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a b s t r a c t

The site frequency spectrum (SFS) is a popular summary statistic of genomic data. While the SFS of
a constant-sized population undergoing neutral mutations has been extensively studied in population
genetics, the rapidly growing amount of cancer genomic data has attracted interest in the spectrum
of an exponentially growing population. Recent theoretical results have generally dealt with special or
limiting cases, such as considering only cells with an infinite line of descent, assuming deterministic
tumor growth, or taking large-time or large-population limits. In this work, we derive exact expressions
for the expected SFS of a cell population that evolves according to a stochastic branching process, first
for cells with an infinite line of descent and then for the total population, evaluated either at a fixed
time (fixed-time spectrum) or at the stochastic time at which the population reaches a certain size
(fixed-size spectrum). We find that while the rate of mutation scales the SFS of the total population
linearly, the rates of cell birth and cell death change the shape of the spectrum at the small-frequency
end, inducing a transition between a 1/j2 power-law spectrum and a 1/j spectrum as cell viability
decreases. We show that this insight can in principle be used to estimate the ratio between the rate
of cell death and cell birth, as well as the mutation rate, using the site frequency spectrum alone.
Although the discussion is framed in terms of tumor dynamics, our results apply to any exponentially
growing population of individuals undergoing neutral mutations.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

The study of genetic variation driven by neutral mutations has
long history in population genetics (Kimura, 1968). Usually, the
opulation is assumed to be of a large constant size N , and repro-
uction follows either the Wright–Fisher model (nonoverlapping
enerations) or the Moran model (overlapping generations) (Dur-
ett, 2008). Neutral mutations occur at rate u per individual per
time unit, and each new mutation is assumed to be unique (the
infinite-sites model of Kimura (1969)). This framework gives rise
to a sample-based theory of tracing genealogies of extant indi-
viduals backwards in time via the coalescent (Kingman, 1982a,b).
A popular summary statistic of genomic data is the site frequency
spectrum (SFS), which records the frequencies of mutations in a
population or population sample. Under the Moran model with
neutral mutations, the expected number of mutations found in j
ells of a sample of size n is E[ξj] = (Nu)(1/j) (Durrett, 2008), and
any linear combination of the form

∑n−1
j=1 jcjξj with

∑n−1
j=1 cj = 1 is

an unbiased estimator of θ := Nu, the population-scaled mutation
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rate (Zeng et al., 2006; Achaz, 2009).1 Prominent estimators of
this form include Watterson’s θW (Watterson, 1975), Tajima’s
θπ (Tajima, 1989), Fu and Li’s ξ1 (Fu and Li, 1993) and Fay and
Wu’s θH (Fay and Wu, 2000), and these estimators form the basis
of several statistical tests of neutral evolution vs. evolution under
selection (Zeng et al., 2006; Achaz, 2009). In this way, the site fre-
quency spectrum has provided a simple means of understanding
the evolutionary history of populations from genomic data.

Cancer can be viewed as its own evolutionary process, oper-
ating at the somatic level. Cancer initiation is usually understood
to be a series of mutational events that culminates in malignant
cells able to proliferate uncontrollably (Armitage and Doll, 1954,
1957; Knudson, 1971; Nowell, 1976). Such ‘‘driver’’ mutations are
complemented by more frequent neutral or ‘‘passenger’’ muta-
tions (Tomasetti et al., 2013; Bozic et al., 2010), that have no
functional role in the evolution to malignancy, but contribute
to the genetic diversity characteristic of cancer (Burrell et al.,
2013; Vogelstein et al., 2013; McGranahan and Swanton, 2017).
The dominant paradigm of tumor progression has been that of
sequential clonal expansion of driver mutations. However, several

1 In Theorem 1.33 of Durrett (2008), the result is given as E[ξj] = (2Nu)(1/j)
for a population of size 2N .
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Table 1
Notation used in the paper.
Symbol Description Definition

r0 Division rate of tumor cells (per unit time) Section 2.1
d0 Death rate of tumor cells (per unit time) Section 2.1
p0 Extinction probability of the tumor (and of a single-cell derived clone) (1) in Section 2.1
q0 Survival probability of the tumor (and of a single-cell derived clone) (2) in Section 2.1
w Mutation rate (expected number of mutations per cell division) Section 2.3
t̃N Fixed time at which the skeleton subpopulation has expected size N (10) in Section 3.2
τ̃N Stochastic time at which the skeleton subpopulation first reaches size N (11) in Section 3.2
tN Fixed time at which a surviving tumor cell population has expected size N (18) in Section 4.1
τN Stochastic time at which the tumor cell population first reaches size N (19) in Section 4.1
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recent works suggest that a neutral evolution model, under which
all driver mutations are already present in the tumor-initiating
cell, is sufficient to explain the intratumoral heterogeneity in
many cancers, see e.g. Sottoriva et al. (2015), Ling et al. (2015)
and Williams et al. (2016), and the reviews by Venkatesan and
Swanton (2016) and Davis et al. (2017). A simple test of neu-
tral tumor evolution based on the site frequency spectrum was
proposed in Williams et al. (2016), which has since generated
debate e.g. surrounding its significance level and statistical power
(see e.g. McDonald et al. (2018), Tarabichi et al. (2018), Bozic
et al. (2019), with author responses in Werner et al. (2018), Heide
et al. (2018)). The authors of Williams et al. (2016) subsequently
suggested a Bayesian framework for detecting tumor subclones
evolving under selection (Williams et al., 2018), and more recent
approaches to that problem include Dinh et al. (2020) and Car-
avagna et al. (2020). These works and the surrounding debate
are indicative both of the fact that increased attention is being
paid to the role of neutral evolution in cancer, and that efforts
are just underway to develop robust methods of inferring the
evolutionary history of tumors (Turajlic et al., 2019).

While the constant-sized models of population genetics are
ppropriate for understanding early cancer development in small
issue compartments, exponential growth models are more rel-
vant for understanding long-run tumor progression (Durrett,
015; Ohtsuki and Innan, 2017). In this work, we will employ a
tochastic branching process model in which tumor cells divide
t rate r0 and die at rate d0, with net birth rate λ0 := r0 −d0 > 0,

and w neutral mutations accumulate on average per cell division.
Let p0 := d0/r0 be the extinction probability of the tumor, and
let q0 := 1 − p0 = λ0/r0 be its survival probability (Section 2.1).

e will show in (14) of Section 3.2 that if we only consider cells
ith an infinite line of descent, then at the time the number of
ells becomes N , the expected number of mutations found in j
ells is ξj = (w/q0)N · 1/(j(j + 1)) for 2 ≤ j ≤ N − 1. This
SFS differs from the SFS of the constant-sized Moran model of
population genetics in two important ways: The spectrum now
follows a 1/j2 power law as opposed to a 1/j law, and it now
epends on the growth parameters r0 and d0 via the survival

probability q0. Cumulative versions of the 1/j2 spectrum have
previously been established by Durrett (2013, 2015), Bozic et al.
(2016) and Williams et al. (2016), as we outline in more detail in
Section 6. In addition, Williams et al. (2016), Bozic et al. (2016)
and Ling et al. (2015) have used the 1/j2 spectrum to infer the
atio w/q0 from tumor data, but extracting information about the
utation parameter w and the growth parameter q0 separately
eemingly requires different tools. In a recent work by Werner
t al. (2020), the authors measured pairwise mutational differ-
nces between the ancestors of spatially separated tumor bulk
amples, and they developed a coalescent-based approach for
stimating w and a function of p0 given by (5).
Tumor evolution is commonly characterized by low cell vi-

bility, i.e. a large extinction probability p0. For example, in a
odeling study of cancer recurrence, Avanzini and Antal (2019)
ollected clinical estimates of the tumor volume doubling time
 s

68
nd the time between cell divisions in metastatic breast cancer,
olorectal cancer, head & neck cancer, lung cancer and prostate
ancer. Based on the collected data, they computed a typical
et growth rate (λ0) and division rate (r0) for metastases of
ach cancer type, which lead them to estimate p0 = 1 − λ0/r0
s 0.90, 0.97, 0.95, 0.97 and 0.76, respectively. Similarly, in an
nvestigation of targeted combination therapy, Bozic et al. (2013)
stimated an average net growth rate of λ0 = 0.01 per day
or 21 melanoma lesions, which they combined with a typical
ivision rate of r0 = 0.14 per day (Rew and Wilson, 2000)
o compute a typical death rate of d0 = 0.13 per day. These
stimates suggest a typical extinction probability of p0 = 0.93 for
he melanoma lesions. Finally, Bozic et al. (2016) used their cu-
ulative version of the 1/j2 spectrum to estimate w/q0 from the
FS of mutations at cell frequency 24%-50% in colorectal cancer.2
or microsatellite stable (MSS) tumor samples, they combined
heir median estimate of w/q0 with an independent estimate of
he mutation rate (Jones et al., 2008) to obtain p0 as 0.997. It
hould be emphasized that even for a given cancer type, there
s substantial heterogeneity between individual tumors (as the
linical data collected in Table 1 of Avanzini and Antal (2019)
ndicate), so these values should only be taken as rough estimates.
owever, these simple estimates do suggest that low cell viability
s broadly relevant to tumor evolution. Low cell viability, and
he corresponding high cell turnover, induces a large mutational
urden and high genetic diversity, which enhances the adapt-
bility of the tumor under treatment. It is therefore important to
nderstand how low-viability tumors behave, and to explore how
hey can potentially be identified from genomic data.

Prior theoretical works on the expected SFS of an exponen-
ially growing tumor population offer only a limited understand-
ng of how p0 affects the spectrum, as these works generally
onsider only cells with an infinite line of descent, or they con-
ider special cases such as deterministic growth of the tumor bulk
r no cell death, which is reasonable when p0 is small. Moreover,
any prior results are given in the large-time or large-population

imit, and for practical reasons, the focus is often on mutations of
requency 10% and higher. These results are discussed in more
etail in Section 6. Our goal in this work is to gain a more
omplete understanding of the SFS of an exponentially growing
umor with neutral mutations. We seek to understand how the
pectrum behaves both at small and large frequencies, for all
alues of p0, and for any population size N . We obtain separate
esults for cells with an infinite line of descent and for the total
opulation, evaluated either at a fixed time or at the stochastic
ime at which the population reaches a certain size, each of which
s relevant to tumor data analysis depending on the context. We
bserve that while the SFS of cells with an infinite line of descent

2 Bozic et al. (2016) estimated w/q0 from the variant allele frequency (VAF)
pectrum, which records the proportion of chromosomes carrying the mutations,
s opposed to the proportion of cells carrying the mutations. They considered
llele frequencies 12%–25%, which translates to cell frequencies 24%–50% in the
implified setting where all cells are diploid and no cell is mutated at the same
ite on both chromosomes.
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Fig. 1. Categorization of cells into skeleton cells and finite-family cells, and mutation accumulation on the skeleton. (a) The skeleton subpopulation, which consists of
ells with an infinite line of descent, can be thought of as forming the trunk and scaffold branches of the genealogical branching tree (bold branches). Each skeleton
ell divides into one skeleton cell and one finite-family cell at rate 2r0p0 = 2d0 (type-1 skeleton division, see (3) in Section 3.1), in which case a finite-family clone
rows out from the skeleton as a lateral branch (light gray branches). A skeleton cell divides into two skeleton cells at rate r0q0 = λ0 (type-2 skeleton division, see
4) in Section 3.1), in which case another scaffold branch is added. (b) In between two type-2 skeleton divisions, the expected number of mutations that accumulate
ue to type-1 divisions is wp0/q0 by (8). Each type-2 division adds w mutations on average and starts a new skeleton population size level. Thus, the expected
umber of mutations that accumulate on the skeleton per size level is w + wp0/q0 = w/q0 .
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epends on the mutation rate w and the extinction probability
0 only via the ratio w/q0, the two parameters decouple in the
FS of the total population. In fact, as p0 increases from 0 to
, the small-frequency end of the spectrum transitions from the
/j2 power law characteristic of pure-birth exponential growth to
he 1/j power law characteristic of a constant-sized population.
e investigate simple metrics that quantify this transition, and
se one of them to propose a simple estimator for p0, which
e subsequently evaluate using idealized synthetic single-cell
equencing data.
The rest of the paper is organized as follows. In Section 2, we

ormulate our branching process model with neutral mutations,
efine the skeleton subpopulation of cells with an infinite line of
escent, and establish relevant notation. In Section 3, we analyze
he SFS of skeleton cells, and in Section 4, we analyze the SFS
f the total cell population. In Section 5, we use our theoretical
esults to propose and evaluate a simple estimator for p0. In
ection 6, we summarize our results, and discuss in detail how
hey relate to the existing literature. The proofs of all of our
heoretical results are found in appendices at the end of the
aper.

. Model description

.1. Branching process dynamics

We assume that the tumor evolution follows a branching
rocess model in continuous time. Cells divide into two cells at
ate r0 > 0 per unit time and die at rate d0 ≥ 0 per unit
ime, which means that in a small time interval of length ∆t , a
ell divides with probability r0∆t and dies with probability d0∆t .
ssume r0 > d0 and define λ0 := r0 − d0 > 0 as the net growth
ate. Let Z0(t) denote the size of the tumor population at time
and assume Z0(0) = 1, i.e. the tumor expands from a single

umor-initiating cell. Define

∞ := {Z0(t) > 0 for all t > 0}

s the event that the tumor does not go extinct, and

0 := P(Ωc
∞
) = P(Z0(t) = 0 for some t > 0) (1)

s the extinction probability of the tumor. This probability can be

omputed as p0 = d0/r0 with 0 ≤ p0 < 1, see e.g. Section 3

69
f Durrett (2015). Note that any clone derived from a single tumor
ell gives rise to its own branching process with the same growth
arameters r0 and d0 and the same extinction probability. We also
efine

0 := 1 − p0 = λ0/r0 (2)

as the survival probability of the tumor or of a single-cell derived
clone.

2.2. Decomposition into skeleton cells and finite-family cells

On the nonextinction event Ω∞, the cells alive at time t > 0
can be split into two categories, one consisting of cells with an
infinite line of descent, i.e. cells that start clones that do not
go extinct, and the other consisting of cells whose descendants
eventually go extinct. We refer to the former cells as skeleton
cells and the latter as finite-family cells. An arbitrary tumor cell
is a skeleton cell with probability q0, so in the long run, the
proportion of skeleton cells in the population is q0. We can think
f skeleton cells as forming the trunk and scaffold branches of the
enealogical branching tree, with finite-family clones growing out
rom the skeleton as lateral branches, see Fig. 1a.

.3. Mutation accumulation

We next add neutral mutations under the infinite-sites model.
rior to a cell division, each parental DNA molecule is unwound
nd separated into two complementary strands. Each parental
trand serves as a template for the construction of a new com-
lementary daughter strand. The end result is two copies of the
NA molecule, each consisting of one parental and one daughter
trand. Errors in nucleotide pairing during this process can result
n one or more point mutations per daughter strand. We assume
hat these errors amount tow/2 mutations on average per daugh-
ter strand, for a total of w mutations on average per cell division.
Note that the only assumptions we make on the distribution of
the number of mutations is that it is nonnegative and integer-
valued with a finite mean. The point mutation rate has been
estimated as 5 · 10−10 per base pair per cell division (Jones
et al., 2008), and it is commonly higher in cancer due to genomic
instability (Burrell et al., 2013). Since the number of base pairs
is of order 107 in the exome and 109 in the genome, it makes

sense to allow w to be any positive number, i.e. w ∈ (0,∞). In
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any works, the convention is to allow at most one mutation
er cell division, introducing a probability u ∈ (0, 1) of a new

mutation. Since our analysis only depends on the mean number
of mutations w per cell division, it includes this case with w :=

u. We assume that the mutation rate is constant throughout
tumor evolution, which ignores e.g. the possibility of an elevated
mutation rate over time due to genomic instability.

