Cancer Molecular Subtype Classification by Graph
Convolutional Networks on Multi-omics Data

Bingjun Li
bingjun.li@uconn.edu
University of Connecticut
Storrs, Connecticut, USA

ABSTRACT

Cancer has been a second leading cause of death in the United
States for decades and an accurate classifier of cancers’ molecu-
lar profiles is a key predictor for patients’ survival. Recently The
Cancer Genome Atlas research networks have identified a new
cancer taxonomy based on molecular tumor subtypes over 33 types
of cancer. Several studies have reported classification models for
traditional tissue-of-origin cancer type classification or classifica-
tion of subtypes of a cancer type. In this study, we propose a novel
end-to-end deep learning model that incorporates prior biological
knowledge into the model and integrates multi-omics data to clas-
sify pan-cancer molecular subtypes. Our proposed model consists
of three sections: i) a graph convolutional network that takes a
genet interaction network, representing prior knowledge, as its
input graph where genes are nodes and multi-omics data are the
node features, to extract localized features; ii) a fully connected
neural network to extract global features from the data; and iii) a
classification layer that takes the combination of localized features
and global features as input. We examined building the input graph
using gene-gene interaction networks, protein-protein interaction
networks, and gene co-expression networks. We also investigated
the effect of input graph size (number of genes/nodes) on the perfor-
mance of the model. We evaluated the performance of the proposed
model in terms of prediction accuracy, precision, recall, and F1
score; and compared the performance of our model with those of
three state-of-the-art deep learning models and two conventional
machine learning models. The results show that the proposed model
outperforms the baseline models at each level of the number of
genes. Our model achieves not only a better prediction accuracy
but also a lower false-negative rate, which is important for cancer
patients treatments. Our model also shows the benefit of employing
multi-omics data compared with employing only single-omic data.

CCS CONCEPTS

« Applied computing — Computational genomics; Bioinfor-
matics; - Computing methodologies — Feature selection.
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1 INTRODUCTION

Cancer has been the second leading cause of death in the United
States for almost 90 years according to the Centers for Disease
Control [3, 9]. It is predicted that there would be about 1.9 million
new cancer cases and over 608 thousand cancer deaths in 2021 [16].
Based on the data from 2015-2017, 40.5% of the male Americans
and 38.9% of the female Americans are expected to be diagnosed
with invasive cancer at least once in their lifetime. Researches have
shown that early-stage diagnosis is a key predictor of the patients’
survival rate and has a significant impact on the society; and an
accurate and insightful classification of cancers is the foundation
of early-stage diagnosis [8, 13]. In 2014, The Cancer Genome Atlas
(TCGA) Research Network proposed a new clustering method of
cancers based on their integrated molecular subtypes that share
mutations, copy-number alterations, pathway commonalities, and
micro-environment characteristics instead of their tissue of origin,
and found 11 subtypes from 12 cancer types [7]. In 2018, the same
group applied the new clustering method to 9,759 samples in TCGA
and found 28 molecular subtypes from 33 cancer types [6]. The
study estimated that about 10% of the cancer patients would be clas-
sified and treated differently if this new kind of molecular subtype
classification is adopted.

Our work is inspired by the TCGA Research Networks’s new can-
cer taxonomy and is aimed to provide a powerful classifier model
to predict the molecular subtypes. There have been multiple studies
of using machine learning models, deep learning models or various
conventional methods for traditional cancer type classification and
stage diagnosis [1, 10-12, 15, 22], but there isn’t much research
focusing on the classification based on molecular subtypes, espe-
cially with the use of multi-omics data. In 2017, Li et al. proposed
a k-nearest neighbor model with a genetic algorithm for gene se-
lection that yielded an overall 95.6% classification accuracy for 31
cancer types using TCGA dataset [11]. Lyu et al. proposed a con-
volutional neural network (CNN) model after embedding RNA-seq
data into 2-D images that yielded a 95.59% classification accuracy
for all 33 cancer types on TCGA samples [12]. In 2020, Ramirez et


https://doi.org/10.1145/3459930.3469542
https://doi.org/10.1145/3459930.3469542

BCB ’21, August 1-4, 2021, Gainesville, FL, USA

al. proposed a graph convolution network (GCN) with prior knowl-
edge in the form of protein-protein interaction networks and gene
co-expression networks and obtained a 94.71% classification accu-
racy for 33 cancer types and normal tissue on TCGA data [15]. In
the same year, Chen et al. proposed a Fusion Lasso framework for
stage and subtype classification on multi-omics data. Their method
formulates variable selection and data integration as a weighted
constrained optimization problem [1].

