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The classification of the long-term behavior of dynamical systems is a
fundamental problem in mathematics. For both deterministic and stochastic
dynamics specific classes of models verify Palis’ conjecture: the long-term
behavior is determined by a finite number of stationary distributions. In this
paper we consider the classification problem for stochastic models of inter-
acting species. For a large class of three-species, stochastic differential equa-
tion models, we prove a variant of Palis’ conjecture: the long-term statisti-
cal behavior is determined by a finite number of stationary distributions and,
generically, three general types of behavior are possible: 1) convergence to a
unique stationary distribution that supports all species, 2) convergence to one
of a finite number of stationary distributions supporting two or fewer species,
3) convergence to convex combinations of single species, stationary distribu-
tions due to a rock-paper-scissors type of dynamic. Moreover, we prove that
the classification reduces to computing Lyapunov exponents (external Lya-
punov exponents) that correspond to the average per-capita growth rate of
species when rare. Our results stand in contrast to the deterministic setting
where the classification is incomplete even for three-dimensional, compet-
itive Lotka–Volterra systems. For these SDE models, our results also pro-
vide a rigorous foundation for ecology’s modern coexistence theory (MCT)
which assumes the external Lyapunov exponents determine long-term eco-
logical outcomes.

1. Introduction. Since the time of Newton and Bernoulli (Bernouilli (1738), Newton
(1687)), dynamical models, whether they be deterministic or stochastic, have been used to
describe how physical, economic, and biological systems change over time. A fundamental
challenge for these models has been and continues to be a classification of their long-term be-
haviors. For finite-state Markov chains, this long-term statistical behavior is characterized by
a finite number of stationary distributions (Norris (1998)). For deterministic models, such as
ordinary differential equations, Palis (2005), Palis (2008) conjectured that typically there are
a finite number of stationary distributions characterizing the long-term statistical behavior for
most initial states of the model. Decades of work have identified several classes of determin-
istic models, including Axiom A systems (Young (1986)), one-dimensional maps (Kozlovski
(2003)), and partially hyperbolic systems (Alves, Araújo and Vásquez (2007)), for which
Palis’ conjecture holds. However, for general, three-dimensional deterministic models, this
conjecture still remains unproven. Here, we consider this type of classification problem for
stochastic models of interacting populations. For these systems in three dimensions, we prove
that, generically, there are three types of long-term statistical behavior that are characterized
by a finite number of stationary distributions. This classification is determined by certain
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Lyapunov exponents that correspond to the average per-capita growth rate of rare species.
We conjecture that this classification scheme also holds for higher dimensions.

For dynamical models in ecology, evolution, and epidemiology, the state variables may
represent the densities of interacting species of plants, animals, microbes, and viruses. For
these models, two fundamental problems of scientific and practical interest are identifying
which of the species persist and which go extinct, and understanding the long-term statis-
tical behavior of the densities of the persisting species (Elith and Leathwick (2009), Ellner
et al. (2019), Thieme (2018)). There is a large theoretical literature devoted to the study of
persistence and extinction for deterministic models. The most famous are studies of two com-
peting species due to Lotka and Volterra. Under the assumption of mass action interactions,
Volterra (1928) showed that, generically, one species drives the other species extinct when
the species are competing for a single limiting resource; a prediction with extensive empiri-
cal support (see, e.g., the review by Wilson, Spijkerman and Huisman (2007)). Alternatively,
Lotka (1925) demonstrated under what conditions competing species could coexist, setting
the stage for modern coexistence theory (Chesson (2000), Ellner et al. (2019)). There has
been a significant amount of work dedicated to the classification of the long term behavior of
deterministic Lotka–Volterra systems (Bomze (1983), Bomze (1995), Hofbauer and Sigmund
(1998), Hofbauer and So (1994), Takeuchi (1996), Zeeman (1993)). While there is a full clas-
sification in dimension two (Bomze (1983), Bomze (1995)), the classification is still incom-
plete for three dimensions even in the special case of competitive systems (Gyllenberg and
Yan (2009), Gyllenberg, Yan and Wang (2006), Hofbauer and So (1994), Schreiber (1999),
van den Driessche and Zeeman (1998), Xiao and Li (2000), Zeeman (1993)).

While theoretical population biologists have discovered many important phenomena by
studying these deterministic models, population dynamics in nature are often buffeted by
stochastic fluctuations in environmental factors. As a result, one has to study the interaction
between the population dynamics and these random environmental fluctuations to determine
conditions for persistence and extinction. One successful approach to this problem has been
the use of stochastic difference equations for discrete-time (Benaïm and Schreiber (2009),
Benaïm and Schreiber (2019), Chesson (1982), Chesson (2000), Chesson and Ellner (1989),
Hening (2021), Hening, Nguyen and Chesson (2021), Schreiber (2012)) and stochastic dif-
ferential equations (SDE) for continuous-time (Benaïm (2018), Benaïm, Hofbauer and Sand-
holm (2008), Evans, Hening and Schreiber (2015), Evans et al. (2013), Hening and Li (2021),
Hening and Nguyen (2018a), Hening and Nguyen (2018b), Hening and Nguyen (2018c),
Hening, Nguyen and Chesson (2021), Hening, Nguyen and Yin (2018), Lande, Engen and
Saether (2003), Schreiber, Benaïm and Atchadé (2011)).

For two dimensional SDEs, Hening and Nguyen (2018a) showed that, generically, the dy-
namics can be classified into four types: (i) both populations go asymptotically extinct with
probability one, (ii) one population goes extinct while the other approaches a unique, positive
stationary distribution with probability one, (iii) either species goes extinct with complemen-
tary positive probabilities, while the other approaches a unique stationary distribution asso-
ciated with it, or (iv) both populations persist with probability one and approach a unique,
positive stationary distribution. This classification is determined by Lyapunov exponents cor-
responding to the per-capita growth rates of species when they are infinitesimally rare.

Here, we extend this classification to three-dimensional systems. This extension leads to
generalizations of the two-dimensional outcomes (i)–(iii) and introduces a different type of
outcome. The generalization of (i)–(iii) is that for any collection of subcommunities, that
is, subsets of species, where no subcommunity is contained in another, the ecological dy-
namics converge to a stationary distribution associated with any one of these subsets with
positive probability. Alternatively, the new dynamic is a rock-paper-scissor extinction dy-
namic whereby the long-term statistical behavior is governed by convex combinations of
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three single species, stationary distributions. For SDEs of Lotka–Volterra type, we show that
the classification reduces to solving a finite number of systems of linear equations. We also
illustrate how conditions for species coexistence for the stochastic models can differ sub-
stantially from the coexistence conditions for the corresponding deterministic models. We
conclude by summarizing our main results and making a conjecture of how to classify these
systems in higher dimensions. We also discuss the implications for ecology’s modern coex-
istence theory (Chesson (2000), Ellner et al. (2019)).

The paper is structured as follows. In Section 2 we describe the models and our assump-
tions. The main results appear in Section 3. The proofs of the various propositions and the-
orems appear in Sections 4, 5, and 6 while the case by case classification of the dynamics is
in Section 7. We apply our results to Lotka–Volterra systems in Section 8. We conclude the
paper with a discussion in Section 9.

2. Models and assumptions. We consider the dynamics of n ≤ 3 interacting species
whose densities at time t are given by X(t) = (X1(t),X2(t), . . . ,Xn(t)). To capture the
effects on environmental stochasticity, the species dynamics are modeled by a system of
stochastic differential equations of the form

(2.1) dXi(t) = Xi(t)fi

(
X(t)

)
dt + Xi(t)gi

(
X(t)

)
dEi(t), i = 1, . . . , n,

where E(t) = (E1(t),E2(t), . . .En(t))
T = ��B(t), � is a n×n matrix such that ��� = � =

(σij )n×n and B(t) = (B1(t),B2(t), . . . ,Bn(t)) is a vector of independent standard Brownian
motions adapted to the filtration {Ft }t≥0. The system (2.1) is called a Kolmogorov system or
generalized Lotka–Volterra system. The functions fi(X) correspond to the per-capita growth
rate of species i and the functions gi(X) determine the per-capita magnitude of the envi-
ronmental fluctuations experienced by species i. Namely, Var[Xi(t + �t) − Xi(t)|X(t) =
X] = (Xigi(X))2σii�t + o(�t). We refer the reader to the work by Gard (1984), Hening
and Nguyen (2018a), Schreiber, Benaïm and Atchadé (2011), Turelli (1977) for more de-
tails about why (2.1) makes sense biologically. We will denote by Py(·) = P(·|X(0) = y)

and Ey[·] = E[·|X(0) = y] the probability and expected value given that the process starts
at X(0) = y ∈ Rn+ := [0,∞)n. We will define the interior of the positive orthant by R

n,◦
+ :=

(0,∞)n.
To ensure the dynamics of (2.1) are well defined and are stochastically bounded, we make

the following standing assumptions.

ASSUMPTION 2.1. The following hold:

(1) diag(g1(x), . . . , gn(x))��� diag(g1(x), . . . , gn(x)) = (gi(x)gj (x)σij )n×n is a positive
definite matrix for any x ∈Rn+ := [0,∞)n.

(2) fi(·), gi(·) :Rn+ →R are locally Lipschitz functions for any i = 1, . . . , n.
(3) There are c = (c1, . . . , cn) ∈ R

n,◦
+ := (0,∞)n, γb > 0 such that

lim sup
‖x‖→∞

[∑n
i=1 cixifi(x)

1 + ∑n
i=1 cixi

− 1

2

∑n
i,j=1 σij cicj xixjgi(x)gj (x)

(1 + ∑n
i=1 cixi)2

+ γb

(
1 +

n∑
i=1

(∣∣fi(x)
∣∣ + g2

i (x)
))]

< 0.

(2.2)

REMARK 2.1. Part (1) of Assumption 2.1 to ensure that the solution to (2.1) is a nonde-
generate diffusion. Parts (2) and (3) guarantee the existence and uniqueness of strong solu-
tions to (2.1). Moreover, (3) implies the tightness of the family of transition probabilities of
the solution to (2.1). Note that equation (2.2) is satisfied in most ecological models as long
as intraspecific competition is sufficiently strong.
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ASSUMPTION 2.2. Suppose that there is δ1 > 0 such that

lim‖x‖→∞
‖x‖δ1

∑n
i=1 g2

i (x)

1 + ∑n
i=1(|fi(x)| + |gi(x)|2) = 0.

REMARK 2.2. Assumption 2.2 forces the growth rates of g2
i (·) to be slightly lower than

those of |fi(·)|. This is needed in order to suppress the diffusion part so that we can obtain
the tightness of certain occupation measures.

3. Main results. Under assumption (2.1) one can use the proof from Lemma 3.1 in
Hening and Nguyen (2018a) to show the following.

LEMMA 3.1. Suppose Assumption 2.1 holds. Then, for any x ∈ Rn+ there exists a path-
wise unique strong solution (X(t)) to (2.1) with initial value X(0) = x. The solution (X(t))

with initial value x(0) = x ∈R
I,◦
+ will stay forever in R

I,◦
+ with probability 1. Moreover, X(t)

is a Feller process on Rn+.

One can associate to the Markov process X(t) the semigroup (Pt )t≥0 defined by its action
on bounded Borel measurable functions h :Rn+ →R

Pth(x) = Ex
[
h
(
X(t)

)]
, t ≥ 0,x ∈ Rn+.

The operator Pt can be seen to act by duality on Borel probability measures μ by μ → μPt

where μPt is the probability measure given by∫
R3+

h(x)(μPt)(dx) :=
∫
R3+

Pth(x)μ(dx)

for all h ∈ Cb(R
3+).

DEFINITION 3.1. A probability measure μ on R3+ is called invariant if Ptμ = μ for
all t ≥ 0. The invariant probability measure μ is called ergodic if it cannot be written as a
nontrivial convex combination of invariant probability measures.

We are interested in understanding the asymptotic, statistical behavior of X. To this end,
we define the normalized random occupation measures

�t(·) := 1

t

∫ t

0
1{X(s)∈·} ds for all t > 0,

where 1A is the indicator function which takes the value 1 on the set A and 0 on the comple-
ment Ac. Denote the weak∗-limit set of the family (�t(·))t≥1 by the random set of probability
measures U . These weak∗-limit points are almost-surely invariant probability measures for
X—see Theorem 9.9 from Ethier and Kurtz (2009) or Hening and Nguyen (2018a). For the
ergodic invariant probability measures, we make the following definition.

DEFINITION 3.2. For an ergodic invariant probability measure μ for X, invariance of the
faces of the nonnegative cone, meaning that if the process starts in one such subspace then
it stays there forever (see Lemma 3.1), implies that there is a unique subset I ⊂ {1,2, . . . , n}
such that μ({x ∈ Rn+ : xi > 0 if and only if i ∈ I }) = 1. We define this subset I as the species
support of μ and denote it as Iμ. In the special case that μ =: δ∗ is the Dirac measure con-
centrated at the origin 0, Iμ = ∅. We denote the set of all ergodic measures by M and the set
of all invariant measures by Conv(M).
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For any subset I ⊂ {1,2,3} define

RI+ = {
(x1, x2, x3) ∈ R3+ : xi = 0 if i ∈ I c},

R
I,◦
+ := {

(x1, x2, x3) ∈ R3+ : xi = 0 if i ∈ I c and xi > 0 if xi ∈ I
}
,

and ∂R
μ
+ =RI+ \RI,◦

+ .
Consider any ergodic measure μ ∈ M and assume μ �= δ∗. Define

R
μ
+ := R

Iμ

+ = {
(x1, x2, x3) ∈R3+ : xi = 0 if i ∈ I c

μ

}
.

Let

R
μ,◦
+ := R

Iμ,◦
+ = {

(x1, x2, x3) ∈ R3+ : xi = 0 if i ∈ I c
μ and xi > 0 if xi ∈ Iμ

}
and ∂R

μ
+ := R

μ
+ \Rμ,◦

+ .

REMARK 3.1. Note that one can show (see Benaïm (2018), Hening and Nguyen (2018a))
that under some natural assumptions the set Conv(M) is convex and compact and μ is er-
godic if and only if it cannot be written as a nontrivial convex combinations of invariant
probability measures. The ergodic decomposition theorem tells us that any invariant proba-
bility measure is a convex combination of ergodic measures. Furthermore, it can be shown
that any two ergodic probability measures are either identical or mutually singular and that
the topological supports of any mutually singular invariant measures are disjoint. In addition,
because the diffusion is nondegenerate and invariant on any subspace R

I,◦
+ , the topological

support of an ergodic measure μ is R
Iμ,◦
+ . In particular, this implies that M is finite.