While our focus in this work is on discrete mutation accu-
mulation, we will also present all of our results in terms of
continuous mutation accumulation, another common and bio-
logically relevant assumption. In the continuous model, neutral
mutations occur at rate ν > 0 per cell per unit time, at any
time throughout the lifetime of the cell. In other words, each cell
undergoes a neutral mutation in a small time interval of length
∆t with probability ν∆t . The continuous model differs from the
discrete model in that at most one mutation occurs at a time, and
this mutation occurs in between cell divisions with probability 1.
However, as we will show, the mean behavior of the two models
is similar when ν = wr0, since in the discrete model, each cell
accumulates wr0∆t mutations on average in a small time interval
of length ∆t .

2.4. Clonal and subclonal mutations

Before proceeding, we need to make a distinction between
clonal and subclonal mutations. A mutation is clonal if it is shared
by all tumor cells, while it is subclonal if there is at least one
tumor cell without it. As an example, say the tumor-initiating
cell divides into two cells, A and B, and that cell A acquires a
newmutation. This mutation is initially subclonal. However, if the
clone started by cell B dies out, the mutation in cell A becomes
clonal from that point onward. While this example demonstrates
how clonal mutations can arise post-tumor-initiation, all muta-
tions that accumulate prior to initiation, as the cancer precursor
cell evolves to malignancy, also become clonal. For this reason,
the clonal mutations usually tell us more about the events pre-
ceding cancer than the dynamics post-initiation, and they can in
fact outnumber the subclonal mutations (Tomasetti et al., 2013).
Nevertheless, clonal mutations do appear in the SFS of mutations
post-initiation, and they play distinct roles in the fixed-time and
fixed-size spectrum, which is why we pay them special attention
below.

3. Site frequency spectrum of skeleton cells

In this section, we establish the expected fixed-time and fixed-
size spectrum of skeleton cells. The reason we are interested in
analyzing skeleton cells separately is twofold:

• When p0 = 0 (no cell death), all cells are skeleton cells,
and the SFS of the total population is the SFS of the skele-
ton. More generally, when p0 is small, the total popula-
tion spectrum is well-approximated by the simpler skeleton
spectrum.

• When the extinction probability p0 is large, finite-family
cells affect the SFS of the total population at the small-
frequency end. However, the large-frequency end is still
characterized by the skeleton spectrum, as we demonstrate
in Section 4.

3.1. Effective rates of cell division and mutation

When the tumor is conditioned on nonextinction, the prob-
ability that the tumor-initiating cell divides during the first ∆t
 w

70
units of time, and that exactly one of the two daughter cells
survives, i.e. starts a clone that does not go extinct, is
P(division in [0,∆t], one offspring survives)

P(Ω∞)

=
r0∆t · 2p0(1 − p0)

1 − p0
= 2r0p0∆t, (3)

and the probability of a division in [0,∆t] where both daughter
cells survive is
P(division in [0,∆t], both offspring survive)

P(Ω∞)

=
r0∆t · (1 − p0)2

1 − p0
= r0q0∆t. (4)

Since each skeleton cell starts a clone that does not go extinct,
we can conclude that a skeleton cell divides into one skeleton
cell and one finite-family cell at rate 2r0p0 = 2d0 per unit time
(type-1 skeleton division), and it divides into two skeleton cells
at rate r0q0 = λ0 per unit time (type-2 skeleton division). The
probability that a skeleton division is type-2 is

κ0 :=
r0q0

r0q0 + 2r0p0
=

1 − p0
1 + p0

. (5)

This probability can also be computed directly as follows: (1−p0)2
s the probability that both daughter cells survive, and 1−p20 is the
robability that at least one of them does, so (1−p0)2/(1−p20) =

1 − p0)/(1 + p0) is the probability that a skeleton division is
ype-2.

Let Z̃0(t) denote the number of skeleton cells at time t , con-
itional on the nonextinction event Ω∞. Since type-1 divisions
o not affect the size of the skeleton, we can think of the type-
divisions as the ‘‘effective’’ divisions. More precisely, (Z̃0(t))t≥0

s a pure-birth exponential growth process, known as a Yule
rocess, with birth rate λ0 and mean size E[Z̃0(t)] = eλ0t at time
(Durrett, 2015; O’Connell, 1993). Type-1 divisions do contribute
o neutral mutation accumulation however. Indeed, each type-1
ivision adds w/2 mutations on average to the skeleton, and each
ype-2 division adds w mutations on average. The rate at which
utations accumulate on the skeleton is then

w/2) · 2r0p0 + w · r0(1 − p0) = wr0 (6)

er skeleton cell per unit time, which equals the mutation rate for
he original, unconditioned process (Z0(t))t≥0. The mutation rate
er type-2 division, or the effective mutation rate, is on the other
and

r0/λ0 = w/q0 (7)

er unit time. We can also think of mutations as accumulating
cross skeleton population size levels as follows. A type-2 division
ncreases the size of the skeleton population by one, and it adds
mutations on average. Upon the type-2 division, the number of

ype-1 divisions before the next type-2 division has the geometric
istribution with support {0, 1, 2 . . .} and success probability κ0
iven by (5). It follows that in between the two type-2 divi-
ions, the expected number of mutations that accumulate on the
keleton is

w/2) · (1/κ0 − 1) = (w/2) · 2p0/q0 = wp0/q0. (8)

t each population size level, the skeleton therefore accumulates
mutations on average due to the type-2 division that starts the

evel, and wp0/q0 mutations on average due to type-1 divisions
hat occur before the next type-2 division that changes levels. We
hus obtain
+ wp0/q0 = w/q0 (9)
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Fig. 2. Comparison between the expected SFS of the skeleton, as derived in Proposition 1, and simulation results. (a) The expected fixed-time spectrum (12) of
roposition 1 (solid blue line) shows good agreement with the average spectrum of simulated tumors (gray dots). In this example, the extinction probability is
0 = 0, the mutation rate is w = 1, and the expected size of the skeleton is N = 100, which is also the expected size of the tumor since p0 = 0. We generated 105

umors with p0 = 0 and w = 1 and stopped each simulation at the fixed time t̃N with N = 100 as defined by (10). At each cell division, the number of mutations
cquired by each daughter cell was generated as a Poisson random variable with mean w/2. (b) The expected fixed-size spectrum (14) of Proposition 1 (solid red
ine) shows good agreement with the average spectrum of simulated tumors (gray dots). We again generated 105 tumors with p0 = 0 and w = 1, but this time, we
topped each simulation when the tumor reached size N = 100, i.e. at the stochastic time τ̃N defined by (11). The fundamental difference between the fixed-time and
ixed-size spectrum is that the skeleton size at time t̃N is variable, while it is always N at time τ̃N . As a result, the fixed-size spectrum is restricted to j = 1, . . . ,N ,
hile the fixed-time spectrum has nonzero mass at values j > N .
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utations per level (Fig. 1b). The effective mutation rate w/q0
lays a key role in the SFS of the skeleton, with the continuous-
ime viewpoint in (7) applying to the fixed-time spectrum, and
he population-size-level viewpoint in (9) applying to the fixed-
ize spectrum.

.2. Expected fixed-time and fixed-size skeleton spectrum

Let S̃j(t) denote the number of mutations that are found in
≥ 1 skeleton cells at time t , conditional on the nonextinction
vent Ω∞. This is the site frequency spectrum of skeleton cells.
or any integer N ≥ 1, define

˜N := log(N)/λ0 (10)

s the (fixed) time at which the skeleton has expected size N ,
.e. eλ0 t̃N = N , and define

˜N := inf{t ≥ 0 : Z̃0(t) = N} (11)

s the (stochastic) time at which the skeleton reaches size N .
n Proposition 1, we provide the expected SFS of the skeleton
valuated both at time t̃N (fixed-time spectrum) and at time τ̃N
fixed-size spectrum). Both the fixed-time and fixed-size spec-
rum can be relevant to tumor data analysis depending on the
ontext. For example, in vitro cell culture experiments and in
ivo mouse experiments are often conducted over a fixed time
eriod, in which case the fixed-time spectrum would apply. In
he clinic, however, the size of a tumor sample is more readily
stimated than its age, in which case the fixed-size spectrum is
ore relevant (Komarova et al., 2007). It is therefore useful to
nderstand both spectra and to what extent they differ.

roposition 1.

(1) Define t̃N as in (10). Then, for any N ≥ 1 and any j ≥ 1,

E[S̃j(t̃N )] = (w/q0)N ·
∫ 1−1/N
0 (1 − y)yj−1dy

= (w/q0)N ·
(
1 −

1
N

)j( 1
j(j+1) +

1
N

1
j+1

)
.

(12)

For fixed j ≥ 1, then as N → ∞,

E[S̃j(t̃N )] ∼ (w/q0)N · 1/(j(j + 1)), (13)

where f (y) ∼ g(y) as y → ∞ means limy→∞ f (y)/g(y) = 1.
(2) Define τ̃N as in (11). Then, for any N ≥ 2,

E[S̃ (τ̃ )]
j N
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=

{
(w/q0)N · 1/(j(j + 1)) − (wp0/q0)δ1,j, 1 ≤ j ≤ N − 1,
wp0/q0 = w/q0 − w, j = N,

(14)

where δℓ,m = 1 if ℓ = m and δℓ,m = 0 otherwise.

roof. Appendix A. □

Analogous results for continuous mutation accumulation are
resented in Appendix C. In Fig. 2, we compare our fixed-time
12) and fixed-size (14) results with simulation results for w = 1,
0 = 0 and N = 100. In this example, there are no clonal
utations, since p0 = 0. The fundamental difference between

he fixed-time and fixed-size spectrum is that the skeleton size
t time t̃N is variable, while it is always N at time τ̃N . The fixed-
ime spectrum therefore has nonzero mass at j > N , due to
nstances in which the skeleton is larger than N at time t̃N . It is
owever natural to ask how the fixed-time spectrum restricted
o j = 1, . . . ,N relates to the fixed-size spectrum. By (14), the
ixed-size spectrum follows the power law (w/q0)N · 1/(j(j + 1))
exactly on j = 2, . . . ,N − 1, and asymptotically as N → ∞ for
j = 1. By (13), the fixed-time spectrum converges to the same
power law for fixed j ≥ 1 as N → ∞, which means that it follows
this power law when N is large and j ≪ N . In Fig. 3, we compare
the fixed-time (12) and fixed-size (14) spectrum for N = 103 and
p0 = 0.9. As expected, the two spectra agree on j ≪ N , while
the fixed-time spectrum deviates from the fixed-size spectrum at
the very largest frequencies (for j of order N). In Fig. 3b, we show
that almost all mutations are found on j ≪ N . In this example,
the difference between the two spectra is within 1% on the range
j = 1, . . . , 150, on which 99.3% of mutations are found.

We next note the sharp discontinuity at j = N in the fixed-size
spectrum of Fig. 3a, which does not appear in the fixed-time spec-
trum. This is due to the distinct ways in which clonal mutations
manifest in the two spectra. In the fixed-time spectrum, clonal
mutations can appear at any value of j, depending on the skeleton
size at time t̃N . In the fixed-size spectrum, all these mutations
are concentrated at j = N , which creates a significant point mass
at j = N . Note that by (14), the expected number of mutations
found in j = N −1 skeleton cells is given by (w/q0)(1/(N −1)) in
the fixed-size spectrum, which is of order 1/N as N → ∞, while
clonal mutations are given by the constantwp0/q0, independently
of N .

The observed difference between the fixed-time and fixed-size
spectrum at the very largest frequencies reflects the unbounded
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s

Fig. 3. Comparison between the expected fixed-time spectrum (12) and fixed-size spectrum (14) of the skeleton as derived in Proposition 1. (a) The fixed-time
pectrum (12) of the skeleton (blue curve) is a good approximation of the fixed-size spectrum (14) (red crosses) for mutations at frequencies j ≪ N , given
parameters N = 103 , p0 = 0.9 and w = 1. The two spectra diverge at the very largest frequencies, and the difference is substantial at j = N , since clonal mutations
are concentrated at j = N in the fixed-size spectrum, while they are scattered in the fixed-time spectrum. (b) Here, we show the ratio of the fixed-time spectrum
to the fixed-size spectrum (purple crosses), and the proportion of mutations found in ≤ j skeleton cells in the fixed-size spectrum (green curve). The fixed-time and
fixed-size spectrum are virtually the same on j ≪ N , where almost all mutations are found.
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range of the fixed-time spectrum. When N is large, this difference
can be alleviated by computing the SFS of mutations found in
a given proportion of cells (as opposed to a given number of
cells), as this normalizes both spectra to the frequency range
[0, 1]. To justify this claim, we need to combine our results with
results previously obtained by Durrett (2013, 2015) and Bozic
et al. (2016), as we discuss in detail in Section 6.

3.3. Proportion of mutations found in one cell

We conclude this section by computing two simple and im-
portant metrics derived from the site frequency spectrum of the
skeleton. Note first that by Proposition 1, the expected number of
mutations found in a single skeleton cell is

E[S̃1(t̃N )] = (1/2)(w/q0)(N2
− 1)/N ∼ (1/2)(w/q0)N,

E[S̃1(τ̃N )] = (1/2)(w/q0)N − wp0/q0 ∼ (1/2)(w/q0)N,
(15)

as N → ∞. Next, let M̃j(t) :=
∑

k≥j S̃k(t) denote the number
of mutations found in ≥ j skeleton cells at time t . Again, by
Proposition 1, the expected total number of mutations on the
skeleton is

E[M̃1(t̃N )] = (w/q0)(N − 1) ∼ (w/q0)N,

E[M̃1(τ̃N )] = (w/q0)(N − 1) ∼ (w/q0)N,
(16)

as N → ∞. Expressions (15) and (16) suggest that for large
N , half the mutations discovered at time t̃N or τ̃N are found in
only one cell. This is a consequence of the pure-birth exponential
growth of the skeleton. Indeed, note that if we only consider the
effective type-2 skeleton divisions, the total number of divisions
required to reach generation k is

∑k−1
j=0 2j

= 2k
− 1. The expected

total number of mutations in generation k is then (w/q0)(2k
−1),

which is (16) with N = 2k the number of cells in generation k. An
additional 2k divisions are required to reach generation k + 1, so
each generation roughly doubles the total number of mutations.
Of course, our model is stochastic, it operates in continuous time,
and generations may overlap, but this simple discrete argument
gives intuition as to why half the mutations are found in one cell,
and more generally why most mutations are found at the smallest
frequencies.

4. Site frequency spectrum of total population and transition
between power laws

When the extinction probability p0 is small, the SFS of the
total population (Z (t)) is well-approximated by the SFS of the
0 t≥0
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skeleton (Z̃0(t))t≥0. However, tumor evolution is commonly char-
acterized by a large extinction probability, as was discussed in the
introduction. In this section, we investigate the expected fixed-
time and fixed-size spectrum of the total population (Z0(t))t≥0 for
ll values of p0. We show that as p0 increases, the small-frequency
nd of the spectrum starts to deviate from the skeleton spectrum
f Section 3, and that as p0 approaches 1, it transitions to the
pectrum of a constant-sized population.