Traditional convolutional networks are only suitable to extract
hidden patterns of data in the Euclidean domain [21]. Due to the
complex nature of biological organisms, the inner structure among
genes is better represented in the form of graphs instead of in the
Euclidean domain. Since many researchers have similar cases of
applications to handle data with a graph structure, new ways of gen-
eralized convolution on graph data have been studied extensively
and evolved rapidly in recent years. Graph neural networks (GNN)
in the early days learn a node’s features by iteratively propagating
information from the neighboring nodes until convergence [21].
Two major disadvantages of these models are high computation
costs and the learning filters’ lack of the localization property. In
2016, Defferrard et al. proposed a spectral-based GCN (ChebNet)
using Chebyshev polynomial as localized learning filters and for
reducing the computation cost into linear complexity [2]. The pro-
posed model in this study was inspired by the GCN model with
fast localized filters and was developed upon the ChebNet as a
foundation.

In this work, we propose a novel end-to-end deep learning model
that incorporates prior biological knowledge, such as gene-gene
interaction (GGI) networks, protein-protein interaction (PPI) net-
works, or gene co-expression networks, and integrates multi-omics
data for molecular subtype classification. Based on our previous
work on utilizing a GCN for classifying cells using single-omic
single-cell data [19], we developed a GCN-based model to integrate
multi-omics data. We trained and tested the proposed model under
different conditions on TCGA data, which consists of 9,759 sam-
ples with several types of genomic data including gene expression
and copy number variation (CNV) data. We generated the prior
knowledge graphs from GGI dataset downloaded from the BioGrid
database, and PPI and co-expression datasets downloaded from the
STRING database [14, 17]. We assessed the performance of the pro-
posed model employing six different knowledge graphs generated
by GGI, PPI, and gene co-expression networks with and without
single nodes (singleton) in terms of classification accuracy, preci-
sion, F1 score and recall. We examined the effect of integrating
multi-omics data in comparison with using only gene expression
data. We also compared the performance of the proposed model
with those of other state-of-the-art deep learning models, such as
fully connected neural networks (FC-NN) and convolutional neural
network (CNN), and also conventional machine learning models
such as random forest (RF) and support vector machine (SVM).

Our main contributions are listed as following:

o A novel end-to-end GCN-based classifier with both localized
and global learning filters that incorporates prior knowledge.
o A deep learning classifier that integrates multi-omics data.
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e A cancer molecular subtype classifier that provides a more
insightful and accurate molecular similarity representation
compared to traditional tissue-of-origin cancer taxonomy.

2 METHODS

Our proposed model consists of three sections: i) a GCN to extract
localized features from multi-omics data based on prior knowledge
of interactions among genes; ii) a shallow fully connected (FC)
neural network to extract global features; and iii) a classification
layer to concatenate the localized and global features and make
a class prediction. The overall structure of the proposed model is
shown in Figure 1.

2.1 Prior Networks

We built three weighted gene adjacency matrices (GGI, PPI, and co-
expression) to represent the input graph. For each adjacency matrix,
we considered two variations: with and without singleton — a total
of six input graphs for the GCN model. All adjacency matrices are
N % N, where N is the number of selected genes. The GGI network
was built from the data provided by the BioGrid database [14],
and both the PPI network and co-expression network were built
from the data provided by the STRING database [17]. All genes are
assumed to be self-connected in the input graph, thus the diagonal
elements of all the adjacency matrices in the study are 1.

GGI adjacency matrix: The element, A;;, in the GGI adjacency
matrix A € RN*N is such that

{1 if there is a connection between ith and jth genes
ij =

0 otherwise
1)

Genes with no connection are considered singletons. We selected
N genes with the highest variations in their expression values,
which we will go into more details in the Experimental Result:
Datasets & Data Preprocessing section.

PPI adjacency matrix: The elements in the PPI adjacency ma-
trix represent interactions among proteins from the STRING protein
dataset. We normalized the interactions to 0-1 scale and we kept
only strong interactions (>0.6) [18].

