions at different iterations of the algorithm,
allowing us to use a recurrent neural network. In addition, we do
not train the network over the true images. Rather, we only utilize
the noisy image and the structure of the network to perform
image denoising tasks. We test our method using images from
the CIFAR-10 dataset and present our results using the structural
similarity index.

Index Terms—Image denoising, recurrent neural networks,
convolutional padding, limited data

I. INTRODUCTION

Recurrent neural networks (RNNs) have shown to be very
effective in many supervised learning applications. In many se-
quence prediction problems, such as text or speech, an RNN is
able to create promising predictions by using information from
all time-steps. Usually the network is used to discover patterns
that exist within the data between different time-steps. The
structure of the network allows correlations between elements
within a sequence to be explored during training. However,
RNNs are not widely used in image proccessing applications
because images do not possess a sequential structure. Here, we
use RNNs for image denoising in contrast to other machine
learning approaches (see e.g., [1]–[5]). In particular, by adding
a dependency of the previous time-step on an input image for
all the time-steps, a sequence of data is created for images that
will allow an RNN to do its intended task [6], [7]. In addition,
we study various types of convolutional padding to improve
the results.

II. PROBLEM FORMULATION

Recurrent neural networks have been shown to effectively
process sequential data for tasks such as speech recognition,
target tracking, and a variety of others [8]–[10]. Unlike feed-
forward networks, RNNs contain feedback loops which cor-
respond to an internal memory. Therefore these networks can

This research is partially supported by the National Science Foundation
grants DMS 1840265 and IIS 1741490. A. Ho and J. Alvarez contributed
equally to this paper.

draw correlations between different elements in the sequence,
making them useful for time-dependent problems [11], [12].
A typical RNN structure can be described by the following:

ht = tanh(Wht−1 + Uxt + b)
ŷt = softmax(Vht + c)

where W,U and V are weight matrices, b and c are bias
vectors, xt is the input vector and ht is the current state used
to find the predicted output vector ŷt where time goes from
t = 0 to t = T .

Related work. Recurrent neural networks are not traditionally
used in image processing applications, however there has been
recent work in this field. For example, RNNs have been
utilized for hyperspectral imaging denoising [16]. In addition,
Long Short-Term Memory (LSTM) networks have gained
popularity and have been used in image denoising methods
[14], [15]. However, these methods all require a traditional
training dataset and procedure.

In [13], the authors showed that the success of neural
networks for image restoration tasks, such as denoising, super-
resolution, and inpainting, is not solely based on the ability
of these networks to learn from the training data. Their
experiments demonstrated that the structure of a convolutional
neural network captures some of the image statistics prior to
training. The model presented in [13] is untrained, in the sense
that we do not require a training dataset with the true images.
Instead this formulation allows for the model to be applied in a
“plug and play” manner. The input to the network is a random
noise “image”, and so the only prior information comes from
the network itself. The model is optimized over a single noisy
image by solving

min
θ
||fθ(z)− x0||2

where z is image-sized Gaussian noise, θ is the randomly
initialized parameters of our model, fθ is the mapping from
z to an image x, and x0 is the noisy image. In this paper, we
perform image denoising by reformulating the problem in [13]
using a recurrent neural network. This formulation performs
the task of denoising while allowing for limited information
on the ground truth.

1699978-1-6654-5828-3/21/$31.00 ©2021 IEEE Asilomar 2021

20
21

 5
5t

h
A

si
lo

m
ar

 C
on

fe
re

nc
e

on
 S

ig
na

ls
, S

ys
te

m
s,

an
d

C
om

pu
te

rs
 |

97
8-

1-
66

54
-5

82
8-

3/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IE

EE
C

O
N

F5
33

45
.2

02
1.

97
23

31
3

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on May 16,2022 at 17:24:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The architecture of our recurrent neural network at time t takes in a
weighted sum of a random noise image zt as inputs and the output from the
previous time. The input is mapped onto a hidden state by U , a convolutional
encoder, and outputted as an image using V , a convolutional decoder.