.1. Expected fixed-time and fixed-size total population spectrum

Let Sj(t) denote the number of mutations found in j ≥ 1
ells at time t , the site frequency spectrum of the total cell
opulation. We wish to compute the mean of Sj(t) conditioned on
he tumor surviving to time t . We can compute the probability of
his survival event as

(Z0(t) > 0) = q0eλ0t/(eλ0t − p0), t ≥ 0,

ee (B.2) of Appendix B, and the expected size of a tumor that
urvives to time t as

[Z0(t)|Z0(t) > 0] = (eλ0t − p0)/q0, t ≥ 0. (17)

ote that E[Z0(t)|Z0(t) > 0] ∼ eλ0t/q0 as t → ∞, which means
hat the long-run expected growth of a tumor conditioned on
urvival is exponential, and the initial value of the exponential
rowth function is given by 1/q0. An interesting consequence of
he conditioning on survival is that if r0 and d0 are increased by
the same amount (so that λ0 = r0 − d0 stays fixed), the survival
probability q0 = λ0/r0 will decrease, while the size of a tumor
onditioned on survival will increase. Now, for any integer N ≥ 1,
efine

N := log(q0N + p0)/λ0 (18)

s the (fixed) time at which a surviving tumor has expected size
, i.e. (eλ0tN − p0)/q0 = N , and define

N := inf{t ≥ 0 : Z0(t) = N} (19)

s the (stochastic) time at which the tumor reaches size N , with
nf∅ = ∞. In Proposition 2, we provide the expected SFS of
Z0(t))t≥0 at time tN and τN , conditioned on the survival events
Z0(tN ) > 0} and {τN < ∞}, respectively. In this case, we cannot
btain an explicit expression for the fixed-size spectrum, and
rovide instead a computational expression. Note however that
or the case p0 = 0 of no cell death, the fixed-size spectrum
ollows the power law wN ·1/(j(j+1)) exactly on j = 1, . . . ,N−1,
y (14) of Proposition 1.
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Fig. 4. Comparison between the expected SFS of the total population, as derived in Proposition 2, and simulation results. (a) The expected fixed-time spectrum (20)
f Proposition 2 (solid blue line) shows good agreement with the average spectrum of simulated tumors (gray dots). In this example, the extinction probability is
0 = 0.9, the mutation rate is w = 1, and the expected tumor size is N = 100. We generated 105 tumors with p0 = 0.9 and w = 1 and stopped each simulation
t the fixed time tN with N = 100 as defined by (18). At each cell division, the number of mutations acquired by each daughter cell was generated as a Poisson
andom variable with mean w/2. (b) The expected fixed-size spectrum (22) of Proposition 2 (solid red line) shows good agreement with the average spectrum of
imulated tumors (gray dots). We again generated 105 tumors with p0 = 0.9 and w = 1, but this time, we stopped each simulation when the tumor reached size
= 100, i.e. at the stochastic time τN defined by (19). Note the discontinuity in the fixed-size spectrum at j = N , which is due to clonal mutations.
Fig. 5. Comparison between the expected fixed-time spectrum (20) and fixed-size spectrum (22) of the total population as derived in Proposition 2. (a) Here, we
how the ratio between the fixed-time spectrum (20) and the fixed-size spectrum (22) for N = 100, p0 ∈ {0, 0.5, 0.7, 0.9} and w = 1. The fixed-time spectrum is a
ood approximation of the fixed-size spectrum on j ≪ N for smaller values of p0 , but the two spectra start to diverge as p0 increases. (b) Here, we show the ratio
etween the expected number of mutations found in one cell for the fixed-time spectrum and the fixed-size spectrum, as a function of the population size N , for
0 ∈ {0.7, 0.9} and w = 1. As N increases, the difference between the two spectra reduces both for p0 = 0.7 and p0 = 0.9.
roposition 2.

(1) Define tN as in (18). Then, for any N ≥ 1 and any j ≥ 1,

E[Sj(tN )|Z0(tN ) > 0] = wN
∫ 1−1/N
0 (1 − p0y)−1(1 − y)yj−1dy.

(20)

For fixed j ≥ 1, then as N → ∞,

E[Sj(tN )|Z0(tN ) > 0] ∼ wN ·
∫ 1
0 (1 − p0y)−1(1 − y)yj−1dy

= wN ·
∑

∞

k=0
pk0

(j+k)(j+k+1) ,

(21)

where f (y) ∼ g(y) as y → ∞ means limy→∞ f (y)/g(y) = 1.
(2) Define τN as in (19), let S := {(ℓ,m) : ℓ,m ≥ 0 and ℓ+m ≤

N} and A := {(0, 0)}∪ {(r, s) : r, s ≥ 0 and r + s = N}. Then,
for any N ≥ 2 and any 1 ≤ j ≤ N,

E[Sj(τN )|τN < ∞] = (w/q0) ·
∑N−1

k=1 (1−pN−k
0 ) ·h(j,N−j)

(1,k) , (22)

where for each (r, s) ∈ A, the vector
(
h(r,s)
(ℓ,m)

)
(ℓ,m)∈S solves the

system

(ℓ+ m)(1 + p0)h
(r,s)
(ℓ,m)

(r,s) (r,s) (r,s) (r,s) (23)

= ℓh(ℓ+1,m) + ℓp0h(ℓ−1,m) + mh(ℓ,m+1) + mp0h(ℓ,m−1)
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for ℓ,m ≥ 1 and ℓ+m < N, with boundary conditions given
by (B.10) in Appendix B.

Proof. Appendix B. □

Analogous results for continuous mutation accumulation are
presented in Appendix C. In Fig. 4, we compare our fixed-time
(20) and fixed-size (22) results with simulation results for w = 1,
p0 = 0.9 and N = 100. The fundamental difference between the
fixed-time and fixed-size spectrum is the same as we observed in
Section 3.2. In Fig. 5a, we compare the two spectra in more detail
for N = 100 and p0 ∈ {0, 0.5, 0.7, 0.9}. The fixed-time spectrum
is a good approximation of the fixed-size spectrum on j ≪ N for
all but p0 = 0.9, in which case there is a significant difference
even on j ≪ N . In Fig. 5b, we show that this difference reduces
as N increases, with the expected number of mutations found in
one cell being 1.46% off for p = 0.9 and N = 1000. The number
of cells in 1 cm3 of tumor tissue is around 107–109 (Del Monte,
2009), in which case the fixed-time spectrum can generally be
expected to be a good approximation of the fixed-size spectrum
on j ≪ N . The two spectra may diverge, however, when applied
to smaller tumor samples (e.g. 1 mm3 or smaller) or when p0 is
very close to 1.

In Appendix E, we present heuristic calculations that indicate
how the fixed-size spectrum can be approximated by the fixed-
time spectrum on j ≪ N as N → ∞. The key insight is that once
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Fig. 6. The small-frequency end of the total population spectrum transitions between two power laws as p0 increases from 0 to 1. When p0 is small, the expected
fixed-time spectrum (20) of Proposition 2 (solid blue line) approximately follows the 1/j2 law of (24) (dotted red line). As p0 increases to 1, the small-frequency
end of the spectrum transitions to the 1/j law of (25) (dotted green line), while the 1/j2 law increases according to (w/q0)N · 1/(j(j+ 1)). Note that the y-axis is on
a linear scale, and that the scale of the rightmost panel is ten times larger than the scale of the other two. Also note that the 1/j law of (25) is fixed as a function
of p0 and is therefore the same curve in all panels. Parameters are N = 104 and w = 1, and the spectrum is shown only at the smallest frequencies j = 1, . . . , 100.
he tumor has reached a large size, its growth becomes essen-
ially deterministic with exponential rate λ0, which allows us to
pproximate the probabilities h(j,N−j)

(1,k) in (22) by continuous-time
robabilities following Iwasa et al. (2006). For added intuition, we
efer to our discussion in Section 4.5 below and accompanying
alculations in Appendix H, where we conjecture a law of large
umbers for the fixed-time and fixed-size spectrum, whose lim-
ts agree in the mean with the asymptotic expected fixed-time
pectrum (21).
For each j = 1, . . . ,N , computing E[Sj(τN )|τN < ∞] ac-

ording to (22) requires solving a linear system of the form
23), which has order N2/2 equations. A more general version
f this system arises in the study of the number of wild-type
nd mutant cells under a two-type (Luria-Delbrück) population
odel stopped at a certain size, see e.g. Komarova et al. (2007).
he coefficient matrix of the system is sparse and banded, and
t has a certain structure which allows one to solve it in O(N3)
rithmetic operations (George, 1973), compared to O

(
(N2)3

)
=

(N6) for Gaussian elimination. Solving the system directly is still
ot computationally feasible for the largest values of N , in which
ase one must develop an approximate solution. See Komarova
t al. (2007) for a partial differential equations approach. Our
bservations suggest another simple approach: For N sufficiently
arge, one can approximate the fixed-size spectrum by the fixed-
ime spectrum on j ≪ N . For j of order N , one can apply the 1/j2
keleton law of (14), since as we discuss next, the skeleton will
e responsible for the large-frequency mutations.

.2. Transition between power laws

By Proposition 1 of Section 3.2, the SFS of the skeleton de-
ends on the mutation rate w and the extinction probability p0
nly through the effective mutation rate w/q0. By Proposition 2,
owever, the two parameters decouple in the SFS of the total pop-
lation. The mutation rate w scales the total population spectrum
inearly, and the same is true of a large population size N , but the
ependence on p0 is more complex. To better understand how
0 affects the spectrum, recall first that by (21), the asymptotic
xpected fixed-time spectrum is given by

[Sj(tN )|Z0(tN ) > 0] ∼ wN ·
∑

∞

k=0
pk0

(j+k)(j+k+1) , N → ∞.

In Appendix F, we show that for fixed 0 < p0 < 1, sending j → ∞

in this expression yields

wN ·
∑

∞ pk0 ∼ (w/q )N · 1/(j(j + 1)), j → ∞, (24)
k=0 (j+k)(j+k+1) 0

74
which is the 1/j2 power law given in (13)–(14) of Proposition 1.
We also show that for fixed j ≥ 1, sending p0 → 1 in the same
expression yields

wN ·
∑

∞

k=0
pk0

(j+k)(j+k+1) ∼ wN · 1/j, p0 → 1, (25)

which is the 1/j power law of the constant-sized Moran model of
population genetics, see Theorem 1.33 of Durrett (2008). When
referring to results from Durrett (2008), note that there, the popu-
lation is assumed to have size 2N , which is a common convention
in population genetics.

Recall that when p0 = 0, the SFS of the total population
(Z0(t))t≥0 is the SFS of the skeleton (Z̃0(t))t≥0. Expressions (24)
and (25) suggest that when p0 > 0, the SFS of (Z0(t))t≥0 continues
to follow the 1/j2 skeleton law at the large-frequency end, while
a deviation starts to occur at the small-frequency end. In fact,
as p0 approaches 1, the small-frequency end transitions to the
1/j law of the constant-sized Moran model. This is illustrated in
Fig. 6 for p0 ∈ {0.1, 0.5, 0.95} and N = 104. Note that the y-
axis is on a linear scale, and that the scale of the rightmost panel
is ten times larger than the scale of the other two. Also note
that the 1/j law in (25) is independent of p0, so it is the same
curve in all panels. For small p0, the fixed-time spectrum (20)
is well-approximated by the 1/j2 law (24), and each lies below
the 1/j law (25). To see why, note that the 1/j law gives wN
as the number of mutations found in one cell, while the 1/j2
law gives (1/2)(w/q0)N , which is (1/2)wN for p0 = 0. As p0
increases to 1, the fixed-time spectrum (20) transitions to the 1/j
law, while the 1/j2 law increases according to (w/q0)N ·1/(j(j+1)),
diverging further and further from the fixed-time spectrum. In
Fig. 7a, we show how for a fixed, large value of p0 (p0 = 0.99),
the fixed-time spectrum (20) transitions from the 1/j2 law at the
large-frequency end to the 1/j law at the small-frequency end.
Note that the power laws of (24) and (25) intersect at

j = 1/q0 − 1,

which gives an indication of the frequency at which the tran-
sition occurs. This intersecting point is independent of N , as is
illustrated in Fig. 7b (dotted vertical line).

To understand this transition between power laws, note that
mutations that occur early in the evolution of a large tumor
are only detected if they occur on the skeleton, which is why
mutations at large frequencies in a large tumor follow the 1/j2
skeleton spectrum. For mutations that occur late, we need to
consider both skeleton cells and finite-family cells. When p0 is
large, most cells are finite-family cells (their long-run proportion
is p0), and as p0 approaches 1, finite-family clones start to behave
like a critical branching process with net growth rate 0. This
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Fig. 7. For a fixed, large value of the extinction probability p0 , the expected fixed-time spectrum (20) of Proposition 2 (solid blue line) transitions from the 1/j2
power law of (24) (dotted red line) at the large-frequency end to the 1/j power law of (25) (dotted green line) at the small-frequency end. The dotted vertical line
shows the intersecting point j = 1/q0 − 1 of the two power laws in (24) and (25). In (a), the parameters are N = 104 , p0 = 0.99 and w = 1, and in (b), we increase
the expected tumor size to N = 105 . Note that the transition between power laws occurs around the same value of j in both cases, j = 1/q0 − 1.
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is why late mutations follow the 1/j law of a constant-sized
population. Thus, even though the branching process dynamics of
cell division and cell death are the same throughout the evolution
of the tumor, from the perspective of mutation accumulation, the
tumor effectively behaves like a pure-birth exponential growth
process initially, and more like a constant-sized process at the
end, assuming a large extinction probability p0. The transition
between power laws is the transition between these two growth
regimes.

Note finally that as we observed for the skeleton spectrum in
Section 3.2, the fixed-time spectrum (20) deviates from the 1/j2
law at the very largest frequencies (for j of order N) in Fig. 7, due
to the variability in tumor size at time tN . It is therefore more
correct to say that for fixed large p0, the fixed-time spectrum
transitions from the skeleton spectrum at the large-frequency
end to the constant-sized spectrum at the small-frequency end,
without reference to the power laws. It remains true, however,
that as p0 increases from 0 to 1, the small-frequency end of the
spectrum transitions between the two power laws.

4.3. Total mutational burden of the tumor

We next wish to quantify how p0 affects overall mutation
accumulation. To this end, we derive in Proposition 3 the ex-
pected total mutational burden of the tumor, both under the
fixed-time and fixed-size spectrum. This quantity indicates the
genetic diversity of the tumor, which has implications e.g. for
its adaptability under treatment. It also enables us to compute a
normalized version of the SFS, which can be useful for parameter
estimation, as is discussed further in Section 5. Before stating
the proposition, we define Mj(t) :=

∑
k≥j Sk(t) as the number of

mutations found in ≥ j cells at time t .

Proposition 3.

(1) For 0 < p0 < 1, the expected total number of mutations in
the fixed-time spectrum is given by

E[M1(tN )|Z0(tN ) > 0]
= −wN · (1/p0) log(q0 + p0/N)
∼ −wN · log(q0)/p0, N → ∞.

(26)

For p0 = 0, E[M1(tN )] = w(N − 1) ∼ wN as N → ∞ by
(16).

(2) Define S and A as in Proposition 2. The expected total number
of mutations in the fixed-size spectrum is given by

E[M1(τN )|τN < ∞]

= (w/q0) ·
∑N−1

k=1 (1 − pN−k
0 )

(
1 − h(0,N)

(1,k) − h(0,0)
(1,k)

)
, (27)
75
where for each (r, s) ∈ A, the vector
(
h(r,s)
(ℓ,m)

)
(ℓ,m)∈S solves the

linear system (23) of Proposition 2. For p0 = 0, E[M1(τN )] =

w(N − 1) ∼ wN as N → ∞ by (16).

Proof. Appendix D. □

Now, for ease of notation, write M1 := E[M1(tN )|Z0(tN ) > 0]
for the expected total mutational burden under the fixed-time
spectrum. We are interested in comparing M1 with the expected
number of mutations under the 1/j2 skeleton law of (24). To this
nd, defineˆ1 := (w/q0)N, (28)

ollowing (16). This simple estimate has been used e.g. in Ling
t al. (2015), where the authors estimate the total number of
utations in a hepatocellular carcinoma (HCC) tumor under a few
ifferent assumptions on tumor evolution. The ratio between M1

and M̂1 is, for 0 < p0 < 1,

M1/M̂1 = −(q0/p0) · log(q0 + p0/N)
∼ −(q0/p0) · log(q0), N → ∞.

(29)

In Fig. 8a, we show this ratio as a function of p0 for N = 1000.
The ratio is decreasing in p0, it converges to 1 as p0 → 0, and
it converges to 0 as p0 → 1. To give some examples, in the
N → ∞ limit, M1/M̂1 = 0.46 for p0 = 0.75 and M1/M̂1 = 0.047
for p0 = 0.99. Thus, if one is interested in estimating the total
number of mutations in an exponentially growing tumor, using
the simple expression (28) implied by the skeleton spectrum will
result in a significant overestimate when p0 is large. Indeed, as p0
increases, finite-family cells start to dominate the population, and
they accumulate mutations less efficiently than skeleton cells.