Co-expression adjacency matrix: The co-expression similar-
ities between genes from the the STRING dataset were used to
generate this adjacency matrix. We filtered out weak interactions
(correlation <0.6).

2.2 Graph Convolutional Network

As shown in Figure 1, we developed a graph autoencoder model to
fully utilize the prior network knowledge and to integrate different
omics data. The input graph of the model is the knowledge graph
represented by an adjacency matrix described in the previous sec-
tion. In the input graph, nodes are genes and edges are assigned by
the adjacency matrix. Each node is represented by a feature vector
that is a combination of both gene expression and CNV data. The
encoder part of the graph autoencoder model consists of a graph
convolutional layer with a max-pooling layer, a flatten layer and a
FC layer. The decoder part of the graph autoencoder model consists
of one FC layer to reconstruct the input features.
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Figure 1: The overall structure of our proposed model is separated into three major parts. Top section (Box A) is the graph
convolutional network (Section 2.2), which is in a form of graph autoencoder and uses a decoder for training purpose. Each
node as a pair of blue and green boxes represents the gene expression data and the CNV data on that node. The darker blue and
darker green boxes in the decoder represent reconstructed data. Bottom left section (Box B) is a FC neural networks (Section
2.3). Bottom right section (Box C) is the classification layer (Section 2.4).

We used the ChebNet approach to implement the proposed GCN
model [2]. ChebNet is a computationally efficient approximation of
GCNss that uses the Chebyshev’s polynomial to generate localized
filters instead of global filters. For our problem setup, let’s denote
the multidimensional input matrix as X € RN*MXO where N is the
number of genes, M is the number of samples, and O is the number
of omics. The graph can be represented as G = (‘V, &), where V
is a list of vertices with the dimension of O and & is a list of the
edges between the vertices, the connections among the genes. The
adjacency matrix generated in the previous section 2.1, A € RN*N,
is used to represent the edges. The normalized Laplacian matrix
can be expressed as

L=1+D'/2AD/? )
where I € RN*N js an identity matrix, and D € RN*N | the degree
matrix, is a diagonal matrix. The diagonal elements in D represent
the number of edges that connect to a node. The normalized Lapla-
cian L is a real symmetric positive-semidefinite matrix and thus it
allows an eigendecomposition of itself as

L = UAUT, 3)
where U = (uj,uy,...,u,) represents n orthonormal eigenvec-
tors of L, UUT = I, and A = diag(A1, Az, . .., Ap) represents the
eigenvalue matrix [2].

The graph Fourier transformation is defined as X; = UTX;,

RNXO

j=1,...,M for a sample X; € , which is the feature matrix

of j-th sample in our case. Then, the inverse Fourier transformation
can be written as X; = UX;. Thus, graph convolution is defined in
the Fourier domain as

X;+*h=UUThoU'X)), (4)

where O is the Hadamard (element-wise) product. Thus, it follows
that X; +h = Uh(A)UTXj, where h(A), a non-parametric filter, is a
diagonal matrix. The non-parametric filter has two major disadvan-
tages, one is it is not localized in space and the other is its learning
complexity is O(N), where N is the feature dimension of one sam-
ple [2]. To overcome these two disadvantages, the non-parametric
filter is approximated by Chebyshev’s polynomial

K-1
h(A) = " BiTi(A), (5)
k=0

where f is a parameter that is learned in training, A=2A [Amax —1
is the rescaled diagonal eigenvalue matrix of L, and Ti. (A) is the k"
order of the Chebyshev polynomial which can be computed by the
stable recurrence relation of Ty (x) = 2xTj_; (x) — T (x) with Ty =
1and Ty = x [5]. This spectral filter by K*-order polynomials of the
Laplacian is exactly K-localized which means it learns information
from K*"-order of neighbours [2].

By substituting equation 5 into equation 4, we can rewrite the
learning filter as
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K-1 K-1
X;+*h=U Z ﬂka(;\)UTXj = Z BT (LX), (6)
k=1 k=0

where L = 2L/Amax — L and Ty (L) = 2LT_; (L) — Tp_,(L) with
To(L) = Iand Ty(L) = L. Applying this localized learning filter
greatly reduces the computation cost of the graph convolution. K
can be considered as a hyper-parameter which is set to 5 in our
study. By using multiple kernels (F = 5), the output of the graph
convolutional layer is N X F. Then a maxpooling layer with p = 8
is used to reduce the number of nodes.