For an given initial condition y, we are interested in the probability that an ergodic invariant
probability measure μ characterizes the long-term behavior of X. With this objective in mind,
we make the following definition.

DEFINITION 3.3. Let μ be an ergodic invariant probability measure for X. Define

py(μ) = Py

(
U = {μ} and lim sup

t→∞
1

t
logXi(t) < 0 for all i /∈ Iμ

)
as the probability that the normalized occupation measures converge to μ and the species not
supported by μ go extinct at an exponential rate.

REMARK 3.2. The proofs of our main results also provide upper bounds to
lim supt→∞ 1

t
logXi(t) almost-surely on the event {lim supt→∞ 1

t
logXi(t) < 0}.

A case of particular importance is when there is an ergodic invariant probability measure
that supports all species and characterizes the long term dynamics for all positive initial con-
ditions. We write y 
 0 if yi > 0 for all i.

DEFINITION 3.4. The process X is strongly stochastically persistent if it has a unique
invariant probability measure μ with Iμ = {1,2, . . . , n} such that py(μ) = 1 for all y 
 0.

To characterize py(·), we make use of certain Lyapunov exponents associated with the
derivative cocycle of (2.1). For the directions corresponding to species which are not sup-
ported by an ergodic measure, these Lyapunov exponents take on a particularly simple form.
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DEFINITION 3.5. For an ergodic probability measure μ define

(3.1) λi(μ) :=
∫
Rn+

(
fi(x) − σiig

2
i (x)

2

)
μ(dx).

For i /∈ Iμ, λi(μ) is an external Lyapunov exponent. These external Lyapunov exponents
determine the infinitesimal per-capita rate of growth of species not supported by μ.

For i ∈ Iμ, the following proposition from Hening and Nguyen (2018a) implies that the
average per-capita growth rate of the supported species equals 0. For these i, λi(μ) does not
correspond to a Lyapunov exponent associated with the derivative cocycle of X’s dynamics.

PROPOSITION 3.1. Suppose that Assumptions 2.1–2.2 hold. If μ is an ergodic invariant
probability measure, then λi(μ) = 0 for all i ∈ Iμ.

The next two propositions describe previous results for n = 1 and n = 2 species that follow
from Hening and Nguyen (2018a).

PROPOSITION 3.2. Assume n = 1 and Assumptions 2.1–2.2 hold. If λ1(δ
∗) > 0, then X

is strongly, stochastically persistent. If λ1(δ
∗) < 0, then py(δ

∗) = 1 for all y 
 0.

Proposition 3.2 highlights that when the external Lyaponov exponent λ1(δ
∗) is nonzero,

strong conclusions can be drawn about the long-term statistical behavior of (2.1). All of our
results rely on the following generalization of this assumption.

ASSUMPTION 3.1. For every ergodic invariant probability measure μ, the external Lya-
punov exponents are nonzero that is, λi(μ) �= 0 for i /∈ Iμ.

As we show later, Assumption 3.1 holds generically for (2.1) in the sense that there ex-
ist arbitrarily small perturbations of the per-capita growth rate functions fi such that this
assumption holds, see Theorem 3.4 which holds for any dimension n.

PROPOSITION 3.3. Suppose that n = 2, and Assumptions 2.1, 2.2 and 3.1 hold. Then
exactly one of the following four conclusions holds:

(1) py(δ
∗) = 1 for all y 
 0,

(2) there exists an ergodic invariant probability measure μ such that |Iμ| = 1 and py(μ) =
1 for all y 
 0,

(3) there exist ergodic invariant probability measures μ1, μ2 such that Iμi
= {i},∏

i py(μi) > 0, and
∑

i py(μi) = 1 for all y 
 0, or
(4) there exists an ergodic invariant probability measure μ such that Iμ = {1,2} and

py(μ) = 1 for all y 
 0

REMARK 3.3. Propositions 3.2–3.3 imply that each ≤ 2-dimensional face of R3+ sup-
ports at most one ergodic invariant probability measure and characterizes the existence of the
ergodic measures with the external Lyapunov exponents.

REMARK 3.4. The four possible outcomes in Proposition 3.3 can be characterized in
terms of the external Lyapunov exponents. Case (1) occurs if and only if maxi λi(δ

∗) < 0.
Case (2) occurs if and only if there exists i and j �= i such that λi(δ

∗) > 0, λi(μj ) < 0 where
Iμj

= {j}, and either λi(δ
∗) < 0 or λi(δ

∗) > 0, λj (μi) > 0 where Iμi
= {i}. Case (3) occurs

if and only if λi(δ
∗) > 0 for i = 1,2, and λj (μi) < 0 for all i �= j where Iμj

= {j}. Case
(4) occurs if and only if there exists i and j �= i such that λi(δ

∗) > 0, λj (μi) > 0, and either
λj (δ

∗) < 0 or λj (δ
∗) > 0, λi(μj ) > 0 where Iμj

= {j}.
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When n = 3 species, Propositions 3.2–3.3 characterize the asymptotic behavior of X re-
stricted to the one- and two-dimensional faces of R3+. To understand the asymptotic behavior
of X for X(0) 
 0, we need to isolate one special form of X’s dynamic: the rock-paper-
scissors dynamic. This is a type of dynamics where the first species seems to win, grows to
significant levels while the other two species have negligible densities. Then species 2 out-
competes species 1 and seems to win. After that happens the density of species 2 decreases
and the density of species 3 increases. Finally, species 1 wins against species 3, its den-
sity increases and that of species 3 decreases. Mathematically this scenario corresponds to
a stochastic analog of a heteroclinic cycle. An example of an ecosystem with this dynamics
is the one including the side-blotched lizard (Sinervo and Lively (1996)). In this ecosystem
there are three different types of lizards. The first type is a highly aggressive lizard that at-
tempts to control a large area and mate with any females within the area. The second type is
a furtive lizard, which wins against the aggressive lizard by acting like a female. This way
the furtive lizard can mate without being detected in an aggressive lizard’s territory. The third
type is a guarding lizard that watches one specific female for mating. This prevents the furtive
lizard from mating. However, the guarding lizard is not strong enough to overcome the ag-
gressive lizard. This type of dynamics creates regimes where one species seems to win, until
the species that beats it makes a comeback. This creates subtle technical problems which we
resolve in our proofs.

DEFINITION 3.6. For n = 3, X is a rock-paper-scissor system if λi(δ
∗) > 0 for all i, and

either

(a) min
{
λ1(μ2), λ2(μ3), λ3(μ1)

}
> 0 > max

{
λ1(μ3), λ2(μ1), λ3(μ2)

}
or

(b) max
{
λ1(μ2), λ2(μ3), λ3(μ1)

}
< 0 < min

{
λ1(μ3), λ2(μ1), λ3(μ2)

}
,

where μi are the unique, ergodic invariant probability measures satisfying Iμi
= {i}.

REMARK 3.5. Note that if λi(δ
∗) > 0 then by Proposition 3.3 for every i ∈ {1,2,3} there

exists a unique ergodic measure μi with Iμi
= i.

The following theorem characterizes, generically, the asymptotic behavior of X for
X(0) 
 0 for rock-paper-scissor systems.

THEOREM 3.1. Assume n = 3, X is a rock-paper-scissor system of type (a), and As-
sumptions 2.1–2.2 hold. If

(3.2) λ1(μ2)λ2(μ3)λ3(μ1) + λ1(μ3)λ2(μ1)λ3(μ2) > 0,

then X is strongly stochastically persistent. Moreover, if μ is the ergodic measure such that
py(μ) = 1 for all y 
 0, then

(3.3) lim
t→∞

∥∥Py
(
X(t) ∈ ·) − π∗(·)∥∥TV = 0 for all y 
 0,

where ‖·, ·‖TV is the total variation norm.
Alternatively, if the inequality in (3.2) is reversed then

(3.4) Py

(
U ⊂ Conv

({μ1,μ2,μ3}) and lim sup
t→∞

1

t
log min

i
Xi(t) < 0

)
= 1 for all y 
 0,

where Conv({μ1,μ2,μ3}) denotes the convex hull of the probability measures {μ1,μ2,μ3}.
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The following theorem characterizes, generically, strong stochastic persistence for n = 3
for non-rock-paper-scissor systems.

THEOREM 3.2. Assume n = 3, X is not a rock-paper-scissor system, and Assumptions
2.1, 2.2, and 3.1 hold. Then X is strongly stochastically persistent if and only if maxi λi(μ) >

0 for all ergodic μ with |Iμ| ≤ 2. Moreover, if μ is the ergodic measure such that py(μ) = 1
for all y 
 0, then (3.3) holds.

Finally, we characterize what happens when X is not strongly stochastically persistent and
is not a rock-paper-scissor system.

THEOREM 3.3. Assume n = 3, X is not a rock-paper-scissor system, and Assump-
tions 2.1–2.2 and 3.1 hold. If X is not stochastically persistent, then there exist ergodic
invariant probability measures μ1, . . . ,μk with k ≤ 3 such that:

(1) |Iμi | ≤ 2 for all i,
(2) Iμi ∩ Iμj �= Iμi for all i �= j ,

(3)
∏k

i=1 py(μ
i) > 0 for all y 
 0, and

(4)
∑k

i=1 py(μ
i) = 1 for all y 
 0.

REMARK 3.6. We can actually prove the stronger result which says that extinction is
exponentially fast with rate given by the relevant external Lyapunov exponent

py
(
μ�) := Py

{
U = {

μ�} and lim
t→∞

lnXi(t)

t
= λi

(
μ�) < 0, i /∈ Iμ�

}
> 0,

y 
 0, � = 1, . . . , k.

Up to permutations of the indices, these theorems characterize the asymptotic behavior of
X for X(0) 
 0 into 10 types. One type corresponds to all species going extinct, the other 9
types where at least one species persists are shown in Figure 1. As shown in the proofs of the
Theorems, all 10 types of dynamics are characterized by the external Lyapunov exponents.
For example, the case of μ1, μ2, μ3 with Iμi = {i} for Theorem 3.3 occurs if and only if
λi(δ

∗) > 0 for all i, and maxj �=i λj (μ
i) < 0 for all i. Alternatively, the case of μ1, μ2 with

Iμ1 = {1,2} and Iμ2 = {3} for Theorem 3.3 occurs if and only if X restricted to the first two
species satisfies the strongly persistent condition (see Remark 3.4), λ3(μ

1) < 0, λ3(δ
∗) > 0,

and maxi=1,2 λi(μ
2) < 0.

Finally, we show that Assumption 3.1 (i.e., all external Lyapunov exponents are nonzero)
holds generically. In order to measure how far apart processes are from each other we need
to define a topology on the stochastic differential equations (2.1). To this end, we make the
following definition.

DEFINITION 3.7. A process X̃ satisfying

(3.5) dX̃i(t) = X̃i(t)f̃i

(
X̃(t)

)
dt + X̃i(t)g̃i

(
X̃(t)

)
dEi(t), i = 1, . . . , n

and Assumptions (2.1) and (2.2) is a δ-perturbation of (2.1) for some δ > 0 if

(3.6) sup
x∈Rn+

∥∥f̃i(x) − fi(x)
∥∥ + sup

x∈Rn+

∥∥g̃i(x) − gi(x)
∥∥ ≤ δ.
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FIG. 1. The nine types of stochastic dynamics, up to permutation of indices, where at least
one species persists. Drift functions are (i) f (x) = (1 − x1,1 − 2x1 − x2,1 − 2x1 − x3),
(ii) f (x) = (1 − x1 − 2x2,1 − 2x1 − x2,1 − 2x1 − 2x2 − x3), (iii)
f (x) = (1 − x1 − 2x2 − 2x3,1 − 2x1 − x2 − 2x3,1 − 2x1 − 2x2 − x3), (iv)
f (x) = (1 − x1,1 − x2,1 − x1 − x2 − x3), (v) f (x) = (1 − x1 − 2x3,1 − x2 − 2x3,1 − x1 − x2 − x3),
(vi) f (x) = (1 − x1 − 2x3,−0.1 + 0.4x1 − 0.5x2 + 0.4x3,1 − 2x1 − x2),
(vii) f (x) = (1 − x1 − 4x2x3,1 − x2 − 4x1x3,1 − x3 − x1x2), (viii)
f (x) = c(1−x1 −2x2 −0.8x3,1−0.8x1 −x2 −2x3,1−2x1 −0.8x2 −x3), (ix) f (x) = c(1−x1,1−x2,1−x3).
The diffusion term for species i = 1,2,3 is 0.25Xi dBi(t) where B1(t), B2(t), B3(t) are independent, standard
Brownian motions.

THEOREM 3.4. Suppose (2.1) satisfies Assumptions 2.1 and 2.2. For any δ > 0, there
exist functions f̃ , g̃ = g defining a process X̃(t) by (3.5) such that:

(1) X̃(t) is a δ-perturbation of X(t),
(2) For every ergodic measure of X̃(t) the external Lyapunov exponents are nonzero.

We note that the set of ergodic measures of the perturbed process X̃(t) in Theorem 3.4
need not equal the ergodic measures of the unperturbed process X(t).
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4. Proofs of Theorem 3.4 and Propositions 8.1, 8.2, 8.3, 8.4, 8.5.

PROOF OF THEOREM 3.4. Let δ > 0 be given. To achieve the desired perturbation, we
create a sequence of perturbations f̃ 0, . . . , f̃ n−1 such that for all 0 ≤ k ≤ n− 1, (i) f̃ k, g̃ = g

is a δ-perturbation of f , g, (ii) for every ergodic invariant probability measure with |Iμ| ≤ k,
λi(μ) �= 0 for all i /∈ Iμ, and (iii) for k ≥ 1, f̃ k(x) = f̃ k−1(x) for all x with xk = xk+1 = · · · =
xn = 0. Note that condition (iii) ensures that the processes associated with the (f k−1, g) and
(f k, g) perturbations have the same set of ergodic probability measures supported by the set
{x : xk = xk+1 = · · · = xn = 0}. Outside of this set, the ergodic probability measures of these
two processes may not be the same. We prove the existence of this sequence inductively.

