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Search systems are often used to support learning-oriented goals. This trend has given rise to the “search-
as-learning” movement, which proposes that search systems should be designed to support learning. To this
end, an important research question is: How does a searcher’s type of learning objective (LO) influence their
trajectory (or pathway) toward that objective? We report on a lab study (N = 36) in which participants gath-
ered information to meet a specific type of LO. To characterize LOs and pathways, we leveraged Anderson
and Krathwoh!l’s (A&K’s) taxonomy [3]. A&K’s taxonomy situates LOs at the intersection of two orthogo-
nal dimensions: (1) cognitive process (CP) (remember, understand, apply, analyze, evaluate, and create) and
(2) knowledge type (factual, conceptual, procedural, and metacognitive knowledge). Participants completed
learning-oriented search tasks that varied along three CPs (apply, evaluate, and create) and three knowl-
edge types (factual, conceptual, and procedural knowledge). A pathway is defined as a sequence of learning
instances (e.g., subgoals) that were also each classified into cells from A&K’s taxonomy. Our study used a
think-aloud protocol, and pathways were generated through a qualitative analysis of participants’ think-
aloud comments and recorded screen activities. We investigate three research questions. First, in RQ1, we
study the impact of the LO on pathway characteristics (e.g., pathway length). Second, in RQ2, we study the
impact of the LO on the types of A&K cells traversed along the pathway. Third, in RQ3, we study common
and uncommon transitions between A&K cells along pathways conditioned on the knowledge type of the
objective. We discuss implications of our results for designing search systems to support learning.
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1 INTRODUCTION

People often search for information in order to learn something new. While current search sys-
tems are effective in helping users complete simple look-up tasks (e.g., navigational or fact-finding
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tasks), they provide less support for users working on complex tasks that involve learning. In re-
cent years, the “search-as-learning” research community has argued that search systems should
be better designed to support learning. Recent summits have taken place to develop research agen-
das in the area of search-as-learning [2, 9]. Participants at these summits proposed that future
research should focus on: (1) understanding the contexts in which people search for information
in order to learn, (2) understanding the cognitive biases promoted by existing search systems,
(3) understanding search as a learning process, and (4) developing search interfaces and tools
that encourage and support learning [2, 9]. Our research in this article focuses on understanding
search as a learning process. Additionally, we discuss how our results have implications for design-
ing novel search tools to encourage and support learning. Prior studies in the area of search-as-
learning have investigated a wide range of research questions. Many studies have investigated how
different factors can influence learning during search. Specifically, studies have investigated char-
acteristics of the individual searcher [34, 36, 38, 49], characteristics of the search task [17, 22, 29, 30],
and characteristics of the search system [6, 8, 14, 15, 18-20, 23, 35, 37, 39, 41, 42, 46, 50, 52]. Ad-
ditionally, studies have investigated the relation between specific search behaviors and learning
outcomes [1, 4, 8, 10, 16, 26, 28, 32, 35, 52, 53]. When people search to learn, they typically have
a specific learning objective (LO) in mind—°T need to find information that enables me to do
<learning objective> Our research in this article investigates an important question that has not
been directly addressed in prior work:

How does the type of learning objective that a searcher is aiming to accomplish in-
fluence their trajectory or pathway toward that objective? In other words, how do
searchers decompose a specific objective into a sequence of subgoals or learning in-
stances?

To address this question, we conducted a lab study in which participants (N = 36) completed search
tasks with different types of LOs. To gain insights about participants’ pathways (i.e., sequences of
subgoals) toward an objective, the study used a think-aloud protocol. To manipulate LOs and to
characterize pathways toward an objective, we leveraged Anderson and Krathwohl’s (A&K’s)
taxonomy of learning (referred to as A&K’s taxonomy) [3].

1.1 A&K’s Taxonomy

In the field of education, A&K’s taxonomy was developed to help educators more precisely define
LOs for students [3]. Additionally, it was developed to help educators align instructional exercises
and assessments with the target LO. As illustrated in Table 1, A&K’s taxonomy situates LOs at the
intersection of two orthogonal dimensions: (1) cognitive process (CP) and (2) knowledge type.
Anderson and Krathwohl [3] argued that LOs can be viewed as a combination of a “verb” and a
“noun” (e.g., recall factual knowledge). In this respect, the CP defines the “verb” and the knowledge
type defines the “noun” of the LO.

The CP dimension defines the types of cognitive activities associated with the LO. In other
words, it defines the types of mental activities learners should be able to perform once the objective
is met. CPs range from simple to complex: remember, understand, apply, analyze, evaluate, and
create. If a remember objective is met, it means that the learner will be able to recall or regurgitate
information verbatim. If an understand objective is met, it means that the learner will be able to
explain information in their own words or illustrate examples of a construct. If an apply objective
is met, it means that the learner will be able to execute a process or use the acquired knowledge
in a new scenario. If an analyze objective is met, it means that the learner will be able to explain
relations between elements (e.g., similarities and differences). If an evaluate objective is met, it
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Table 1. A&K’s Two-dimensional Taxonomy and Example Pathway Toward an
Evaluate/procedural LO (Gray Cell)

Knowledge Type Cognitive Process

Remember | Understand | Apply | Analyze | Evaluate | Create
Factual
Conceptual LI,
Procedural LIy, L5, LIy | LIs LI, LI; Llg
Metacognitive

LI; denotes the ith learning instance along the pathway.

means that the learner will be able to critique or prioritize elements. Finally, if a create objective
is met, it means that the learner will be able to generate a new solution to a problem or organize
information using a novel representation.

The knowledge type dimension defines the type of knowledge associated with the objective.
A&K’s taxonomy defines four types of knowledge: factual, conceptual, procedural, and metacog-
nitive knowledge. The first three knowledge types relate to external knowledge about the world:
factual knowledge relates to self-contained, objective bits of information; conceptual knowledge re-
lates to concepts, categories, theories, principles, schemas, and models; and procedural knowledge
relates to knowledge about how to perform a task. Conversely, metacognitive knowledge looks
inward, and relates to knowledge about one’s own cognition or cognition in general.

1.2 Characterizing Pathways

Our goal is to understand the pathways followed by searchers toward a specific LO. A pathway is
defined as a sequence of learning instances toward an objective. A learning instance is defined as
a point during the search and learning process in which the searcher either: (1) sets forth a new
learning-oriented subgoal or (2) serendipitously learns something new and useful toward achiev-
ing the objective. The A&K taxonomy can be leveraged to classify LOs and learning instances
along the pathway to the objective.

To better understand the concept of a pathway, consider the example in Table 1. Imagine a
searcher who wants to determine which sorting algorithm is more efficient: quicksort or merge-
sort. This LO involves making a judgement (i.e., evaluate) between two algorithms (i.e., proce-
dural knowledge). Therefore, based on A&K’s taxonomy, the objective can be classified as eval-
uate/procedural (gray cell in Table 1). Given this objective, a searcher may follow the pathway
below, which includes learning instances (LIs) that are either planned or unplanned.

— LI; (understand/procedural): First, the searcher may look for and review an example of
mergesort to understand the steps.

— LI, (understand/conceptual): Second, while pursuing LI;, the searcher may encounter the
concept of “divide and conquer” and look for a definition to understand this concept.

— LI; (understand/procedural): Third, to deepen their understanding of mergesort, the
searcher may review its pseudocode (i.e., a different representation of the procedure).

— LI, (understand/procedural): Fourth, the searcher may look for and review an example of
quicksort to understand the steps.

— LIs (apply/procedural): Fifth, to deepen their understanding of how the algorithm works,
the searcher may decide to sort a list of numbers using quicksort.

— LI (analyze/procedural): Sixth, upon realizing that mergesort and quicksort are both “di-
vide and conquer” algorithms, the searcher may review an article that explains how both
algorithms use “divide and conquer”.
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— LI; (analyze/procedural): Seventh, the searcher may read an article that explains the sim-
ilarities and differences between mergesort and quicksort.

— LI (evaluate/conceptual): Finally, the searcher may read an article that explains why
mergesort is better than quicksort for large arrays, and may use this information as a ra-
tionale to judge that mergesort is more efficient in real-world scenarios.

As illustrated in the example above, A&K’s taxonomy can be leveraged to categorize LOs and
learning instances traversed along the pathway toward the objective. LOs and instances along the
pathway can all be assigned to cells in A&K’s taxonomy.

1.3 Study Overview and Research Questions

Participants in the study completed three search tasks with LOs situated at the intersection of three
CPs (apply, evaluate, and create) and three knowledge types (factual, conceptual, and procedural).
To analyze the pathways taken by participants toward an objective, we performed a qualitative
analysis of search sessions based on participants’ think-aloud comments and recorded search and
note-taking activities. The study investigated three main research questions (RQ1-RQ3), which all
centered on the pathways participants followed toward an objective.

A preliminary analysis of pathways found that participants primarily stayed within the same
knowledge type as the LO they were asked to accomplish. As illustrated in the example in Table 1,
pathways toward a procedural objective mostly involved learning instances focused on procedural
knowledge. Therefore, our analysis of pathways focused exclusively on the CPs traversed along
the pathways.

We investigate the following research questions:

—RQ1: What is the effect of the LO (i.e., CP and knowledge type) on the characteristics of
pathways toward the objective?

—RQ2: What is the effect of the LO (i.e., CP and knowledge type) on the CP traversed along
pathways toward the objective?

— RQ3: What are common and uncommon transitions between CPs traversed along pathways
toward the objective?

In RQ1, we investigate the effects of the LO on two pathway characteristics: (1) pathway length
(i.e., number of learning instances) and (2) pathway diversity (i.e., number of distinct CPs traversed).
We investigate these differences from two perspectives. First, we explore pathway differences by
conditioning on the CP of the objective. For example, are pathways longer or more diverse when
the objective is to create versus apply? Second, we explore pathway differences by conditioning
on the knowledge type of the objective. For example, are pathways longer or more diverse during
procedural versus factual objectives?

In RQ2, we investigate the effects of the LO on the CPs traversed along the pathways. As in RQ1,
we investigate these differences from two perspectives. First, we explore pathway differences by
conditioning on the CP of the objective. For example, do pathways involve more analyze learning
instances when the objective is to evaluate versus apply? Second, we explore pathway differences
by conditioning on the knowledge type of the objective. For example, do pathways involve more
analyze learning instances when the objective involves conceptual versus factual knowledge?