The output of the graph convolutional and pooling layers is
passed through an activation function to obtain a lower-dimensional
sample representation, Z, for the multi-omics data as

K-1
' =5 (Z ﬁka@)xj) , (7)
k=0

where o(-) represents the activation function, and Z is in RV IpxF
Then, Z is connected to a flatten layer that transforms a matrix
in R™™ to a vector of size nm and a FC layer. The final output,
indicated as 01, represents the extracted features. It is the input to
the decoder part of the graph autoencoder, and a FC layer is used
to reconstruct the input data X .

2.3 Parallel Fully Connected Network

As demonstrated in the previous section, the quality of the extracted
features by the graph convolutional layer depends on the complete-
ness of the prior knowledge —the genomics interaction network in
this case— due to the localization property of the learning filters in
the ChebNet. Since the knowledge network we used in the GCN
is not a complete gene interaction network, using only GCN as a
feature extractor would neglect some global patterns in the data.
On the other hand, a FC network is able to extract global features
of the data while neglecting the inner interactions of genes. To
overcome the limitations of both methods and to obtain a better
overall performance of the classification model we used an FC net-
work in parallel to the GCN model shown as Box B in Figure 1.
Combining the localized extracted features and the global extracted
features will compensate the limitations of GCN and FC networks
for classification.

Each input of the FC network, x¢, is a vector concatenating
multi-omics data as expressed bellow.

XC = [x{, Xg, .. .,XL]

®)
= [Exp;, CNVy, Exp,, CNVy, ..., Expr, CNVN] € RZN

The output of the FC layer, 6, is a vector. To further examining
the effectiveness of the parallel FC network, we also conducted a
model without the parallel network and used it as a baseline model
in Section: Experimental Results 3.

2.4 Classification Layer

The localized features extracted by the GCN and the global fea-
tures extracted by the FC-NN are concatenated to build a lower-
dimensional representation of the input data. The combined ex-
tracted features, [01, 62] as shown in Figure 1 are then connected
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to a single layer neural network with a softmax activation function
to output probability for each class shown as Box C in Figure 1. The
class with the highest probability is assigned as the prediction label
for the sample.

2.5 Loss Function

For the proposed model, the loss function is a linear combination
of three different loss functions as

L = MLentropy + A2Lreconstruction + )'3Lregularizations ©)

where A1, A2 and A3 are parameters for L, Lentropy is the cross-
entropy loss for classification, Lyeconsrrucrion 1S @ mean squared
error between reconstructed X and input data X for the graph
autoencoder, and Lyegyjarization is the squared 12 norm of the com-
plete model parameter vector to penalize the number of parameters
to avoid overfitting. Lentropy for each sample is defined as

C
Lentropy == Z ti log(pi), (10)
i=1
where c is the total number of molecular subtype classes, ¢; is the
true label for the sample, and p; is the probability of class i from
the softmax layer. Lyeconstruction is defined as

M O
S \2
Lyeconstruction = Z Z(Xi,j - xi,j) > (11)
i=1 j=1
where x; j is the vector of jth omic feature for sample i and X; ; is the
corresponding reconstructed vector. Let’s denote W as the vector
consists of all the parameters in the model and the L;¢guiarization
is defined as

2
Lyeguiarization = Z wi. (12)
w; EW

3 EXPERIMENTAL RESULTS

3.1 Datasets & Data Preprocess

We downloaded the TCGA Pan-cancer RNA-seq and CNV data,
and the molecular subtype assignments from the Xena website
hosted by the University of California Santa Cruz [4]. The batch
effect normalized RNA-seq dataset includes the collection of 11,060
samples containing 10,323 cancer samples and 737 normal samples,
where each sample has 20,531 gene features. The CNV dataset via
GISTIC2 method consists of 10,845 cancer samples with no normal
samples. The molecular subtype labels are available for 9,759 cancer
samples [4, 20]. We filtered out the samples that do not have the
corresponding molecular subtype labels and resulted 9,759 samples
with known molecular subtype labels. We also included 17,946
genes that are common in both the gene expression data and the
CNV data. The numbers of samples and main characteristics of
each of the 28 molecular subtypes are shown in Fig 2, with numbers
of cases ranging from 34 to 762, average number of cases is 349,
and median number of cases is 306. It can be observed that there
is an imbalance among 28 classes and the effect of such imbalance
on the model performance will be discussed in detail in section 3.3.
10% of the samples is randomly selected as the test set and all 28
classes are present in the test set.
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Figure 2: Number of Samples for 28 Molecular Subtypes out of the 9,759 TCGA Pan-cancer Samples.