For k = 0, the only ergodic invariant probability measure μ with |Iμ| = 0 is δ∗. For the
species i such that λi(δ

∗) �= 0, define f̃ 0
i = fi . For any species i for which λi(δ

∗) = 0, define

f̃ 0
i (x) = fi(x) − δ

2
φ0

i (x),

where φ0
i is a smooth, nonnegative function that is 1 at the origin, 0 outside a small neigh-

borhood of the origin, and ‖φ0
i ‖∞ = 1. After the perturbation

λi

(
δ∗) = −

∫
δ

2
φ0

i (x)δ∗(dx) = −δ

2
< 0,

f̃ 0 satisfies (i)–(iii).
Now assume there exist f̃ 0, . . . , f̃ k that satisfy (i)–(iii) and k ≤ n − 2. We will construct

f̃ k+1 that satisfies (i)–(iii). By Assumption 2.1, for each I ⊂ {1, . . . , n} there exists at most
one ergodic invariant probability measure μ such that Iμ = I . Let J ⊂ {1, . . . , n} be the
collection of is such that λi(μ) �= 0 for any ergodic invariant probability measure μ with
|Iμ| = k + 1 and i /∈ Iμ. For i ∈ J , define f̃ k+1

i = f̃ k
i . For i /∈ J , let Mi be the (finite) set

of ergodic invariant probability measures μ such that i /∈ Iμ, |Iμ| = k + 1, and λi(μ) = 0.
Let e1, . . . , en be the canonical basis vectors and set Mi := {μ1

i , . . . ,μ
�
i } to be an order of

Mi . Do the following procedure in order from μ1
i up to μ�

i . For μ
j
i ∈ Mi , let φμ

j
i (x) be

a smooth function taking values in [0,1] such that φμ
j
i (

∑
i∈Iμ

ei) = 1, and the support of

φμ
j
i doesn’t intersect any of the ≤ k-dimensional faces of ∂Rn+ nor the support of any of

the previously defined φ functions. Define f̃ k+1(x) = f̃ k(x)− δ
2

∑�
i=1 φμ

j
i (x). Then λi(μ) =

− δ
2

∫
φ

μ
i (x)μ(x) < 0 for all μ ∈ Mi . Note that, since the φ’s have compact support, the

perturbations of the drift terms will not violate Assumptions 2.1 or 2.2. By construction,
f̃ k+1 satisfies (i)–(iii).

Let X̃(t) be the solution of

dX̃i(t) = X̃i(t)f̃
n−1(

X̃(t)
)
dt + X̃i(t)gi

(
X̃(t)

)
dEi(t), i = 1, . . . , n.

Then X̃(t) is a δ-perturbation of X(t) that has no zero external Lyapunov exponents. �

PROOF OF PROPOSITION 8.1. If the system is competitive, so that aij ≤ 0 for all
i, j = 1,2,3 then Example 1.1 from Hening and Nguyen (2018a) proves that such a triplet
(c1, c2, c3) ∈ R

3,◦
+ exists.

Suppose that a12 < 0, a13 ≤ 0 and a23 ≤ 0. In particular, this treats, after possibly re-
ordering the indices, all the combinations of predator-prey and competitive interactions. Let
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c1 = M
|a21|+1
|a12| , c2 = M > 0, c3 = 1 and note that∑

cixifi(x)

≤
(
M

|a21| + 1

|a12| m1x1 + Mm2x2 + m3x3

)
+ M

|a21| + 1

|a12|
(
a11x

2
1 − |a12|x1x2 − |a13|x1x3

)
+ M

(
a22x

2
2 + a21x1x2 − |a23|x2x3

) + (a33x3 + a32x1x3 + a32x2x3)

≤
(
M

|a21| + 1

|a12| m1x1 + Mm2x2 + m3x3

)
+ M

|a21| + 1

|a12| a11x
2
1 + Ma22x

2
2 + a33x

2
3 + a32x1x3 + a32x2x3

≤
(
M

|a21| + 1

|a12| m1x1 + Mm2x2 + m3x3

)
+ a33

2

(
x2

1 + x2
2 + x2

3
)

(for sufficiently large M)

≤ KM + a33

2

(
x2

1 + x2
2 + x2

3
)

(for sufficiently large KM ).

Note that here we use the fact that aii < 0, i = 1,2,3. As a result∑
cixifi(x)

1 + c�x
≤ γ1 − γ2(x1 + x2 + x3)

for some constants γ1, γ2 > 0. Since gi(x) = 1, it is easy to see that (2.2) holds. �

PROOF OF PROPOSITION 8.2. By Proposition 3.1 we have that for all i ∈ Iμ

0 = λi(μ) =
∫
R3+

(
mi +

3∑
j=1

aij xj − σii

2

)
μi(dx) = mi + ∑

j

aij

∫
R3+

xjμ(dx) − σii

2
.

By assumption, there exists a unique solution x to (8.2). Hence, xi = ∫
R3+ xiμ(dx) for all i

and the claimed expression for λi(μ) follows. �

PROOF OF PROPOSITION 8.3. If 2 > α + β , we have

λ2(μ1)λ3(μ2)λ1(μ3) =
(

σ 3

2a11a22a33

)
(a11 − a21)(a22 − a32)(a33 − a13)

=
(

σ 3

2a11a22a33

)
(1 − β)3

>

(
σ 3

2a11a22a33

)
(α − 1)3

=
(

σ 3

2a11a22a33

)∣∣(a22 − a12)(a33 − a23)(a11 − a31)
∣∣

= ∣∣λ3(μ1)λ1(μ2)λ2(μ3)
∣∣

(4.1)

and by Theorem 3.1 there is persistence. If 2 < α + β then from Theorem 3.1 we have that
with probability one

X(t) → ∂R3+
as t → ∞ and there is extinction. �



904 A. HENING, D. H. NGUYEN AND S. J. SCHREIBER

PROOF OF PROPOSITION 8.4. The proof follows from the proofs of Case C in Theo-
rems 3.1 and 3.2 of Hutson (1984a) (see also Hutson and Law (1985)). The only difference
between (8.5) and the models considered by Hutson (1984a) is that our model includes the
self-limitation term −cX3 in the predator equation. The proofs of Hutson (1984a) imply that
permanence occurs if all the equilibria on the boundary ∂R3+ have at least one positive exter-
nal Lyapunov exponent with respect to the Dirac measure at the equilibrium. Alternatively,
if all the external Lyapunov exponents are negative at one of the boundary equilibria, say x∗,
then there are positive initial conditions X(0) 
 0 such that limt→∞ X(t) = x∗ that is, the
system is impermanent.

The external Lyapunov exponents of the prey species at the origin are given by λ1(δ
∗) =

λ2(δ
∗) = r > 0. The only additional equilibria on the axes are given by (r,0,0) and (0, r,0)

at which the predator’s per-capita growth rate (the external Lyapunov exponent) equals λ3 =
r − d and the missing prey’s per-capita growth rate equals r(1 − β) < 0. Hence, there is
a positive external Lyapunov exponent at these equilibria if and only if r > d . The only
other equilibrium in the X1–X2 plane is the unstable equilibrium (r/(1 + β), r/(1 + β),0).
At this equilibrium, the external Lyapunov exponent of the predator equals r/(1 + β) − d

which is positive if and only if r > (1 + β)d . When r > d , there are the equilibria ((rc +
d)/(1 + c),0, (r − d)/(1 + c)) and (0, (rc + d)/(1 + c), (r − d)/(1 + c)) in the X1–X3
and X2–X3 planes, respectively. The external Lyapunov exponent at these equilibria equal
r − β(rc + d)/(1 + c). Hence, permanence occurs if and only if r − β(rc + d)/(1 + c) > 0
and r/(1 + β) > d which are equivalent to the stated conditions for permanence. �

PROOF OF PROPOSITION 8.5. We begin by noting that while the functions fi(x) in
(8.7) are not locally Lipschitz when x1 = x2 = 0, the full drift functions gi(x) = xifi(x)

can be uniquely extended to be locally Lipschitz functions at x1 = x2 = 0 by defining
g1(x) = g2(x) = 0 and g3(x) = −d − cx3. Hence, there is existence and uniqueness of strong
solutions. Moreover, Theorem 3.2 still holds by making the change of coordinates S = x1 +x2
and y = x1/S which by Itô’s lemma yields

dS(t) = S(t)
(
r − (1 + β)S(t) − (

y(t)2 + (
1 − y(t)

)2)
X3(t)

)
dt

+ εS(t)
(
y(t) dB1(t) + (

1 − y(t)
)
dB2(t)

)
,

dy(t) = y(t)
(
1 − y(t)

)(
1 − 2y(t)

)(
S(t)(1 − β) + X3(t) + ε2)

dt

+ y(t)
(
1 − y(t)

)
ε
(
dB1(t) − dB2(t)

)
,

dX3(t) = X3(t)(S(t)
(
y(t)2 + (

1 − y(t)
)2 − d − cX3(t)

)
dt + εX3(t) dB3(t),

and applying the arguments in Section 5.1 to this system whose state space is [0,∞)×[0,1]×
[0,∞) and where extinction of one or more species corresponds to y(1 − y)Sx3 = 0.

As Theorem 3.2 applies, we will identify when every ergodic invariant probability measure
on the boundary has at least one positive external Lyapunov exponent. For the Dirac measure
at the origin, λi(δ

∗) = r − ε2/2 for i = 1,2. Assume 0 < ε <
√

2r . Proposition 3.2 implies
that for i ∈ {1,2} there is a unique ergodic measure μi such that Iμi

= {i}. As the Lyapunov
exponent λ3(δ

∗) = −d − ε2 is negative, Proposition 3.2 implies there is no additional ergodic
invariant probability measure on the x3 axis. The unique solution xi for i = 1,2 to 0 =
r − xi − ε2/2 is xi = r − ε2/2. Using Proposition 8.2 we therefore get xi = ∫

xiμi(dx)

for i = 1,2. The external Lyapunov exponents at μi are λj (μi) = r − βxi − ε2/2 < 0, j ∈
{1,2} \ {i} for the other prey species and λ3(μi) = xi − d − ε2/2 = r − d − ε2. In the x1x2
plane, the negative external Lyapunov exponents for μ1, μ2 and Proposition 3.3 imply that
there are no ergodic invariant probability measures μ with Iμ = {1,2}.
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Assume that the external Lyapunov exponents λ3(μi) = r − d − ε2/2 are positive. Propo-
sition 3.3 implies there exists a unique ergodic invariant probability measure μi3 such that
Iμi3 = {i,3} for i = 1,2. Solving the linear equations r − x̂1 − x̂3 − ε2/2 = 0 = x̂1 − d −
cx̂3 −ε2/2 for x̂1, x̂3 yields x̂3 = (r −d −ε2)/(1+ c) and x̂1 = (rc+d +ε2)/(1+ c)−ε2/2.
Proposition 8.2 implies that

λ1(μ13) = λ2(μ23) = r − β
((

rc + d + ε2)
/(1 + c) − ε2/2

)
.

For ε > 0 sufficiently small, λ1(μ13) > 0 if r
β
(1 + c(1 − β)) > d in which case Theorem 3.2

implies the system is strongly stochastically persistent. �

5. Proofs of Theorems 3.2 and 3.3. To prove Theorems 3.2 and 3.3, we make use of two
key results from Hening and Nguyen (2018a). The first result provides a sufficient condition
for strong, stochastic persistence in terms of the external Lyapunov exponents. The second
result provides a sufficient condition for py(μ) > 0 for y 
 0 and an ergodic measure μ ∈ M
supporting a subset of species. These results, however, do not cover two special cases. The
first of these special cases corresponds to two prey-single predator systems. For this special
case, the sufficient condition of Hening and Nguyen (2018a) for stochastic persistence does
not apply. Hence, Theorem 5.3 in Section 5.1 provides the necessary and sufficient condition
(under the assumption of nonzero external Lyapunov exponents) for stochastic persistence.
The second special case corresponds to rock-paper-scissor systems as defined in Definition
3.6. For this special case, the condition for the boundary to be attracting doesn’t follow from
Hening and Nguyen (2018a). Hence, Theorem 6.2 from Section 6 provides the necessary
result for this case.

Let M be the set of ergodic invariant probability measures of X supported on the boundary
∂R3+ := R3+ \ R

3,◦
+ . Denote by Conv(M) the invariant probability measures supported on

∂R3+, that is, the probability measures π of the form π(·) = ∑
ν∈M pνν(·) with pν ≥ 0,∑

ν∈M pν = 1.
The following condition ensures strong stochastic persistence.

ASSUMPTION 5.1. For any μ ∈ Conv(M) one has

max
i

λi(μ) > 0.

We note (Benaïm and Schreiber (2019), Hening and Nguyen (2018a), Schreiber, Benaïm
and Atchadé (2011)) that Assumption 5.1 is equivalent to the following assumption.

ASSUMPTION 5.2. There exist numbers pi ≥ 0 such that∑
i

piλi(μ) > 0,μ ∈ M.

THEOREM 5.1. Suppose that Assumptions 2.1 and 5.1 hold. Then X is strongly stochas-
tically persistent and converges exponentially fast to a unique invariant probability measure
π∗ which is supported on R

3,◦
+ .

PROOF. This follows by Theorem 1.1 from Hening and Nguyen (2018a). �

PROPOSITION 3.1. Suppose that Assumptions 2.1–2.2 hold. If μ is an ergodic invariant
probability measure, then λi(μ) = 0 for all i ∈ Iμ.

PROOF. This follows by Hening and Nguyen (2018a). �
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ASSUMPTION 5.3. There exists an ergodic measure μ ∈ M such that

(5.1) max
i∈I c

μ

λi(μ) < 0.

If Rμ
+ �= {0}, suppose further that for any ν ∈ Conv(Mμ), we have

(5.2) max
i∈Iμ

λi(ν) > 0,

where Mμ := {ν′ ∈M : supp(ν′) ⊂ ∂R
μ
+}.

We call an ergodic measure satisfying Assumption 5.3 a transversal attractor. This means
that μ attracts all directions that are not among the directions from its support Iμ. Note that
by Proposition 3.1 we always have λi(μ) = 0, i ∈ Iμ. Assumption 5.3 says that there exists
at least one transversal attractor. Define

(5.3) M1 := {μ ∈ M : μ satisfies Assumption 5.3},
and

(5.4) M2 := M \M1.

We need an additional assumption which ensures that apart from those in Conv(M1), invari-
ant probability measures are repellers.