In RQ3, we investigate the types of CP transitions along pathways toward an objective. Again,
we investigate this question from two perspectives. First, we consider common and uncommon
transitions irrespective of the objective. For example, regardless of the objective, are searchers more
likely to transition from simple to complex processes (e.g., understand to analyze) or more likely
to transition from complex to simple processes (e.g., analyze to understand)?
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Second, we consider common and uncommon transitions by conditioning on the objective. As
described below (Section 1.4), in a previous article [45], we reported on results derived from the
same lab study. Specifically, we reported on the effects of the LO (i.e., CP and knowledge type)
on participants’ pre- and post-task perceptions and search behaviors. Our results found that the
knowledge type of the objective had a much stronger effect than the CP of the objective. Based on
these results, we decided to focus our RQ3 analysis by conditioning only on the knowledge type
of the objective. For example, are searchers more likely to transition from simple to complex CPs
during objectives involving procedural versus conceptual knowledge?

1.4 Extension of Prior Work

Our research in this article is an extension of our own prior work. In Urgo et al. [45], we reported
on results from the same study. Specifically, we reported on the effects of the LO (i.e., CP and
knowledge type) on: (1) pre-task perceptions, (2) post-task perceptions, and (3) search behaviors.
Interestingly, the objective’s CP (apply vs. evaluate vs. create) had no significant effects. Conversely,
the objective’s knowledge type (factual vs. conceptual vs. procedural) had several significant ef-
fects. First, factual objectives were perceived to require less cognitive activity along processes more
complex than “remembering”. Second, conceptual objectives were perceived to require more “un-
derstanding” and “analyzing”. Finally, procedural objectives were perceived to require more “ap-
plying”, “evaluating”, and “creating”. In this article, we extend this prior work by analyzing the
pathways taken by participants toward a specific objective. In Section 5, we describe how our
results relate with those reported in Urgo et al. [45].

2 RELATED WORK

Our research builds on two areas of prior work: (1) search-as-learning and (2) understanding how
task characteristics can influence search behaviors and outcomes.

2.1 Search-as-Learning

Studies in the area of search-as-learning have investigated a wide range of research questions.
Some studies have investigated factors that influence learning during search. Specifically, stud-
ies have focused on how learning is impacted by characteristics of the searcher, search task, and
search system. Additionally, studies have investigated how learning outcomes are related to spe-
cific search behaviors. In the following sections, we review key insights gained from these prior
studies in search-as-learning. We focus primarily on key takeaways with respect to learning out-

comes.l

2.1.1 The Effects of User Characteristics on Learning. Several studies have investigated the ef-
fects of domain knowledge on learning during search [34, 38, 49]. O’Brien et al. [34] measured
learning by asking participants to produce knowledge summaries before and after completing

n our review, we focus primarily on key takeaways with respect to learning outcomes. As a side note, prior studies
have used a wide variety of methods to measure learning. Some studies have measured learning by administering pre- and
post-tests with pre-defined correct answers, including: (1) true-or-false [15, 16, 22, 33, 37, 53], (2) multiple-choice [13, 15,
18, 19, 22, 41, 46], and (3) short-answer tests [1, 6, 10, 13, 20, 38, 39]. Other studies have asked participants to complete
more open-ended exercises. Specifically, studies have measured learning by asking participants to: (1) list relevant key
phrases and facts [4, 23]; (2) create visual representations of a domain [29]; (3) enumerate arguments for and against a
specific proposition [14]; and (4) summarize their knowledge of a topic [1, 10, 13, 22, 26, 28, 34-36, 40, 49]. To assess
learning from open-ended responses, studies have adopted grading strategies that involve: (1) counting relevant concepts
or facts [1, 4, 10, 23, 35, 49]; (2) counting relevant pro/con arguments [14]; and (3) counting statements that show evidence
of generalization or critical thinking [1, 10, 28, 34, 35, 40]. Finally, studies have also considered self-reported perceptions of
learning [10, 15, 17, 18, 23, 29] and behavioral measures that are assumed to provide evidence of learning [8].
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three search tasks on the same general topic. Compared to domain experts, novices had slightly
greater improvements in their summary scores. One explanation is that novices uncovered more
new information while searching. Willoughby et al. [49] asked participants to produce knowledge
summaries on domains where they had high and low prior knowledge. Additionally, one group
of participants was instructed to search for 30 minutes before producing their summaries and an-
other group produced summaries without searching. Participants in the search condition produced
summaries with more accurate facts. Interestingly, however, this effect was only found when par-
ticipants had high prior knowledge. The authors hypothesized that participants with higher prior
knowledge were able to search more effectively. Roy et al. [38] investigated the role of domain
knowledge on learning during the search session. To this end, participants completed quick vo-
cabulary learning assessments at regular intervals during the session. Prior knowledge influenced
when participants had the greatest knowledge gains—toward the start of the session for partici-
pants with low prior knowledge and toward the end of the session for participants with high prior
knowledge.

To summarize, results suggest a complex relationship between domain knowledge and learning
during search. Specifically, the effects of domain knowledge are likely to depend on other factors,
such as the complexity of the task domain. For example, within simple domains, novices may learn
more because they simply start with less prior knowledge. Conversely, within complex domains,
novices may learn less because they lack the prerequisite knowledge to search effectively.

Beyond domain knowledge, prior work has also considered the impact of individual abilities
on learning during search. Pardi et al. [36] considered the impact of working memory capacity
and reading comprehension ability. Learning was measured based on the number of relevant con-
cepts included in knowledge summaries produced by participants before and after searching. Both
abilities had a positive effect on learning.

2.1.2  The Effects of Task Characteristics on Learning. Several studies have investigated how task
characteristics influence learning during search. Similar to our work, studies have leveraged the
A&K taxonomy to study learning-oriented search tasks involving different CPs. Ghosh et al. [17]
had participants complete tasks associated with the CP of understand, apply, analyze, and evaluate.
Participants self-reported significant knowledge gains across all tasks. Additionally, participants
were asked to select “action verbs” describing their mental activities during each task. Partici-
pants selected different action verbs for each task type—“define” for remember, “demonstrate” for
apply, and “relate” for analyze and evaluate tasks. Kalyani and Gadiraju [22] had participants com-
plete tasks associated with all six CPs from the A&K taxonomy. Learning was measured using
closed-ended tests for simple tasks and open-ended tests for complex tasks. Participants had lower
knowledge gains for complex tasks (i.e., apply < evaluate). Liu et al. [29] had participants com-
plete two tasks of varying cognitive complexity: a receptive (i.e., remember or understand) task
and a critical (i.e., evaluate) task. To measure learning, participants constructed mind maps (i.e.,
graphical domain representations) before each task, and modified their mind maps throughout the
search session. During receptive tasks, participants made structural changes to their mind maps
throughout the whole session. Conversely, during critical tasks, participants made more structural
changes toward the end of the session.

Beyond task complexity, research has also studied learning during multi-session search. Liu
et al. [30] had participants complete three subtasks on the same general topic. In the dependent
subtask condition, all three subtasks built on each other. Conversely, in the parallel subtask condi-
tion, the three subtasks were largely independent (i.e., could be hypothetically done in any order).
To measure learning, participants rated their familiarity with the general topic after each sub-
task. As expected, participants reported greater topic familiarity after each subtask. Interestingly,
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however, this increase in topic familiarity plateaued faster in the parallel (vs. dependent) subtask
condition, suggesting that searchers benefit from subtasks that build on each other.

2.1.3 The Effects of System Characteristics on Learning. Studies have also investigated how
search systems and features can impact learning. Studies have considered different system char-
acteristics: (1) the type of device used to search, (2) the presence of novel interface features and
tools, and (3) the underlying retrieval algorithm.

Devices: Demaree et al. [14] compared learning outcomes between participants searching on
a smartphone versus laptop computer. Participants were asked to gather information on a contro-
versial topic and write an argumentative essay. Learning was measured by counting the number
of pro and con arguments in the essay. While participants issued more queries while searching on
a laptop, their learning outcomes were not significantly different across devices.

Interface Features and Tools: Wilson et al. [50] evaluated different interfaces for browsing a
music collection. To measure learning, participants enumerated facts learned about the items in
the collection. Results found a positive effect on learning from an interface that highlighted item
metadata. Kammerer et al. [23] evaluated a system that enabled users to use social tags to filter
search results. To measure learning, participants completed tests that required them to summarize
their knowledge and recall domain-relevant keywords. Participants scored higher on both tests
with the experimental system versus a baseline system without social tags.

Freund et al. [15] investigated the impact of two factors on participants’ reading comprehension
of pre-selected articles: (1) whether articles were displayed in plain text versus HTML, which
included distracting elements (e.g., ads), and (2) whether participants could add “sticky notes” to
articles. Without the “sticky notes” tool, participants had higher reading comprehension scores
in the plain text versus HTML condition. Conversely, with the “sticky notes” tool, participants
performed equally well in both conditions.

Syed et al. [42] evaluated an experimental system that combined eye-tracking and an automatic
question-generation feature. The system was designed to ask automatically generated questions
about passages read by the searcher during the session. To measure learning, participants com-
pleted short-answer tests before each search task, immediately after, and one week later (to mea-
sure retention). Participants using the experimental system achieved higher retention scores than
participants in the control group.

Qiu et al. [37] investigated the impact of two factors on learning and retention: (1) traditional vs.
conversation search and (2) note taking. To measure learning and retention, participants completed
the same test before each search task, immediately after, and three days later. Participants achieved
greater knowledge gains in the traditional (vs. conversational) search condition, and this effect was
stronger when participants could take notes. Interestingly, while knowledge gains were lower in
the conversational search condition, participants had greater retention rates.

Roy et al. [39] investigated the impact of two tools that allowed participants to highlight pas-
sages and take notes. To measure learning, participants wrote post-task knowledge summaries
that were analyzed based on the number of facts included and subtopics covered. Results found
benefits from each tool in isolation. Specifically, the note-taking tool enabled participants to write
summaries with more facts and the highlighting tool enabled participants to write summaries cov-
ering more subtopics. Interestingly, participants did not exhibit greater knowledge gains when
using both tools, possibly due to cognitive overload.

Cémara et al. [6] evaluated different interface features to support learning: (1) displaying
subtopics in the task domain and (2) displaying the searcher’s level of coverage across subtopics
during the session. Interestingly, these novel features did not significantly improve learning. In-
stead, they influenced participants to explore more subtopics superficially. As evidence, when given
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feedback about their topical coverage, participants viewed more search results but had shorter
dwell times. Importantly, this trend suggests that feedback features can have unintended effects—
they can influence searchers to pursue strategies that undermine their depth of learning.

To summarize, prior work has investigated a wide range of tools to improve learning during
search. In general, results have found benefits from interfaces that: (1) convey more information
about the items in the collection [23, 50], (2) enable searchers to annotate documents [15, 37, 39],
and (3) enable searchers to self-assess their understanding of material read during the session [42].
On the other hand, results also suggest that tools can have unintended effects. For example, they
can lead to cognitive overload [39] and encourage searchers to cover more information superfi-
cially [6].