In our experiments, we considered four different levels of the
number of genes, N: 1,000, 2,000, 5,000, and 7,000. After normalizing
both the gene expression data and the CNV data across samples,
we selected the top N genes based on their variances in the expres-
sion data. To construct the knowledge graphs without singleton,
we excluded genes that are not connected to other genes and we
selected top N high variance genes with at least one connection to
other genes as the input features.

3.2 Experimental Setting

The multi-omics data have an input dimension of N X 2 for each
sample (gene expression and CNV data of N genes). The GCN con-
sists of one convolutional layer, one pooling layer, and one FC layer
with the size of 32 in the encoder part; and in the decoder part it
consists of one FC layer with the size of 2N. For the parallel FC
network the two-dimensional multi-omics data are flattened to a
vector of size 2N as shown in Equation 8. In the parallel FC network,
we used two FC layers with the size of 256 and 32 to extract global
features, then the localized features and global features are concate-
nated together for the classification network. For loss function L,
A1 and Ay are set to 1 and A3 is set to 0.0001. Our model has been
tested on GGI with singleton with 100, 200, 500 epochs and found
no significant gain in performance beyond 100 epochs. Thus all
the models mentioned in the following sections were trained with
100 epochs. We used PyTorch 1.2 package in Python to implement
the proposed GCN-based classifier model employing different in-
put knowledge graphs. The source code is available via Github at
https://github.com/NabaviLab/GCN-on-Molecular-Subtype.

We compared the performance of our model with those of CNN,
FC-NN, RF, SVM, and pure GCN models. The pure GCN model has
the same architecture as the GCN section of our proposed model
(Box A in Figure 1). We implemented the CNN and FC-NN models

with the Keras 2.4 package in Python, and we implemented the RF
and SVM models with the scikit-learn 0.24 package in Python. The
FC-NN model has 3 FC layers with the size of 512, 256, 128. The CNN
model transforms the data of each omic into a two dimensional
image-like data as input. It has 3 convolutional layers with 3 x 3
filters.

3.3 Performance Comparison & Analysis

The prediction accuracies, weighted precisions, recalls and F1 scores
of the GCN model using six different knowledge graphs on single-
omic data (expression values) are shown in Table 1. The overall best
performance is achieved by employing the GGI network without
singletons as the input knowledge graph. The GCN model shows
the same trend in prediction accuracies using all the six input graphs
and the best accuracy is achieved at 5,000 genes. It shows that the
use of more genes with less expression variation across samples is
not adding more information. There is no significant difference in
performance between the models using graphs with and without
singleton. Models using the gene co-expression and GGI networks
as input graphs generally perform better than those using the PPI
network in terms of prediction accuracy. This can be explained
by noting that the interactions in the PPI dataset only include
genes that are mapped to proteins and have interactions. The non-
coding genes are not mapped to proteins and they don’t have any
interactions in the PPI dataset. Such performance difference was
also reported by other researchers using PPI data [15]. There is no
significant difference between the overall performance of models
employing GGI or co-expression networks as prior knowledge. The
weighted precisions, weighted recalls, and weighted F1 scores are
relatively consistent with the values of the prediction accuracy,
which indicates our model performs well in minimizing the number
of both cases of false positive and false negative.
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Table 1: Performance of the Proposed Model Using the Six Knowledge Networks on Single-omic (Gene Expression) Data

Metrics Prediction Accuracy Weighted Precision Weighted Recall Weighed F1 Score

Input Graphs | 1000 2000 5000 7000 1000 2000 5000 7000 | 1000 2000 5000 7000 | 1000 2000 5000 7000
GGI 80.8% 80.4% 85.0% 83.7% |080 081 085 084 081 080 0.85 0.84 |0.80 0.80 0.85 0.83
GGI+S! 78.3% 80.7% 84.1% 83.7% | 078 081 084 0.84 | 0.78 081 084 084 | 0.78 0.80 0.84 0.83
PPI 79.1% 80.9% 84.1% 83.6% | 079 081 084 0.83 |0.79 081 084 084 |0.78 0.80 0.84 0.83
PPI+S! 78.8% 80.7% 84.1% 843% | 078 081 084 0.84 | 0.79 081 084 084 | 0.78 0.80 0.84 0.84
Co-exp 79.5% 81.1% 84.1% 83.6% | 079 081 084 083 |0.79 081 084 084 | 079 081 084 0.83
Co-exp+Sl 78.8% 80.8% 84.1% 84.6% | 0.78 081 0.84 0.84 | 0.79 081 084 085 | 0.78 0.80 0.84 0.84