III. PROPOSED METHOD

We have incorporated an autoencoder within a recurrent
neural network to help construct our hidden states and outputs.
The first part of an autoencoder is the encoder and its objective
is to reduce the dimension of the input and store it inside a
latent space representation. We will be using it as our function
to produce the hidden state. The latent space representation is
then passed on to the next time step as an input to construct
the hidden state of the next time step (see [17] for details). The
second part is the decoder, where it will take the information
stored within the latent space representation and use it to
reconstruct an image. In our case, it is what we use to
reconstruct images using the information stored within the
hidden state of the current time step. Finally, our result is
the output after the final time step. For the structure of the
autoencoder, we have chosen convolutional layers as the basis
of our encoder and decoder since fully-connected layers, or
linear functions, do not have the same denoising properties as
convolutional layers [13], [18]–[23].

Architecture. The architecture of the RNN takes the following
form:

zt = znoise × (1− ε) + f(zt−1)× ε
ht = Uφ(zt) + ht−1

f(zt) = tanh(Vθ(ht))

(1)

where U is the encoder with parameters φ, V is the decoder
with parameters θ, znoise is Gaussian noise, and zt is the
current input that is formulated as an auto-regressive Gaussian
model using ε [18], [24].

Encoder Decoder
Input Output Kernel Input Output Kernel

3 16 6 × 6 256 128 5 × 5
16 32 6 × 6 128 64 6 × 6
32 64 6 × 6 64 32 6 × 6
64 128 6 × 6 32 16 6 × 6

128 256 5 × 5 16 3 6 × 6

TABLE I
ARCHITECTURE OF CONVOLUTIONAL AUTOENCODER. THE ENCODER IS
COMPOSED OF FIVE 2D CONVOLUTIONAL LAYERS AND THE DECODER IS

COMPOSED OF FIVE 2D CONVOLUTIONAL TRANSPOSE LAYERS. ALL
LAYERS USE A KERNEL WITH STRIDE = 1.

Both encoder and decoder are convolutional neural net-
works, each with five convolutional layers followed by a
tanh activation (for more details see Table II) [25]. The
encoder takes the input image of size 32 × 32 and reduces
it to a latent space representation which becomes our hidden
state, ht. The decoder, on the other hand, uses transposed
convolutional layers that do exactly opposite of our encoder.
The input channels and output channels go in reverse order as
the encoder, and therefore, will output an image of 3 channels.

Loss. The RNN is trained to minimize the following loss
function L(θ;φ) = E [`(θ;φ)] , where ` is the standard mean-
squared error, `(θ;φ) = ‖y − Vθ(htf)‖2F , with htf as the
hidden state of the final time and y as the initial noisy image.
Back-propagation will be used to update all the weights in
our RNN at each time step. This formulation does not require
training data, so no information from the true image is needed,
instead we utilize the structure of our RNN [19].

IV. NUMERICAL EXPERIMENTS

Dataset. To evaluate our proposed method we selected 15
images from the CIFAR-10 dataset [26]. The dataset contains
50,000 training images and 10,000 testing images. Each image
is RGB and contains 32 × 32 pixels. The noisy/degraded
images, i.e., x0, used throughout the experiments are created
using additive Gaussian noise using a standard deviation of
σ = 0.1. The inputs to our model at each time step is a auto-
regressive model shown in Eq. (1).

Architecture Parameters. During training the method is
evaluated using the Mean Square Error (MSE) (for details
see [17]). We trained using stochastic gradient descent with
T = 2000 iterations while using a learning rate of 0.001 to up-
date the weights. From preliminary experiments we acheived
optimal accuracy by using ε = 0.1. After recovering the
image we evaluate the denoising approach using the structural
similarity index (SSIM) between the recovered image and the
true image, which is given by

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

where µx and µy are the averages of each input respectively,
σx and σy are the associated variances, and c1 and c2 are
variables used to stabilize the denominator [27].

1700

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on May 16,2022 at 17:24:58 UTC from IEEE Xplore. Restrictions apply.

Image 6 Image 7 Image 8 Image 9 Image 10

Image 11 Image 12 Image 13 Image 14 Image 15

Fig. 2. CIFAR-10 images used in our numerical experiments. Images 1-5 and the corresponding results are presented in detail in Fig. 3.

V. RESULTS

In this section, we investigate the effectiveness of convolu-
tional padding within recurrent neural networks for imaging
denoising.

Experiment 1: In the first experiment, we use the method
described in Section III with an unpadded image for x0. Figure
3 includes the results for five different sample images. In Row
2 of Figure 3, we see that our method produces a denoised
image of x0. However, we notice that the corners and edges of
the image are of lesser quality. This is likely attributed to the
filters of each convolutional layer since there is not enough
information along the edges of each image.