Retrieval Algorithms: Early work by Hersh et al. [20] evaluated two search systems (i.e.,
Boolean vs. TE.IDF retrieval) based on their ability to help medical students improve their per-
formance on a short-answer test. Both systems performed equally well, suggesting that people
can achieve comparable learning outcomes using systems that afford very different search strate-
gies. In the context of vocabulary learning, Syed and Collins-Thompson [41] evaluated a retrieval
algorithm that favored documents with a greater density of target vocabulary words. Participants
had better learning outcomes with the experimental versus baseline system. Weingart and Eick-
hoff [46] explored the impact of several well-established retrieval techniques on learning. To mea-
sure learning, participants completed multiple-choice tests after each task. Query expansion had a
negative effect on learning, possibly due to topic drift from the original query. On the other hand,
passage (vs. document) retrieval had a positive effect on learning, possibly because passages have
a higher density of query-related content than whole documents.

2.1.4 The Relation between Search Behaviors and Learning. Finally, studies have investigated
how specific search behaviors relate to learning outcomes. Several studies have investigated how
learning outcomes are related to behaviors that could be potentially captured by a search sys-
tem [1, 4, 10, 16, 28, 32, 35, 53]. Studies have found that searchers with better learning outcomes
have a tendency to: (1) spend more time reading documents [10, 16, 32, 53]; (2) issue queries with
more advanced and uncommon vocabulary [4, 10, 16]; (3) issue more diverse queries within the
session [35]; (4) click on search results with longer titles [53]; (5) review more search results that
are relevant [10] and novel [1]; and (6) visit sources that are more suitable to the task, such as
encyclopedic sources during receptive tasks and Q&A sources during critical tasks [28].

Other studies have considered search behaviors that are more difficult to capture within ex-
isting search environments but are nonetheless insightful. Using eye-tracking, Bhattacharya and
Gwizdka [4] found that participants with better learning outcomes had fewer eye regressions (i.e.,
less re-reading of text). Lei et al. [26] examined the search behaviors of 5th graders in the context
of a mock school assignment involving video search. An analysis of post-search interviews found
that students with better learning outcomes engaged in more metacognitive planning (e.g., setting
goals), monitoring (e.g., tracking progress), and evaluating (e,g., reconsidering strategies).

Prior work has also investigated learning outcomes during collaborative search. Several studies
have compared learning outcomes from searchers working individually versus in pairs [8, 35]. Chi
et al. [8] found that participants working in pairs issued more complex queries (i.e., not issued by
other participants), which was interpreted as evidence of learning. Palani et al. [35] found that
participants working in pairs did not achieve better outcomes. However, the authors noted that
the time limit imposed on search tasks may have prevented pairs from overcoming the overhead
of collaboration. Xu et al. [52] found that collaborators with better learning outcomes engaged in
more “division of labor” strategies and communicated more frequently.
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2.2 The Effects of Task Characteristics on Behaviors and Outcomes

In our study, participants completed learning-oriented search tasks with objectives that varied by
CP (apply, evaluate, and create) and knowledge type (factual, conceptual, and procedural). In this
respect, our research builds on prior work aimed at understanding how task characteristics can
influence searchers.

Search tasks have been studied from many different perspectives. Based on an extensive litera-
ture review, Li and Belkin [27] proposed a unifying framework for characterizing search tasks in
terms of generic facets and common attributes. Generic facets relate to external factors (e.g., self-
imposed vs. assigned). On the other hand, common attributes relate to the task itself, and include
subjective attributes (e.g., difficulty) and objective attributes (e.g., complexity).

Our research builds heavily on prior work on the effects of task complexity, which is defined as
an inherent property of the task. Studies have investigated task complexity from different perspec-
tives. Wildemuth et al. [48] conducted an extensive review of the different ways task complexity
has been characterized in prior work. A few common themes emerged from this review. Specif-
ically, complex tasks involve: (1) more subtasks and/or subtopics; (2) greater uncertainty about
aspects of the task (e.g., inputs and outputs); and (3) more complex mental processes.

Closely related to our research, prior studies have investigated task complexity from the per-
spective of cognitive complexity, which relates to the types of mental processes associated with
the task. To this end, studies have leveraged the A&K taxonomy [5, 7, 21, 24, 44, 51]. Importantly,
however, these studies have leveraged the CP dimension and ignored the knowledge type dimen-
sion. Results from these studies have found that cognitively complex tasks are perceived to be
more difficult [5, 7, 21, 24, 51], require more search activity [5, 7, 21, 24, 44, 51], and lead to more
divergent strategies by searchers performing the same task [24].

2.3 Contributions of Our Research

Our research in this article extends prior work in three important ways. First, as illustrated
in our review, most “search-as-learning” studies have focused on learning outcomes. In this ar-
ticle, we focused on the search and learning process—the pathways followed by searchers to-
ward an objective. Understanding the search and learning process provides insights about what
searchers do and why. Additionally, it provides insights about potential search tools to support
learning.

Second, several studies have leveraged A&K’s taxonomy to investigate how LOs (i.e., the goal of
the task) can impact perceptions and behaviors. Importantly, prior studies have only leveraged the
CP dimension and ignored the knowledge type dimension. In our study, we manipulated objectives
by varying both the CP (apply, evaluate, and create) and knowledge type (factual, conceptual,
procedural) of the objective.

Finally, while A&K’s taxonomy has been used to manipulate and study search tasks, it has not
been used to understand the search and learning process. Therefore, as a methodological con-
tribution, our study shows how the taxonomy can be leveraged to study search sessions from a
learning-oriented perspective.

3 METHODS

To investigate RQ1-RQ3, we conducted a laboratory study with 36 participants (25 female). Partic-
ipants were recruited using an opt-in mailing list of employees from our university. Participants
included 18 student employees and 18 non-student employees, and their ages ranged from 19 to
61 (M = 32.61, S.D. = 12.82).
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Fig. 1. Study protocol.

3.1 Study Overview

Protocol: The study protocol is illustrated in Figure 1 and proceeded as follows. After provid-
ing informed consent, participants completed a demographics questionnaire. Then, participants
completed three experimental tasks that followed the same sequence of steps.

First, after reading the task description, participants completed a pre-task questionnaire. Next,
participants completed the search phase of the task. During the search phase, participants were
given a learning-oriented search task (Section 3.2) and asked to use a custom-built search system
to find information and take notes in an external electronic document. The search system was
implemented using the Bing Web Search API? In order to investigate participants’ pathways to-
ward the LO of each task, the study used a think-aloud protocol [11]. Participants’ think-aloud
comments and search activities were audio/video recorded and later analyzed using qualitative
techniques to gain insights about participants’ pathways (Section 3.3). Participants were given a
maximum of 15 minutes to complete the search phase and were alerted by the moderator when
they had 5 minutes remaining. After the search phase, participants were given 2 minutes to review
their notes and then completed a 2-minute video demonstration phase. During the video demon-
stration phase, participants were asked to provide a verbal response to the task’s main question.
Responses were video recorded by the moderator. Finally, after the video demonstration phase,
participants were asked to complete a post-task questionnaire. The study session lasted about 1.5
hours and participants were given US$40 for participating.

In this article, we focus on understanding participants’ pathways along A&K’s taxonomy toward
the LO of the task. Thus, responses to the pre-/post-task questionnaires were not analyzed as part
of this article. In Urgo et al. [45], we report on the effects of the LO on participants pre-/post-task
perceptions. In Section 5, we discuss how our RQ1-RQ3 results resonate with those reported in
Urgo et al. [45].

Think-aloud: In order to investigate participants’ pathways toward the LO of each task, the
study used a think-aloud protocol [11]. That is, participants were asked to narrate their thoughts
as they searched for information and took notes. The study moderator reminded participants to
think aloud if they were silent for an extended period.

Video Demonstration Phase: During the video demonstration phase of each task, participants
were instructed to demonstrate (to whatever extent possible) their achievement of the task’s LO.
Participants were asked to produce a 2-minute response to the task’s main question. Responses
were video recorded by the study moderator. For example, for Task 3 in Section 3.2, participants
were asked to verbally demonstrate their novel method for finding the mathematical center of
a circle. Participants’ responses were largely verbal. However, participants were also provided

2Given a query, the system returned results from four different verticals in different tabs: web, images, news, and video.
Each vertical tab retrieved the top-50 results. Except for the images tab, each tab included pagination controls at the bottom
and displayed 10 results per page. The images tab displayed all 50 thumbnails in one SERP using a grid (vs. list) layout.
The Bing API was configured to retrieve results for the US-EN market, and we enabled safe-mode to filter inappropriate
results.
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with tangible materials as supplemental support: letter-size article, a large notepad on easel, pens,
markers, pencils, eraser, geometric compass, protractor, rulers, and calculator. Participants were
informed of (and able to review) these supplemental materials before working on the first exper-
imental task of the study session. The main objective of the video demonstration phase was to
encourage participants to learn and discourage them from satisficing. We believe that asking par-
ticipants to produce a live demonstration of what they learned achieved this objective.

3.2 Tasks

A total of 27 tasks were constructed across three topical domains (art, finance, and science). Each
domain was associated with nine tasks that varied across three CPs (apply, evaluate, and create)
and three knowledge types (factual, conceptual, and procedural) from A&K’s taxonomy [3]. To
keep the study design manageable, we limited ourselves to three CPs and three knowledge types.

In terms of CPs, we decided to omit remember, understand, and analyze. Our goal was to inves-
tigate the learning process during complex objectives, which are likely to require pursuing and
achieving multiple learning-oriented subgoals. For this reason, we omitted the CPs of remember
and understand (i.e., the least complex). Additionally, we decided to omit the CP of analyze for two
reasons. First, we wanted to include objectives that would lead to divergent pathways. To this end,
we decided to include evaluate and exclude analyze. Evaluation is closely linked to analysis. As
noted by Anderson and Krathwohl, critiquing elements usually requires first understanding their
relations (e.g., similarities and differences) [3, p. 79]. Second, Anderson and Krathwohl argue that
analyzing is rarely the ultimate LO in and of itself. Instead, analyzing is “probably more defensible
[as an LO] as a prelude to evaluating or creating.” [3, p. 79].

In terms of knowledge types, we omitted metacognitive knowledge because it is very different
from the other three. Metacognitive knowledge involves internal (rather than external) knowl-
edge about one’s own cognition.® Next, we provide three example tasks from the science domain:
(1) apply/factual, (2) evaluate/conceptual, and (3) create/procedural.

(1) Apply/Factual—Scenario: You recently watched a TV show about the deepest part of the
ocean. The show mentioned the depth of the deepest part of the ocean in meters. However,
this number (in meters) did not quite give you clear “perspective” on just how deep this is.
You want to get a more “tangible” appreciation for the depth of the deepest part of the ocean.
Task: Use the height of the world’s tallest building as a unit to measure the deepest part of
the ocean.