1 GGI (PPI/Co-exp) +S represents the input graph with singleton nodes.

Table 2: Performance of Other Deep Learning, Machine Learning and Conventional Classification Methods on Single-omic
Data

Metrics | Prediction Accuracy Weighted Precision Weighted Recall Weighted F1 Score

Method | 1,000 2,000 5,000 7,000 | 1000 2000 5000 7000 | 1000 2000 5000 7000 | 1000 2000 5000 7000
GCN! 79.3%  80.0% 81.4% 785% |0.79 081 081 0.79 | 079 080 0.81 078 |0.79 0.80 081 0.78
CNN 77.8% 74.5% 80.4% 79% 075 074 080 079 |075 0.74 079 078 |0.76 075 0.79 0.79
FC-NN | 78.6% 79.1% 823% 81.5% | 0.77 0.78 0.81 0.80 | 0.78 0.79 0.81 0.81 |0.77 079 081 0381
RF 74.04% 74.5% 78.7% 77.7% | 0.68 0.67 0.73 0.69 | 0.72 0.73 0.77 076 | 0.67 0.68 0.73 0.71
SVM 74.3% 78.6% 81.5% 80.7% | 0.69 0.72 074 074 | 0.71 0.77 078 0.77 | 0.69 0.73 0.75 0.74

! This model has the same architecture as the network in the GCN section of our proposed model.

We accessed the performance of five baseline models, CNN, FC-
NN, RF, SVM, and pure GCN, for comparison. Their performances
are shown in Table 2. Our proposed model without the parallel
network (pure GCN) is trained with GGI network without singleton
as GGI network performs the best for our proposed model. It can be
observed that the prediction accuracy of the proposed GCN-based
model, using any of the prior gene interaction networks, is higher
than those of the baseline models by 2% to 8% at all four settings
for the number of input genes N. The pure GCN baseline model
performs the best for 1,000 and 2,000 genes and FC-NN baseline
model performs the best for 3,000 and 4,000 genes. The weighted
precisions, weighted recalls, and weighted F1 scores of all four
baseline models are lower than our models at all four levels of the
number of genes. All baseline models’ F1 scores are lower than their
prediction accuracies (Table 2), but the proposed model achieves an
F1 score close to the prediction accuracy. This indicates that there
are a higher number of cases of false positives and false negatives
for the baseline models compared to the proposed model at the
same level of prediction accuracy. Our proposed model outperforms
the pure GCN model in the most cases, which demonstrates the
effectiveness of the parallel network in our model.

We also examined miss-classification across all molecular sub-
type classes. To evaluate the miss-classification for each individual
class, we computed the row-standardized confusion matrix of the
best performing GCN-based model (using the GGI network with
singletons at 5000 genes) as shown in Table 3. The confusion matrix
is standardized by the row sum, the size of each class in test set.
The top six most miss-classified molecular subtype classes in red
boxes are Class 7: Mixed (Chr 9 del), Class 13: Mixed (Chr 8 del),
Class 17: BRCA Chr 8q amp, Class 2 (BRCA HER2 amp), Class 25:
Pan-SCC (Chr 11 amp) and Class 1: STAD(EBV-CIMP). Three of
these classes are mixed cancer classes, which contain more than

one traditional tissue of origin cancer type, and the rest two are
subtypes of BRCA. The result shows, as expected, the mixed cancer
classes can be hard to predict with only single-omic data.

As mentioned previously, the numbers of cases are imbalanced
across 28 molecular subtype classes. The numbers of cases of the
six most miss-classified classes range from 49 to 283, which all
fall into the smaller sample size half of the 28 classes, but not all
among the lowest sample size classes. Since the genomic data are
high-dimension and the lower bound of the numbers of cases is
only 34, either sub-sampling or over-sampling isn’t a viable option
to address the problem of imbalance data.