ASSUMPTION 5.4. Suppose that one of the following is true:

• M2 = ∅

• For any ν ∈ Conv(M2), maxi λi(ν) > 0.

THEOREM 5.2. Suppose that Assumptions 2.1, 2.2, 5.3, and 5.4 are satisfied and M1 �=
∅. Then for any x ∈ R

3,◦
+

(5.5)
∑

μ∈M1

px(μ) = 1,

where

px(μ) = Px

(
U = {μ} and lim sup

t→∞
1

t
logXi(t) = λi(μ) for all i /∈ Iμ

)
.

PROOF. This follows from Theorem 1.3 in Hening and Nguyen (2018a). �

THEOREM 3.2. Assume n = 3, X is not a rock-paper-scissor system, and Assumptions
2.1, 2.2, and 3.1 hold. Then X is strongly stochastically persistent if and only if maxi λi(μ) >

0 for all ergodic μ with |Iμ| ≤ 2. Moreover, if μ is the ergodic measure such that py(μ) = 1
for all y 
 0, then (3.3) holds.

PROOF. Suppose we are in the setting from Section 5.1. This means that there are two
prey species and one predator such that:

λ1
(
δ∗)

> 0, λ2
(
δ∗)

> 0, λ3
(
δ∗)

< 0,

λ2(μ1) < 0, λ1(μ2) < 0, λ3(μ1) > 0, λ3(μ2) > 0,

and

λ2(μ13) > 0, λ1(μ23) > 0.

In this special case the result follows from Theorem 5.3 below.
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Suppose that we are not in the setting from Section 5.1 or in the rock-paper-scissors setting
from Section 6. Then one can check, case by case like we do in Section 7, that

max
i

λi(μ) > 0, μ ∈ M

is equivalent to the existence of pi ≥ 0 such that∑
i

piλi(μ) > 0, μ ∈ M

which is equivalent to Assumption 5.1. This allows us to use Theorem 5.1 and finish the
proof. �

THEOREM 3.3. Assume n = 3, X is not a rock-paper-scissor system, and Assump-
tions 2.1–2.2 and 3.1 hold. If X is not stochastically persistent, then there exist ergodic
invariant probability measures μ1, . . . ,μk with k ≤ 3 such that:

(1) |Iμi | ≤ 2 for all i,
(2) Iμi ∩ Iμj �= Iμi for all i �= j ,

(3)
∏k

i=1 py(μ
i) > 0 for all y 
 0, and

(4)
∑k

i=1 py(μ
i) = 1 for all y 
 0.

PROOF. This follows from Theorem 5.2 by noting that Assumptions 5.3 and 5.4 hold.
�

5.1. Two prey and one predator. Throughout this subsection we make the following as-
sumption.

ASSUMPTION 5.5. There are two prey species 1, 2 and one predator 3 such that:

λ1
(
δ∗)

> 0, λ2
(
δ∗)

> 0, λ3
(
δ∗)

< 0.

The two prey species cannot coexist without the predator. However, each prey species can
coexist with the predator:

λ2(μ1) < 0, λ1(μ2) < 0, λ3(μ1) > 0, λ3(μ2) > 0.

As a result of Proposition 3.3 there exist unique ergodic measures μ13 and μ23 on the interiors
of the positive x1x3 and x2x3 planes. Furthermore, each prey species can invade the stationary
system of the other prey species and the predator:

λ2(μ13) > 0, λ1(μ23) > 0.

We note that in this case we cannot use Theorem 5.1 because Assumption 5.1 does not
hold. The goal of this section is to prove persistence in this special case.

THEOREM 5.3. Suppose that Assumptions 2.1 and 5.5 hold. There exist θ (see Propo-
sition 5.1), n∗ ∈ N (see equation (5.24)) and constants κ = κ(θ, T ∗) ∈ (0,1) and K =
K(θ,T ∗) > 0 such that

(5.6) ExV
θ (

X
(
n∗T ∗)) ≤ κV θ(x) + K for all x ∈ R

3,◦
+ .

As a result, X is strongly stochastically persistent. The convergence of the transition prob-
ability of X in total variation to its unique probability measure π∗ on R

3,◦
+ is exponentially

fast. Moreover, for any initial value x ∈R
3,◦
+ and any π∗-integrable function f we have

(5.7) Px

{
lim

T →∞
1

T

∫ T

0
f

(
X(t)

)
dt =

∫
R

3,◦
+

f (u)π∗(du)

}
= 1.
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We start with a series of lemmas and propositions.

LEMMA 5.1. For any invariant probability measure π of X one has

(5.8)
∫
R3+

(∑
cixifi(x)

1 + c�x
− 1

2

∑
σij cicj xixjgi(x)gj (x)

(1 + c�x)2

)
π(dx) = 0.

Furthermore,∫
R3+

(
x1f1(x) + x2f2(x)

x1 + x2
−

∑2
i,j=1 σijxixjgi(x)gj (x)

2(x1 + x2)2

)
π(dx) = 0,

π ∈ {μ1,μ2,μ13,μ23}.

REMARK 5.1. Note that even though 1
x1+x2

is undefined on the set E0 := {(x1, x2, x3) ∈
R3+|x1 + x2 = 0} this does not matter since none of the measures {μ1,μ2,μ13,μ23} put any
mass on the set E0.

PROOF. We show in Hening and Nguyen (2018a), Lemma 3.3, that

(5.9)
∫
R3+

(∑
cixifi(x)

1 + c�x
− 1

2

∑
σij cicj xixjgi(x)gj (x)

(1 + c�x)2

)
π(dx) = 0

for any invariant probability measure π . For the second part of the lemma one can use a
contradiction argument similar to Hening and Nguyen (2018a), Lemma 3.3 and Lemma 5.1.

�

LEMMA 5.2. For any ergodic measure μ ∈ M we have that λi(μ) is well defined and
finite. Furthermore,

λi(μ) = 0, i ∈ Iμ.

PROOF. The proof is the same as the proof of Hening and Nguyen (2018a), Lemma 5.1.
�

We start by proving some general results due to (2.2). In view of (2.2), there is M > 0 such
that

(5.10)

[∑
cixifi(x)

1 + ∑
cixi

− 1

2

∑
σij cicj xixjgi(x)gj (x)

(1 + ∑
cixi)2 + γb

(
1 +

n∑
i=1

(∣∣fi(x)
∣∣ + g2

i (x)
))]

< 0

if ‖x‖ ≥ M . Since ∣∣gi(x)gj (x)σij

∣∣ ≤ 2|σij |(∣∣gi(x)
∣∣2 + ∣∣gj (x)

∣∣2)
we can find δ0 ∈ (0,0.5γb) such that

(5.11) 3δ0
∑∣∣gi(x)gj (x)σij

∣∣ + δ0
∑

g2
i (x) ≤ γb

∑
g2

i (x), x ∈ Rn+.

In view of (5.10) and (5.11), we have

(5.12)

∑
cixifi(x)

1 + c�x
− 1

2

∑
σij cicj xixjgi(x)gj (x)

(1 + ∑
cixi)2 + γb + δ0

∑(
2
∣∣fi(x)

∣∣ + g2
i (x)

)
+ 3δ0

∑∣∣gi(x)gj (x)σij

∣∣ < 0 for all ‖x‖ ≥ M.
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Using (5.12) one can define

(5.13)

H := sup
x∈R3+

{∑
cixifi(x)

1 + c�x
− 1

2

∑
σij cicj xixjgi(x)gj (x)

(1 + ∑
cixi)2

+ γb + δ0
∑(

2
∣∣fi(x)

∣∣ + g2
i (x)

) + 3δ0
∑∣∣gi(x)gj (x)σij

∣∣} < ∞.

LEMMA 5.3. Suppose the following:

• The sequences (xk)k∈N ⊂ R3+, (Tk)k∈N ⊂ R+ are such that ‖xk‖ ≤ M , Tk > 1 for all k ∈N

and limk→∞ Tk = ∞.
• The sequence (�

xk

Tk
)k∈N converges weakly to an invariant probability measure π .

• The function h : R3+ → R is any upper semi-continuous function satisfying |h(x)| <

Kh(1 + c�x)δ(1 + ∑
i (|fi(x)| + |gi(x)|2)), x ∈ Rn+, for some Kh ≥ 0, δ < δ0.

Then one has

(5.14) lim
k→∞

∫
Rn+

h(x)�
xk

Tk
(dx) ≤

∫
Rn+

h(x)π(dx).

PROOF. If the function h is bounded and upper continuous, (5.14) is obtained from the
Portmanteau theorem. In case h satisfies |h(x)| < Kh(1 + c�x)δ(1 + ∑

i(|fi(x)| + |gi(x)|2)),
x ∈ Rn+, for some Kh ≥ 0, δ < δ0, we use the uniform bound in Hening and Nguyen (2018a),
Lemma 3.3, the truncated arguments in Hening and Nguyen (2018a) to obtain (5.14), Lemma
3.4. The details are omitted here. �

It is easy to show that, there exist p1,p2,p3 > 0 such that

(5.15)
3∑

i=1

piλi(π) > 0, π ∈ {μ1,μ2,μ13,μ23}.

Let p0 be sufficiently large (compared to p1, p2, p3) such that

(5.16) p0 min
{
λ1

(
δ∗)

, λ2
(
δ∗)} +

3∑
i=1

piλi

(
δ∗)

> 0.

By rescaling p0, . . . , p3, we can assume that
∑3

i=0 pi ≤ δ0
4 . Let

2ρ∗ := min

{
p0 min

{
λ1

(
δ∗)

, λ2
(
δ∗)} +

3∑
i=1

piλi

(
δ∗)

,

3∑
i=1

piλi(π),π ∈ {μ1,μ2,μ13,μ23}
}

> 0

(5.17)

and Pδ = {̂p := (p̂0, . . . , p̂3) ∈ R4 : |p̂0| + |p̂1| + |p̂2| + |p̂3| ≤ δ0
4 }. For any p̂ define the

function Vp̂ :R3,◦
+ →R+ by

(5.18) Vp̂(x) = 1 + c�x

(x1 + x2)p̂0
∏3

i=1 x
p̂i

i

.

Note that if

Z := lnVp̂ = ln
(
1 + c�x

) − p̂0 ln(x1 + x2) −
3∑

i=1

p̂i lnxi
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then we can write V
δ0
p̂ = eδ0Z . Taking derivatives yields

∂(V
δ0
p̂ )

∂xi

= δ0Vp̂
∂Z

∂xi

and

∂2(V
δ0
p̂ )

∂xi∂xj

= δ0Vp̂

(
δ0

∂Z

∂xi

∂Z

∂xj

+ ∂2Z

∂xi∂xj

)
.

Using these expressions and the definition of the generator L one can show, after some com-
putations, that

(5.19)

LV
δ0
p̂ (x) = δ0V

δ0
p̂ (x)

[∑3
i=1 cixifi(x)

1 + c�x
+ δ0 − 1

2

∑3
i,j=1 σij cicj xixjgi(x)gj (x)

(1 + c�x)2

−
3∑

i=1

(
p̂ifi(x) − p̂ig

2
i (x)σii

2

)

− p̂0

(
x1f1(x) + x2f2(x)

x1 + x2
−

∑2
i,j=1 σij xixjgi(x)gj (x)

2(x1 + x2)2

)

+ δ0

2
p̂2

0

∑2
i,j=1 σij xixjgi(x)gj (x)

(x1 + x2)2

+ δ0p̂0

2∑
i=1

3∑
j=1

σij

xigi(x)

x1 + x2
gj (x) − δ0

3∑
i=1

cip̂ixiσij gi(x)gj (x)

(1 + c�x)

+ δ0

2

3∑
i=1

p̂i p̂j σij gi(x)gj (x) − δ0p0

2∑
i=1

3∑
j=1

σij

xicj xjgi(x)gj (x)

(x1 + x2)(1 + c�x)

]
.

In virtue of (5.12), we have

(5.20) LV
δ0
p̂ (x) < −γbδ0V

δ0
p̂ (x) for x ∈ R

3,◦
+ ,‖x‖ > M, p̂ ∈ Pδ0 .

Analogously, using (5.13)

(5.21) LV
δ0
p̂ (x) < Hδ0V

δ0
p̂ (x), x ∈R

3,◦
+ , p̂ ∈ Pδ0 .

Let p = (p0, . . . , p3) satisfy (5.17) and consider the function

V (x) := Vp(x) = 1 + c�x

(x1 + x2)p0
∏3

i=1 x
pi

i

.
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Let yi = xi

x1+x2
, i = 1,2. Since y1 + y2 = 1 we have the following estimate:

x1f1(x) + x2f2(x)

x1 + x2
−

∑2
i,j=1 σij xixjgi(x)gj (x)

2(x1 + x2)2

=
2∑

i=1

yi

(
fi(x) − g2

i (x)σii

2

)
− y1y2σ12g1(x)g2(x)

=
2∑

i=1

yi

(
fi(x) − g2

i (x)σii

2

)
+ 1

2
(y1 + y2)

(
y1g

2
1(x)σ11 + y2g

2
2(x)σ22

)
+ 1

2

(−y2
1g2

1(x)σ11 − y2
2g2

2(x)σ11 − 2y1y2σ12g1(x)g2(x)
)

= y1

(
f1(x) − g2

1

2
(x)

)
+ y2

(
f2(x) − g2

2

2
(x)

)
+ 1

2
y1y2

(
g2

1(x)σ11 + g2
2(x)σ22 − 2g1(x)g2(x)σ12

)
.

Since (gi(x)gj (x)σij )3×3 is positive definite it is clear that

g2
1(x)σ11 + g2

2(x)σ22 − 2σ12g1(x)g2(x) ≥ 0.

Thus, we have

x1f1(x) + x2f2(x)

x1 + x2
−

∑2
i,j=1 σij xixjgi(x)gj (x)

2(x1 + x2)2

≥ min
{
f1(x) − σ11g

2
1(x)

2
, f2(x) − σ22g

2
2(x)

2

}
.

(5.22)

Define � :R3+ \ {(x1, x2, x3) ∈ R3+|x1 + x2 = 0} �→R by

�(x) =
∑3

i=1 cixifi(x)

1 + c�x
− 1

2

∑3
i,j=1 σij cicj xixjgi(x)gj (x)

(1 + c�x)2 −
3∑

i=1

(
pifi(x) − pig

2
i (x)σii

2

)

− p0

(
x1f1(x) + x2f2(x)

x1 + x2
−

∑2
i,j=1 σij xixjgi(x)gj (x)

2(x1 + x2)2

)
.