(2) Evaluate/Conceptual—Scenario: During a recent trip to the National Air and Space Museum
with your extended family, your younger cousin, who is in high school, said she is interested
in better understanding how planes are able to fly. You are not very familiar with the prin-
ciples behind the notion of lift, so when you get home you decide to do some investigating.
After some initial research you notice that there are two predominant explanations of lift,
Bernoulli’s principle and Newton’s laws of motion.

Task: Determine, which best explains the notion of lift and why: Bernoulli’s principle
or Newton’s laws of motion? Provide a well-reasoned, logical argument to support your
explanation.

(3) Create/Procedural—Scenario: You are building a firepit in your backyard. You have con-
structed a large circle so that chairs can fit around the firepit. You have not yet dug the
firepit because you want to be sure that it is positioned precisely in the center of the circle.

3We also consulted with a cognitive science researcher who advised us to exclude metacognitive knowledge. Understanding
metacognitive activities during search-as-learning is an important area for future work.
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Task: Explore different methods for finding the mathematical center of a circle, then create
a novel method for finding the mathematical center of your firepit circle. The method can be
completely different from those you find, a combination of methods, or a method you find
with slight variations.

As shown, each task was situated in a background scenario that motivated the learning-oriented
search task. Task 1 is apply/factual because it requires applying one fact (i.e., the height of the
world’s tallest building) to gain appreciation of another fact (i.e., the depth of the deepest part
of the ocean). Task 2 is evaluate/conceptual because it requires determining which concept (i.e.,
Bernoulli’s principle vs. Newton’s laws of motion) best explains a phenomenon (i.e., lift). Finally,
Task 3 is create/procedural because it requires creating a new procedure (i.e., a new method for
finding the mathematical center of a circle). Table 2 summarizes the main objectives of our 27 tasks.
The full tasks are available online: https://www.kelseyurgo.com/tois-pathways/.

Task Assignment: Each participant completed three tasks from the same domain (i.e., arts,
finance, or science). Domains were assigned to participants such that 12 participants completed
tasks from each domain. Additionally, each participant completed tasks that varied across all three
CPs (i.e., apply, evaluate, and create) and all three knowledge types (i.e., factual, conceptual, and
procedural). For example, participant P1 completed the following tasks: (1) apply/factual/art, (2)
evaluate/conceptual/art, and (3) create/procedural/art. The ordering of tasks was rotated such that
every participant experienced our three CP and knowledge types in a different order (i.e., 6 CP
orders X 6 KT orders = 36 participants).

3.3 Qualitative Coding of Pathways

To address RQ1-RQ3, we conducted a qualitative analysis of participants’ recorded search sessions,
which included their think-aloud comments and search/note-taking activities. The pathway anno-
tation task involved two separate processes.

Identifying Learning Instances (LIs): The first annotation process involved representing
each search session as a sequence of learning instances (LIs). We define LIs as instances dur-
ing the search session where the participant either: (1) set forth a new learning-oriented subgoal
or (2) serendipitously learned something new and meaningful toward the task’s objective. This
definition allowed us to account for instances where the participant mentioned pursuing a new
specific subgoal (e.g., “First, I need to find the world’s tallest building.”), as well as moments when
the participant mentioned serendipitously learning something new without planning (e.g., “Oh,
this says that XYZ was the world’s tallest building in 2003. Maybe there’s a taller one in 2020.”).
To represent each session as a sequence of LIs, one of the authors reviewed all recorded search
sessions (i.e., screen activities and think-aloud comments) and marked the timestamp of each LI
identified. While recording these timestamps, the question in the author’s mind was: At this point,
has the searcher set forth a new subgoal or has the searcher learned something new and relevant
to the task? Most LIs occurred during points where the participant issued a new query, made a
new note in the external document, or engaged with information (e.g., a search result) while think-
ing aloud. Table 3 provides a full example pathway. Each row is a distinct LI. The motivations for
marking a new LI are described in the “Action/Comment” column.

Annotating Learning Instances (LIs): The second annotation process involved classifying LIs
into cells in A&K’s taxonomy—assigning each LI to a specific CP and knowledge type. To classify
LIs, we developed a coding guide based on A&K’s book [3], which provides definitions and exam-
ples of LOs for each CP and knowledge type. The full coding guide is available in Appendix A.1.

The coding guide was developed iteratively using search sessions (i.e., LI sequences) from three
participants. First, both of the authors worked together to derive an initial coding guide. Next,
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Sub-rows correspond to the domains of science (S), arts (A), and finance (F), respectively.

both authors independently coded all three sessions from one participant, discussed disagreements,
and refined the coding guide. After repeating this process with all three participants, the authors
arrived at a final version of the coding guide.

As we developed the coding guide, we found it relatively straightforward to classify Lls into a
knowledge type (i.e., factual, conceptual, and procedural). We found it more challenging to classify
LIs into a CP (i.e., remember, understand, apply, analyze, evaluate, and create). To alleviate this
challenge, the coding guide primarily focuses on criteria for classifying LIs by CP. Additionally,
we found it helpful to use different wording depending on the LI’s knowledge type. To illustrate, for
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Table 3. Examples of Learning Instances (LI) with Associated Cell Assignment and Justification

' LI ' Action/Comment Cell Annotation Justification

1 automatism (query) Understand/Procedural | Searcher is gathering information to
summarize (understand) automatism
(conceptual).

2 “The first one that pops up mentions Analyze/Conceptual Searcher is differentiating and structur-
Surrealist automatism, so maybe it ing (analyze) automatism (conceptual)
has more to do with Surrealism” within the context of surrealism (con-

ceptual).

3 “Maybe we should look at pictures” | Understand/Conceptual | Searcher is trying to exemplify (under-
stand) automatism (conceptual).

4 “It says it was used to express the | Remember/Conceptual | Searcher is reading a definition (remem-
subconscious...hand is allowed to ber) of automatism (conceptual).
randomly move across the paper”

5 subconscious expression (note) Understand/Conceptual | Searcher is summarizing (understand)
a characteristic of automatism (concep-
tual).

6 “Talks about taking material from | Understand/Conceptual | Searcher is summarizing (understand)
the subconscious and putting it into a characteristic of automatism (concep-
art” tual).

7 “Talks about Freud” Remember/Factual Searcher is reading (remember) a fact

(factual) related to automatism.

8 “Free association” Remember/Conceptual | Searcher is reading (remember) about
free association (conceptual).

9 “This also mentions Surrealism...so Analyze/Conceptual Searcher is differentiating (analyze)
let’s see what Surrealism and between surrealism (conceptual) and
Dadaism are about” dadaism (conceptual).

10 | dadaism art (query) Understand/Conceptual | Searcher is exploring information to
summarize (understand) Dada art (con-
ceptual).

11 | “An art movement formed during | Remember Conceptual | Searcher is reading an overview (re-

the first world war...a negative reac- member) of Dadaism (conceptual).
tion to the horrors of the war”

12 | “I can compare images of Dadaism” Analyze/Conceptual Searcher is differentiating (analyze) rep-
resentations of Dadaism from Surreal-
ism (conceptual).

13 | surrealism art (query) Analyze/Conceptual Searcher is trying to differentiate (an-
alyze) representations of Surrealist art
from Dada art (conceptual).

14 | “I really want to know how to tell Analyze/Conceptual Searcher is trying to differentiate (an-

the difference” alyze) representations of Surrealist art
from Dada art (conceptual).

15 | automatism art (query) Analyze/Conceptual Searcher is trying to differentiate (an-
alyze) representations of automatism
from Surrealist art and Dada art (con-
ceptual).

16 | “Automatism doesn’t really have Analyze/Conceptual Searcher is differentiating (analyze) rep-
like portraits or anything like the resentations of automatism from Surre-
other ones” alist art and Dada art (conceptual).

17 | surrealism art (query) Understand/Conceptual | Searcher is trying to exemplify (under-

stand) Surrealist art (conceptual).

18 | “Going to look for more facts about | Remember Conceptual | Searcher is trying to read (remember)
Surrealism” specific information about Surrealism

(conceptual).

(Continued)
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Table 3. Continued

' LI ' Action/Comment Cell Annotation ‘ Justification

19 | unconscious mind (note) Understand/Conceptual | Searcher is gathering information to
summarize (understand) Surrealism
(conceptual).

20 | “Has to do with the unconscious Analyze/Conceptual Searcher is differentiating (analyze) be-
mind which is very similar to au- tween Surrealism and automatism (con-
tomatism” ceptual).

21 | “Talks about free association as Analyze/Conceptual Searcher is differentiating (analyze) be-
well” tween Surrealism and automatism (con-

ceptual).

22 | “Not all of this art is abstract” Understand/Conceptual | Searcher is identifying (understand)
characteristics of Surrealist art (concep-
tual)

23 | “Dadaism was reaction to the hor- | Analyze/Conceptual Searcher is differentiating (analyze)
rors of the war so maybe Dadaism Dadaism from Surrealism (conceptual).
is less abstract?”

24 | “Have to do with more what they Analyze/Conceptual Searcher is differentiating (analyze)
were experiencing  consciously Dadaism from Surrealism (conceptual).
rather than subconsciously”

25 | “I think that automatism and Surre- | Evaluate/Conceptual Searcher is judging (evaluate) that au-
alism have more in common” tomatism is more closely related to Sur-

realism than Dadaism (conceptual).

26 | similarities between automatism Analyze/Conceptual Searcher is differentiating (analyze) be-
and surrealism (query) tween automatism and Surrealism (con-

ceptual).

27 | processes not under conscious con- | Understand/Conceptual | Searcher is summarizing (understand)
trol (note) characteristic of automatism (concep-

tual).

28 | “Ithink that’s the biggest similarity” Analyze/Conceptual Searcher is differentiating (analyze) be-
tween automatism and Surrealism (con-
ceptual).

29 | interpretation of dreams (note) Understand/Conceptual | Searcher is summarizing (understand)
characteristic of automatism (concep-
tual).

30 | automatism artists (query) Understand/Factual Searcher is exploring (understand)
artists (factual) that used automatism.

31 | technique wused by surrealist | Understand/Conceptual | Searcher is summarizing (understand)
painters (note) characteristic of automatism (concep-

tual).

32 | “I don’t see how it’s not the same Analyze/Conceptual Searcher is differentiating (analyze) be-
thing” tween automatism and Surrealism (con-

ceptual).

33 | influenced by freud (note) Understand/Factual Searcher is summarizing (understand)
isolated unit of information (factual) as-
sociated with automatism.

34 | dadaism (query) Understand/Conceptual | Searcher is gathering information to
summarize (understand) Dadaism (con-
ceptual).

35 | “T don’t really know what to de- | Understand/Conceptual | Searcher is gathering information to de-

scribe Dadaism as” scribe (understand) Dadaism (concep-
tual) in own words.
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Table 3. Continued

' LI ' Action/Comment ‘ Cell Annotation ‘ Justification ‘

36 | “World War I, wasn’t an artistic | Understand/Conceptual | Searcher is summarizing (understand)
style” information about Dadaism (concep-
tual).