4.4. Proportion of mutations found in one cell

At the extremes p0 = 0 and p0 = 1, the small-frequency end
of the SFS is characterized by the 1/j2 skeleton law and the 1/j
constant-sized law, respectively. To better understand how the
small-frequency end behaves for intermediate values of p0, we
next determine the relative proportion of mutations found at the
very smallest frequency, i.e. in one cell. This metric quantifies
the transition between the 1/j2 and 1/j power laws at the small-
frequency end, and it enables us to propose a simple estimator
for p0 in Section 5 below.

In Appendix G, we show that in the fixed-time spectrum, the
expected number of mutations found in one cell is given by, for
0 < p0 < 1,

E[S (t )|Z (t ) > 0]
1 N 0 N
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Fig. 8. Graphs of the metrics M1/M̂1 and S1/M1 given by (29) and (31), as a function of p0 . (a) Ratio between the expected total number of mutations in the
ixed-time spectrum, M1 := E[M1(tN )|Z0(tN ) > 0] given by (26), and the simple estimate M̂1 of (28), derived from the 1/j2 skeleton law of (24), as a function of p0
for N = 103 . The two estimates M1 and M̂1 agree for p0 = 0, but M̂1 becomes a significant overestimate of M1 as p0 increases. (b) The proportion of mutations
found in one cell, S1/M1 = ϕN (p0) as given by (31), quantifies the transition between the 1/j2 and 1/j power laws at the small-frequency end of the spectrum. Note
hat the transition between power laws accelerates as p0 increases.
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= wN · (1/p0)
(
1 − 1/N + (q0/p0) log(q0 + p0/N)

)
∼ wN · (1/p0)(1 + (q0/p0) log(q0)), N → ∞.

(30)

s in Section 4.3, we write S1 := E[S1(tN )|Z0(tN ) > 0] for ease of
otation. We then define ϕN (p0) := S1/M1 as the proportion of

mutations found in one cell. By (26) and (30),

ϕN (p0)
= −

(
1 − 1/N + (q0/p0) log(q0 + p0/N)

) /
log(q0 + p0/N)

∼ −(1 + (q0/p0) log(q0))/log(q0), N → ∞.

(31)

In Fig. 8b, we show ϕN = S1/M1 as a function of p0 for N = 1000.
The function is strictly decreasing in p0, it converges to 0.50 as
p0 → 0, and it converges to (1−1/N)/log(N) as p0 → 1, which is
of order 1/log(N) for N large. In the p0 → 0 regime, the SFS of the
total population (Z0(t))t≥0 is the SFS of the skeleton (Z̃0(t))t≥0, in
hich case half the mutations are found in one cell by Section 3.3.

n the p0 → 1 regime, the SFS of (Z0(t))t≥0 is the SFS of the
onstant-sized Moran model, in which case the expected number
f mutations is of order wN

∑N
j=1 1/j ∼ wN log(N) for N large,

and the proportion of mutations found in one cell is of order
1/log(N). Note that the rate of change of ϕN (p0) increases as p0
ncreases (Fig. 8b). This implies that the deviation from the 1/j2
keleton law at the small-frequency end is initially slow for small
alues of p0, but it accelerates as p0 increases and transitions
uickly to the 1/j law for large values of p0. It also implies that

S1/M1 is more useful for distinguishing larger values of p0 than
smaller values, as will become more apparent in Section 5 below.

4.5. Spectra of individual large tumors (laws of large numbers)

The results of Proposition 2 hold in expectation, meaning that
they apply to an average SFS computed over a large number
of tumors. If we want to use these results to understand the
evolutionary history of individual tumors, we need to know more
about how well they apply on a tumor-by-tumor basis. It is well-
known that conditional on the nonextinction event Ω∞, Z0(t) ∼

Yeλ0t as t → ∞ almost surely, where Y follows the exponential
distribution with mean 1/q0 (Theorem 1 of Durrett (2015)). In
other words, the tumor population Z0(t) eventually grows at ex-
ponential rate λ0, but the initial value of the exponential growth
function is random and depends on the individual tumor. We can
use this fact to formulate laws of large numbers for the fixed-time
and fixed-size spectrum, which we state formally as conjectures.
In Appendix H, we present simple calculations in support of these
conjectures, and we also prove an analogous result (H.1) for a
simplified, semideterministic version of our model.
76
Conjecture.

(1) Define tN as in (18). Then, there exists an exponential
random variable X with mean 1 so that for fixed j ≥ 1,
conditional on Ω∞,

Sj(tN ) ∼ X · wN ·
∫ 1
0 (1 − p0y)−1(1 − y)yj−1dy (32)

as N → ∞ almost surely.
(2) Define τN as in (19). Then, for fixed j ≥ 1, conditional on

Ω∞,

Sj(τN ) ∼ wN ·
∫ 1
0 (1 − p0y)−1(1 − y)yj−1dy (33)

as N → ∞ almost surely.

Both the fixed-time conjecture (32) and the fixed-size conjec-
ure (33) agree with simulation results, see Figs. 9 and 10. The
ain difference between (32) and (33) is that the right-hand-
ide of (32) is stochastic, while the right-hand side of (33) is a
onstant. The former expression has a random scaling factor X ,
hich captures the variability in tumor size at time tN , whereas
he fact that the tumor size is always N at time τN eliminates
his variability in the latter expression. Note that since E[X] = 1,
he right-hand sides of (32) and (33) agree in the mean, and
his mean agrees with the right-hand side of the asymptotic
pectrum (21) of Proposition 2. Importantly, the scaling factor X
n (32) is independent of j, which indicates that the proportion of
utations found in j cells is the same in (21), (32) and (33). In
ther words, according to these conjectures, if we normalize the
FS with the total number of mutations, Sj(t)/M1(t), the fixed-
ime and fixed-size spectrum of an individual large tumor will be
ompletely characterized by the asymptotic expected spectrum
21) of Proposition 2 (Fig. 10). This can be useful for parameter
stimation, as we discuss next.

. Signatures of cell viability

In this section, we use our theoretical results to propose a
imple estimator for the extinction probability p0, based on ex-
racting one or more spatially separated subclones from a tumor.
y a subclone, we mean all currently living descendants of a given
ommon ancestor, i.e. all leaves of the branching tree started by
given tumor cell. Since every clone or subclone derived from
single tumor cell obeys the same branching process dynamics
s the overall tumor, all of our previous results can be applied to
ndividual subclones.

We make the strong assumption that each cell in each sampled
ubclone can be single-cell sequenced so that all its mutations are
aptured, even at the smallest frequencies, which is beyond cur-
ent sequencing technology. Our main purpose with this section
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Fig. 9. Simulation results support the conjectured laws of large numbers (32) and (33) for the fixed-time and fixed-size spectrum respectively. (a) Histogram of
1(tN )

/
S1 over 104 simulation runs with N = 100, p = 0.7 and w = 1, where tN is defined by (18), and S1 := E[S1(tN )|Z0(tN ) > 0] as given by (30). The y-axis is

ormalized so as to approximate the density of the underlying probability distribution. By comparison with x ↦→ e−x , we see that S1(tN )
/
S1 appears to be a mean-1

xponential random variable, which is consistent with the conjectured law of large numbers (32). (b) When the population size is increased to N = 1000, S1(tN )
/
S1

retains the mean-1 exponential distribution, consistent with (32). (c) Histogram of S1(τN )/S1 over 104 simulation runs with N = 100, p = 0.7 and w = 1, where τN
is defined by (19). (d) Same as in (c), except now N = 1000. Together, (c) and (d) indicate that the ratio S1(τN )

/
S1 concentrates around 1 as N increases, which is

onsistent with the conjectured law of large numbers (33).
Fig. 10. Simulation results indicate that if the SFS is normalized by the total number of mutations, the fixed-time and fixed-size spectrum obey the same law of
large numbers. (a) Histogram of (S1(tN )/M1(tN ))

/
(S1/M1) over 104 simulation runs with N = 100, p = 0.7 and w = 1, where tN is defined by (18), and the expected

atio S1/M1 is given by (31). Note the point masses at 0 and 2.44, which represent simulation runs where S1(tN )/M1(tN ) = 0 and S1(tN )/M1(tN ) = 1, respectively.
b) Same as in (a), except now, N = 1000. Together, (a) and (b) indicate that as N increases, S1(tN )/M1(tN ) concentrates around S1/M1 . This in turn suggests that if
he fixed-time spectrum is normalized by the total number of mutations M1(tN ), it obeys the same law of large numbers as the normalized version of the fixed-size
pectrum.
c

p

ˆ

s to show how the information contained in the small-frequency
nd of the SFS can in principle be used to decouple the mutation
ate w and the extinction probability p0. We discuss practical
onsiderations and potential alternative approaches in Section 6
elow.
Say that we sample a subclone of size n. For 1 ≤ j ≤ n − 1,

et sj be the number of mutations found in j cells of the subclone,
nd let m1 :=

∑n−1
j=1 sj be the total number of mutations. Here,

e ignore mutations found in all cells of the subclone, since
hey include (i) mutations that accumulate prior to tumor ini-
iation, (ii) mutations that occur post-tumor-initiation but prior
o initiation of the subclone, and (iii) mutations that occur post-
ubclone-initiation but still end up in all subclone cells. Let s1
e the expected number of mutations found in one subclone cell
nder the fixed-time spectrum, and let m1 be the expected total

number of mutations under the fixed-time spectrum. By (31), we
77
can write

s1/m1 = ϕn(p0),

where ϕn(p0) is continuous and strictly decreasing in p0. In par-
ticular, ϕn(p0) is invertible. This implies that given s1 and m1, p0
an be recovered from this expression via

0 = ϕ−1
n (s1/m1).

For the sampled values s1 and m1, this suggests the following
estimator for p0:

p0(n) := ϕ−1
n (s1/m1). (34)

Of course, if the subclone is sampled at a certain size, it makes
more sense to use the fixed-size spectrum than the fixed-time
spectrum. In addition, m1 excludes mutations found in all sub-
clone cells, while m includes some of these mutations. These
1
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Fig. 11. Histogram of the estimator p̂0(n) defined in (34) computed across 105 synthetic subclone samples of size n, given true values p0 ∈ {0.5, 0.7, 0.9} and w = 1.
n (a), the subclone size is n = 200, and in (b), the size is n = 1000. Together, (a) and (b) indicate that as the size of the subclone increases, the estimator p̂0(n)
oncentrates around the true value of p0 , which in turn indicates statistical consistency of the estimator.
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otential sources of error are minor and can easily be resolved
f necessary, as we discuss in more detail below.

Note that the ratio of expected values s1/m1 takes values in
(1 − 1/n)/log(n), 1/2] by Section 4.4, whereas due to stochas-
ticity, the sampled ratio s1/m1 can take any value in [0, 1]. To
complete the estimator in (34), we therefore extend the definition
of ϕ−1

n by setting

ϕ−1
n (x) :=

{
0, 1/2 ≤ x ≤ 1,
1, 0 ≤ x ≤ (1 − 1/n)/log(n).

(35)

For example, if we observe a ratio s1/m1 larger than 1/2, we
default to the estimate p̂0(n) = 0, since the expected ratio s1/m1
s largest (and equal to 1/2) for p0 = 0. Once p0 has been
stimated, an estimate for the mutation rate w can be obtained
rom (30) or (26).

The estimator p̂0(n) has the benefit of being simple to de-
ine and to compute. However, as was mentioned above, it may
ake more sense to use the fixed-size spectrum than the fixed-

ime spectrum, and m1 includes clonal mutations that arise post-
subclone-initiation, whereas m1 excludes these mutations. The
second potential source of error is minor, and it can easily be
removed simply by subtracting from m1 the contribution from
utations shared by all subclone cells. The first potential source
f error is also likely to be insignificant when n is large, since
y the conjectured laws of large numbers in Section 4.5, the
ormalized spectrum of an individual large subclone is robust to
hether it is observed at a fixed time or a fixed size. For smaller
alues of n, one can replace s1 and m1 by the corresponding
uantities (22) and (27) for the fixed-size spectrum, which we
enote here by s1 and m1. It remains true that we can write

s1/m1 = ψn(p0) for some function ψn of p0, which allows us
to define an estimator for p0 as before. However, the fixed-size
estimator has to be obtained numerically, e.g. by precomputing
ψn(p0) over a grid of values for p0, and minimizing the error
between the observed ratio s1/m1 and the expected ratio s1/m1
ver the grid.
To evaluate p̂0(n), we use computer simulations to generate

multiple independent subclones of size n with true extinction
probability p0, and for each generated subclone, we compute
the estimate p̂ (n). In Fig. 11a, we show a histogram for p̂ (n)
0 0
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cross 105 synthetic subclone samples of size n = 200 with true
xtinction probabilities p0 ∈ {0.5, 0.7, 0.9}. In Table 2, we show
erformance metrics for p̂0(n) computed across the 105 samples.
or p0 = 0.5, the estimator defaults to p̂0(n) = 0 for 4.6% of
he subclone samples, for p0 = 0.7, it defaults to 0 in 0.3% of
ases, and for p0 = 0.9, it never defaults to 0. For all values of p0,
he median estimate of p̂0(n) accurately recovers the true value,
nd as p0 increases, the quality of the estimate improves in terms
f standard deviation. In Fig. 11b, we increase the subclone size
o n = 1000 and observe a marked improvement in the quality
f p̂0(n). This indicates statistical consistency of the estimator,
eaning that p̂0(n) → p0 in probability as n → ∞, which
ould also be a direct consequence of the conjectured laws of

arge numbers (32)–(33) and the continuous mapping theorem.
n other words, the estimator appears to recover the true value
f p0 with arbitrarily high precision given a sufficiently large
ubclone. Note that the size of n required to return a high-
recision estimate becomes smaller as p0 increases, making p̂0(n)
specially useful when p0 is large. Indeed, as we remarked in Sec-
ion 4.4, the rate of change of the expected ratio s1/m1 increases
as p0 increases, making it more useful for distinguishing between
larger values of p0 than smaller values.

Whenever it is possible to do multi-region sampling, there
may be benefits to extracting multiple small, spatially separated
subclones over a single large one. In this more general setting, we
sample K ≥ 1 subclones of size n. For 1 ≤ j ≤ n− 1, let skj be the
number of mutations found in j cells of subclone number k, and
let mk

1 :=
∑n−1

j=1 skj be the total number of mutations in subclone
k. We replace s1 and m1 in the definition of p̂0(n) in (34) by the
ums

∑K
k=1 s

k
1 and

∑K
k=1 m

k
1 to obtain the estimator

0(n, K ) := ϕ−1
n

(∑K
k=1 s

k
1

/∑K
k=1 m

k
1

)
. (36)

f course, p̂0(n, 1) = p̂0(n). In Fig. 12, we show a histogram
or p̂0(n, K ) evaluated across 105 synthetic samples, each sample
onsisting of K = 5 independent subclones of size n = 200.
n Table 3, we show performance metrics computed across the
05 samples. Qualitatively, the histograms in Fig. 12 are very
imilar to the histograms of Fig. 11b, and quantitatively, the
erformance metrics in Table 3 mimic those for the n = 1000
ase in Table 2. In other words, the quality of the estimate of p
0
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Table 2
Performance metrics for the estimator p̂0(n) computed from the data that underlies Fig. 11. Both for n = 200 and
n = 1000, the median of p̂0(n) accurately recovers the true value of p0 . In addition, the estimator improves in terms
of standard deviation both as n increases and as p0 increases.
n p0 Mean Median St. dev. Defaults to 0 (%) Defaults to 1 (%)

200 0.5 0.4694 0.5041 0.2099 0.0459 0
0.7 0.6755 0.7045 0.1505 0.0026 0
0.9 0.8839 0.9001 0.0725 0 0.00002

1000 0.5 0.4921 0.5000 0.0948 0.00002 0
0.7 0.6957 0.7010 0.0603 0 0
0.9 0.8979 0.9009 0.0266 0 0
Table 3
Performance metrics for the estimator p̂0(n, K ) computed from the data that underlies Fig. 12. Note the similarity
between these metrics and the lower half of Table 2.
K n p0 Mean Median St. dev. Defaults to 0 (%) Defaults to 1 (%)

5 200 0.5 0.4965 0.5050 0.0957 0.00013 0
0.7 0.7000 0.7055 0.0612 0 0
0.9 0.8983 0.9014 0.0279 0 0
Fig. 12. Histogram of the estimator p̂0(n, K ) of (36) computed across 105 synthetic samples of K = 5 subclones of size n = 200, given true values p0 ∈ {0.5, 0.7, 0.9}
and w = 1. Note the similarity between these histograms and the histograms in (b) of Fig. 11, which indicates that sampling five subclones of size 200 gives a
comparable estimate of p0 to sampling a single subclone of size 1000 in these examples.
j
e
≥

E

i

obtained from sampling one subclone of size 1000 is comparable
to the one obtained from sampling five subclones of size 200. In
this scenario, it may make more sense to extract multiple small
subclones than one large one, since it is impossible to tell from a
single subclone sample alone whether the tumor as a whole can
be considered as evolving neutrally. Should there be differences in
the subclone dynamics, a multiregion sample may tease this out,
and should the dynamics be the same, the estimate one obtains
for p0 will be of comparable quality to the single large subclone
case.