Let �̂ :R3+ �→R be the function

(5.23)

�̂(x) =
∑3

i=1 cixifi(x)

1 + c�x
− 1

2

∑3
i,j=1 σij cicj xixjgi(x)gj (x)

(1 + c�x)2

−
3∑

i=1

(
pifi(x) − pig

2
i (x)σii

2

)

− p0 min
{
f1(x) − σ11g

2
1(x)

2
, f2(x) − σ22g

2
2(x)

2

}
.

Define �̃ :R3+ �→R by

�̃(x) =
{
U(x), if x1 + x2 = 0,

�(x), if x1 + x2 �= 0.

In view of (5.22), �̃(x) is an upper semi-continuous function.
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Let n∗ ∈ N such that

(5.24) γb

(
n∗ − 1

)
> H.

LEMMA 5.4. Suppose that Assumptions 5.1 and 2.2 hold. Let p and ρ∗ be as in (5.17).
There exists a T ∗ > 0 such that, for any T > T ∗, x ∈ ∂R3+, ‖x‖ ≤ M one has

(5.25)
1

T

∫ T

0
Ex�̃

(
X(t)

)
dt ≤ −ρ∗.

As a corollary, there is a δ̃ > 0 such that

(5.26)
1

T

∫ T

0
Ex�

(
X(t)

)
dt ≤ −3

4
ρ∗, T ∈ [

T ∗, n∗T ∗]
for any x ∈ R

3,◦
+ satisfying ‖x‖ ≤ M and dist(x, ∂R3+) < δ̃.

PROOF. We argue by contradiction to obtain (5.25). Suppose that the conclusion of this
lemma is not true. Then, we can find xk ∈ ∂R3+, ‖xk‖ ≤ M and Tk > 0, limk→∞ Tk = ∞ such
that

(5.27)
1

T k

∫ Tk

0
Exk

�̃
(
X(t)

)
dt > −ρ∗, k ∈N.

Define the measures �x
t by

�x
t (dy) := 1

t

∫ t

0
Px

{
X(s) ∈ dy

}
ds.

It follows from Hening and Nguyen (2018a), Lemma 4.1, that (�
xk

Tk
)k∈N is tight. As a result

(�
xk

Tk
)k∈N has a convergent subsequence in the weak∗-topology. Without loss of generality,

we can suppose that (�
xk

Tk
)k∈N is a convergent sequence in the weak∗-topology. It can be

shown (see Lemma 4.1 from Hening and Nguyen (2018a) or Theorem 9.9 from Ethier and
Kurtz (2009)) that its limit is an invariant probability measure μ of X. Since xk ∈ ∂R3+, the
support of μ lies in ∂R3+. As a consequence of Lemma 5.3

lim
k→∞

1

T k

∫ Tk

0
Exk

�̃
(
X(t)

)
dt ≤

∫
R3+

�̃(x)μ(dx).

Using Lemmas 5.1 and 5.2, together with equation (5.17) we get that

lim
k→∞

1

T k

∫ Tk

0
Exk

�̃
(
X(t)

)
dt ≤ −2ρ∗.

This contradicts (5.27), which means (5.25) is proved.
With �̂ defined in (5.23), we have �̂(x) ≥ �(x) for x1 + x2 �= 0 and �̂(x) = �̃(x) if

x1 + x2 = 0. As a result of (5.17). Thus

(5.28)
1

T

∫ T

0
E(0,0,x3)�̂

(
X(t)

)
dt = 1

T

∫ T

0
E(0,0,x3)�̃

(
X(t)

)
dt ≤ −ρ∗, x3 ≤ M,T ≥ T ∗.

Due to the Feller property of (X(t)) on R3+ and the continunity of �̂ on R3+, there is an ε̂ > 0
such that

1

T

∫ T

0
Ex�̂

(
X(t)

)
dt ≤ −3

4
ρ∗,

if x1 + x2 ≤ ε̂,x ∈ ∂R3+,‖x‖ ≤ M,T ∈ [
T ∗, n∗T ∗]

.

(5.29)
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Together with �(x) ≤ �̂(x), x1 + x2 �= 0, this implies

1

T

∫ T

0
Ex�

(
X(t)

)
dt ≤ −3

4
ρ∗, x ∈ R

3,◦
+ , x1 + x2 ≤ ε̂,‖x‖ ≤ M,T ∈ [

T ∗, n∗T ∗]
.

If x1 + x2 �= 0, then

Px
{
�̃

(
X(t)

) = �
(
X(t)

)
, t ≥ 0

} = 1.

Using the Feller property of (X(t)) on {(x1, x2, x3) ∈ R3+|x1 + x2 �= 0}, equation (5.25) and
the continuity of �(t) = �̃(t) on {(x1, x2, x3) ∈ R3+|x1 +x2 �= 0} one can see that there exists
δ̃ ∈ (0, ε̂) for which

1

T

∫ T

0
Ex�

(
X(t)

)
dt ≤ −3

4
ρ∗,

x ∈ R
3,◦
+ , x1 + x2 ≥ ε̂,‖x‖ ≤ M,dist

(
x, ∂R3+

)
< δ̃,T ∈ [

T ∗, n∗T ∗]
.

(5.30)

Combining (5.29) and (5.30) yields (5.26). �

LEMMA 5.5. Let Y be a random variable, θ0 > 0 a constant, and suppose

E exp(θ0Y) +E exp(−θ0Y) ≤ K1.

Then the log-Laplace transform φ(θ) = lnE exp(θY ) is twice differentiable on [0, θ0
2 ) and

dφ

dθ
(0) = EY,

0 ≤ d2φ

dθ2 (θ) ≤ K2, θ ∈
[
0,

θ0

2

)
for some K2 > 0 depending only on K1.

PROOF. See Lemma 3.5 in Hening and Nguyen (2018a). �

PROPOSITION 5.1. Let V be defined by (5.18) with p and ρ∗ satisfying (5.17) and T ∗ >

0 satisfying the assumptions of Lemma 5.4. There are θ ∈ (0,
δ0
2 ), Kθ > 0, such that for any

T ∈ [T ∗, n∗T ∗] and x ∈R
3,◦
+ , ‖x‖ ≤ M ,

ExV
θ (

X(T )
) ≤ exp

(−0.5θρ∗T
)
V θ(x) + Kθ.

PROOF. We have from Itô’s formula that

(5.31) lnV
(
X(T )

) = lnV
(
X(0)

) + G(T ),

where

(5.32)

G(T ) =
∫ T

0
�

(
X(t)

)
dt + p0

∫ T

0

X1(t)g1(X(t)) dE1(t) + X2(t)g2(X(t)) dE2(t)

X1(t) + X2(t)

+
∫ T

0

[∑
i ciXi(t)gi(X(t)) dEi(t)

1 + c�X(t)
− ∑

i

pigi

(
X(t)

)
dEi(t)

]
.

In view of Dynkin’s formula, equations (5.31), (5.21), and Gronwall’s inequality

(5.33) Ex exp
(
δ0G(T )

) = ExV
δ0(X(T ))

V δ0(x)
≤ V δ0(x) +Ex

∫ t
0 LV δ0(X(s)) ds

V δ0(x)
≤ exp(δ0HT ).
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Let V̂ (x) := V−p = (1 + c�x)(x1 + x2)
p0

∏n
i=1 x

p1
i . By virtue of (5.21), we have

(5.34)
ExV̂

δ0(X(T ))

V̂ δ0(x)
≤ exp(δ0HT ).

Note that

(5.35) V −δ0(x) = V̂ δ0(x)
(
1 + c�x

)−2 ≤ V̂ δ0(x).

It follows from (5.35) and (5.34) that

(5.36)

Ex exp
(−δ0G(T )

) =ExV
−δ0(X(T ))

V −δ0(x)

≤ExV̂
δ0(X(T ))

V −δ0(x)

≤ExV̂
δ0(X(T ))

V̂ δ0(x)

(
1 + c�x

)2

≤(
1 + c�x

)2 exp(δ0HT ).

By (5.33) and (5.36) the assumptions of Lemma 5.5 hold for the random variable G(T ).
Therefore, there is K̃2 ≥ 0 such that

(5.37) 0 ≤ d2φ̃x,T

dθ2 (θ) ≤ K̃2 for all θ ∈ [0,
δ0

2
),x ∈ R

3,◦
+ ,‖x‖ ≤ M,T ∈ [

T ∗, n∗T ∗]
,

where

φ̃x,T (θ) = lnEx exp
(
θG(T )

)
.

An application of Lemma 5.4, and equation (5.32) yields

(5.38)
dφ̃x,T

dθ
(0) = ExG(T ) ≤ −3

4
ρ∗T

for all x ∈ R
3,◦
+ satisfying ‖x‖ ≤ M and dist(x, ∂R3+) < δ̃. By a Taylor expansion around

θ = 0, for ‖x‖ ≤ M , dist(x, ∂Rn+) < δ̃, T ∈ [T ∗, n∗T ∗] and θ ∈ [0,
δ0
2 ) and using (5.37)–

(5.38) we have

φ̃x,T (θ) = φ̃x,T (0) + dφ̃x,T

dθ
(0)θ + 1

2

d2φ̃x,T

dθ2 (ξ)(θ − ξ)2 ≤ −3

4
ρ∗T θ + θ2K̃2.

If we choose any θ ∈ (0,
δ0
2 ) satisfying θ <

ρ∗T ∗
4K̃2

, we obtain that

φ̃x,T (θ) ≤ −1

2
ρ∗T θ

for all x ∈ R3,◦,‖x‖ ≤ M,dist
(
x, ∂Rn+

)
< δ̃,T ∈ [

T ∗, n∗T ∗]
,

(5.39)

which leads to

(5.40)
ExV

θ(X(T ))

V θ (x)
= exp φ̃x,T (θ) ≤ exp

(−0.5p∗T θ
)
.

In view of (5.21), we have for x satisfying ‖x‖ ≤ M , dist(x, ∂Rn+) ≥ δ̃ and T ∈ [T ∗, n∗T ∗]
that

(5.41) ExV
θ (

X(T )
) ≤ exp

(
θn∗T ∗H

)
sup

‖x‖≤M,dist(x,∂Rn+)≥δ̃

{
V (x)

} =: Kθ < ∞.

The proof can be finished by combining (5.40) and (5.41). �



THREE-DIMENSIONAL STOCHASTIC ECOLOGICAL SYSTEMS 915

PROOF OF THEOREM 5.3. Having equation (5.20) and Proposition 5.1 in hand, one can
mimic the proof of Hening and Nguyen (2018a), Theorem 4.1. �

6. Proof of Theorem 3.1. Throughout this section we suppose we are in the rock-paper-
scissors situation from Definition 3.6. We note that in this case we cannot use the extinction
result 5.2 because Assumption 5.3 does not hold. Similar to Lemma 5.1, we can show that

(6.1)
∫
R3+

(∑3
i=1 xifi(x)

x1 + x2 + x3
−

∑3
i,j=1 σijxixjgi(x)gj (x)

2(x1 + x2 + x3)2

)
π(dx) = 0, for π ∈ {μ1,μ2,μ3}.

LEMMA 6.1. If λ2(μ1)λ3(μ2)λ1(μ3) + λ3(μ1)λ1(μ2)λ2(μ3) > 0 then there exist
p1,p2,p3 > 0 such that

(6.2)
3∑

i=1

piλi(π) > 0, π ∈ {μ1,μ2,μ3}.

If λ2(μ1)λ3(μ2)λ1(μ3) + λ3(μ1)λ1(μ2)λ2(μ3) < 0 then there exist p1,p2,p3 > 0 such that

(6.3)
3∑

i=1

piλi(π) < 0, π ∈ {μ1,μ2,μ3}.

6.1. Case 1: λ2(μ1)λ3(μ2)λ1(μ3) + λ3(μ1)λ1(μ2)λ2(μ3) > 0.

THEOREM 6.1. Suppose that Assumption 2.1 holds and

(6.4) λ2(μ1)λ3(μ2)λ1(μ3) + λ3(μ1)λ1(μ2)λ2(μ3) > 0.

Then X(t) is strongly stochastically persistent.

PROOF. Note that λi(δ
∗) > 0, i = 1,2,3. Combining this property with (6.2) implies

that ∑
i

piλi(μ) > 0 for all μ ∈ Conv(M).

This shows that Assumption 5.1 holds: maxi=1,2,3{λi(μ)} > 0 for any μ ∈ Conv(M). The
proof is completed by using Theorem 5.1. �

6.2. Case 2: λ2(μ1)λ3(μ2)λ1(μ3) + λ3(μ1)λ1(μ2)λ2(μ3) < 0. By Lemma 6.1 we can
find p0,p1,p2,p3 > 0 such that |p0| + |p1| + |p2| + |p3| < δ0

4 and

(6.5)
2ρ∗ := min

{
p0 min

i∈{1,2,3}
{
λi

(
δ∗)} +

3∑
i=1

piλi

(
δ∗);− 3∑

i=1

piλi(π),π ∈ {μ1,μ2,μ3}
}

> 0.

Using the H from (5.13) define ne ∈ N such that

(6.6) γb(ne − 1) > H.

PROPOSITION 6.1. Let U : R3+ \ {0} be defined by

U(x) = (1 + c�x)x
p1
1 x

p2
2 x

p3
3

(x1 + x2 + x3)p0
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with p and ρ∗ satisfying (6.5). There exist constants T e > 0, θ ∈ (0,
δ0
2 ), δ̂e > 0, such that for

any T ∈ [T e, neT e] and x ∈ R
3,◦
+ , ‖x‖ ≤ M , dist(x, ∂R3+) < δ̂e,

ExU
θ (

X(T )
) ≤ exp

(−0.5θρ∗T e)Uθ(x).

PROOF. In view of (6.1) and (6.5), this Proposition is proved in the same manner as
Proposition 5.1. �

THEOREM 6.2. Suppose Assumption 2.1 holds and

λ2(μ1)λ3(μ2)λ1(μ3) + λ3(μ1)λ1(μ2)λ2(μ3) < 0.

For any δ < δ0 and any x ∈ R
3,◦
+ we have

(6.7) lim
t→∞Ex

3∧
i=1

Xδ
i (t) = 0,

where
∧3

i=1 ai := mini=1,...,3{ai}.