For this pathway, the task’s LO (evaluate/conceptual) involved deciding which artistic movement is most
closely related to Automatism: Dadaism or Surrealism?

classifying LIs as “understand”, we included the following analogous criteria: (1) “Restates fact in
own words”” (factual); (2) “Summarizes definition of concept in own words.” (conceptual); and (3)
“Summarizes steps of procedure in own words.” (procedural).

To validate the final version of our coding scheme, both authors independently coded all sessions
(i.e., LI sequences) from an additional six participants (about 17% of the data). The Cohen’s Kappa
agreement was k = 0.809, which is considered “almost perfect” agreement [25]. Given this high
level of agreement, one of the authors (re-)coded all sessions from the remaining 30 participants.

Table 3 describes an example annotated pathway, including the action and/or comment that
triggered the LI, the A&K cell associated with the LI, and an explanation/justification of the cell
annotation.

4 RESULTS

In RQ1-RQ3, we analyze the pathways followed by participants toward a specific type of LO. A
pathway is defined as a sequence of LIs that were each manually assigned to a cell from A&K’s
taxonomy (i.e., CP and knowledge type).

A preliminary analysis of pathways found that participants primarily stayed within the same
knowledge type as the LO’s knowledge type. For example, pathways toward factual objectives
mostly involved factual LIs. The percentage of Lls associated with the same knowledge type as
the objective was 97% for factual objectives, 85% for conceptual objectives, and 97% for procedural
objectives. Therefore, in our analyses for RQ1-RQ3, we focus exclusively on the CPs associated
with LIs along the pathway. In other words, while A&K’s taxonomy involves two orthogonal
dimensions (i.e., CP and knowledge type), pathways were analyzed from a one-dimensional
perspective (i.e., CP).*

Pathways were analyzed from three perspectives: (RQ1) pathway length and number of distinct
CPs traversed; (RQ2) types of CPs traversed; and (RQ3) types of transitions between CPs condi-
tioned on the knowledge type of the LO. In RQ1 and RQ2, we investigate differences based on the
LO’s CP (apply vs. evaluate. vs. create) and knowledge type (factual vs. conceptual. vs. procedural).
To test for significant differences, we used one-way ANOVAs with Bonferroni-corrected post-hoc
comparisons.

4.1 RQ1: Pathway Characteristics

In RQ1, we investigate the characteristics of pathways conditioned on the LO’s CP (Table 4) and
knowledge type (Table 5). Tables 4 and 5 show the average pathway length (i.e., average number
of LIs traversed along the pathway) and the average number of distinct CPs traversed.

4Our analysis of pathways found that participants primarily stayed within the same knowledge type as the given objective.
It is important to emphasize that LIs were classified based on the type of knowledge participants were aiming to acquire
and not solely the type of information participants engaged with in pursuit of the subgoal. To illustrate, imagine an LI in
which a searcher is trying to get a basic understanding of Bernoulli’s principle. Now, suppose the searcher encounters and
struggles to internalize the following statement: “Pressure decreases when the speed of a fluid increases.” This, of course,
is a factual statement. However, we would classify this LI as “understand/conceptual” because the current subgoal is to
understand the concept of Bernoulli’s principle.
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Table 4. The Effects of the LO’s- CP on Pathway Length and Distinct CPs
Traversed (Means + 95% Cls)

Apply LO Evaluate LO Create LO
Average Length 15.97 £ 2.45 16.89 + 2.52 21.17 £ 4.04
Average Distinct CPs 3.72 £0.28 3.75 £ 0.26 4.03 +£0.34

Table 5. The Effects of the LO’s Knowledge Type on Pathway Length and Distinct CPs
Traversed (Means + 95% Cls)

Factual LO Conceptual LO | Procedural LO
Average Length 19.25 +£3.97 19.64 +2.88 15.14 £ 2.22
Average Distinct CPs* (C < P) 3.83 +0.24 3.53 £0.25 4.14+0.35
1 denotes rows with significant differences across knowledge types: factual (F), conceptual (C), and
procedural (P).

First, we compare pathway characteristics conditioned on the LO’s CP (Table 4). The LO’s CP
did not have a significant effect on the pathway length. However, as might be expected, there is an
upward trend as the LO increases in complexity from apply (M = 15.97) to evaluate (M = 16.89)
to create (M = 21.17). In other words, more complex LOs had longer pathways (i.e., more learning
instances). Similarly, the LO’s CP did not have a significant effect on the number of distinct CPs
traversed along the pathway. However, there is a small upward trend as the complexity of the
LO increases. Create objectives had pathways with slightly more distinct CPs than apply and
evaluate objectives.

Next, we compare pathway characteristics conditioned on the LO’s knowledge type (Table 5).
The LO’s knowledge type did not have a significant effect on the pathway length. Conversely, the
LO’s knowledge type did have a significant effect on the number of distinct CPs traversed along
the pathway (F(2,105) = 4.75, p < .05). Procedural LOs had significantly more distinct CPs than
conceptual LOs (p < .01). We discuss these trends in Section 5.

4.2 RQ2: Effects of LO on CPs

In RQ2, we investigate the effects of the LO on the types of CPs traversed along the pathway.
For example, are apply LIs more common for some LOs than others? Similar to RQ1, we explore
differences by conditioning on the LO’s CP (Table 6) and by conditioning on the LO’s knowledge
type (Table 7). Tables 6 and 7 show the average number of LIs (per pathway) associated with each
CP. For example, during apply LOs (Table 6), pathways had 4.58 remember LIs on average. During
conceptual LOs (Table 7), pathways had 9.61 understand LIs on average.

We start by discussing our results conditioned on the LO’s CP (Table 6). Our results found five
main trends. First, irrespective of the LO’s CP, remember and understand were the most frequent
CPs traversed. Second, the LO’s CPs had a significant effect on the number of remember LlIs tra-
versed (F(2,105) = 5.66, p < .005). Remember LIs were significantly more common during tasks
with an objective to create versus apply (p < .05) or evaluate (p < .01). Third, the LO’s CP had
a significant effect on the number of apply LIs traversed (F(2,105) = 9.47, p < .001). Apply LlIs
were significantly more common during tasks with an objective to apply versus evaluate (p < .001)
or create (p < .005). Fourth, the LO’s CP had a significant effect on the number of create LIs tra-
versed (F(2,105) = 4.98, p < .01). Create LIs were significantly more common during tasks with
an objective to create versus apply (p < .01). Finally, while not statistically significant, analyze and
evaluate LIs were more common during tasks with an objective to evaluate versus apply or create.

Next, we discuss our results conditioned on the LO’s knowledge type (Table 7). Our results
found five main trends. First, irrespective of the LO’s knowledge type, remember and understand
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Table 6. The Effects of the LO’s CP on the Number of LIs (Per Pathway)
Associated with Each CP (Means + 95% Cls)

Cp Apply LO | Evaluate | Create LO
LO
Remember? (A,E<C) | 458+1.28 | 4.17 £1.26 | 8.33 +£2.88
Understand 6.19+1.36 | 6.19+1.76 | 6.83 £2.35
Applyi (A>E,C) 2.03+0.89 | 0.47 £0.37 | 0.53 £0.28
Analyze 1.64+0.76 | 3.14+1.16 | 2.78 £ 0.84
Evaluate 1.58 £0.77 | 2.67 £0.55 | 1.92 £ 0.83
Create* (A<QO) 0.08+0.13 | 0.25+0.32 | 0.78 £0.46
I denotes rows with significant differences across CPs: apply (A), evaluate (E), and
create (C).

Table 7. The Effects of the LO’s Knowledge Type on the Number of Lls (Per
Pathway) Associated with Each CP (Means + 95% Cls)

Cp Factual LO Conceptual LO | Procedural LO
Remember® (F>C,P) | 9.22 +2.63 5.13 + 1.56 2.72 +0.93
Understand® (C>F,P) | 4.03 +2.15 9.61 + 1.81 5.44 +1.01
Apply 0.89 + 0.56 1.39 +0.81 0.86 + 0.45
Analyze 2.58 £0.95 2.50 £1.05 2.36 £0.88
Evaluate? (C <F, P) 2.44+0.82 0.89 +0.45 2.83+£0.74
Create® (F, C < P) 0.08 +0.10 0.11+0.18 0.92 +0.51

1 denotes rows with significant differences across knowledge types: factual (F),
conceptual (C), and procedural (P).

were among the most frequent CPs traversed. Second, the LO’s knowledge type had a significant
effect on the number of remember LIs traversed (F(2,105) = 13.08, p < .001). Remember LIs were
significantly more common during tasks with an objective involving factual versus conceptual
(p < .01) or procedural (p < .001) knowledge. Third, the LO’s knowledge type had a significant ef-
fect on the number of understand LIs traversed (F(2, 105) = 11.69, p < .001). Understand LIs were
significantly more common during tasks with an objective involving conceptual versus factual
(p < .001) or procedural (p < .005) knowledge. Fourth, the LO’s knowledge type had a signif-
icant effect on the number of evaluate Lls traversed (F(2,105) = 9.32, p < .001). Evaluate LIs
were significantly less common during tasks with an objective involving conceptual versus factual
(p < .005) or procedural (p < .001) knowledge. Fifth, the LO’s knowledge type had a significant
effect on the number of create LIs traversed (F(2,105) = 9.10, p < .001). Create LIs were signifi-
cantly more common during tasks with an objective involving procedural versus factual (p < .001)
or conceptual (p < .005) knowledge.

4.3 RQ3: Transitions Between CPs

Participants completed three search tasks, each with a LO associated with a specific knowledge
type—factual, conceptual, or procedural knowledge. In RQ3, we investigate CP transitions con-
ditioned on the knowledge type of the LO. We discuss our RQ3 results from two perspectives.
First, we discuss common trends irrespective of the objective’s knowledge type. Second, we dis-
cuss trends that are unique to LOs involving a specific knowledge type (factual vs. conceptual vs.
procedural knowledge).

Table 8(a)-(c) show the transition probabilities between CPs along pathways toward a LO in-
volving factual knowledge (Table 8(a)), conceptual knowledge (Table 8(b)), and procedural knowl-
edge (Table 8(c)). Table 8(a)—(c) are Markov matrices. The values along each row correspond to
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Table 8. Each Markov Matrix Shows the Transition Probabilities between CPs
in Learning Pathways

Cp Rem. Und. Apply Ana. Eval. Create End | Count
Start 0.47 0.44*  0.00 0.06 0.03 0.00 0.00 36
Rem. 0.63* 0.11 0.03 0.13 0.08 0.00 0.02 332
Und. 0.30 0.35*  0.03 0.15*  0.12 0.01 0.04 145
Apply 0.25 0.00 0.39*  0.07 0.11 0.00 0.18 28
Ana. 0.37 0.19*  0.01 0.21*  0.14 0.01 0.07 97
Eval. 0.20 0.26*  0.03 0.10 0.27*  0.00 0.13 88
Create | 0.33 0.33*  0.00 0.00 0.00 0.00 0.33 3

(a) Transition probabilities between CPs across factual pathways (i.e., conditioned
on the knowledge type of the LO).