Experiment 2: Next, we tested our method using padded
images for x0. Since the restorations using the unpadded
images resulted with blurred corners and edges, the padded
images should allow the filter of each convolution to pick up
more information along the edges of the image. In particular,
we use edge padding where the added pixels have the same
value as the pixels along the edge of the image, and reflection
padding where the pixels are reflected along the edge of
the image. Both paddings were used with length of 4. We
also investigated using zero padding; however the edge and
reflection padding resulted in more accurate denoised images
[20]. The results are presented in Rows 3-4 of Figure 3. We
find that after incorporating the padding, the corners and edges
are restored with better quality. However, we notice that as the
quality of the image increases along the edges, the opposite
is true for the center.

We looked at two sets of SSIMs for each image: the first
compares the entire image and the second compares the center
of the image, specifically the center 16 × 16 pixels. For the
padded images, the SSIM is higher for the entire image since
the recovery from the corners is of higher quality. In contrast,
the unpadded images have a higher SSIM in the center.

VI. CONCLUSIONS

In this paper, we have shown that we are able to produce
promising results for an image denoising task using a recurrent
neural network without any information from the true image.
By adding the output from the decoder of the previous time-
step to the input Gaussian noise, we created a dependency
between current input and previous output which allowed
the recurrent neural network to produce the desired result
of denoising the image. Furthermore, we found the overall
restoration of the image can be improved by adding padding to
the input image; however, this slightly diminishes the quality
in the center of the image.

SSIM (full image) SSIM (center of image)
Image Unpad Edge Refl Unpad Edge Refl

1 0.880 0.907 0.901 0.881 0.827 0.799
2 0.816 0.821 0.830 0.777 0.743 0.788
3 0.907 0.914 0.905 0.874 0.844 0.884
4 0.860 0.887 0.884 0.868 0.855 0.883
5 0.904 0.940 0.944 0.954 0.955 0.954
6 0.873 0.913 0.901 0.919 0.916 0.902
7 0.875 0.886 0.878 0.857 0.851 0.745
8 0.881 0.908 0.903 0.949 0.930 0.929
9 0.863 0.884 0.888 0.959 0.922 0.934

10 0.864 0.888 0.858 0.887 0.894 0.888
11 0.821 0.844 0.870 0.928 0.932 0.935
12 0.868 0.864 0.868 0.873 0.771 0.747
13 0.844 0.870 0.869 0.864 0.874 0.846
14 0.851 0.857 0.865 0.966 0.935 0.945
15 0.832 0.770 0.806 0.947 0.886 0.881

TABLE II
STRUCTURAL SIMILARITY INDEX (SSIM) BETWEEN DENOISED IMAGE

AND GROUND TRUTH OF 15 IMAGES. COLUMN 2-4: SSIM VALUE OF THE
FULL IMAGE FOR INPUT IMAGES WITH VARIOUS PADDING. COLUMN 4-5:
SSIM OF THE CENTER REGION OF THE IMAGE FOR INPUT IMAGES WITH
VARIOUS PADDING. RESULTS ARE SHOWN FOR INPUT IMAGES WITH NO

PADDING, EDGE PADDING, AND REFLECTION PADDING.

1701

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on May 16,2022 at 17:24:58 UTC from IEEE Xplore. Restrictions apply.

Image 1 Image 2 Image 3 Image 4 Image 5
N

oi
sy

U
np

ad
de

d

SSIMF = 0.8800 SSIMF = 0.8162 SSIMF = 0.9075 SSIMF = 0.8601 SSIMF = 0.9046
SSIMC = 0.8818 SSIMC = 0.7778 SSIMC = 0.8741 SSIMC = 0.8688 SSIMC = 0.9545

E
dg

e

SSIMF = 0.9077 SSIMF = 0.8210 SSIMF = 0.9143 SSIMF = 0.8871 SSIMF = 0.9403
SSIMC = 0.8276 SSIMC = 0.7434 SSIMC = 0.8444 SSIMC = 0.8550 SSIMC = 0.9553

R
efl

ec
tio

n

SSIMF = 0.9018 SSIMF = 0.8305 SSIMF = 0.9051 SSIMF = 0.8840 SSIMF = 0.9448
SSIMC = 0.7996 SSIMC = 0.7881 SSIMC = 0.8842 SSIMC = 0.8439 SSIMC = 0.9547

G
ro

un
d

Tr
ut

h

Fig. 3. Image restoration of noisy CIFAR images. Row 1: Noisy image. Row 2: Restoration using an unpadded reference image with corresponding structural
similarity index (SSIM) values, where SSIMF indicates the measurements of the full images and SSIMC indicates the measurements taken on the center of
the images. Row 3-4: Restorations using padded reference images with edge and reflection padding, respectively, are presented with corresponding SSIMF

and SSIMC values. Row 5: Ground truth image.

