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Assortative	mixing,	where	there	is	more	mixing	within	infection	risk	groups	than	would	be	expected	to	
occur	at	random,	has	long	been	known	to	affect	epidemic	dynamics.	A	classic	example	comes	from	
sexually	transmitted	diseases,	where	assortative	mixing	within	groups	that	have	different	levels	of	
sexual	activity	was	shown	to	increase	the	initial	growth	rate	of	the	infection	and	the	basic	reproduction	
number	 𝑅! 	compared	to	the	same	population	with	more	random	choices	of	sexual	partners.1	
Assortative	mixing	within	age	groups	has	also	been	shown	to	affect	dynamics	and	statistical	inference	
for	diseases	spread	through	respiratory	droplets,2	which	motivates	the	widespread	use	of	contact	
matrices	for	age	groups	in	epidemic	models.	More	recent	studies	have	shown	that	assortative	mixing	
with	respect	to	vaccination	status	can	affect	outbreak	sizes	and	estimates	of	vaccine	efficacy	in	network-
based	epidemic	models.3,4	
	
We	hypothesized	that	assortative	mixing	among	vaccination	groups	(vaccinated	and	unvaccinated)	
might	be	a	source	of	bias	in	population-level	estimates	of	the	effective	𝑅!	for	the	Delta	variant	of	SARS-
CoV-2.	For	example,	and	for	a	fixed	amount	of	observed	transmission,	over-prescribed	mixing	between	
these	groups	may	exaggerate	𝑅!	due	to	counteraction	by	an	increased	proportion	of	contacts	
benefitting	from	at	least	one	vaccination.	The	prevalence	of	vaccination	varies	greatly	across	rural	and	
urban	areas,	and	other	social	groupings	within	which	assortative	mixing	is	likely.	According	to	Ohio	
Department	of	Health	(ODH)	data,5	the	prevalence	of	vaccination	among	adults	in	Ohio	counties	ranges	
from	slightly	under	20%	to	slightly	under	70%,	with	an	overall	prevalence	of	approximately	55%.	To	
explore	the	potential	impact	of	assortative	mixing	on	estimation	of	𝑅!,	we	modified	an	age-stratified	
Susceptible-Exposed-Infected-Removed	(SEIR)	model	of	SARS-CoV-2	transmission	in	the	state	of	Ohio	to	
allow	for	assortative	mixing	within	vaccination	groups.	This	model	was	parameterized	and	fit	using	data	
from	the	ODH,5	the	Centers	for	Disease	Control	and	Prevention	(CDC),6	and	the	United	States	Census	
Bureau.7	The	contact	matrix	for	age	groups	and	some	other	parameters	were	taken	from	Prem	et	al.	and	
Bubar	et	al.8,9	The	model	𝑅!	is	the	spectral	radius	of	the	next-generation	matrix.9	
	
To	make	the	rate	of	between-group	contact	ρ ≤ 1 	times	the	rate	of	within-group	contact,	we	multiply	
each	within-group	contact	rate	β!! 	by	𝑎	and	each	between-group	contact	rate	β!" 	by	ρ𝑎.	The	factor	𝑎	
ensures	that	the	overall	rate	of	contact	is	not	changed,	and	it	is	found	by	solving	the	following	equation:		
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where	𝑛!	is	the	number	of	unvaccinated	individuals	and	𝑛!	is	the	number	of	vaccinated	individuals.	For	

n	sufficiently	large	so	that	
𝑛
2 ≈ !!
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,	we	get	
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As	intended,	this	gives	us	𝑎 = 1	when	ρ = 1.		

For	several	rates	of	assortative	mixing,	ρ,	we	fit	ODH	daily	reported	incidence	cases	using	a	Bayesian	
inference	approach	in	which	posterior	distributions	were	sampled	using	a	hybrid	Markov	chain	Monte	
Carlo	scheme	(see	online	appendix).	Figure	1	shows	a	histogram	of	the	posterior	distribution	of	𝑅!	and	
the	fit	to	daily	ODH	incidence	data.	Although	the	estimates	of	𝑅!	differ	considerably,	there	is	almost	no	
difference	in	the	fit	of	the	model	to	daily	incident	cases	reported	to	ODH.	
	
	
	
	
	
	
	
	
	
	

Despite	the	potential	importance	of	assortative	mixing	among	vaccination	groups	in	understanding	
SARS-CoV-2	transmission,	there	is	almost	no	quantitative	empirical	research	available	on	this	topic.	A	



Google	search	for	phrases	such	as	“covid19	+	assortative	mixing	+	vaccination"	(at	18:22	BST	on	October	
25,	2021)	returned	about	87	thousand	results,	of	which	the	most	relevant	refer	to	age-assortative	
mixing	and	its	potential	impact	on	vaccination	strategies.	A	search	for	the	same	terms	on	Google	Scholar	
(at	18:25	BST	on	October	25,	2021)	returned	more	than	four	hundred	hits,	with	the	most	relevant	
emphasizing	the	interplay	between	age-assortative	mixing	and	vaccination	
	
Although	the	epidemic	modeling	community	routinely	incorporates	age-structured	mixing	matrices,	
assortative	mixing	among	groups	defined	by	other	risk	factors	for	infection	are	potential	sources	of	bias	
in	estimating	epidemic	parameters	and	the	impact	of	interventions,	including	𝑅!.	Vaccination	is	one	of	
the	most	important	determinants	of	the	risk	of	infection	with	SARS-CoV-2	in	regions	where	a	vaccine	is	
widely	available.	An	overestimate	of	𝑅!could	lead	to	undue	pessimism	about	our	ability	to	control	the	
COVID-19	pandemic	through	vaccination	and	social	distancing.	
	
The	POLYMOD	study	shows	how	social	survey	methods	could	be	used	to	better	understand	
mixing	patterns	in	an	epidemic.10	Our	simple	experiment	shows	that	such	surveys	could	address	
an	important	gap	in	our	ability	to	analyze	the	population-level	transmission	of	disease	-	and,	by	
extension,	to	design	and	evaluate	public	health	interventions	in	future	epidemics.	
	



	
Figure	1:	Left:	Posterior	distributions	of	𝑅!	under	different	degrees	of	assortative	mixing	within	vaccination	groups.	Right:	

Posterior	means	and	pointwise	90%	credible	intervals	for	the	predicted	7-day	moving	average	of	daily	COVID-19	cases	plotted	
over	daily	ODH	data.	
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