CP Rem. Und. Apply Ana. Eval Create End | Count
Start 0.06 0.86* 0.03 0.06 0.00 0.00 0.00 36
Rem. 0.38* 0.44 0.06 0.05 0.02 0.01 0.04 185
Und. 0.25 0.46*  0.07 0.14*  0.04 0.01 0.04 346
Apply 0.18 0.50* 0.22* 0.04 0.02 0.00 0.04 50
Ana. 0.17 0.43* 0.03 0.21*  0.08 0.00 0.08 90
Eval. 0.06 0.22*  0.03 0.34 0.19*  0.00 0.16 32
Create 0.00 0.75* 0.00 0.00 0.00 0.00 0.25 4

(b) Transition probabilities between CPs across conceptual pathways (i.e., condi-
tioned on the knowledge type of the LO).

Cp Rem. Und. Apply Ana. Eval Create End | Count
Start 0.00 0.97*  0.00 0.00 0.03 0.00 0.00 36
Rem. 0.22* 031 0.07 0.15 0.15 0.05 0.04 98
Und. 0.20 0.31  0.05 0.17*  0.19 0.05 0.03 196
Apply 0.13 0.26" 0.19*  0.03 0.19 0.06 0.13 31
Ana. 0.15 0.22*  0.00 0.25*  0.24 0.05 0.09 85
Eval. 0.15 0.32*  0.06 0.13 0.21*  0.06 0.08 102
Create 0.12 0.33*  0.06 0.06 0.03 0.18 0.21 33

(c) Transition probabilities between CPs across procedural pathways (i.e., condi-
tioned on the knowledge type of the LO).

Transition probabilities marked with *are common across LOs. Transition probabilities in bold are
unique to the particular LO shown in that sub-table (each sub-table corresponds to a particular
objective knowledge type).

the probabilities of transitioning from one type of LI to another and therefore sum to 1. A “start”
row and “end” column have been added as additional states. The values along the start row corre-
spond to the probabilities of starting the pathway with a specific CP. The values in the end column
correspond to the probabilities of ending the pathway with a specific CP. The last column shows
the raw counts for each state across pathways conditioned on the knowledge type of the objective.
Cells along the diagonal (shown in grey) are transitions to the same CP. Cells above the diagonal,
and underneath the grey line, are transitions to a more complex CP. We refer to these as transi-
tion “upshifts”. Cells below the diagonal are transitions to a less complex CP. We refer to these as
transition “downshifts”.

In our discussion of trends, we focus on high versus low transition probabilities. Thus, an impor-
tant question is: What is a high transition probability? In other words, what is a logical threshold
to distinguish between high and low transition probabilities? As shown in Table 8(a)-(c), each
state can transition to seven states (i.e., six CP states + the end state). If all transitions were equally
likely, then all transition probabilities would be 0.14 (i.e., 1/7). Therefore, we consider transition
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probabilities > 0.14 as “high” transition probabilities and transition probabilities < 0.14 as “low”
transition probabilities.

Common Trends: First, we discuss common trends irrespective of the objective’s knowledge
type. In Table 8(a)-(c), common trends are marked with an asterisk (*). Our results found four
common trends. First, understand is a common starting point. All “Start” rows have high tran-
sition probabilities to understand. Second, downshifts to understand (under the diagonal in the
understand column) are generally common. As shown in Figure 8(a), the single exception is for
LOs involving factual knowledge. Factual LOs had a low transition probability from apply to un-
derstand. Later, we discuss possible explanations for this lower transition probability. Third, most
CPs had high transition probabilities back to themselves. These probabilities are shown along the
diagonal of each matrix, highlighted in grey. As the exception, create-to-create transitions were
only common for procedural LOs (i.e., not factual nor conceptual objectives). Finally, transitions
from understand to analyze were generally common.

Next, we describe trends unique to factual, conceptual, and procedural LOs. In Tables 8(a)-(c),
unique trends are shown in bold.

Trends Unique to Factual LOs: Our results found four trends unique to factual LOs (Table 9(a)).
First, starting with remember was likely only for factual LOs. Second, downshifts to remember
from all CPs (remember column in Table 8(a)) were likely only for factual LOs. In other words,
for conceptual and procedural LOs, downshifts to remember were likely from some CPs but not
others. Conversely, downshifts to remember were likely from all CPs during factual LOs. Third,
transitions from remember to understand were common for conceptual and procedural LOs, but
uncommon for factual LOs. Fourth, ending with apply was likely only for factual LOs.

Trends Unique to Conceptual LOs: Our results found three trends unique to conceptual LOs
(Table 8(b)). First, transitions from evaluate to analyze were likely only for conceptual LOs. Second,
transitions from analyze to evaluate were common for factual and procedural LOs, but uncommon
for conceptual LOs. Third, ending with evaluate was likely only for conceptual LOs.

Trends Unique to Procedural LOs: Our results found three trends unique to procedural LOs
(Table 8(c)). First, upshifts were much more common for procedural LOs. Procedural LOs had
seven likely upshifts compared to only two for factual and two for conceptual LOs. Four of these
seven upshifts are unique to procedural LOs: (1) remember to analyze, (2) remember to evaluate,
(3) understand to evaluate, and (4) apply to evaluate. Second, transitions from create to create were
likely only for procedural LOs. Finally, ending with create was more common for procedural LOs.
Factual and conceptual LOs had high transition probabilities from create to the end state. However,
in both cases, these high transition probabilities are based on a single occurrence of create at the
end of the pathway (see “Count” column in Table 8(a) and (b)). Therefore, we do not consider this
trend as “common” to all LOs, but rather a likely transition specific to procedural LOs.

5 DISCUSSION

In this section, we summarize our findings and compare them to findings from prior work.

5.1 RQT1: Effects on Pathway Length and Diversity of CPs Traversed

In RQ1, we investigate the effects of the LO (i.e., CP and knowledge type) on the pathway length
and distinct CPs traversed.

Effects of the LO’s CP: The LO’s CP did not have a significant effect on the pathway length
(number of Lls traversed) nor the number of distinct CPs traversed along the pathway (Table 4).
In Urgo et al. [45], we reported on results from the same study. Specifically, we reported on
the effects of the LO (i.e., CP and knowledge type) on participants’ pre-/post-task perceptions
and search behaviors. The objective’s CP did not significantly affect any outcome related to
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participants’ perceptions nor behaviors. Thus, our RQ1 results in the current article are consis-
tent with those reported in Urgo et al. [45].

A reasonable follow-up question is: Why did the objective’s CP not have a significant effect
on the pathway length nor diversity? One possible explanation stems from our choice of LOs
considered in the study. To keep the study design manageable, we considered LOs associated with
the CPs of apply, evaluate, and create, which have mid-to-high levels of complexity. We might have
observed greater (and significant) differences on the pathway length and diversity had we also
considered objectives associated with low-complexity processes (i.e., remember and understand).

While the trend was not significant, our RQ1 results found that more cognitively complex ob-
jectives had longer (and slightly more diverse) pathways (apply < evaluate < create). In general,
this trend resonates with prior studies, which have consistently found that more cognitively com-
plex objectives require more search activity [5, 7, 21, 24, 44, 51]. Thus, our RQ1 results suggest
that some of this increase in search activity may be due to the objective requiring more learning
instances along the pathway.

Effects of the LO’s Knowledge Type: The LO’s knowledge type had a significant effect on
the number of distinct CPs traversed along the pathway (Table 5). Specifically, procedural objec-
tives had pathways involving a more diverse set of CPs. Based on our RQ2 results (discussed in
Section 5.2), this trend is due to procedural objectives having more create LIs. As shown in the last
row in Table 7, procedural objectives had about 1.0 create LIs on average. In contrast, factual and
conceptual objectives had about 0.10 create LIs on average.

In our qualitative coding of pathways, we observed that procedural objectives involved more
creative subgoals. Specifically, during procedural objectives, create LIs included instances of the
participant: (1) simplifying a procedure by skipping steps; (2) modifying steps to fit the given
scenario; (3) changing the implementation of a procedure by using different materials (i.e., those
readily available); (4) combining steps from multiple procedures to develop a new procedure; (5)
using concepts as inspiration to develop a new procedure; and (6) using innovative techniques to
improve the accuracy of a procedure. The presence of more create LIs during procedural objectives
is a trend that we also observed in our RQ3 results (discussed in Section 5.3).

In general, there are several possible reasons for why procedural objectives had more create Lls.
First, procedural knowledge is knowledge about how to perform a specific task. Tasks can often
be accomplished in many different ways. For example, there are many ways for finding the center
of a circle, making a paper airplane, or budgeting expenses. Therefore, procedural objectives may
often provide searchers with the flexibility to engage in creative learning processes (e.g., modify
procedures). Second, searchers may often have individual preferences that influence them to en-
gage in creative processes. For example, searchers may be inclined to skip or modify steps based on
their individual skills or prior knowledge. Finally, searchers may have situational constraints that
require them to engage in creative processes. Such constraints may include temporal constraints,
available resources, and success criteria (e.g., efficiency vs. accuracy).

5.2 RQ2: Effects on CPs Traversed

In RQ2, we investigate the effects of the LO (i.e., CP and knowledge type) on the types of CPs
traversed along the pathway.

Effects of the LO’s CP: We begin by discussing our results conditioned on the objective’s CP
(Table 6). Our results found four main trends.

First, irrespective of the objective’s CP, remember and understand LIs (i.e., the simplest CPs)
were the most common. This indicates that, regardless of the LO, remembering and understanding
are frequent and important activities that support more complex learning subgoals. For example,
before analyzing the relations between concepts A and B, it is necessary to first understand A and B
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in isolation. This process may involve several iterations—exploring definitions of A, examples of A,
definitions of B, examples of B, and so on. Additionally, understanding A and B may involve explor-
ing definitions and examples from different perspectives. In terms of definitions, searchers may en-
gage with textual overviews, visual representations, and even mathematical formulas. In terms of
examples, searchers may engage with different types of examples in order to infer common themes.

Second, remember LIs were significantly more common during create LOs. We believe this may
be an unintended effect of our three create/factual tasks (see Table 2), which asked participants
to create a table of facts (i.e., a novel representation of factual knowledge). This particular task
characteristic may have resulted in more remember LIs during create objectives.