Before providing a proof of Theorem 6.2, we provide a sketch of the main ideas. We wish
to prove that the solution starting close enough to the boundary (except the origin) will stay
close to the boundary with a large probability under the “attracting” condition:

λ2(μ1)λ3(μ2)λ1(μ3) + λ3(μ1)λ1(μ2)λ2(μ3) < 0,

which says that the absolute value of the product of the negative (attracting) Lyapunov expo-
nents dominates the product of the positive (repelling) Lyapunov exponents.

From Proposition 6.1 we get that ExU
θ(X(T )) ≤ exp(−0.5θρ∗T e)Uθ(x) when ‖x‖ is not

large and x is close to the boundary. When ‖x‖ is large, we have from (2.2) that LUθ(x) ≤
−θγbU

θ(x).
The next step is obtaining a Lyapunov-type inequality which will be used for estimating

exit times. We show there that ρ < 1 such that

ExU
θ (

X(neTe)
) ≤ ρUθ(x),

when Uθ(x) is small.
To accomplish this we combine the estimates we have when ‖x‖ is large (> M) and not

large (≤ M). This can be done by analyzing the time the process X hits {|x| ≤ M} (denoted
by τ ) and the time Uθ(X(t)) exceeds a certain value (denoted by ξ ). A few cases are consid-
ered and estimated by comparing these stopping times with (ne − 1)Te where ne is chosen
sufficiently large so that no matter whether ξ , τ occur before (ne − 1)Te or after (ne − 1)Te,
the process stays for a sufficiently long uninterrupted period of time in either one of the
two sets {‖x‖ > M} and {‖x‖ ≤ M,dist(x, ∂R3+) ≤ δ̂} for some small δ̂. Then, we can show
ExU

θ(X(neTe)) ≤ ρUθ(x), ρ < 1 when Uθ(x) is small.
Once we get this Lyapunov-type inequality, standard arguments from martingale theory

can be used to show that the Markov chain {X(kneTe)}k∈N will stay close to the boundary
with a large probability if the initial condition is sufficiently close to the boundary. This
implies that the process {X(t)} has no invariant measure in the interior of the state space,
R

3,◦
+ . As a result any weak-limit point of the occupation measures has to be supported on the

boundary ∂R3+ and (6.7) follows.

PROOF. Similar computations to those showing (5.20) yield

(6.8) LUθ(x) ≤ −θγbU
θ(x) if ‖x‖ ≥ M.
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If we define

CU := sup
x∈R3,◦

+

(x1 + x2 + x3)
p0

1 + c�x

then

dist
(
x, ∂R3+

)p1+p2+p3 = min{x1, x2, x3}p1+p2+p3 ≤ x
p1
1 x

p2
2 x

p3
3 ≤ CUU(x).

Let

ς := δ̂
(p1+p2+p3)θ
e

Cθ
U

,

and

ξ := inf
{
t ≥ 0 : Uθ (

X(t)
) ≥ ς

}
.

Clearly, if Uθ(x) < ς , then ξ > 0 for

(6.9) dist
(
x, ∂R3+

) ≤ δ̂, t ∈ [0, ξ).

If we define

Ũ θ (x) := ς ∧ Uθ(x)

we have from the concavity of x �→ x ∧ ς that

ExŨ
θ (

X(T )
) ≤ ς ∧EUθ (

X(T )
)
.

The stopping time

(6.10) τ := inf
{
t ≥ 0 : ∥∥X(t)

∥∥ ≤ M
}

combined with (6.8) and Dynkin’s formula imply that

Ex
[
exp

(
θγb(τ ∧ ξ ∧ neTe)

)
Uθ(X

(
θγb(τ ∧ ξ ∧ neTe)

)]
≤ Uθ(x) +Ex

∫ θγb(τ∧ξ∧neTe)

0
exp(θγbs)

[
LUθ (

X(s)
) + θγbU

θ (
X(s)

)]
ds

≤ Uθ(x).

As a result,

(6.11)

Uθ(x) ≥ Ex
[
exp

(
θγb(τ ∧ ξ ∧ neTe)

)
Uθ (

X(τ ∧ ξ ∧ neTe)
)]

≥ Ex
[
1{τ∧ξ∧(ne−1)Te=τ }Uθ (

X(τ )
)]

+Ex
[
1{τ∧ξ∧(ne−1)Te=ξ}Uθ (

X(ξ)
)]

+ exp
(
θγb(ne − 1)Te

)
Ex

[
1{(ne−1)<τ∧ξ<neT }Uθ (

X(τ ∧ ξ)
)]

+ exp(θγbneTe)Ex
[
1{τ∧ξ≥neTe}Uθ (

X(neTe)
)]

.

By the strong Markov property of X and Proposition 6.1 (which we can use because of
(6.9)), we obtain

(6.12)

Ex
[
1{τ∧ξ∧(ne−1)Te=τ }Uθ (

X(neTe)
)]

≤ Ex
[
1{τ∧ξ∧(ne−1)Te=τ } exp

(−0.5θpe(neTe − τ)
)
Uθ (

X(τ ∧ ξ)
)]

≤ Ex
[
1{τ∧ξ∧(ne−1)Te=τ }Uθ (

X(τ ∧ ξ)
)]

.
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By the strong Markov property of X and Lemma 5.3, we obtain

(6.13)

Ex
[
1{(ne−1)Te<τ∧ξ<neTe}Uθ (

X(neTe)
)]

≤ Ex
[
1{(ne−1)Te<τ∧ξ<neTe} exp

(
θH(neTe − τ)

)
Uθ (

X(τ )
)]

≤ exp(θHTe)Ex
[
1{(ne−1)Te<τ∧ξ<neTe}Uθ (

X(τ )
)]

.

Since we always have Ũ θ (X(neTe)) ≤ Uθ(X(neTe ∧ ξ)), we get

(6.14) Ex
[
1{τ∧ξ∧(ne−1)Te=ξ}Ũ θ (

X(neTe)
)] ≤ Ex

[
1{τ∧ξ∧(ne−1)Te=ξ}Uθ (

X(ξ)
)]

.

If Uθ(x) < ς then by applying (6.12), (6.13), and (6.14) to (6.11) yields

(6.15)

Ũ θ (x) = Uθ(x)

≥ Ex
[
1{τ∧ξ∧(ne−1)Te=τ }Uθ (

X(τ )
)]

+Ex
[
1{τ∧ξ∧(ne−1)Te=ξ}Uθ (

X(ξ)
)]

+ exp
(
θγb(ne − 1)Te

)
Ex

[
1{(ne−1)<τ∧ξ<neT }Uθ (

X(τ ∧ ξ)
)]

+ exp(θγbneTe)Ex
[
1{τ∧ξ≥neTe}Uθ (

X(neTe)
)]

≥ Ex
[
1{τ∧ξ∧(ne−1)Te=τ }Uθ (

X(neTe)
)]

+Ex
[
1{τ∧ξ∧(ne−1)Te=ξ}Ũ θ (

X(neTe)
)]

+ exp
(
θγb(ne − 1)Te − θHTe

)
Ex

[
1{(ne−1)<τ∧ξ<neT }Uθ (

X(neTe)
)]

+ exp(θγbneTe)Ex
[
1{τ∧ξ≥neTe}Uθ (

X(neTe)
)]

≥ ExŨ
θ (

X(neTe)
)

(since Ũ θ (·) ≤ Uθ(·)).
Clearly, if Uθ(x) ≥ ς then

(6.16) ExŨ
θ (

X(neTe)
) ≤ ς = Ũ θ (x).

As a result of (6.15), (6.16), and the Markov property of X, the sequence {Y(k) : k ∈N} where
Y(k) := Ũ θ (X(kneTe)) is a supermartingale. For λ ≤ ς , let ξ̃λ := inf{k ∈ N : Y(k) ≥ λ}. If
Uθ(x) ≤ λε then we have

(6.17) ExY(k ∧ ξ̃λ) ≤ ExY(0) = Uθ(x) ≤ λε for all k ∈ N.

We have λ ≤ ς by assumption and Y(k) ≤ ς for any k. As a result (6.17) combined with
the Markov inequality yields

Px{ξ̃λ ≤ k} ≤ λ−1ExY(k ∧ ξ̃λ) ≤ ε,

where we used the fact that the event {Y(k ∨ ξ̃λ) ≥ λ} is the same as {̃ξλ ≤ k}. Next, let
k → ∞ to get

(6.18) Px{ξ̃λ < ∞} ≤ ε.

Because the solution starting in R
3,◦
+ will remain with probability 1 in R

3,◦
+ and because

of the Feller property of X, it is not hard to show that for a given compact set K ⊂ R
3,◦
+ with

nonempty interior, and for any ε > 0 there exists a compact set K̃ ⊂ R
3,◦
+ such that

(6.19) Px
{
X(t) ∈ K̃ for all t ∈ [0, neTe]} > 1 − ε, x ∈ K.
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We show by contradiction that X is transient. If the process X is recurrent in R
3,◦
+ , then

X will enter K in a finite time almost surely given that X(0) ∈ R
3,◦
+ . By the strong Markov

property and (6.19), we have

(6.20) Px
{
X(kneTe) ∈ K̃, for some k ∈ N

}
> 1 − ε, x ∈ R

3,◦
+ .

Pick a λ ∈ (0, ς) such that Uθ(x) > λ for any x ∈ K̃. If the starting point x satisfies
Uθ(x) ≤ λε, then (6.18) and (6.20) contradict. As a result X is transient.

This implies that any weak∗-limit of P(t,x, ·) is an invariant probability measure with
support on ∂Rn+. Similar computations to the ones from Lemma 5.3 show that if P(tk,x0, ·)
with limk→∞ tk = ∞ converges weakly to π , and h(·) is a continuous function on Rn+ such
that for all x ∈ Rn+ we have |h(x)| < K(1 + ‖x‖)δ , δ < δ0 then

∫
Rn+ h(x)P (tk,x0, dx) →∫

Rn+ h(x)π(dx).
For any π with supp(π) ⊂ ∂Rn+, we have∫

Rn+

(
n∧

i=1

xi

)δ

π(dx) = 0,

and ∣∣∣∣∣
(

n∧
i=1

xi

)∣∣∣∣∣
δ

≤ K
(
1 + ‖x‖)δ

.

These facts imply

lim
t→∞

∫
Rn+

(
n∧

i=1

xi

)δ

P (tk,x0, dx) = 0

which finishes the proof. �

LEMMA 6.2. For all x ∈ R3+

(6.21) Px

{
lim

t→∞
1

t

∫ t

0
gi

(
X(s)

)
dEi(s) = 0

}
= 1

and

(6.22) Px

{
lim

t→∞
1

t

∫ t

0

∑
Xi(t)gi(X(s)) dEi(s)

X1(t) + X2(t) + X3(t)
= 0

}
= 1.

PROOF. Equation (6.21) is proved in Hening and Nguyen (2018a), Lemma 5.8. Equation
(6.22) can be proved in the same way using the fact that almost surely

(6.23) lim sup
t→∞

ln(X1(t) + X2(t) + X3(t))

t
≤ 0. �

LEMMA 6.3. For any x ∈ R
3,◦
+

Px

{
lim sup
t→∞

ln dist(X(t), ∂R3+)

t
≤ − 2ρ∗

p1 + p2 + p3

}
= 1.

PROOF. First, we show that for any x ∈ R
3,◦
+ ,

Px
{
U(ω) ⊂ Conv(μ1,μ2,μ3)

} = 1.
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Assume by contradiction that with a positive probability, there is a (random) sequence {tk}
with limk→∞ tk = ∞ such that �̃tk (·) converges weakly to an invariant probability of the
form π = (1 − ρ)π1 + ρδ∗ where ρ ∈ (0,1] and π1 ∈ Conv(μ1,μ2,μ3). Define

�(x) :=
∑3

i=1 xifi(x)

x1 + x2 + x3
−

∑
ij xixjgi(x)gj (x))σij

2(x1 + x2 + x3)2 , x �= 0

and �(0) = minλi(δ) > 0. One can show, similar to (5.22), that for all x �= 0

x1f1(x) + x2f2(x) + x3f3(x)

x1 + x2 + x3
−

∑3
i,j=1 σij xixjgi(x)gj (x)

2(x1 + x2 + x3)2 ≥ min
i

{
fi(x) − σiig

2
i (x)

2

}
.

This together with Lemma 6.2 show that with a positive probability

(6.24)

lim sup
k→∞

1

tk

∫ tk

0

( ∑3
i=1 Xifi(X(s))

X1(t) + X2(t) + X3(t)
−

∑
ij Xi(t)Xj (t)gi(X(t))gj (X(t))σij

2(X1(t) + X2(t) + X3(t))2

)
ds

≥
∫
R3+

�(x)π(dx)

= (1 − ρ)

∫
R3+

�(x)π1(dx) + ρ�(0)

= ρ�(0) > 0.

As a result of (6.22), (6.24), and Itô’s formula we get that with positive probability

lim sup
k→∞

ln(X1(tk) + X2(tk) + X3(tk))

t

= lim
k→∞

1

tk

∫ tk

0

( ∑3
i=1 Xifi(X(s))

X1(t) + X2(t) + X3(t)
−

∑
ij Xi(t)Xj (t)gi(X(t))gj (X(t))σij

2(X1(t) + X2(t) + X3(t))2

)
ds

> 0

which contradicts (6.23). As a result of (6.21), (6.5), and Itô’s formula

lim sup
t→∞

3∑
i=1

pi

lnXi(t)

t

= lim sup
t→∞

1

t

3∑
i=1

pi

∫ t

0

[(
fi

(
X(s)

) − σiig
2
i (X(s))

2

)
ds + gi

(
X(s)

)
dEi(s)

]

= lim sup
t→∞

1

t

3∑
i=1

pi

∫ t

0

(
fi

(
X(s)

) − σiig
2
i (X(s))

2

)
ds

≤
3∑

i=1

pi sup
μ∈Conv(μ1,μ2,μ3)

∫
R3+

(
fi(x) − g2

i (x)

2

)
μ(dx) ≤ −2ρ∗.

As a result

lim sup
t→∞

ln dist(X(t), ∂R3+)

t
≤ − 2ρ∗

p1 + p2 + p3
.