6. Discussion

In this work, we have established exact expressions for the
expected site frequency spectrum of a tumor, or more generally
any population, that evolves according to a branching process
with neutral mutations under the infinite-sites assumption of
population genetics. We first considered the skeleton subpopu-
lation, consisting of cells with an infinite line of descent, and
obtained explicit expressions for the SFS of the skeleton evaluated
both at a fixed time and a fixed size. We then examined the
total population, deriving an explicit expression for the fixed-
time spectrum and a computational expression for the fixed-size
spectrum. Our results apply to mutations at small and large
frequencies, to tumor tissue samples and tumor subclones of any
size, and to all values of the extinction probability p0, even values
as large as p0 = 0.90 and above, which are broadly relevant for
cancer. We now discuss in detail how our results relate to results
previously obtained in the literature.

We begin by stating skeleton results established by Durrett
(2013, 2015), Bozic et al. (2016) and Williams et al. (2016). The
result in Bozic et al. (2016) says that for fixed 0 < f < 1, the
79
expected number of subclonalmutations found in a proportion ≥ f
of cells at time t is, as t → ∞,

(w/q0)(1/f − 1). (37)

Note that this is a cumulative spectrum of mutations with fre-
quency at least f . A similar result appears in Williams et al.
(2016) under a deterministic growth model. Durrett’s result (Dur-
rett, 2013, 2015), which preceded the other two, is given under
continuous mutation accumulation, and it includes clonal mu-
tations, which by (C.1) of Appendix C requires adding ν/λ0 (=
w/q0) mutations to (37). This yields (ν/λ0)(1/f ) as the cumulative
spectrum, see Theorem 1 of Durrett (2013) and Theorem 2 of Dur-
rett (2015).3 Under discrete mutation accumulation, the number
of clonal mutations is wp0/q0 by (14) of Proposition 1, which
yields the result (w/q0)(1/f ) − w including clonal mutations.
The difference of w reflects the difference in the number of
clonal mutations between the discrete and continuous model, see
Appendix C.

To compare the 1/f law in (37) with our results of Proposi-
tion 1, recall that by (14), the fixed-size skeleton spectrum can
be written as E[S̃j(τ̃N )] = (w/q0)N · 1/(j(j+ 1))− (wp0/q0)δ1,j for
= 1, . . . ,N − 1. Under this spectrum, it is easy to compute the
xpected number of subclonal mutations found in a proportion
f of skeleton cells as[∑N−1

j=⌈Nf ⌉ S̃j(τ̃N )
]

= (w/q0)N ·
(∑N−1

j=⌈Nf ⌉ 1/(j(j + 1))
)
− (wp0/q0)δ1,⌈Nf ⌉

3 There is an apparent typo in Theorem 1 of Durrett (2013). The result
s written as (ν/q0)(1/f ) in our notation, but should be (ν/λ0)(1/f ). This is
corrected in Theorem 2 of the later notes Durrett (2015) by the same author.
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= (w/q0)N ·
(
1/⌈Nf ⌉ − 1/N

)
− (wp0/q0)δ1,⌈Nf ⌉

∼ (w/q0)(1/f − 1), N → ∞. (38)

he 1/f law in (37) can therefore be viewed as a cumulative
ersion of our 1/j2 law. Note that (37) is established in the fixed-
ime regime in the above cited works, while the calculations in
38) show that the 1/f law also holds in the fixed-size regime.

To summarize, in the fixed-size regime, we have established
xact adherence to the 1/j2 law on j = 2, . . . ,N − 1 for any
keleton size N ≥ 2, and our result implies the cumulative 1/f
aw as N → ∞. In the fixed-time regime, we have established
he exact expression (12), which converges to the 1/j2 law for
≪ N as N → ∞. The 1/f result in (37) complements our fixed-
ime result, since it confirms that if we compute the spectrum of
utations found in a certain proportion of cells, rather than in a
ertain number of cells, the fixed-time spectrum converges to the
ame 1/f law as the fixed-size spectrum as N → ∞, including
t the very largest frequencies. It should be emphasized that the
/f law, which has been extensively cited in the literature, is
n asymptotic result established for the skeleton. For the total
opulation, including finite-family cells, the 1/f law is applicable
nly to mutations at large frequencies in a large tumor. This is
articularly the case for low-viability tumors.
The expressions (20) and (21) for the expected fixed-time

pectrum of Proposition 2 have been previously obtained by Oht-
uki and Innan (2017) under the assumption of deterministic
rowth of the tumor bulk and stochastic growth of mutant sub-
lones, which is a reasonable approximation when p0 is small. We
ave established these expressions for the fully stochastic model
nd for all values of p0, by evaluating the spectrum at the fixed
ime tN at which a surviving tumor has expected size N , defined
n (18), and conditioning on the survival event {Z0(tN ) > 0}. We
have also conjectured the laws of large numbers (32) and (33)
for the fixed-time and fixed-size spectrum, supported by heuristic
calculations and simulations. We have proved a law of large num-
bers (H.1) for the semideterministic model of Ohtsuki and Innan
(2017), see Appendix H, and we plan to prove the fully stochastic
results (32) and (33) in a future work. Lambert (2009) has proved
a similar result in the context of a coalescent point process (CPP),
a framework under which an extant population is endowed with
a coalescent structure that specifies how lineages coalesce when
traced backwards in time. Lambert’s result, see his Theorem 2.3,
deals with a ranked sample of individuals from a CPP in the
large-sample limit, and it has the same form as our conjectured
fixed-size law of large numbers (33), the latter applying to our
forwards-in-time branching process stopped at a certain size. The
expected fixed-size spectrum (22) of Proposition 2 is new as far
as we know, as well as expressions (26) and (27) of Proposition 3
for the expected total mutational burden of the tumor.

All of the above results hold under the infinite-sites model of
population genetics. Cheek and Antal (2018) have recently ex-
amined the SFS of an exponentially growing population without
this assumption, citing single-cell sequencing results of Kuipers
et al. (2017) as motivation. They observe that if recurrent mu-
tations are allowed (but no back mutations), and there are S
sites in the genome, the expected SFS at time t can be com-
puted as S · P(Y (t) = j), where Y (t) is the number of mutants
at time t in a two-type model of wild-type and mutant cells,
each growing at the same rate. Then, to compute the SFS, one
needs the distribution of Y (t), which has been obtained under
various assumptions e.g. by Antal and Krapivsky (2011), Kessler
and Levine (2013, 2015), and Keller and Antal (2015). Cheek and
Antal obtain SFS results under limits of large time/size and small
mutation rate, and their results obey 1/j2 power laws at large
frequencies. However, when the mutation rate is sufficiently large
compared to the population size, their small-frequency behavior
 b

80
diverges from ours, see e.g. their Fig. 1. Yet other authors have
substituted the infinite-sites model with the infinite-allelesmodel,
under which each new mutation creates a new type of individual,
see e.g. Griffiths and Pakes (1988), Pakes (1989), Champagnat
et al. (2012), Wu and Kimmel (2013). Under this model, the site
frequency spectrum is usually replaced by an allele frequency spec-
trum, which tracks frequencies of genetically distinct individuals,
known as haplotypes (Lambert, 2009).

Our complete theoretical results give rise to several important
insights. First of all, whereas the fixed-time and fixed-size skele-
ton spectrum depends on the mutation rate w and the extinction
probability p0 only through the effective mutation rate w/q0,
the two parameters decouple in the total population spectrum.
The mutation rate w scales the spectrum linearly, whereas the
extinction probability p0 changes its shape at the small-frequency
end. In fact, as p0 increases from 0 to 1, the small-frequency end
of the spectrum transitions from the 1/j2 power law characteristic
of pure-birth exponential growth to the 1/j law characteristic
of constant-sized populations. We examined the simple metrics
M1/M̂1 and S1/M1 that quantify this transition, where M̂1 is
he expected total mutational burden under the 1/j2 power law
pectrum. We saw that M1/M̂1 → 0 as p0 → 1, which suggests
that the simple estimate M̂1 of the total number of mutations,
applied e.g. in Ling et al. (2015), is a significant overestimate of
the actual expected number of mutationsM1 when p0 is large. We
inally used the metric S1/M1 to propose a simple estimator for
p0, based on sampling one or more spatially separated subclones
from a tumor. This estimator accurately recovers the true value
of p0 from synthetic single-cell sequencing data, and it is most
accurate when p0 is large.

Our proposed estimator is currently of more theoretical than
practical significance. It assumes that complete subclones of a
given size can be reliably extracted from a tumor sample, and
that each cell in each subclone can be single-cell sequenced so
that all of its mutations are captured. We have proposed the
estimator mainly to emphasize the information contained in the
small-frequency end of the spectrum, and to show how it can
in principle be used to decouple w and p0 using the SFS alone.
Whether and how this decoupling can be achieved under current
and foreseeable limitations of genomic data warrants further
investigation. For example, one can derive an estimator based on
sj/mj for j > 1, where mj :=

∑n−1
k=j sk, which excludes mutations

found at the smallest frequencies. One can also design a more
elaborate estimating procedure, which retains some of the small-
est frequencies, but explicitly models the sequencing error. As
it becomes easier to distinguish small-frequency mutations from
sequencing errors, our simple estimator may at the very least
provide quick and easy identification of low-viability tumors, and
complement other more involved techniques.

We finally note that the estimation of w and p0 relies on
several assumptions on tumor evolution. First of all, our model
assumes that all mutations are selectively neutral. While this
assumption is likely reasonable for smaller tumor subclones, it
may be hard to verify that a subclone estimate is representative
for the tumor as a whole. Our model also assumes exponential
growth throughout tumor evolution, whereas e.g. due to spatial
constraints and nutrient availability, the growth may be subexpo-
nential both during the early and late stages. Finally, our model
assumes that the mutation rate is constant over time, and that
the infinite-sites assumption holds for the tumor sample being
analyzed. We note that the SFS-based estimates of w/q0 obtained
y Williams et al. (2016) and Bozic et al. (2016) are derived from
he large-frequency end of the SFS, which reflects early tumor
ynamics. The same is true of the Werner et al. (2018) method of
ecoupling w and p0 by tracing genealogies of spatially separated

ulk samples, since the common ancestors of these samples are
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ikely to have existed early in tumor evolution. Conversely, our
uggested approach of utilizing the small-frequency end of the
FS will more reflect late tumor evolution. On the one hand, in
he evolving discussion of tumor evolutionary history inference, it
s important to acknowledge that any given estimation procedure
ay only give a temporally or spatially constrained picture of the
ynamics. On the other hand, utilizing different parts of the SFS,
r combining SFS estimates with other estimates, may allow one
o glean insights into the dynamics at different stages of tumor
volution, and to possibly assess the validity of any modeling
ssumptions.

cknowledgments

The authors would like to thank Anna Kraut, the three anony-
ous reviewers and the editor for their valuable comments and
uggestions. EBG and KL were supported in part by NSF, USA grant
MMI-1552764. JF was supported in part by NSF, USA grant DMS-
349724. KL and JF were supported in part by Research Council
f Norway R&D Grant 309273. EBG was supported in part with
unds from the Norwegian Centennial Chair Program, USA.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ppendix A. Proof of Proposition 1

In this section, we prove Proposition 1 on the expected SFS of
he skeleton. We first present a brief outline of the proof.

In part (1), the SFS is observed at the fixed time t̃N . To compute
the expected number of mutations that end up in j ≥ 1 skeleton
cells at time t̃N , we decompose the time interval [0, t̃N ] into
nfinitesimal intervals [t, t + ∆t]. We can compute how many
utations occur during each small interval using the expected
utation rate (6) in the main text. Then, to only count the
utations that end up in j skeleton cells at time t̃N , we multiply

his number by the probability that a single-cell derived skeleton
lone has size j at time t̃N , which has a known expression. We
inally integrate over time to add up the contributions of the
nfinitesimal intervals.

In part (2), the SFS is observed at the stochastic time τ̃N , at
hich the skeleton reaches size N . In this case, we decompose

nto population size levels instead of into small time intervals.
e know how many mutations accumulate on population size

evel k by (9) in the main text. Then, to get the expected number
f mutations that accumulate on level k and end up in j ≥ 1
keleton cells at time τ̃N , we need to compute the probability
hat starting from one skeleton cell carrying a particular mutation
nd k − 1 cells without it, j cells carry the mutation when the
keleton reaches size N . To that end, we define a Markov chain
hat keeps track of how many skeleton cells carry the mutation
s the skeleton increases in size, and we compute its hitting
robabilities. We finally sum over k to add up the contributions
f each population size level.

roof of Proposition 1.

(1) By (6) in the main text, the expected mutation rate per
skeleton cell per unit time is wr0. To stratify mutations
based on their frequencies at time t̃N , we define

˜ ˜ ˜
pj(s) := P(Z0(s) = j|Z0(0) = 1), j ≥ 1, s ≥ 0,
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as the size-distribution at time s of a single-cell derived
skeleton clone. Since (Z̃0(t))t≥0 is a Yule process with birth
rate λ0, this distribution has an explicit expression,

p̃j(s) = (1/eλ0s)(1 − 1/eλ0s)j−1, j ≥ 1,

which is the geometric distribution with support {1, 2, . . .}
and success probability 1/eλ0s, see e.g. Section 3 of Dur-
rett (2015) (the support does not include 0 since skeleton
clones do not go extinct). For 0 ≤ t ≤ t̃N , let S̃j,t̃N (t)
denote the number of mutations that accumulate in the
time interval [0, t] and are found in j ≥ 1 skeleton cells at
time t̃N . We write S̃j(t̃N ) := S̃j,t̃N (t̃N ) for the site frequency
spectrum of the skeleton at time t̃N . If a mutation occurs
during an infinitesimal time interval [t, t + ∆t], the clone
started by the cell carrying the mutation has size j at time
t̃N with probability p̃j(t̃N − t) + O(∆t), where f (x) = O(x)
means that there exists C > 0 so that |f (x)| ≤ Cx for
sufficiently small x > 0. The expected number of mutations
that accumulate in [t, t + ∆t] and are present in j ≥ 1
skeleton cells at time t̃N is therefore

E[S̃j,t̃N (t+∆t)]−E[S̃j,t̃N (t)] = wr0∆t ·eλ0t ·p̃j(t̃N −t)+o(∆t),

where we use that E[Z̃0(t)] = eλ0t is the mean skeleton
size at time t , and f (x) = o(x) means that f (x)/x → 0 as
x → 0. This calculation is somewhat heuristic in that we
have simply multiplied an expected mutation rate by an
expected population size, which is in turn multiplied by the
probability that a particular mutation ends up in j cells at
time t̃N . In our proof of part (1) of Proposition 2 for the total
population, we present a more detailed argument which
can be used to obtain this expression more rigorously.
Integrating over time, and using that q0 = λ0/r0 by expres-
sion (2) and N = eλ0 t̃N by expression (10), we obtain

E[S̃j(t̃N )]

=
∫ t̃N
0 wr0p̃j(t̃N − t)eλ0tdt

= (w/q0)N ·
∫ t̃N
0 (eλ0t/N)(1 − eλ0t/N)j−1

· λ0(eλ0t/N)dt.