Third, apply LIs were significantly more common during apply LOs and, similarly, create LIs
were significantly more common during create LOs. One possible explanation (supported by Ta-
ble 6) is that apply and create LIs are generally uncommon. In this respect, it is reasonable that apply
and create LIs are more common when the ultimate objective is to apply and create, respectively.
Apply and create processes are generally not supported by existing search environments. Apply
processes include executing and implementing (e.g., using facts to perform a calculation, using a
concept to explain a phenomenon, or using a procedure to perform a task). Apply processes often
require a “tangible” application of knowledge that is difficult to carry out within the search envi-
ronment. Similarly, create processes are also tangible in nature, involving “the construction of an
original product” [3, p. 85]. Create processes require tools that support structuring and synthesis
in order to generate something new that can be observed (e.g., creating a new table of facts, a
concept map, or a step-by-step procedure).

Finally, analyze and evaluate LIs were most frequent during evaluate LOs. It is quite natural for
evaluate objectives to involve more evaluate LIs. It is also natural for evaluate objectives to involve
more analyze LIs. Anderson and Krathwohl support this connection between analyze and evaluate,
noting that analysis is often a prelude to evaluation [3]. Analysis precedes evaluation because it
provides the evidence needed for a logical evaluation. For example, in order to evaluate which
concept best explains a phenomenon, it is necessary to first analyze the relationships between
the different concepts under consideration. This process involves decomposing, comparing, and
contrasting (i.e., analyze-level processes).

Effects of the LO’s Knowledge Type: Next, we discuss our results by conditioning on the
LO’s knowledge type (Table 7), Our results found five main trends.

First, irrespective of the objective’s knowledge type, remember and understand LIs were the
most common. As previously discussed, this result suggests that remembering and understanding
are important processes regardless of the end goal.

Second, remember LIs were most frequent when the objective involved factual knowledge. Fac-
tual knowledge is made up of bits of information that tend to be concrete (vs. abstract) and objective
(vs. subjective). Unlike other types of knowledge, facts are often immediately comprehended and
do not benefit from multiple rounds of summarization and exemplification (i.e., understand-level
processes). Additionally, facts tend to be self-evident (e.g., “Currently, the world’s tallest building
is the Burj Khalifa in Dubai’”). Thus, comprehending a fact may not require multiple rounds of
decomposition and comparison (i.e., analyze-level processes). Because of these characteristics, we
argue that remember is the most common CP for acquiring factual knowledge. This trend res-
onates with results reported in Urgo et al. [45]. During factual LOs, participants perceived the task
to require more memorization and less activity across CPs more complex than remember.

Third, understand LIs were most frequent when the objective involved conceptual knowledge.
We believe this is due to the inherent nature of conceptual knowledge. Conceptual knowledge is
knowledge about concepts, categories, theories, principles, schemas, and models. In this respect,
concepts can be highly abstract (e.g., laws of physics) and even subjective (e.g., artistic movements).
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The amorphous nature of conceptual knowledge may have required more summarization and ex-
emplification (i.e, understand-level processes) to help delineate its boundaries. Furthermore, in our
qualitative coding of pathways, we noticed that a single understand LI was often insufficient for
acquiring conceptual knowledge. More often, participants iterated on different understand-level
activities (e.g., summarizing a definition, exploring an example, sharpening a definition with new
information). This trend also resonates with results reported in Urgo et al. [45]. During conceptual
LOs, participants perceived the task to require more understanding.

Fourth, evaluate LIs were the least frequent when the objective involved conceptual knowledge.
This trend is consistent with the previous trend—conceptual objectives had the most understand
LIs. As shown in Table 7, during conceptual objectives, participants spent more LlIs iterating on
CPs less complex than evaluate (especially understand). In other words, our results suggest that
in order to engage in evaluate-level processes during conceptual objectives, participants had to
spend many Lls engaging with lower-level processes.

Finally, create LIs were most frequent when the objective involved procedural knowledge. This
may be explained by procedural LOs allowing for the opportunity to create. As previously dis-
cussed, during procedural objectives, participants tended to explore and then modify procedures
in order to fit their personal preferences and constraints (e.g., available tools and materials). This
trend also resonates with results reported in Urgo et al. [45]. During procedural objectives, partic-
ipants perceived the task to require more creating.

5.3 RQa3: Transitions Between CPs Traversed

In RQ3, we investigate how participants transitioned between CPs in their pathways. Our RQ3
results considered trends from two perspectives. First, we considered common transitions irre-
spective of the objective. Second, we considered trends specific to the objective’s knowledge type
(i.e., factual vs. conceptual vs. procedural). Tables 9-13 summarize the main trends observed in our
RQ3 results.

In the following sections, we provide example pathways that demonstrate high-probability tran-
sitions. Our goal is to give the reader a sense of why these transitions happened frequently. In each
example, we provide: (1) an overview of the LO; (2) a narrative of the LIs shown in the example;
and (3) an explanation for why the transition(s) shown in the example may be common during
learning-oriented search tasks.

5.3.1 High-probability Transitions Across All LOs. As illustrated in Table 9, our results found
four high probability transitions irrespective of the LO: (1) starting with understand; (2) downshift-
ing to understand; (3) upshifting from understand to analyze; and (4) transitioning to the same CP.
The following pathway excerpt demonstrates all four common LI transitions.

Learning Objective: The task required the participant to create a diagram of Bernoulli’s
principle applied to the notion of lift. (create/conceptual)

— LI (understand): Enters query to be able to summarize Bernoulli’s principle.

— LI;7 (understand): Reads through example diagram of forces involved in Bernoulli’s principle ap-

plied to a wing during lift.
— LI;3 (analyze): Differentiates those forces from those associated with Newton’s Laws applied to lift.
— LIj9 (understand): Decides they need more information on Newton’s laws of motion and next looks
for examples of newton’s laws of motion and lift.
— LIy; (understand): Verbally summarizes the movement of air above and below a wing in a diagram.
— LI, (understand): Summarizes in notes relevant forces at play in the diagram.
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Table 9. Transitions between CPs That Were Common Across All LOs

Transition Diagram Explanation

@ Learner issues general query for overview of fact, concept, or procedure.
E.g., “expensive painting”, “automatism”, or “paper airplane”

Starting with Understand

Learner revisits definition or explores new examples to clarify and deepen

& ) i
ONOR=—S

Downshift to Understand

C@ C@ Learner iterates on the same cognitive process to deepen understanding.
% C/@ C/@ E.g., understand to understand occurs while exploring different charac-
teristics of a concept.

Back to Self

Q Q After acquiring basic or deeper understanding, learner can differentiate
from related facts, concepts, and procedures.

Understand to Analyze

Additionally, learner gathers more evidence to increase confidence when
choosing between options (i.e., evaluate to understand).

In the transition diagrams, R = remember, U = understand, P = apply, A = analyze, E = evaluate, and C = create.

First, starting with understand (summarizing or exemplifying) is a logical first step in learn-
ing. Participants often began the search task with little prior knowledge, leading them to start
by issuing a general query with the intent to understand information (e.g., be able to summarize
information in their own words).

Second, downshifts to understand are common because summarizing and exemplifying are basic
processes that help people construct more precise and nuanced knowledge, which is needed to
support more complex processes. In the above example, the participant downshifts from analyze
to understand. This downshift occurs because the participant attempts to differentiate between
Newton’s laws and Bernoulli’s principle (LI;g). In doing so, the participant realizes that they do
not comprehend Newton’s laws well enough to analyze how they relate to Bernoulli’s principle in
explaining lift. Downshifting to understand (LI;9) allowed the participant to review more examples
of Newton’s laws in order to develop a more nuanced understanding of these concepts.

Third, transitions from understand to analyze are common because better understanding a fact,
concept, or procedure enables a learner to analyze how it relates to other facts, concepts, or proce-
dures. In the example above, LI;; involved clearly defining the boundaries of Bernoulli’s principle.
Subsequently, LI;; enabled LI, which involved analyzing the relationships between Bernoulli’s
principle and Newton’s laws in explaining lift.

Finally, transitions to the same CP were generally common. The example above shows the partic-
ularly ubiquitous understand-to-understand transition. These transitions were common because
gaining a deeper understanding of a specific piece of knowledge often involved iterating over dif-
ferent definitions, examples, or perspectives. For example, in the above excerpt, LI;; shows the
participant summarizing the movement of different components in a diagram—the movement of
air above and below a airplane’s wing during lift. Subsequently, LIz, shows the participant making
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Table 10. Transitions between CPs That Were Common to Factual Learning Objectives

Transition Diagram Explanation

® Learner issues precise, well-defined query of specific fact.
E.g., “name of most expensive painting” or “world’s tallest building.”
Starting with Remember

Learner gathers additional facts.
OHONOS S

Downshift to Remember

Learner combines two facts to generate a third fact.
@f\’ Because facts are well-defined, learners are more likely to be confident

Apply to End in the answer and stop searching.

E.g., learner assesses validity of fact and continues to collect other facts.

In the transition diagrams, R = remember, U = understand, P = apply, A = analyze, E = evaluate, and C = create.

notes about the forces acting on the wing during lift (i.e., a different perspective on the information
depicted in the diagram).

5.3.2  High-probability Transitions Unique to Factual LOs. As illustrated in Table 10, our re-
sults found three high probability transitions unique to factual LOs: (1) starting with remember;
(2) downshifting to remember; and (3) ending with apply. The following pathway excerpt demon-
strates these three common LI transitions unique to factual objectives.

Learning Objective: The task required the participant to use the world’s tallest building as a unit
to better appreciate the depth of the deepest point in the ocean. (apply/factual)

— LI; (remember): Enters a query to find specifically the world’s tallest building.

— LI5 (understand): Summarizes fact in notes about the world’s tallest building.
— LI (remember): Enters query to be able to recall the deepest point in the ocean.

— LIy (apply): Calculates the deepest point of the ocean in terms of the world’s tallest building.

First, remember was a common starting point during factual objectives. Compared to concep-
tual and procedural knowledge, factual knowledge tends to be concrete, well-defined, and self-
contained. Anderson and Krathwohl noted that factual knowledge relates to bits of information
that tend to have “a low level of abstraction” and “value in and of themselves” [3, p. 42]. We be-
lieve this helps explain why remember was a more common starting point during factual objectives.
Participants were often able to gain factual knowledge by simply memorizing or copy/pasting in-
formation (versus summarizing or exemplifying). In the above excerpt, in LI;, the participant starts
the task by simply searching for the name of the world’s tallest building.

Second, downshifting to remember was a more common transition during factual objectives.
This typically happened when participants sought a new piece of factual knowledge required by
the task. In the above excerpt, the participant downshifts from understand (LI5) to remember (LI)
because they needed a new piece of factual knowledge required by the task (i.e., the name of the
deepest point in the ocean).
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Table 11. Transitions between CPs That Were Common to Conceptual Learning Objectives

Transition Diagram Explanation
Learner gathers more evidence to bolster argument
for judgement of concept.

The amorphous, broad nature of concepts often
make learners less confident when choosing which
concept is most suited to a particular scenario (e.g.,
explaining a natural phenomenon).