This finishes the proof. �
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THEOREM 3.1. Assume n = 3, X is a rock-paper-scissor system of type (a), and As-
sumptions 2.1–2.2 hold. If

(3.2) λ1(μ2)λ2(μ3)λ3(μ1) + λ1(μ3)λ2(μ1)λ3(μ2) > 0,

then X is strongly stochastically persistent. Moreover, if μ is the ergodic measure such that
py(μ) = 1 for all y 
 0, then

(3.3) lim
t→∞

∥∥Py
(
X(t) ∈ ·) − π∗(·)∥∥TV = 0 for all y 
 0,

where ‖·, ·‖TV is the total variation norm.
Alternatively, if the inequality in (3.2) is reversed then

(3.4) Py

(
U ⊂ Conv

({μ1,μ2,μ3}) and lim sup
t→∞

1

t
log min

i
Xi(t) < 0

)
= 1 for all y 
 0,

where Conv({μ1,μ2,μ3}) denotes the convex hull of the probability measures {μ1,μ2,μ3}.
PROOF. This follows from Theorems 6.1 and 6.2. �

7. Classification. In this section we will list all the possible dynamics (up to permuta-
tion) of the stochastic Kolmogorov system (2.1). Assumption 2.1 is supposed to always hold,
and for the extinction results we assume Assumption 2.2 holds.

Below, when we will make use of Theorem 5.2, it will be enough to write out what the set
of attracting ergodic measures, M1, is. If we say, for example, that X converges to μ, what
we mean is that M1 = {μ} and Theorem 5.2 holds.

7.1. All species survive on their own: λi(δ
∗) > 0, i = 1,2,3. This condition implies that

for any i ∈ {1,2,3} there exists a unique invariant measure μi with support equal to R◦
i+.

1.1 All axes are attractors: λj (μi) < 0, for i, j ∈ {1,2,3}, i �= j . Then the process con-
verges w.p. 1 to one of the invariant measures μi, i ∈ {1,2,3}, and with strictly positive
probability to μj if j ∈ {1,2,3}.

1.2 Two axes are attractors: λj (μi) < 0 for i ∈ {1,2}, j ∈ {1,2,3}, i �= j . If
maxi{λi(μ3)} > 0 then the process converges w.p. 1 to one of the invariant measures
μi, i ∈ {1,2}, and with strictly positive probability to μj if j ∈ {1,2}.

1.3 One axis is an attractor: λi(μ1) < 0 for i ∈ {2,3}, λ3(μ2) > 0, λ2(μ3) > 0. There
exists an invariant measure μ23 on R◦

23+. If λ1(μ23) > 0, the process converges to μ1. If
λ1(μ23) < 0, the process converge either to μ1 or μ23.

1.4 One axis is an attractor: λi(μ1) < 0 for i ∈ {2,3}, λ3(μ2) > 0, λ2(μ3) < 0, λ1(μ3) >

0. Then the process converges to μ1.
1.5 One axis is an attractor: λi(μ1) < 0 for i ∈ {2,3}, λ1(μ2) > 0, λ3(μ2) < 0,

max{λ1(μ3), λ2(μ3)} > 0. The process converges to μ1.
1.6 No axis is an attractor, no face has an invariant measure (rock-paper-scissors):

λ2(μ1) > 0, λ3(μ1) < 0, λ3(μ2) > 0, λ1(μ2) < 0, λ1(μ3) > 0, λ2(μ3) < 0. If |λ2(μ1) ×
λ3(μ2)λ1(μ3)| > |λ3(μ1)λ1(μ2)λ2(μ3)| we get persistence. If |λ2(μ1)λ3(μ2)λ1(μ3)| <

|λ3(μ1)λ1(μ2)λ2(μ3)| then we get extinction in the following sense:

lim
t→∞Ex

( 3∧
i=1

Xi(t)

)δ

= 0, for all small enough δ.

Furthermore, there exists α > 0 such that with probability 1

lim sup
t→∞

ln(dist(X(t), ∂R3+))

t
< −α.
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1.7 No axis is an attractor, one face has an invariant measure: λ2(μ1) > 0, λ3(μ1) < 0,
λ1(μ2) > 0, λ3(μ2) < 0, and max{λ1(μ3), λ2(μ3)} > 0. There exists μ12. If λ3(μ12) > 0,
the system is persistent. Assumption 5.2 can be seen to hold as follows: Suppose λ1(μ3) > 0.
Then let p2 = 1 and pick p3 > 0 small enough such that λ2(μ1) + p3λ3(μ1) > 0. Finally,
since λ1(μ2), λ1(μ3) > 0 we can pick p1 > 0 large enough such that p1λ1(μ2)+p3λ3(μ2) >

0 and p1λ1(μ3) + λ2(μ3) > 0.
If λ3(μ12) < 0, the process converges to μ12.
1.8 No axis is an attractor, one face has an invariant measure: λ2(μ1) > 0, λ3(μ1) < 0,

λi(μ2) > 0, i ∈ {1,3}, λ1(μ3) > 0, λ2(μ3) < 0. There exists μ12. If λ3(μ12) > 0, the system
is persistent. Assumption 5.2 can be seen to hold as follows: Let p2 = 1 and pick p3 > 0
small enough such that λ2(μ1) + p3λ3(μ1) > 0. Then pick p1 > 0 large enough such that
p1λ1(μ3) + λ2(μ3) > 0.

If λ3(μ12) < 0, the process converges to μ12.
1.9 No axis is an attractor, two faces have invariant measures: λ2(μ1) > 0, λ3(μ1) < 0,

λi(μ2) > 0, i ∈ {1,3}, λ2(μ3) > 0. The invariant measures μ12, μ23 exist. If λ3(μ12) > 0,
λ1(μ23) > 0, the system is persistent. Assumption 5.2 can be seen to hold as follows: Let
p2 = 1 and pick p3 > 0 small enough such that λ2(μ1) + p3λ3(μ1) > 0. Then pick p1 > 0
small enough such that p1λ1(μ3) + λ2(μ3) > 0.

If λ3(μ12) < 0, λ1(μ23) > 0, the process converges to μ12. If λ3(μ12) > 0, λ1(μ23) < 0,
the process converges to μ23. If λ3(μ12) < 0, λ1(μ23) < 0, the process converges to either
μ12 or μ23.

1.10 No axis is an attractor, all faces have invariant measures: λj (μi) > 0, for i, j ∈
{1,2,3}, i �= j . The invariant measures μ12, μ13, μ23 exist. Without loss of generality, sup-
pose λ3(μ12) ≤ λ3(μ23) ≤ λ1(μ23) If they are all positive, the system is persistent. Assump-
tion 5.2 can be seen to hold as follows: Pick any p1,p2,p3 > 0.

If they are all negative, with probability 1 the process converges to one of them. If
λ3(μ12) < 0 < λ3(μ23) ≤ λ1(μ23), the process converges to μ12. If λ3(μ12) ≤ λ3(μ23) <

0 < λ1(μ23), the process converges to μ12 or μ23.

7.2. Two species survive on their own: λi(δ
∗) > 0, i = 1,2 and λ3(δ

∗) < 0. For any
i ∈ {1,2} there exists a unique invariant measure μi with support equal to R◦

i+.

2.1 Two axes are attractors λj (μi) < 0, for i ∈ {1,2}, j ∈ {1,2,3} \ {i}. Then the process
converges w.p. 1 to one of the invariant measures μi, i ∈ {1,2}, and with strictly positive
probability to μj if j ∈ {1,2}.

2.2 One axis is an attractor, no face has an invariant measure: λ2(μ1) < 0, λ3(μ1) < 0 and
λ1(μ2) > 0, λ3(μ2) < 0. Then the process converges to μ1.

2.3 One axis is an attractor, one face has an invariant measure: λ2(μ1) < 0, λ3(μ1) < 0 and
λ3(μ2) > 0. Then μ23 exists.

(a) If λ1(μ23) > 0 the process converges to μ1.
(b) If λ1(μ23) < 0 the process converges to μ1 or to μ23.

2.4 No axis is an attractor, only face 12 has an invariant measure: λ3(μ1) < 0, λ3(μ2) < 0,
λ2(μ1) > 0, λ1(μ2) > 0. Then μ12 exists.

(a) If λ3(μ12) < 0 the process converges to μ12.
(b) If λ3(μ12) > 0 there is persistence. Assumption 5.2 can be seen to hold as follows:

Let p3 = 1 and pick p1 > 0 large enough such that p1λ1(μ2)+p3λ3(μ2) > 0. Then pick
p2 > 0 large enough such that p2λ2(μ1) + λ3(μ1) > 0 and p1λ1(δ

∗) + p2λ2(δ
∗) +

λ3(δ
∗) > 0.
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2.5 No axis is an attractor, only face 13 has an invariant measure: λ3(μ1) > 0, λ3(μ2) < 0,
λ1(μ2) > 0, λ2(μ1) < 0. Then μ13 exists.

(a) If λ2(μ13) < 0 the process converges to μ13.
(b) If λ2(μ13) > 0 there is persistence. Assumption 5.2 can be seen to hold as in the

previous case with the roles of the indices 2 and 3 interchanged.

2.6 No axis is an attractor, only faces 13 and 12 have an invariant measure: λ3(μ1) > 0,
λ3(μ2) < 0, λ1(μ2) > 0, λ2(μ1) > 0. Then μ13, μ12 exist.

(a) If λ2(μ13) > 0, λ3(μ12) > 0 there is persistence. Assumption 5.2 can be seen to
hold as follows: Let p2 = p3 = 1 and pick p1 > 0 large enough such that p1λ1(μ2) +
λ3(μ2) > 0 and p1λ1(δ

∗) + λ2(δ
∗) + λ3(δ

∗) > 0.
(b) If λ2(μ13) < 0, λ3(μ12) > 0 the process converges to μ13.
(c) If λ2(μ13) > 0, λ3(μ12) < 0 the process converges to μ12.
(d) If λ2(μ13) < 0, λ3(μ12) < 0 the process converges w.p. 1 to μ12 or μ13.

2.7 No axis is an attractor, only faces 13 and 23 have an invariant measure: λ3(μ1) > 0,
λ3(μ2) > 0, min{λ1(μ2), λ2(μ1)} < 0. Then μ13, μ23 exist.

• Say λ1(μ2) < 0, λ2(μ1) > 0.

(a) If λ2(μ13) > 0, λ1(μ23) > 0 there is persistence. Assumption 5.2 can be seen
to hold as follows: Let p3 = 1 and pick p1 > 0 small enough such that p1λ1(μ2) +
λ3(μ2) > 0. Then pick p2 > 0 large enough such that p1λ1(δ

∗)+p2λ2(δ
∗)+λ3(δ

∗) >

0.
(b) If λ2(μ13) < 0, λ1(μ23) > 0 the process converges to μ13.
(c) If λ2(μ13) > 0, λ1(μ23) < 0 the process converges to μ23.
(d) If λ2(μ13) < 0, λ1(μ23) < 0 the process converges w.p. 1 to μ13 or μ23.

• Say λ1(μ2) < 0, λ2(μ1) < 0.

(a) If λ2(μ13) > 0, λ1(μ23) > 0 there is persistence (this special case is treated in
Section 5.1).

(b) If λ2(μ13) < 0, λ1(μ23) > 0 the process converges to μ13.
(c) If λ2(μ13) > 0, λ1(μ23) < 0 the process converges to μ23.
(d) If λ2(μ13) < 0, λ1(μ23) < 0 the process converges w.p. 1 to μ13 or μ23.

2.8 No axis is an attractor, all faces have an invariant measure: λ3(μ1) > 0, λ3(μ2) > 0,
λ1(μ2) > 0, λ2(μ1) > 0. Then μ13, μ12, μ23 exist.

(a) If λ1(μ23) > 0, λ2(μ13) > 0, λ3(μ12) > 0 there is persistence. Assumption 5.2
can be seen to hold as follows: Let p2 = p3 = 1 and pick p1 > 0 large enough such that
p1λ1(δ

∗) + λ2(δ
∗) + λ3(δ

∗) > 0.
(b) If λ1(μ23) < 0, λ2(μ13) > 0, λ3(μ12) > 0 the process converges to μ23.
(c) If λ1(μ23) > 0, λ2(μ13) < 0, λ3(μ12) > 0 the process converges to μ13.
(d) If λ1(μ23) > 0, λ2(μ13) > 0, λ3(μ12) < 0 the process converges to μ12.
(e) If λ1(μ23) < 0, λ2(μ13) < 0, λ3(μ12) > 0 the process converges w.p. 1 to μ23 or

μ13.
(f) If λ1(μ23) < 0, λ2(μ13) > 0, λ3(μ12) < 0 the process converges w.p. 1 to μ23 or

μ12.
(g) If λ1(μ23) > 0, λ2(μ13) < 0, λ3(μ12) < 0 the process converges w.p. 1 to μ13 or

μ12.
(h) If λ1(μ23) < 0, λ2(μ13) < 0, λ3(μ12) < 0 the process converges w.p. 1 to μ12,

μ23 or μ13.



924 A. HENING, D. H. NGUYEN AND S. J. SCHREIBER

7.3. One species survives on its own: λ1(δ
∗) > 0 and λi(δ

∗) < 0, i = 2,3. The condition
λ1(δ

∗) > 0 implies that there exists a unique invariant measure μi with support equal to R◦
1+.

3.1 One axis is an attractor: λ2(μ1) < 0, λ3(μ1) < 0. Then the process converges to μ1.
3.2 No axis is an attractor, one face has an invariant measure: λ2(μ1) > 0, λ3(μ1) < 0.

Then μ12 exists.

(a) If λ3(μ12) > 0 there is persistence. Assumption 5.2 can be seen to hold as follows: Let
p3 = 1 and pick p2 > 0 large enough such that p2λ2(μ1) + λ3(μ1) > 0. Next, pick p1 large
enough such that p1λ1(δ

∗) + p2λ2(δ
∗) + λ3(δ

∗) > 0.
(b) If λ3(μ12) < 0 the process converges to μ12.

3.3 No axis is an attractor, two faces have invariant measures: λ2(μ1) > 0, λ3(μ1) > 0.
Then μ12, μ13 exist.

(a) If λ3(μ12) > 0, λ2(μ13) > 0 there is persistence. Assumption 5.2 can be seen to hold
as follows: Let p2 = p3 = 1 and pick p1 > 0 large enough such that p1λ1(δ

∗) + λ2(δ
∗) +

λ3(δ
∗) > 0.