Substituting y := 1 − eλ0t/N , dy = −λ0(eλ0t/N)dt , this
implies

E[S̃j(t̃N )] = (w/q0)N ·
∫ 1−1/N
0 (1 − y)yj−1dy

= (w/q0)N ·
(
1 −

1
N

)j( 1
j(j+1) +

1
N

1
j+1

)
,

the desired result. Clearly, for fixed j ≥ 1, then as N → ∞,

E[S̃j(t̃N )] ∼ (w/q0)N · 1/(j(j + 1)). (A.1)

The asymptotic expression (A.1) can also be derived more
heuristically as follows, which gives another way of inter-
preting the expression. If the skeleton is observed at a large
time t , the age s of an arbitrary mutation has approximate
density λ0e−λ0s. A mutation with age s at time t is found
in j ≥ 1 skeleton cells at time t with probability p̃j(s). The
probability that an arbitrary mutation is found in j ≥ 1
skeleton cells at time t is therefore, as t → ∞,∫

∞

0 p̃j(s) · λ0e−λ0sds =
∫ 1
0 (1 − y)yj−1dy = 1/(j(j + 1)),

using the substitution y := 1− e−λ0s, dy = λ0e−λ0sds. Next,
we can compute the expected total number of mutations
up until time t̃N via∫ t̃N
0 wr0eλ0sds = (w/q0)(N − 1) ∼ (w/q0)N,

which is given as (16) in the main text. Finally, we can
obtain (A.1) as the expected total number of mutations up
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until time t̃N multiplied by the probability 1/(j(j + 1)) of
finding an arbitrary mutation in j skeleton cells at time t̃N
as N → ∞.
The distribution j ↦→ 1/(j(j+1)) is a special case of the Yule–
Simon distribution, which was originally computed by Yule
(1925) as the distribution of the number of species within
a genus, where a species mutates to a new species within
the same genus at some rate s, and a genus mutates to
a new genus at some rate g . In the previous paragraph,
we have adapted Yule’s basic argument to our setting with
g = s = λ0. We refer to Simkin and Roychowdhury (2011)
for a comprehensive discussion of how the Yule–Simon
distribution and variants thereof have appeared in a wide
variety of scientific contexts since its original conception.

(2) In (8) of Section 3.1, we showed that on average, wp0/q0
mutations accumulate on type-1 divisions in between two
type-2 divisions, while type-2 divisions add w mutations
and change the skeleton population size level. Since the
type-1 mutations on level k = 1 are the clonal mutations,
the expected number of clonal mutations is wp0/q0, which
is the j = N case of the desired result. For k = 2, . . . ,N −

1, the expected number of mutations on level k is w +

wp0/q0 = w/q0, which includes the type-2 division that
starts the level.
For 1 ≤ j ≤ N−1, let h̃j

(1,k−1) be the probability that starting
with one skeleton cell carrying a particular mutation and
k − 1 cells without it, j cells carry the mutation when the
skeleton reaches size N . Since for levels k = 2, . . . ,N − 1,
there are w/q0 mutations on average per level, and each
mutation on level k contributes h̃j

(1,k−1) to the expected
number of mutations found in j skeleton cells at level N ,
we obtain for 1 ≤ j ≤ N − 1,

E[S̃j(τ̃N )] = (w/q0)
∑N−1

k=2 h̃j
(1,k−1) + wδ1,j

= (w/q0)
∑N−2

k=1 h̃j
(1,k) + wδ1,j,

where the extra wδ1,j term is due to mutations that occur
on the final type-2 division that changes levels from N − 1
to N , each of which is found in one skeleton cell. As was the
case for the proof of part (1), the fact that for each level k,
we can simply multiply the expected number of mutations
with the probability that each particular mutation ends up
in j cells when the skeleton reaches size N can be justified
more rigorously using an argument similar to the one we
present in part (2) of Proposition 2 in Appendix B.
It remains to compute the probabilities h̃j

(1,k). To this end,
define a two-dimensional discrete-time Markov chain on
the state space {(ℓ,m) : ℓ,m ≥ 1, ℓ + m ≤ N}, where ℓ is
the number of skeleton cells carrying a particular mutation
and m is the number of cells without it. Since each skeleton
cell, with or without the mutation, divides into two cells at
rate λ0, the transition probabilities for this chain are given
by

(ℓ,m) → (ℓ+ 1,m) w.p. ℓ/(ℓ+ m),
(ℓ,m) → (ℓ,m + 1) w.p. m/(ℓ+ m),

for ℓ,m ≥ 1 and ℓ + m < N . The states (ℓ,N − ℓ) for
1 ≤ ℓ ≤ N − 1 are absorbing. A diagram for this Markov
chain is shown in Fig. A.13.
Let h̃r

(ℓ,m) denote the probability that the above chain is
absorbed in state (r,N−r) when started from state (ℓ,m). It
is immediate that h̃r

(ℓ,m) = 0 if ℓ > r orm > N−r . For (ℓ,m)
with ℓ ≤ r , m ≤ N − r and ℓ+ m < N , by conditioning on
whether the first transition out of state (ℓ,m) is to (ℓ+1,m)
or (ℓ,m + 1), we obtain the following recursion for h̃r

(ℓ,m):

(ℓ+ m)h̃r
= ℓh̃r

+ mh̃r . (A.2)
(ℓ,m) (ℓ+1,m) (ℓ,m+1) a
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The boundary conditions are h̃r
(ℓ,N−ℓ) = δℓ,r for 1 ≤ ℓ ≤

N − 1. It is actually possible to compute h̃r
(ℓ,m) directly as

the sum of probabilities of all possible paths from (ℓ,m) to
(r,N−r) without using the above recursion. By noting that
there are

(N−(ℓ+m)
r−ℓ

)
possible paths, and that each path has

the same probability, we can obtain

h̃r
(ℓ,m) =

(N−(ℓ+m)
r−ℓ

)
·
∏r−ℓ−1

n=0
ℓ+n

ℓ+m+n ·
∏N−m−r−1

n=0
m+n

r+m+n , (A.3)

with
∏

∅ := 1. As verification, it is straightforward to check
that (A.3) solves (A.2).
To obtain h̃j

(1,k) for 1 ≤ k ≤ N − 2 and 1 ≤ j ≤ N − 1,
note first that h̃j

(1,k) = 0 for k > N − j. For 1 ≤ k ≤

min(N − j,N − 2), we can simplify (A.3) as follows:

h̃j
(1,k) =

(N−(k+1)
j−1

)
·
∏j−2

n=0
1+n

k+1+n ·
∏N−k−j−1

n=0
k+n

k+j+n

=
(N−k−1)!

(j−1)!(N−k−j)! ·
(j−1)!

(k+1)···(k+j−1) ·
k···(N−j−1)
(k+j)···(N−1)

= k ·
(N−k−1)!
(N−k−j)! ·

(N−j−1)!
(N−1)!

=
(N−j−1

k−1

)(N−1
k

)−1
.

Thus, for 1 ≤ j ≤ N − 1,

E[S̃j(τ̃N )]

= (w/q0)
∑N−2

k=1 h̃j
(1,k) + wδ1,j

= (w/q0)
∑min(N−j,N−2)

k=1

(N−j−1
k−1

)(N−1
k

)−1
+ wδ1,j. (A.4)

For j = 1, it is easy to compute

E[S̃1(τ̃N )] = (w/q0)(1/(N − 1))
(∑N−2

k=1 k
)
+ w

= (1/2)(w/q0)(N − 2) + w

= (1/2)(w/q0)N − wp0/q0.

To simplify (A.4) for 2 ≤ j ≤ N − 1, we first note that for
any positive integers a and b,∫ 1
0 ta−1(1 − t)b−1dt =

(a−1)!(b−1)!
(a+b−1)! ,

see e.g. Theorem 1.1.4 of Andrews et al. (1999). By observ-
ing that

N
∫ 1
0 tk(1 − t)N−1−kdt =

(N−1
k

)−1
,

we can rewrite (A.4) as follows:

E[S̃j(τ̃N )]

= (w/q0)N ·
∫ 1
0

(∑N−j
k=1

(N−j−1
k−1

)
tk(1 − t)N−1−k

)
dt

= (w/q0)N

·
∫ 1
0 t(1 − t)j−1

(∑N−j
k=1

(N−j−1
k−1

)
tk−1(1 − t)(N−j−1)−(k−1)

)
dt.

The sum inside the integral is the total probability mass
(= 1) of the binomial distribution with number of trials
N − j − 1 and success probability t . Therefore, for 2 ≤ j ≤

N − 1,

E[S̃j(τ̃N )] = (w/q0)N ·
∫ 1
0 t(1 − t)j−1dt

= (w/q0)N · 1/(j(j + 1)).

This concludes the proof. □

ppendix B. Proof of Proposition 2

In this section, we prove Proposition 2 on the expected SFS
f the total population. The proof strategy is the same as in the
roof of Proposition 1 for the skeleton. There are some added
omplications, however, since the tumor as a whole follows a
irth–death process, whereas the skeleton subpopulation follows

pure-birth process.



E.B. Gunnarsson, K. Leder and J. Foo Theoretical Population Biology 142 (2021) 67–90
Fig. A.13. A diagram of the discrete-time Markov chain on {(ℓ,m) : ℓ,m ≥ 1, ℓ+m ≤ N}, where ℓ is the number of skeleton cells carrying a particular mutation and
m is the number of cells without it. Each type-2 division increases the skeleton population size level by one, and since skeleton cells do not die, the chain never
returns to the lower levels. The states (ℓ,N − ℓ) with 1 ≤ ℓ ≤ N − 1 are absorbing (dashed box), since we are only interested in the evolution up until level N .
In part (1), we wish to compute the expected number of
mutations that accumulate in an infinitesimal time interval and
end up in j ≥ 1 tumor cells at the fixed time tN . In this case,
we need to condition on survival up until time tN , which was
not necessary in the same computation for the skeleton. In the
proof below, we first give an informal argument for how to
handle the conditioning on survival, and then present detailed
calculations at the end of the proof. Another complication is that
the size distribution of a single-cell derived clone now has a more
complex form than for the skeleton, which translates into more
work simplifying the integral that results from adding up the
infinitesimal interval contributions.

In part (2), we decompose into population size levels. To
compute how many mutations accumulate on population size
level k, we first compute how many times the population hits this
level. This computation was not necessary for the skeleton, since
the skeleton only increases in size. We then need to compute
the probability that starting from one cell carrying a particular
mutation and k−1 cells without it, j cells carry the mutation when
the population reaches size N . This probability can be computed
as a hitting probability of a Markov chain, as in the proof of
Proposition 1, but the Markov chain now has a more complicated
structure. This time, we are not able to compute the hitting
probabilities explicitly, and we instead provide a linear system
which determines them.

Proof of Proposition 2.

(1) We begin by defining

pj(s) := P(Z0(s) = j|Z0(0) = 1), j ≥ 0, s ≥ 0,

as the size-distribution at time s of a single-cell derived
clone. This distribution has an explicit expression: Setting

g(t) :=
p0(eλ0t−1)
eλ0t−p0

and h(t) :=
eλ0t−1
eλ0t−p0

,

we can write

p0(t) = P(Z0(t) = 0|Z0(0) = 1) = g(t),

and for j ≥ 1,

pj(t) = P(Z0(t) = j|Z0(0) = 1)

= (1 − g(t))(1 − h(t))(h(t))j−1,

see e.g. (8) of Durrett (2015). Simplifying, we obtain

p0(t) =
p0(eλ0t−1)
eλ0t−p0

,

p (t) =
q20e

λ0t
·

(
eλ0t−1

)j−1
, j ≥ 1.

(B.1)

j (eλ0t−p0)2 eλ0t−p0
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The probability that a single-cell derived clone is still alive
at time t is then given by

P(Z0(t) > 0|Z0(0) = 1) = 1 − p0(t) = q0eλ0t/(eλ0t − p0).
(B.2)

For 0 ≤ t ≤ tN , let Sj,tN (t) denote the number of mutations
that accumulate in [0, t] and are found in j ≥ 1 cells at time
tN . We write Sj(tN ) := Sj,tN (tN ) for the site frequency spec-
trum at time tN . Say a cell division occurs in an infinitesimal
time interval [t, t+∆t]. The division results in w mutations
on average, each assigned to one of the two daughter cells,
and the clone started by this cell has size j ≥ 1 cells at time
tN with probability pj(tN − t) + O(∆t). We wish to show
that on the event {Z0(tN ) > 0} of survival of the population
up until time tN , the expected number of mutations that
accumulate in [t, t + ∆t] and are found in j ≥ 1 cells at
time tN is

E
[(
Sj,tN (t +∆t) − Sj,tN (t)

)
1{Z0(tN )>0}

]
= wr0∆t · eλ0t · pj(tN − t) + o(∆t), (B.3)

where we use that E[Z0(t)] = eλ0t . It will then follow from
(B.3) that

E
[
Sj,tN (t +∆t) − Sj,tN (t)

⏐⏐ Z0(tN ) > 0
]

= wr0eλ0t∆t · pj(tN − t)/(1 − p0(tN )) + o(∆t). (B.4)

Note that (B.3) clearly holds for the semideterministic
model in which the tumor bulk grows deterministically at
rate λ0, mutant clones arise at stochastic rate wr0, and mu-
tant clones grow stochastically. It is not obvious that (B.3)
also holds for our fully stochastic model, since including
the event {Z0(tN ) > 0} of survival up until time tN should
presumably affect the expected population size at time t ≤

tN . The key is to observe that if a mutation occurs on a cell
division at time t ≤ tN and ends up in j ≥ 1 cells at time
tN , the population is automatically alive at time tN . The
relevant survival event in (B.3) is therefore {Z0(t) > 0}, and
the relevant population size factor is E[Z0(t)1{Z0(t)>0}] =

E[Z0(t)] = eλ0t . Another potential concern in establishing
(B.3) for our model is that we allow multiple mutations
to occur per cell division. To not distract further from the
main calculations, we assume that the reader is willing
to accept (B.3) as true for the moment, and we provide a
detailed mathematical argument for this expression at the
end of the proof.
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Using (B.4), we can integrate over time to obtain

E
[
Sj(tN )|Z0(tN ) > 0

]
= (1 − p0(tN ))−1

·
∫ tN
0 wr0eλ0tpj(tN − t)dt. (B.5)

Focusing on the integral, we write∫ tN
0 wr0eλ0tpj(tN − t)dt

= (w/q0) ·
∫ tN
0

q20e
λ0tN eλ0t

(eλ0tN −p0eλ0t )2
·
( eλ0tN −eλ0t

eλ0tN −p0eλ0t
)j−1

· λ0eλ0tdt

= wq0eλ0tN ·
∫ tN
0

eλ0t

(eλ0tN −p0eλ0t )2
·
( eλ0tN −eλ0t

eλ0tN −p0eλ0t
)j−1

· λ0eλ0tdt.

Set L := eλ0tN . Using the substitution x := eλ0t , dx = λ0eλ0t ,
we obtain∫ tN
0 wr0eλ0tpj(tN − t)dt = wq0L ·

∫ L
1

x
(L−p0x)2

·
( L−x
L−p0x

)j−1dx.