1702

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on May 16,2022 at 17:24:58 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with
deep neural networks,” in Advances in Neural Information Processing
Systems, 2012, pp. 341–349.

[2] Y. Tang, R. Salakhutdinov, and G. Hinton, “Robust boltzmann machines
for recognition and denoising,” in 2012 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2012, pp. 2264–2271.

[3] J. Xu, L. Zhang, W. Zuo, D. Zhang, and X. Feng, “Patch group
based nonlocal self-similarity prior learning for image denoising,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 244–252.

[4] L. Gondara, “Medical image denoising using convolutional denoising
autoencoders,” in 2016 IEEE 16th International Conference on Data
Mining Workshops. IEEE, 2016, pp. 241–246.

[5] T. Remez, O. Litany, R. Giryes, and A. M. Bronstein, “Deep class-aware
image denoising,” in 2017 International Conference on Sampling Theory
and Applications. IEEE, 2017, pp. 138–142.

[6] A. Buades, B. Coll, and J. Morel, “A non-local algorithm for image
denoising,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 2, 2005, pp. 60–65.

[7] P. Pinheiro and R. Collobert, “Recurrent convolutional neural networks
for scene labeling,” in International Conference on Machine Learning,
2014, pp. 82–90.

[8] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE, 2013, pp. 6645–6649.

[9] N. Agarwala, Y. Inoue, and A. Sly, “Music composition using recurrent
neural networks,” CS 224n: Natural Language Processing with Deep
Learning, Spring, 2017.

[10] A. Graves and J. Schmidhuber, “Offline handwriting recognition with
multidimensional recurrent neural networks,” in Advances in Neural
Information Processing Systems, 2009, pp. 545–552.

[11] I. Sutskever, Training recurrent neural networks. University of Toronto
Toronto, Ontario, Canada, 2013.

[12] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” Journal of Machine Learning Re-
search, 2015.

[13] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 9446–9454.

[14] K. N. Haque, M. A. Yousuf, and R. Rana, “Image denoising and
restoration with cnn-lstm encoder decoder with direct attention,” arXiv
preprint arXiv:1801.05141, 2018.

[15] R. Rajeev, J. A. Samath, and N. Karthikeyan, “An intelligent recurrent
neural network with long short-term memory (lstm) based batch nor-
malization for medical image denoising,” Journal of medical systems,
vol. 43, no. 8, pp. 1–10, 2019.

[16] K. Wei, Y. Fu, and H. Huang, “3-d quasi-recurrent neural network for
hyperspectral image denoising,” IEEE transactions on neural networks
and learning systems, 2020.

[17] I. Goodfellow, Y. Bengio, and A.Courville, Deep Learning. MIT Press,
2016.

[18] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising,” IEEE
Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[19] Y. Gandelsman, A. Shocher, and M. Irani, “Double-DIP: Unsuper-
vised image decomposition via coupled deep-image-priors,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 11 018–11 027.

[20] X. Mao, C. Shen, and Y. Yang, “Image restoration using convolu-
tional auto-encoders with symmetric skip connections,” arXiv preprint
arXiv:1606.08921, 2016.

[21] V. Jain and S. Seung, “Natural image denoising with convolutional
networks,” in Advances in Neural Information Processing Systems 21,
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds. Curran
Associates, Inc., 2009, pp. 769–776.

[22] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3-d transform-domain collaborative filtering,” IEEE Transactions
on Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007.

[23] Q. Yang, P. Yan, M. Kalra, and G. Wang, “Ct image denoising with
perceptive deep neural networks,” ArXiv, vol. abs/1702.07019, 2017.

[24] J. Yoon, J. Jordon, and M. V. D. Schaar, “ASAC: Active sensing using
actor-critic models,” in Machine Learning for Healthcare Conference,
2019.

[25] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation
functions: Comparison of trends in practice and research for deep
learning,” ArXiv, vol. abs/1811.03378, 2018.

[26] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Tech. Rep., 2009.

[27] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

1703

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on May 16,2022 at 17:24:58 UTC from IEEE Xplore. Restrictions apply.