(b) If λ3(μ12) < 0, λ2(μ13) > 0 the process converges to μ12.
(c) If λ3(μ12) > 0, λ2(μ13) < 0 the process converges to μ13.
(d) If λ3(μ12) < 0, λ2(μ13) < 0 the process converges w.p. 1 to μ12 or μ13.

8. Applications. Our main results concern the classification of the possible asymptotic
outcomes of three-dimensional Kolmogorov systems. In this section, we first show how for
many three-dimensional Lotka–Volterra systems that our assumptions, and therefore our re-
sults, hold. In particular, we prove that the Lyapunov exponents can be computed explicitly
by solving a system of linear equations. Second, we give an example of a modified Lotka–
Volterra system where the conditions for stochastic persistence are less restrictive than the
conditions for permanence of the corresponding deterministic model.

8.1. Lotka–Volterra systems. For the Lotka–Volterra systems, we assume the dynamics
are given by the stochastic differential equations

(8.1) dXi(t) = Xi(t)

(
mi +

3∑
j=1

aijXj (t)

)
dt + Xi(t) dEi(t), Xi(0) = xi ≥ 0.

The constant mi is the per-capita growth rate of species i, and aij is the coefficient measuring
the per-capita interaction strength of species j on species i.

We assume that each species experiences intraspecific competition and there are no mu-
tualistic interactions, which even for the deterministic Lotka–Volterra equations can lead to
finite-time blow up of solutions.

ASSUMPTION 8.1. For the Lotka–Volterra system (8.1), assume that aii < 0 for all i,
and aij > 0 for i �= j implies aji < 0.

The following is a proposition verifying (2.2) of Assumption 2.1. The rest of Assump-
tion 2.1 as well as Assumption 2.2 follow immediately.

PROPOSITION 8.1. If Assumption 8.1 holds, then (8.1) satisfies (2.2).

Next we show that the external Lyapunov exponents can be found by solving a system of
linear equations.
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PROPOSITION 8.2. Assume (8.1) satisfies Assumption 8.1. Let μ be an ergodic invari-
ant probability measure for (8.1). If there exists a unique solution x to the system of linear
equations

(8.2)
mi + ∑

j

aij xj − σii

2
= 0 for i ∈ Iμ,

xi = 0 for i /∈ Iμ,

then

λi(μ) = mi + ∑
j

aij xj − σii

2
for all i.

REMARK 8.1. Using Proposition 3.2 and Remark 3.4, one can easily show inductively
on the cardinality |Iμ| = 0,1,2 that nonzero external Lyapunov exponents imply that (8.2)
has a unique solution that is, the coefficient matrix {aij }i,j∈Iμ restricted to the supported
species is invertible.

To illustrate the applicability of our results to a specific model we consider a model of rock-
paper-scissors and contrast the difference between the deterministic and stochastic dynamics.
To this end, pick 0 < β < 1 < α and consider the following system of differential equations:

dX1(t) = X1(t)
(
1 − X1(t) − αX2(t) − βX3(t)

)
dt,

dX2(t) = X2(t)
(
1 − βX1(t) − X2(t) − αX3(t)

)
dt,

dX3(t) = X3(t)
(
1 − αX1(t) − βX2(t) − X3(t)

)
dt.

(8.3)

This is the model introduced by May and Leonard (1975). One can see that (8.3) has five
fixed points. The origin 0 is a source, the canonical basis vectors e1, e2, e3 are saddle points,
and the interior equilibrium is given by

x =
(

1

1 + α + β
,

1

1 + α + β
,

1

1 + α + β

)
.

Let D = {x ∈ R3+ : x1 = x2 = x3} and � = {x ∈ R3+ : ∑
i xi = 1}. For these equations, the

equilibria ei and the connecting orbits (i.e., the unstable manifolds) form a heteroclinic cycle
�. Hofbauer and So (1989) provide the following classification of the dynamics:

(1) If α + β < 2 the interior equilibirium x is globally stable and all trajectories starting
in R

3,◦
+ converge to x.

(2) If α + β > 2 the interior equilibrium x is a saddle with stable manifold D \ {0}. Every
trajectory starting from R

3,◦
+ \ D has � as its ω-limit set.

(3) If α + β = 2 the set � is invariant and attracts all nonzero trajectories, � = ∂� and
trajectories starting in �◦ \ {x} are periodic.

A stochastic counterpart to these equations is given by

dX1(t) = X1(t)
(
1 − X1(t) − αX2(t) − βX3(t)

)
dt + X1(t) dE1(t),

dX2(t) = X2(t)
(
1 − βX1(t) − X2(t) − αX3(t)

)
dt + X2(t) dE2(t),

dX3(t) = X3(t)
(
1 − αX1(t) − βX2(t) − X3(t)

)
dt + X3(t) dE3(t)

(8.4)

with � = diag(σ, σ, σ ).
Using Theorem 3.1 we can prove the following proposition.
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PROPOSITION 8.3. If σ < 2, then there is the following dichotomy:

(1) If α + β < 2 the species persist and the system converges to a unique invariant prob-
ability measure on R

3,◦
+ .

(2) If α + β > 2 there is extinction, in the sense that for all starting points we have with
probability one that

X(t) → ∂R3+.

REMARK 8.2. System (8.4) is an example of a competitive, Lotka–Volterra SDE that
is, the intrinsic rates of growth mi are positive, the interspecific interaction coefficients aij

are nonpositive for i �= j , and the intraspecific interaction coefficients aii are negative. For
these competitive, Lotka–Volterra SDE, the results of Zeeman (1993) can be used to show
that these SDE can for appropriate parameter choices exhibit all of the dynamics shown in
Figure 1 except for type (viii) that is, one can not have positive probability of asymptotically
approaching each of the species pairs.

8.2. Stochastic persistence despite deterministic impermanence. In the deterministic lit-
erature, permanence is the deterministic analog of stochastic persistence. However, as we
shall show, there are cases where a deterministic system is not permanent but the correspond-
ing stochastic system is strongly stochastically persistent. To this end, we consider a modi-
fied Lotka–Volterra model of two competing species that share a predator. The modification
comes from assuming that the predator exhibits a switching functional response whereby the
predator spends more time searching for the more common prey species. In this model, X1,
X2 denote the prey densities, and X3 the predator density. The equations of motion for the
deterministic model are

(8.5)

dX1(t) = X1(t)

(
r − X1(t) − βX2(t) − X1(t)

X1(t) + X2(t)
X3(t)

)
dt,

dX2(t) = X2(t)

(
r − X2(t) − βX1(t) − X2(t)

X1(t) + X2(t)
X3(t)

)
dt,

dX3(t) = X3(t)

(
X1(t)

2 + X2(t)
2

X1(t) + X2(t)
− d − cX3(t)

)
dt,

where r > 0 is the intrinsic rate of growth of the prey species, β > 0 is the strength of in-
traspecific competition, d is the density-independent predator death rate, and c is the strength
of intraspecific competition for the predator. The term Xi(t)/(X1(t) + X2(t)) represents the
probability that a predator is searching for prey i that is, a predator is more likely to search for
the more common prey. The system of ODEs (8.5) is nearly the same as those considered by
Hutson (1984a), Teramoto, Kawasaki and Shigesada (1979); they only differ by the inclusion
of a self-limitation term in the predator.

A key concept of coexistence in the mathematical ecology literature is permanence
(Hofbauer (1981), Hofbauer and Sigmund (1998), Hutson (1984b), Patel and Schreiber
(2018), Schreiber (2000)) in which asymptotically all species densities are uniformly
bounded above and away from zero for all positive initial conditions.

DEFINITION 8.1. The system of differential equations (8.5) is permanent if there exists
m > 0 such that

1

m
≤ lim inf

t→∞ min
i

Xi(t) ≤ lim sup
t→∞

max
i

Xi(t) ≤ m

whenever mini Xi(0) > 0.
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The following proposition characterizes, generically, when (8.5) is permanent or not per-
manent, that is, impermanent.

PROPOSITION 8.4. Assume β > 1. If

(8.6)
r

1 + β
> d and

r

β

(
1 + c(1 − β)

)
> d

then (8.5) is permanent. If either inequality of (8.6) is reversed, then (8.5) is not permanent.

Next, we consider the SDE analog of (8.5):

(8.7)

dX1(t) = X1(t)

(
r − X1(t) − βX2(t) − X1(t)

X1(t) + X2(t)
X3(t)

)
dt + εX1(t) dB1(t),

dX2(t) = X2(t)

(
r − X2(t) − βX1(t) − X2(t)

X1(t) + X2(t)
X3(t)

)
+ εX2(t) dB2(t) dt,

dX3(t) = X3(t)

(
X1(t)

2 + X2(t)
2

X1(t) + X2(t)
− d − cX3(t)

)
dt + εX3(t) dB3(t),

where B1(t), B2(t), B3(t) are independent, standard Brownian motions that is, Var(Bi(t)) =
t . For this model, our results yield the following proposition about strong, stochastic persis-
tence.

PROPOSITION 8.5. Assume β > 0. If

(8.8)
r

β

(
1 + c(1 − β)

)
> d and ε > 0 is sufficiently small,

then (8.7) is strongly, stochastically persistent.

REMARK 8.3. Propositions 8.4 and 8.5 imply that for r
β

> d > r
1+β

and c, ε > 0 suf-
ficiently small, the deterministic model is not permanent, but the stochastic counterpart is
stochastically persistent. This difference stems from the deterministic model having an in-
ternal equilibrium for species 1 and 2 whose external Lyapunov exponent is negative that
is, r/(1 + β) − d < 0. However, the stochastic model has no ergodic invariant measure sup-
porting species 1 and 2 and, consequently, doesn’t have this negative external Lyapunov
exponent.

9. Discussion. Due to the irreducibility assumption (Assumption (2.2)) of the stochastic
Kolmogorov systems considered here, our process X has a finite number of ergodic invari-
ant probability measures in any dimension. However, in dimension ≤ 3, we prove there are
constraints on what types of configurations of ergodic measures are possible. Moreover, we
show that, generically, these configurations can be identified by studying the average per-
capita growth rates of the infinitesimally rare species, that is, the external Lyapunov expo-
nents λi(μ) that we have shown to be generically nonzero.

We find there are three basic types of asymptotic behavior. First, the Kolmogorov process
X may be stochastically persistent which corresponds to all the species persisting. Specifi-
cally, there is a unique ergodic measure μ supporting all the species. This ergodic measure
characterizes (with probability one), the asymptotic, statistical behavior of X for all strictly
positive initial conditions X(0) 
 0. In particular, for any continuous bounded function h

(i.e., an observable for the system), the temporal averages 1
t

∫ t
0 h(X(t)) dt converge (with

probability one) to the spatial average
∫

h(x)μ(x). Verifying stochastic persistence using the
external Lyapunov exponents reduces to a simple procedure. First, for any ergodic measure
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μ supporting two or fewer species (i.e., |Iμ|| ≤ 2), there needs to be at least one species with
a positive per-capita growth rate that is, maxi λi(μ) > 0. Second, if there is no rock-paper-
scissor intransitivity between the species, then X is stochastically persistent. Alternatively, if
there is a rock-paper-scissor intransitivity, persistence requires that the sum of the product of
the positive external Lyapunov exponents and the product of the negative Lyapunov external
exponents is positive, where the products are taken over the single species ergodic measures.

The second and third form of asymptotic behaviors occur when the system is not stochasti-
cally persistent. In these cases, the process X converges with probability one to the boundary
of the three-dimensional, nonnegative orthant. However, this convergence can take on two
forms. The first form of extinction corresponds to ergodic measures μ that are attractors on
the boundary of the orthant. An attractor is an ergodic measure μ such that Iμ � {1, . . . , n}
and maxi /∈Iμ λi(μ) < 0, that is, the measure μ only supports a subset of the species and all its
external Lyapunov exponents are negative. There can exist at most a finite number of these
ergodic attractors, say μ1, . . . ,μk (see Figure 1). The only constraint on these ergodic attrac-
tors is that a pair of them can not correspond to a nested pair of species that is, Iμi is never
a subset of Iμj for i �= j . When these ergodic attractors exist and all species are initially
present, the process converges with probability one to one of these attractors, and there is a
strictly positive probability that it converges to any of the k ergodic attractors. The second
form of extinction corresponds to an attractor rock-paper-scissor dynamic on the boundary of
the nonnegative orthant. In this case, the asymptotic statistical behavior of X is (with proba-
bility one) determined by convex combinations of the single species ergodic measures.

For higher dimensions, we conjecture there is a similar classification of the behaviors of
X. In the simplest setting, when one looks at Lotka–Volterra food chains and each species
only interacts with its immediate trophic neighbors the classification has been completed in
Hening and Nguyen (2018b), Hening and Nguyen (2018c). The classification for general
Kolmogorov systems will have to deal with higher dimensional analogs of the rock-paper-
scissors intransitives. As already explored in deterministic models, these higher-dimensional
intransitivities may involve complex networks of transitions between subcommunities due
to single or multiple species invasions (Brannath (1994), Hofbauer (1994), Krupa (1997),
Schreiber (1998), Schreiber and Rittenhouse (2004), Vandermeer (2011)). For example,
Schreiber (1998) illustrates that for a community of n founder controlled prey species and
n specialist predators, the predator-prey pairs get displaced by the invasion of any other
prey species which then facilitates the establishment of the predator. This leads to a high-
dimensional heteroclinic cycle. Despite these complexities, one might conjecture that one
could extend the rock-paper-scissor extinction outcome to the existence of a finite number
of ergodic measures such that with positive probability, the asymptotic behavior is deter-
mined by nontrivial convex combinations of these ergodic measures. Moreover, in higher
dimensions, one would have to allow for the possibility that ergodic attractors and these non-
ergodic, intransitive attractors can occur simultaneously to govern the extinction dynamics.
Here, we have verified a key step for such a classification in higher dimensions by showing
that the external Lyapunov exponents are, generically, nonzero.

Another important corollary of our work is with respect to modern coexistence theory
(Chesson (2000), Ellner et al. (2019))—this is a fundamental framework that is widely used
by theoretical ecologists to study the mechanisms underlying the coexistence of species. This
theory is based entirely on using external Lyapunov exponents, also called invasion growth
rates. Our work shows for a general class of SDE models that the external Lyapunov expo-
nents fully describe the long term behavior of the system and, thereby, justifies rigorously the
main premise of modern coexistence theory for these models.

Funding. The authors acknowledge support from the NSF through the grants DMS-
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