We again change variables, this time y := (L− x)/(L− p0x),
in which case

x = L(1 − y)/(1 − p0y),
dx = −

(
q0L/(1 − p0y)2

)
dy,

L − p0x = q0L/(1 − p0y),

and y = (L − 1)/(L − p0) = 1 − q0/(L − p0) for x = 1 and
y = 0 for x = L, which implies∫ tN

0 wr0eλ0tpj(tN − t)dt

= wL ·
∫ 1−q0/(L−p0)
0 (1 − p0y)−1(1 − y)yj−1dy. (B.6)

We now apply (B.2) and (B.5) to see that

E
[
Sj(tN )|Z0(tN ) > 0

]
= w ·

eλ0tN −p0
q0

·
∫ 1−q0/(eλ0tN −p0)
0 (1 − p0y)−1(1 − y)yj−1dy,

and the desired result (20) follows from the fact that
(eλ0tN − p0)/q0 = N by the definition of tN in (18). It also
follows that for fixed j ≥ 1,

E
[
Sj(tN )|Z0(tN ) > 0

]
∼ wN ·

∫ 1
0 (1 − p0y)−1(1 − y)yj−1dy

as N → ∞. To write the last expression as a sum, note that

(1 − p0y)−1
=

∑
∞

k=0 p
k
0y

k,

which is valid for all 0 ≤ p0 < 1 and 0 ≤ y ≤ 1. It follows
that∫ 1
0 (1 − p0y)−1(1 − y)yj−1dy =

∑
∞

k=0 p
k
0

(∫ 1
0 (1 − y)yj+k−1dy

)
=

∑
∞

k=0
pk0

(j+k)(j+k+1) .

We conclude by establishing (B.3), which was

E
[
(Sj,tN (t +∆t) − Sj,tN (t))1{Z0(tN )>0}

]
= wr0∆t · eλ0t · pj(tN − t) + o(∆t).

We decompose according to population size at time t .
Assume that Z0(t) = k with k ≥ 1, i.e. there are k cells at
time t . Let Dt,∆t denote the event that exactly one of the k
cells divides in the infinitesimal time interval [t, t + ∆t],
and enumerate the k + 1 cells after the cell division as
Y 1
t , . . . , Y

k+1
t , where Y 1

t and Y 2
t are the two new cells. Let

W denote the number of mutations that occur on the cell
division, where W is a nonnegative integer-valued random
variable with E[W ] = w, independent of (Z0(t))t≥0. For
ℓ ≥ 1, let Bℓ be i.i.d. with P(Bℓ = 1) = P(Bℓ = 2) =

1/2, independent of (Z0(t))t≥0 and W , and assign mutation
number ℓ to cell number B for 1 ≤ ℓ ≤ W . Finally, let
ℓ
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Ym
t (s) be the number of descendants of cell Ym

t at time t+s,
with Ym

t (0) = 1. With this notation, define

Aj,k,ℓ(t) := {Z0(t) = k} ∩ Dt,∆t ∩ {ℓ ≤ W }

∩ {Y Bℓ
t (tN − t) = j} ∩ {Z0(tN ) > 0}.

This is the event that the tumor survives to time tN , that it
consists of k cells at time t , that exactly one of the k cells
divides in [t, t+∆t], that at least ℓmutations occur on this
division, and that mutation number ℓ is found in j cells at
time tN . The reason we are interested in this event is that
we can write

E
[
(Sj,tN

(
t +∆t) − Sj,tN (t)

)
1{Z0(tN )>0}

]
=

∑
∞

k=1
∑

∞

ℓ=1 P
(
Aj,k,ℓ(t)

)
+ o(∆t),

where the o(∆t) term captures the possibility of more than
one cell division in [t, t +∆t].
To compute P

(
Aj,k,ℓ(t)

)
, note first that

P
(
Aj,k,ℓ(t)

)
= P

(
{Z0(t) = k} ∩ Dt,∆t ∩ {ℓ ≤ W } ∩ {Y Bℓ

t (tN − t) = j}
)
,

since the survival event {Z0(tN ) > 0} is implied by the other
events. By independence,

P
(
Aj,k,ℓ(t)

)
= P(ℓ ≤ W ) · P

(
{Z0(t) = k} ∩ Dt,∆t ∩ {Y Bℓ

t (tN − t) = j}
)
.

To analyze the latter probability, note that since Bℓ is
independent of (Z0(t))t≥0, and

(
(Z0(s))s≤t , (Y 1

t (s))s≥0
) d

=(
(Z0(s))s≤t , (Y 2

t (s))s≥0
)
, we can write

P
(
{Z0(t) = k} ∩ Dt,∆t ∩ {Y Bℓ

t (tN − t) = j}
)

= P
(
{Z0(t) = k} ∩ Dt,∆t ∩ {Y 1

t (tN − t) = j}
)
.

Using the Markov property, we can calculate the latter
probability as

P
(
{Z0(t) = k} ∩ Dt,∆t ∩ {Y 1

t (tN − t) = j}
)

= P(Z0(t) = k) · P(Dt,∆t |Z0(t) = k)

· P
(
Y 1
t (tN − t) = j

⏐⏐Z0(t) = k,Dt,∆t
)

= P(Z0(t) = k) · e−kr0∆tkr0∆t · (pj(tN − t) + O(∆t)).

Combining the above, we obtain

E
[(
Sj,tN (t +∆t) − Sj,tN (t)

)
1{Z0(tN )>0}

]
=

∑
∞

k=1
∑

∞

ℓ=1 P
(
Aj,k,ℓ(t)

)
+ o(∆t)

= r0pj(tN − t)∆t ·
(∑

∞

ℓ=1 P(W ≥ ℓ)
)

·
(∑

∞

k=1 kP(Z0(t) = k)
)
+ o(∆t)

= wr0∆t · eλ0t · pj(tN − t) + o(∆t),

where we use
∑

∞

ℓ=1 P(W ≥ ℓ) = E[W ] = w and∑
∞

k=1 kP(Z0(t) = k) = E[Z0(t)] = eλ0t . This concludes the
proof.

(2) Let (Xn)n≥0 denote the discrete-time jump process em-
bedded in (Z0(t))t≥0 that only keeps track of changes in
population size. More precisely, if σn is the time of the nth
jump of (Z0(t))t≥0 for n ≥ 1, then X0 = 1 and Xn = Z0(σn)
for n ≥ 1. Since cells divide at rate r0 and die at rate
d0, (Xn)n≥0 is a simple random walk, absorbed at 0, which
moves up with probability a := r0/(r0+d0) = 1/(1+p0) and
down with probability b = 1−a = p0/(1+p0). Since we are
only interested in what happens until the population either
goes extinct or reaches level N , we treat N as an absorbing
state. Define

T := inf{n ≥ 0 : X = k}, 0 ≤ k ≤ N, (B.7)
k n
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as the (discrete) time at which the random walk first hits
level k, with inf∅ = ∞. Let Pj denote the probability
measure of (Xn)n≥0 when started at X0 = j. By the gambler’s
ruin formula,

Pj(Tk < T0) = (1 − pj0)/(1 − pk0), 0 ≤ j ≤ k. (B.8)

For 1 ≤ k ≤ N − 1, let Λk,k+1 denote the number of
transitions from k to k + 1,

Λk,k+1 :=
∑

∞

j=0 1{Zj=k,Zj+1=k+1},

and let Λk denote the number of visits to k,

Λk :=
∑

∞

j=0 1{Zj=k}.

By the strong Markov property and (B.8), we can write

E1[Λk] = P1(Tk < T0) · Ek[Λk] =
q0

1−pk0
· Ek[Λk].

When the chain leaves state k, it moves up with probability
1/(1 + p0) and down with probability p0/(1 + p0). Starting
from k+1, the probability that the chain does not return to
k (probability it is absorbed at N) is q0/(1− pN−k

0 ) by (B.8),
and starting from k−1, the probability it does not return to
k (probability it is absorbed at 0) is 1− (1− pk−1

0 )/(1− pk0)
again by (B.8). Thus, starting from k, Λk has the geometric
distribution with support {1, 2, . . .} and success probability

1
1+p0

·
q0

1−pN−k
0

+
p0

1+p0
·
(
1 −

1−pk−1
0

1−pk0

)
=

q0(1−pN0 )

(1+p0)(1−pk0)(1−pN−k
0 )

.

It follows that

E1[Λk] =
(1+p0)(1−pN−k

0 )

1−pN0
,

E1[Λk,k+1] =
1

1+p0
· E1[Λk] =

1−pN−k
0

1−pN0
.

(B.9)

For 1 ≤ k ≤ N − 1, define T i
k,k+1 as the (discrete) time of

the ith transition from k to k + 1 inductively by

T i
k,k+1 := inf{n > T i−1

k,k+1 : Xn−1 = k, Xn = k + 1}, i ≥ 1,

with T 0
k,k+1 := 0 and inf∅ = ∞. A transition from k to k+1

in (Xn)n≥0 occurs due to one of the k cells in the original
process (Z0(t))t≥0 dividing. Assume Wi,k mutations occur
on the ith such transition, where Wi,k are i.i.d. nonnegative
integer-valued random variables with E[Wi,k] = w, inde-
pendent of (Xn)n≥0. Enumerate the cells at time T i

k,k+1 as
Y 1
i,k, . . . , Y

k+1
i,k . By the same argument as laid out in part (1)

above, we can assume that each mutation is assigned to the
first cell. Let Ym

i,k(n) be the number of descendants of cell
Ym
i,k at time step T i

k,k+1 + n, with Ym
i,k(0) = 1. Then define

the event

Aj,k,i,ℓ

:=
{
TN < T0, T i

k,k+1 < ∞, ℓ ≤ Wi,k, Y 1
i,k(TN − T i

k,k+1) = j
}
.

This is the event that the random walk eventually hits level
N , that it transitions at least i times from k to k + 1 before
doing so, that at least ℓ mutations occur on the ith such
transition, and that the ℓ-th mutation is found in j cells at
level N . We can then write

E[Sj(τN )|τN < ∞]

=
(
P1(TN < T0)

)−1
·
∑N−1

k=1
∑

∞

i=1
∑

∞

ℓ=1 P1
(
Aj,k,i,ℓ

)
=

1−pN0
q0

·
∑N−1

k=1
∑

∞

i=1
∑

∞

ℓ=1 P1
(
Aj,k,i,ℓ

)
.

To compute P1
(
Aj,k,i,ℓ

)
, note first that by independence,

P
(
T < T , T i < ∞, ℓ ≤ W , Y 1 (T − T i ) = j

)

1 N 0 k,k+1 i,k i,k N k,k+1
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= P
(
ℓ ≤ Wi,k)

· P1(TN < T0, T i
k,k+1 < ∞, Y 1

i,k(TN − T i
k,k+1) = j

)
.

By the strong Markov property,

P1
(
TN < T0, T i

k,k+1 < ∞, Y 1
i,k(TN − T i

k,k+1) = j
)

= P1
(
TN < T0, Y 1

i,k(TN − T i
k,k+1) = j|T i

k,k+1 < ∞
)

· P1(T i
k,k+1 < ∞)

= Pk+1
(
TN < T0, Y 1(TN ) = j

)
· P1(T i

k,k+1 < ∞),

where we restart the chain at the stopping time T i
k,k+1 with

k + 1 cells enumerated as Y 1, . . . , Y k+1. Define h(j,N−j)
(1,k) :=

Pk+1(TN < T0, Y 1(TN ) = j) for the moment, i.e. the probabil-
ity that starting with one cell carrying a particular mutation
and k cells without it, j cells carry the mutation when the
population reaches size N . We can then write

P1
(
TN < T0, T i

k,k+1 < ∞, Y 1
i,k(TN − T i

k,k+1) = j
)

= h(j,N−j)
(1,k) · P1(T i

k,k+1 < ∞).

Combining the above, and using E1[Λk,k+1] = (1 − pN−k
0 )/

(1 − pN0 ) by (B.9), we obtain

E[Sj(τN )|τN < ∞]

=
1−pN0
q0

·
∑N−1

k=1

(∑
∞

i=1

(∑
∞

ℓ=1 P(Wi,k ≥ ℓ)
)
P1(T i

k,k+1 < ∞)
)
h(j,N−j)
(1,k)

=
1−pN0
q0

·
∑N−1

k=1 w · E1[Λk,k+1] · h(j,N−j)
(1,k)

= (w/q0) ·
∑N−1

k=1 (1 − pN−k
0 ) · h(j,N−j)

(1,k) ,

which is the desired result.
It remains to determine how the probabilities h(j,N−j)

(1,k) for
1 ≤ j ≤ N can be computed. As in the proof of (1) of
Proposition 1, one can view h(r,N−r)

(ℓ,m) as the probability of
absorption in state (r,N − r), starting from state (ℓ,m), for
a Markov chain on the state space S := {(ℓ,m) : ℓ,m ≥

0 and ℓ+ m ≤ N}, where ℓ is the number of cells carrying
a particular mutation and m is the number of cells without
it. The difference is that now, cells can die, so population
level changes can be both up and down. The transition
probabilities are therefore more complex in this case, and
given by

(ℓ,m) → (ℓ+ 1,m) w.p. ℓr0/((ℓ+ m)(r0 + d0))
= ℓ/((ℓ+ m)(1 + p0)),

(ℓ,m) → (ℓ− 1,m) w.p. ℓd0/((ℓ+ m)(r0 + d0))
= ℓp0/((ℓ+ m)(1 + p0)),

(ℓ,m) → (ℓ,m + 1) w.p. mr0/((ℓ+ m)(r0 + d0))
= m/((ℓ+ m)(1 + p0)),

(ℓ,m) → (ℓ,m − 1) w.p. md0/((ℓ+ m)(r0 + d0))
= mp0/((ℓ+ m)(1 + p0)),

for (ℓ,m) with ℓ,m ≥ 0 and 0 < ℓ + m < N . The states
(0, 0) and (ℓ,N − ℓ) with 0 ≤ ℓ ≤ N are absorbing. A
diagram of the Markov chain is shown in Fig. B.14.
For given (r, s) ∈ A := {(0, 0)}∪{(r, s) : r, s ≥ 0 and r+s =

N} and (ℓ,m) with ℓ,m ≥ 0 and 0 < ℓ + m < N , by
conditioning on the first transition out of state (ℓ,m), we
can derive the following recursion for h(r,s)

(ℓ,m):

(ℓ+ m)(1 + p0)h
(r,s)
(ℓ,m)

= ℓh(r,s)
(ℓ+1,m) + ℓp0h

(r,s)
(ℓ−1,m) + mh(r,s)

(ℓ,m+1) + mp0h
(r,s)
(ℓ,m−1).
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Fig. B.14. A diagram of the discrete-time Markov chain on S := {(ℓ,m) : ℓ,m ≥ 0, ℓ + m ≤ N}, where ℓ is the number of cells carrying a particular mutation and
m is the number of cells without it. Contrary to the chain for the skeleton process of Proposition 1 (Fig. A.13), we now incorporate cell death, which means both
that population level changes can be up and down, and that we add states of the form (ℓ,m) with ℓ = 0 or m = 0. The states (0, 0) and {(ℓ,N − ℓ)}0≤ℓ≤N are
bsorbing (dashed boxes), and the states {(ℓ,m) : ℓ,m ≥ 1, ℓ + m < N}, {(ℓ, 0)}1≤ℓ≤N−1 and {(0,m)}1≤m≤N−1 form their respective communicating classes. Colored
rrows indicate transitions out of communicating classes.
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By the gambler’s ruin formula (B.8), the boundary conditions
re

h(N,0)
(ℓ,0) = 1 − h(0,0)

(ℓ,0) = (1 − pℓ0)/(1 − pN0 ), 0 ≤ ℓ ≤ N,

h(r,s)
(ℓ,0) = 0, 0 ≤ ℓ ≤ N, (r, s) /∈ {(0, 0), (N, 0)},

h(0,N)
(0,m) = 1 − h(0,0)

(0,m) = (1 − pm0 )/(1 − pN0 ), 0 ≤ m ≤ N,

h(r,s)
(0,m) = 0, 0 ≤ m ≤ N, (r, s) /∈ {(0, 0), (0,N)},

h(r,N−r)
(ℓ,N−ℓ) = δr,ℓ, 1 ≤ ℓ ≤ N − 1,

h(r,s)
(ℓ,N−ℓ) = 0, 1 ≤ ℓ ≤ N − 1, (r, s) ∈ {(0, 0), (N, 0), (0,N)}.

(B.10)

his is the desired linear system. □

ppendix C. Results for continuous mutation accumulation

In this section, we discuss how to derive the expected SFS of
he skeleton and the total population under the continuous model
f mutation accumulation (see Section 2.3). This requires minor
odifications to the proofs of Propositions 1 and 2.