Using only mRNA expression data may not be sufficient for
molecular subtype classification, as the TCGA Research Networks’
study in 2018 also integrated the data from 5 genome-wide plat-
forms to assign the subtypes [6]. This has motivated us to develop
a model to integrate multi-omics data.

The performance of the proposed GCN-based model using the
six input knowledge graphs on multi-omic data (expression values
and CNV data) is given in Table 3. As can be seen, using multi-omics
data improves the performance of the proposed model compared to
using single-omic data. Similar to the model using the single-omic
data, the different input knowledge graphs do not affect the classifi-
cation accuracies significantly. Also, the best prediction accuracy is
achieved for the data with 5,000 genes. However, the performance
on multi-omics data with only 2,000 genes is very close to that
on single-omic data with 5,000 genes, which demonstrates that
the multi-omics data provide additional information compared to
single-omic data at a fixed number of genes.

To evaluate the performance of the proposed multi-omics GCN-
based model, we used three baseline models, pure GCN, CNN and
FC-NN models, for comparison and their performances are shown
in Table 4. The RF and SVM models are not scaleable and perform
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Figure 3: The Row-standardized Confusion Matrix of the Predicted Labels by the GGI Model with Singletons and N=5000 on
Single-omic. Red Boxes are used to show the data for the top six most miss-classified classes.

Table 3: Performance of the Proposed Model Using the Six Knowledge Networks on Multi-omics Data (Gene Expression and

CNV)

Metrics Prediction Accuracy Weighted Precision Weighted Recall Weighted F1 Score

Input Graphs | 1000 2000 5000 7000 1000 2000 5000 7000 | 1000 2000 5000 7000 | 1000 2000 5000 7000
GGI 84.0% 86.4% 86.6% 84.6% | 084 086 087 0.85 | 084 08 087 084 | 0.84 086 086 0.85
GGI+S! 85.7% 85.1% 86.3% 85.1% | 086 085 087 0.86 | 085 08 08 086 | 085 0.85 087 0.86
PPI 84.4% 85.6% 86.5% 853% | 084 086 087 085 | 084 08 08 085 | 0.84 0.85 086 0.85
PPI+S! 85.1% 84.9% 86.6% 853% | 085 085 087 0.85 | 085 08 087 085 | 0.84 0.84 0386 0385
Co-exp 85.0% 84.6% 86.7% 85.7% | 085 086 087 0.86 | 0.85 086 087 085 | 085 0.86 0.87 0.5
CO-eXp+S1 85.1% 85.8% 86.8% 85.9% | 085 086 087 0.86 | 085 08 087 086 | 085 0.86 0.87 0.86

1 GGI (PPI/Co-exp) +S represents the input graph with singleton nodes.

Table 4: Performance of Other Deep Learning Classification Methods on Multi-omics Data

Metrics | Prediction Accuracy Weighted Precision Weighted Recall Weighted F1 Score

Method | 1000 2000 5000 7000 1000 2000 5000 7000 | 1000 2000 5000 7000 | 1000 2000 5000 7000
GCN! 81.7% 83.2% 83.4% 84.0% | 082 084 084 084 | 082 083 083 0.84 |082 083 083 084
CNN 79.3% 789% 80.5% 81.2% | 0.79 0.77 0.79 080 | 0.78 0.78 0.79 081 | 0.78 0.77 0.79 0.80
FC-NN | 81.6% 82.7% 81.9% 83.6% | 080 080 080 0.81 |0.79 0.80 0.79 0.80 |0.78 079 079 0.81

! This model has the same architecture as the network in the GCN section of our proposed model.

poorly by adding input features (not included in the table). The
pure GCN model was also trained with the GGI network without
singleton. It can be observed that the proposed model outperforms
the baseline models by 2% to 5% in terms of classification accuracy.
Despite being the best performing model among all three baseline
models, the pure GCN model still performs poorly in terms of all
four metrics compared to the proposed model, which proves the

effectiveness of the parallel network with the multi-omics data.
The weighted precisions, weighted recalls, and weighted F1 scores
of the baseline models are still lower than the proposed model at
all four levels of the number of genes. The performance of both
baseline models is also improved by using multi-omics data, but
with a lower rate compared to the proposed model. The performance
improvement by using multi-omics data is higher when using less
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Figure 4: The Row-standardized Confusion Matrix of the Predicted Labels by the Co-expression Model with Singletons and
N=5000 on Multi-omic. Red Boxes are used to show the data for the top six most miss-classified classes.

number of genes. It shows the benefit of using more genomic data
types in extracting effective information.