.1. Skeleton spectrum

Under continuous mutation accumulation, the expected fixed-
ime spectrum of the skeleton is given by

[S̃j(t̃N )] = (ν/λ0)N ·
∫ 1−1/N
0 (1 − y)yj−1dy,

hich is the same as (12) of Proposition 1 with w/q0 replaced by
/λ0, the effective mutation rate in the continuous-time model.
e can use the same proof as in part (1) of Appendix A, simply

eplacing the mutation rate wr0 by ν and noting that q0 =

0/r0. However, the expected fixed-size spectrum of the skeleton
ecomes

[S̃j(τ̃N )]

=

{
(ν/λ0)N · 1/(j(j + 1)) − (ν/λ0)δ1,j, 1 ≤ j ≤ N − 1,
ν/λ0, j = N.

(C.1)

n the continuous model, mutations occur at rate ν per unit time,
nd the effective type-2 cell divisions occur at rate λ0 per unit
ime. Thus, for 1 ≤ k ≤ N − 1, the number of mutations
86
hat accumulate on skeleton population size level k, prior to the
ype-2 division that changes levels to k + 1, has the geometric
istribution with support {0, 1, 2, . . .} and success probability

λ0/(kλ0 + kν) = λ0/(λ0 + ν).

he expected number of mutations per level is therefore

λ0 + ν)/λ0 − 1 = ν/λ0,

hich applies to all levels k with 1 ≤ k ≤ N − 1. In particular,
here are ν/λ0 (= w/q0) clonal mutations in the continuous
odel, as opposed to wp0/q0 = w/q0 − w clonal mutations

n the discrete model. Recall that in the latter model, mutations
oincide with cell divisions, and clonal mutations come from the
ype-1 divisions that occur before the first type-2 division in the
rocess. The first type-2 division adds w mutations, but it also
hanges levels, so mutations occurring on this division are not
lonal. In the continuous model, all mutations occur in between
ell divisions, which is why there is no such boundary effect.
imilarly, in the discrete model, the very last type-2 division that
hanges the skeleton size to N adds w mutations on average
hat each ends up in one cell. Since this does not occur in the
ontinuous model, the extra term −ν/λ0 (= −w/q0) that appears
or j = 1 in (C.1) differs from the extra term −wp0/q0 = −w/q0+

in the discrete model by w. These key differences between
utation accumulation in the two models are diagrammed in
ig. C.15.

.2. Total population spectrum

Under continuous mutation accumulation, the expected fixed-
ime spectrum of the total population is given by

[Sj(tN )|Z0(tN ) > 0] = (ν/r0)N ·
∫ 1−1/N
0 (1 − p0y)−1(1 − y)yj−1dy,

hich is the same as (20) of Proposition 2 with w replaced by
/r0. We can use the same proof as in part (1) of Appendix B,
eplacing the mutation rate wr0 by ν. However, the expected
ixed-size spectrum of the total population becomes, for 1 ≤ j ≤

,

[Sj(τN )|τN < ∞] = (ν/λ0) ·
∑N−1

k=1 (1 − pN−k
0 ) · h(j,N−j)

(1,k−1).

n the continuous model, mutations no longer coincide with
hanges in population level, so instead of counting level changes
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Fig. C.15. Mutation accumulation on the skeleton in the discrete vs. continuous model of mutation. (a) In the discrete model, mutations coincide with cell divisions.
n average, wp0/q0 mutations accumulate on type-1 divisions in between two type-2 divisions, and w mutations are added on each type-2 division. This results in
p0/q0 +w = w/q0 mutations on average per skeleton population size level, for all but the first level. (b) In the continuous model, all ν/λ0 (= w/q0) mutations per

evel accumulate in between cell divisions. The differences between the discrete and continuous model result in slightly different behavior at the boundary values
= 1 and j = N in the fixed-size spectrum (14) of Proposition 1 and fixed-size result (C.1) for the continuous model.
k,k+1 as we did in the proof of part (2) of Proposition 2, we need
o compute the expected time spent at level k. We already know
rom (B.9) that the number of visits to level k in the embedded
iscrete-time chain (Xn)n≥0 has expected value

1[Λk] =
(1+p0)(1−pN−k

0 )

1−pN0
.

uring each visit to state k in the discrete-time chain, the time
pent at population level k in the continuous-time process (Z0
(t))t≥0 is exponentially distributed with rate k(r0 + d0) = kr0(1+

p0). It follows that the mean time spent on level k for 1 ≤ k ≤

N − 1 is

1
kr0(1+p0)

·
(1+p0)(1−pN−k

0 )

1−pN0
=

1−pN−k
0

kr0(1−pN0 )
.

ince mutations occur at rate kν per unit time on level k, we
obtain

E[Sj(τN )|τN < ∞] =
1−pN0
q0

·
∑N−1

k=1 kν ·
1−pN−k

0
kr0(1−pN0 )

· h(j,N−j)
(1,k−1)

= (ν/λ0) ·
∑N−1

k=1 (1 − pN−k
0 ) · h(j,N−j)

(1,k−1), (C.2)

where we use that q0 = λ0/r0. We now have h(j,N−j)
(1,k−1) in the

sum instead of h(j,N−j)
(1,k) in (22) of Proposition 2 since mutations no

longer coincide with population level changes. The first equality
in (C.2) can be obtained rigorously following the same line of
reasoning as in the proof of part (2) of Proposition 2.

Appendix D. Proof of Proposition 3

In this section, we prove Proposition 3 on the total mutational
burden of the tumor, both under the fixed-time and fixed-size
spectrum. The result follows from Proposition 2 using simple
calculations.

Proof of Proposition 3.

(1) Define Mj(t) :=
∑

k≥j Sk(t) as the cumulative number of
mutations found in ≥ j cells at time t . For fixed j ≥ 1, by
(20) of Proposition 2 and Fubini’s theorem, the expected
cumulative fixed-time spectrum can be written as

E[Mj(tN )|Z0(tN ) > 0]∑
∞

(∫ 1−1/N −1 k−1
)

= wN · k=j 0 (1 − p0y) (1 − y)y dy N

87
= wN ·
∫ 1−1/N
0 (1 − p0y)−1(1 − y)

(∑
∞

k=j y
k−1

)
dy

= wN ·
∫ 1−1/N
0 (1 − p0y)−1yj−1dy

= wN ·
∑

∞

k=0 p
k
0

(∫ 1−1/N
0 yj+k−1dy

)
= wN ·

∑
∞

k=0
pk0
j+k (1 −

1
N )

j+k. (D.1)

To obtain the desired result, set j = 1 in (D.1) and use that∑
∞

k=1 x
k/k = − log(1 − x).

(2) By (22) of Proposition 2,

E[M1(τN )|τN < ∞]

=
∑N

j=1

(
(w/q0) ·

∑N−1
k=1 (1 − pN−k

0 ) · h(j,N−j)
(1,k)

)
= (w/q0) ·

∑N−1
k=1 (1 − pN−k

0 ) ·
(∑N

j=1 h
(j,N−j)
(1,k)

)
,

and the result follows from the fact that
∑

(r,s)∈A h
(r,s)
(1,k) =

1. □

Appendix E. Fixed-time vs. fixed-size total population spec-
trum

Here, we present a simple heuristic argument for why the
fixed-size spectrum of the total population can be approximated
by the fixed-time spectrum on j ≪ N when N is sufficiently
large. As we discussed in Section 4.5 of the main text, conditional
on the nonextinction event Ω∞, the tumor eventually grows at
exponential rate λ0. If s is the time it takes to go from population
level k to population level N , and we assume that s can be treated
as deterministic, we can write keλ0s = N i.e. eλ0s = N/k, following
e.g. Iwasa et al. (2006). We can then make the approximation
h(j,N−j)
(1,k) ≈ pj(s), where h(j,N−j)

(1,k) is defined as in the proof of part
(2) of Proposition 2, and (pj(s))j≥0 is the size-distribution at time
s for a single-cell derived clone. Applying (B.1) with eλ0s = N/k,
we obtain

h(j,N−j)
(1,k) ≈ pj(s) =

q20Nk
(N−p0k)2

·
( N−k
N−p0k

)j−1
.

Then, observing that 1 − pN−k
0 ≈ 1 when k ≪ N , we can write

(w/q0) ·
∑N−1

k=1 (1 − pN−k
0 ) · h(j,N−j)

(1,k)

≈ (w/q0) ·
∫ N
1

q20Nk
(N−p0k)2

·
( N−k
N−p0k

)j−1dk.

Using the substitution y := (N−k)/(N−p0k) and writing N−p0 ≈

, this becomes the fixed-time spectrum (20) of Proposition 2.
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ppendix F. Derivation of expressions (24) and (25)

Here, we establish the asymptotic expressions (24) and (25) in
he main text. To establish (24), fix 0 < p0 < 1 and set

fj(k) := pk0 ·
j(j+1)

(j+k)(j+k+1) , j ≥ 1, k ≥ 0.

learly, fj(k) ≤ pk0 for all j ≥ 1 and k ≥ 0. Since
∑

∞

k=0 p
k
0 = 1/q0 <

, it follows from the dominated convergence theorem that

imj→∞

∑
∞

k=0 fj(k) = 1/q0,

rom which it follows that

N ·
∑

∞

k=0
pk0

(j+k)(j+k+1) ∼ (w/q0)N · 1/(j(j + 1)), j → ∞.

To establish (25), fix j ≥ 1 and set

fp0 (k) :=
pk0

(j+k)(j+k+1) , 0 < p0 < 1, k ≥ 0.

Clearly, fp0 (k) ≤ 1/((j+k)(j+k+1)) for all 0 < p0 < 1 and k ≥ 0.
ince

∞

k=0
1

(j+k)(j+k+1) =
∑

∞

k=0

( 1
j+k −

1
j+k+1

)
= 1/j < ∞,

it follows from the dominated convergence theorem that

limp0→1
∑

∞

k=0 fp0 (k) = 1/j,

from which it follows that

wN ·
∑

∞

k=0
pk0

(j+k)(j+k+1) ∼ wN · 1/j, p0 → 1.

ppendix G. Derivation of expression (30)

Here, we establish expression (30) in the main text. By (20) of
roposition 2 and Fubini’s theorem, we can write

[S1(tN )|Z0(tN ) > 0]

= wN ·
∫ 1−1/N
0 (1 − p0y)−1(1 − y)dy

= wN ·
∑

∞

k=0 p
k
0

(∫ 1−1/N
0 yk(1 − y)dy

)
= wN ·

∑
∞

k=0 p
k
0

( 1
k+1 (1 −

1
N )

k+1
−

1
k+2 (1 −

1
N )

k+2
)

= wN ·
∑

∞

k=0
pk0
k+1 (1 −

1
N )

k+1
− wN ·

∑
∞

k=0
pk0
k+2 (1 −

1
N )

k+2. (G.1)

sing that
∑

∞

k=1 x
k/k = − log(1 − x), the former term can be

omputed as

N ·
∑

∞

k=0
pk0
k+1 (1 −

1
N )

k+1
= −wN · (1/p0) log(q0 + p0/N),

nd the latter term can be computed as

N ·
∑

∞

k=0
pk0
k+2 (1 −

1
N )

k+2

= wN · (1/p20)
∑

∞

k=0
pk+2
0
k+2 (1 −

1
N )

k+2

= wN · (1/p20)
(
− log(q0 + p0/N) − p0(1 − 1/N)

)
.

ombining with (G.1), we obtain

[S1(tN )|Z0(tN ) > 0]
= wN · (1/p0)(1 − 1/N + (q0/p0) log(q0 + p0/N)),

he desired result.

ppendix H. Laws of large numbers

Here, we present simple calculations in support of the conjec-
ured laws of large numbers (32) and (33) of the main text. As
tated in the main text, conditional on the nonextinction event
∞, we have Z0(t) ∼ Yeλ0t as t → ∞ almost surely, where Y

follows the exponential distribution with mean 1/q0 (Theorem 1
of Durrett (2015)). For the fixed-time spectrum, the number of
88
mutations that accumulate in [0, tN ] and are found in j ≥ 1 cells
at time tN is then approximately

Sj(tN ) ≈
∫ tN
0 wr0 · Yeλ0t · pj(tN − t)dt.

rom (B.6) in the proof of Proposition 2, we know that∫ tN
0 wr0eλ0tpj(tN − t)dt

= weλ0tN ·
∫ 1−q0/(eλ0tN −p0)
0 (1 − p0y)−1(1 − y)yj−1dy

∼ wq0N ·
∫ 1
0 (1 − p0y)−1(1 − y)yj−1dy, N → ∞,

here we use that eλ0tN = q0N+p0 by the definition of tN in (18).
his implies that

j(tN ) ≈ q0Y · wN ·
∫ 1
0 (1 − p0y)−1(1 − y)yj−1dy

or large N . Since Y has the exponential distribution with mean
/q0, q0Y has the exponential distribution with mean 1. This
uggests (32) in the main text.
For the fixed-size spectrum, note that if N is large, then at time

N −t , we can write Z0(τN −t) ≈ Ne−λ0t . The number of mutations
hat accumulate in [0, τN ] and are found in j ≥ 1 cells at time τN
s then approximately

j(τN ) ≈
∫ τN
0 wr0 · Ne−λ0t · pj(t)dt

= Ne−λ0τN ·
∫ τN
0 wr0eλ0tpj(τN − t)dt.

gain using (B.6) from the proof of Proposition 2, we can write∫ τN
0 wr0eλ0tpj(τN − t)dt

= weλ0τN ·
∫ 1−q0/(eλ0τN −p0)
0 (1 − p0y)−1(1 − y)yj−1dy,

rom which it follows that

j(τN ) ≈ wN ·
∫ 1−q0/(eλ0τN −p0)
0 (1 − p0y)−1(1 − y)yj−1dy

≈ wN ·
∫ 1
0 (1 − p0y)−1(1 − y)yj−1

or N large. This suggests (33) in the main text.
We finally mention that it is straightforward to prove a law of

arge numbers for a simplified version of our model, where the
umor bulk grows deterministically (Z0(t) = eλ0t ), mutant clones
rise at stochastic rate wr0, and mutant clones grow stochasti-
ally. To state the result, let Ŝj(t̃N ) denote the number of muta-
ions found in j ≥ 1 cells at time t̃N under the simplified model,
here t̃N is given by (10), i.e. eλ0 t̃N = N . We want to show that

ˆj(t̃N ) ∼ wN ·
∫ 1
0 (1 − p0y)−1(1 − y)yj−1dy (H.1)

s N → ∞ almost surely. Note that the limit is a constant since
e assume deterministic growth of the tumor bulk. For 0 ≤ t ≤

˜N , let N̂j,t̃N (t) denote the number of mutant clones created in
0, t] that have size j ≥ 1 at time t̃N . Then (N̂j,t̃N (t))0≤t≤t̃N is
n inhomogeneous Poisson process with rate function λ̂(t) =

r0eλ0tpj(t̃N − t) and mean function

ˆ (t) =
∫ t
0 λ̂(s)ds, 0 ≤ t ≤ t̃N .

et N̂j(t̃N ) := N̂j,t̃N (t̃N ). By (B.6) in the proof of Proposition 2, and
he fact that eλ0 t̃N = N ,

ˆ (t̃N ) = wN ·
∫ 1−q0/(N−p0)
0 (1 − p0y)−1(1 − y)yj−1dy

∼ wN ·
∫ 1
0 (1 − p0y)−1(1 − y)yj−1dy, N → ∞.

hen, by a simple Poisson concentration inequality, see Theorem
of Cannone (2017),(
|N̂j(t̃N )/m̂(t̃N ) − 1| > (m̂(t̃N ))−1/3)

= P
(
|N̂j(t̃N ) − m̂(t̃N )| > (m̂(t̃N ))2/3

)(
ˆ ˜ 1/3/(

ˆ ˜ −1/3 ))

≤ 2 exp −(m(tN )) 2(1 + (m(tN )) ) .
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S
ince m̂(t̃N ) is of order N as N → ∞, it follows from the Borel–
Cantelli lemma that N̂j(t̃N )/m̂(t̃N ) → 1 as N → ∞ almost surely.
Since Ŝj(t̃N ) = N̂j(t̃N ), we have the result.
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