To evaluate the miss-classification for each individual class using
multi-omics data, we computed the row-standardized confusion ma-
trix of the best performing GCN-based model on multi-omics data
(using gene co-expression network with singletons at 5000 genes)
as shown in Table 4. The top six most miss-classified molecular
subtype classes (including two tied classes) in red boxed are Class
7: Mixed (Chr 9 del), Class 21: DLBC, Class 18: Pan-GI (MSI), Class
13: Mixed (Chr 8 del), Class 1: STAD(EBV-CIMP) (tied), ,and Class
2: BRCA(HER2 amp) (tied). Three of those classes are mixed cancer
classes and the prediction accuracies on most miss-classified classes
are significantly improved compared to the model with single-omic
data. Thus, we can conclude that using multi-omics data helps to
improve the model performance on poorly classified classes from
the prediction of the model using single-omic data. The numbers
of cases of the six most miss-classified classes range from 34 to
288, which also all fall into the smaller sample size half of the 28
classes (but not all among the lowest sample size classes). With the
improved overall performance at these most miss-classified classes,
we can conclude that the imbalance problem in the data can be
mitigated by introducing other omic features for the model.

4 CONCLUSIONS

In this study, we proposed a novel end-to-end deep-learning method
for the molecular subtype classification that uses multi-omics data
and incorporates prior biological data. To the best of our knowledge,
this is the first study of such classification model on the new type
of cancer taxonomy. We designed the model’s structure such that it

combines the localized features extracted by a graph autoencoder
and general features extracted by a parallel shallow FC network to
provide a better prediction. The proposed model incorporates prior
biological knowledge on interactions among genes in a form of GGI,
PPI, or gene co-expression network into the graph autoencoder
model as the input graph, and integrates multiple omics data as the
attributes of the nodes in the graph autoencoder model.

Comparing the performance of our proposed model with those
of the baseline models, CNN, FC-NN, RF and SVM models, we
demonstrated that the GCN part of the proposed model can extract
additional features from prior gene interaction knowledge resulting
in a better performance. The results demonstrate that the proposed
model achieves not only a better prediction accuracy, but also a
better F1 score compared to baseline models. This is specially im-
portant due to the significant class imbalance in the data and the
deteriorating consequence of false negatives.

In addition, comparing the performance of the proposed GCN-
based model using multi-omics data with those of using single-
omic data, we showed that the use of multi-omics can significantly
improve the performance of classification. The proposed model
is scalable in integrating more omics data since omics data are
represented as node attributes (features) in the proposed GCN
model.

We observed that the proposed model preforms relatively simi-
lar using any of the GGI, PPI and gene co-expression networks as
the input knowledge graph. However, using PPI results in slightly
poorer performance. That can be because the PPI dataset only in-
cludes protein coding genes. It indicates that the completeness of
the biological prior knowledge is very important for extracting
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comprehensive effective features. To better incorporate incomplete
biological prior knowledge is also another focus of our future re-
search. We also observed that for the best classification we can use
a small subset of genes with high variance across the samples. The
proposed model achieved the best prediction performance with
5,000 genes for both single-omic and multi-omics data regardless
of the input knowledge graphs. It shows employing more genes
with less expression variation across samples doesn’t contribute to
extracting more information.

The proposed model also has some limitations, mostly due to
the availability of the public genomic data and the focus of the
study. By the nature of biomedical data, having an imbalanced
dataset is very common. In our study, the data were not specifically
processed for the imbalance problem. However, our model shows
robust and effective performance in dealing with imbalanced data,
especially when adding more omics data. Also, in this study we
focused mostly on the functional DNA elements. To add more
features for the functional elements, genes, we introduced CNV
data for genes into the model, and we ignored the CNV data for
the non-coding regions. Better handling the imbalanced data and
better utilizing CNV data will be the future research direction of
our team. We will also work on including more omics data such as
somatic point mutations, microRNA expression, and methylation
as part of our future work.

In summary, incorporating prior biological knowledge and inte-
grating multi-omics data improve molecular subtype classification,
and GCN methodologies can be used as a means to extract local-
ized features from biological networks and to efficiently integrate
several types of genomic data as node attributes.
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