Learners engaged in fewer instances of evaluate
overall in conceptual learning objectives.

(m)
©

Evaluate to Analyze

When it did occur, evaluate was more likely to be the
. final step after much understanding and analyzing
End with Evaluate of concepts throughout the pathway.

(m)
@

In the transition diagrams, R = remember, U = understand, P = apply, A = analyze, E = evaluate, and C = create.

Finally, apply was a more common end point during factual objectives. This common transition
is also likely due to factual knowledge being concrete and well-defined. Applying factual knowl-
edge involves less uncertainty than applying conceptual or procedural knowledge. In the above
excerpt, in LIy, the participant is able to apply two bits of factual knowledge to generate a new fact.
Presumably, the participant felt confident enough in their application of this factual knowledge to
end the task with apply. This was less common during conceptual or procedural objectives. When
applying conceptual or procedural knowledge, participants often downshifted to lower-complexity
processes (e.g., revisiting definitions, summaries, and examples) to verify whether they applied the
knowledge correctly.

5.3.3  High-probability Transitions Unique to Conceptual LOs. As illustrated in Table 11, our
results found two high probability transitions unique to conceptual LOs: (1) downshifting from
evaluate to analyze and (2) ending with evaluate. The following pathway excerpt demonstrates
these two common LI transitions unique to conceptual objectives.

Learning Objective: The task required the participant to determine which art movement most
closely aligns with automatism: surrealism or Dadaism. (evaluate/conceptual)

— LI, (evaluate): Based on characteristics of surrealism and Dadaism, they judge that surrealism seems to be

more closely aligned with automatism.
— LI33 (analyze): In order to further clarify this distinction, they organize and differentiate surrealism, Dadaism,

and automatism in relation to one another.

— LI35 (evaluate): Using evidence that shows “surrealist automatism” as a term, they make a final judgment that
surrealism is more closely aligned with automatism than Dadaism.

First, downshifting from evaluate to analyze was common during conceptual objectives. These
downshifts mostly occurred when participants felt they needed to reexamine the relations between
concepts in order to clarify or strengthen a previously made argument. In the excerpt above, the
participant transitions from LI, (evaluate) to Ll3s (analyze) because they needed to revisit the
relations between the three concepts associated with the task in order to make a clearer argument.
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Table 12. Transitions between CPs That Were Common to Procedural LOs

Transition Diagram Explanation

®m® Learner is able to upshift to analyzing or evaluating
without iterating on less complex processes. This

@m® may be explained by target procedures being gener-
@/N@ ally well-defined and concrete.

Upshifts to more complex cognitive processes

After creating initial modification, learner is inspired
to make additional modifications to procedure (e.g.,

skip, reorder, modify steps).

Back to Create

Learner creates novel procedure and ends search to
test procedure with tangible materials.

Create to End

In the transition diagrams, R = remember, U = understand, P = apply, A = analyze, E = evaluate, and C = create.

Second, evaluate was a common endpoint during conceptual objectives. This is likely due to
the amorphous nature of conceptual knowledge. In contrast to facts and procedures, concepts
(e.g., art movements) can be highly abstract and subjective. Based on our coding of pathways,
we noticed that participants did not feel confident enough to evaluate conceptual knowledge until
going through many iterations of understand (e.g., understanding individual concepts) and analyze
(e.g., analyzing the relations between concepts). Our RQ2 results found that evaluate LIs were
generally rare during conceptual objectives. Our RQ3 results suggest that participants tended to
evaluate toward the end of the search session (i.e., the final LI in the pathway).

5.3.4  High-probability Transitions Unique to Procedural LOs. As illustrated in Table 12, our re-
sults found three types of high probability transitions unique to procedural LOs: (1) upshifting to
more complex processes, (2) transitioning from create to create, and (3) ending with create.

The following pathway excerpt demonstrates three common transitions unique to procedural
objectives: (1) remember to evaluate, (2) understand to evaluate, and (3) remember to analyze.
These are the types of transition upshifts that were more common during procedural objectives.

Learning Objective: The task required the participant to find the mathematical center of a firepit
circle. (apply/procedural)

— LI4 (remember): Reads word-for-word through a particular method of finding the center of a circle.
— LI5 (evaluate): Judges that the method looks too difficult.

— LI (remember): Reads word-for-word through a different method.

— LI; (understand): Summarizes a list of necessary materials from the steps they just read.

— LIg (evaluate): Judges that this method looks even more complicated.

— LIy (remember): Reads word-for-word through an additional method.
— LI, (analyze): Relates method to previous method, concluding that the methods are similar.
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First, remember to evaluate was a common upshift during procedural objectives. This suggests
that participants were often able to make judgements about procedures using superficial evidence
or heuristics (e.g., number of steps, number of tools or materials involved, and complexity of steps
depicted visually). In the excerpt above, the participant reads the steps of a procedure in L4, and
quickly judges that the procedure is too complex in LIs without trying to fully comprehend it.

Second, understand to evaluate was a common upshift during procedural objectives. Similar to
the previous example, in many cases, participants were able to judge a procedure after understand-
ing some aspect of it. In the excerpt above, the participant summarizes the materials involved in a
procedure in LI;, and subsequently judges that the procedure is too complex in Lls.

Finally, remember to analyze upshifts were common during procedural objectives. This trend is
likely due to the concrete nature of procedures, especially those involving physical steps and tan-
gible materials. During procedural objectives, participants were often able to draw comparisons
between procedures (an analyze process) without first iterating over multiple rounds of under-
standing.

The next pathway excerpt demonstrates two common transitions unique to procedural LOs:
(1) create to create and (2) ending with create.

Learning Objective: The task required the participant to find different methods for finding the
mathematical center of a circle and then develop their own method. (create/procedural)

— LI, (analyze): Explores alternatives that can act as a long straightedge in a particular scenario for finding the
center of a firepit circle.

— LI; (create): Designs own alternative tool, explaining that they could use string instead of a straightedge and,
additionally, use the string as a way to find the shortest distance between two points.

— LI (create): Develops method of finding the absolute diameter, rather than simply a chord, by initially estimat-
ing the diameter then moving a string back and forth to make sure that there is not a point where the string is
longer.

— LI (create): Develops an additional procedure to find the center of the circle using the “reverse” of the circum-
ference formula.

First, create-to-create transitions were more common during procedural objectives. There are
two possible reasons for this trend. First, procedures are made up of steps that can be skipped,
modified, re-ordered, or combined. Second, procedures often need to be modified or created
according to individual preferences or constraints (e.g., prior knowledge, available tools/materials,
and temporal constraints). As such, procedural objectives may have had more create-to-create
transitions because one modification often leads to additional modifications. In the excerpt above,
the participant designs a new tool in LI; and subsequently modifies a step to use this new tool in
LIg. Finally, create was a common endpoint during procedural objectives. This trend may simply
be due to the prevalence of create LIs during procedural objectives. After modifying a procedure
or creating a new one, it was not necessary for participants to downshift to lower-complexity
processes (e.g., understand or analyze) because the new procedure was already fully understood.
Thus, participants were more often able to end with create.

5.3.5 Low-probability Transitions Unique to a Knowledge Type. Finally, as illustrated in Table 13,
there were two transitions that were uncommon to a particular knowledge type. First, remember-
to-understand transitions were uncommon during factual objectives. Most remember transitions
simply iterated back to remember. As noted above, this is likely due to factual knowledge being con-
crete, well-defined, and self-contained. We believe these attributes of factual knowledge rendered
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Table 13. Transitions between CPs That Were Uncommon

Transition Diagram Explanation

Facts often did not require understand (e.g., summa-
rization, exemplification) for learner to internalize

Remember to Understand (Factual)

Learners had more difficulty in increasing in com-
plexity when learning concepts

Analyze to Evaluate (Conceptual)

In the transition diagrams, R = remember, U = understand, P = apply, A = analyze, E = evaluate, and C = create.

more complex CPs (e.g., summarizing, exemplifying) unnecessary for comprehension. Instead, par-
ticipants tended to iterate from remember to remember LIs as they gathered multiple distinct facts
in quick succession.

Second, analyze-to-evaluate upshifts were uncommon during conceptual objectives. Most an-
alyze transitions iterated back to analyze or downshifted to understand. This trend is likely due
to conceptual knowledge being abstract, subjective, and interconnected. Evaluating conceptual
knowledge required more iterations of understand (i.e., understanding individual concepts) and an-
alyze (i.e., analyzing the relations between concepts). Participants often iterated over these lower-
complexity processes before being able to confidently evaluate conceptual knowledge. This trend
resonates with results from Urgo et al. [45], which found that participants perceived conceptual
objectives to be more difficult than factual and procedural objectives. Participants’ inability to
move up in complexity from analyze to evaluate may have contributed to their perceptions of task
difficulty.

6 IMPLICATIONS FOR DESIGNING TOOLS TO SUPPORT LEARNING

Our results found that the CP, and to a greater extent, the knowledge type of the LO impacted:
(RQ1) the length and diversity of pathways; (RQ2) the types of CPs traversed along the pathways;
and (RQ3) the types of transitions between CPs. Our results have implications for designing search
environments that support learning.

In this section, we propose different tools and features to encourage and support learning during
search. Table 14 provides a summary of our proposed tools. In Table 14, tools are grouped by type
of LO. First, we discuss tools to support conceptual objectives. Then, we discuss tools to support
procedural objectives. Finally, we discuss tools to support all objectives. Tools to support factual
objectives (e.g., note-taking tools that enable searchers to save information) are also likely to sup-
port conceptual and procedural objectives. Therefore, in Table 14, we did not create a separate
section for tools to uniquely support factual objectives. Instead, tools to support factual objectives
are discussed under “All LOs”. In Table 14, we describe each proposed tool, list which of our results
motivate the proposed tool, and acknowledge prior work that has investigated similar tools.

6.1 Tools to Support Conceptual LOs
First, in Table 14, we discuss three potential tools and features to support searchers with conceptual
LOs.

Our results found that conceptual LOs had the most understand LIs (RQ2) and frequent
downshifts to understand (RQ3). As previously noted, during conceptual objectives, participants
often felt unsure if they understood concepts well enough to support more complex subgoals (e.g.,
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Table 14. Implications for Search System Modifications Based on Findings (Section 4)
Learning Potential Modification/Tool Results Supported Related Work
Objective
Type
Organize results by definitions, | ® Conceptual LOs involved
overviews, and examples more understand (RQ2)
e Conceptual LOs involve
Organize examples by type downshifts to understand
(RQ3)
CO"CEPth Questions p.osed to t:'St ) e Conceptual LOs involve
Learning under §tandlng; e.g., wthh of downshifts to understand | e Question genera-
Objectives these images exemplify (RQ3) tion [42]
Bernoulli’s principle?”
. e Procedural LOs involved
}mklng procedures th’l;ough more creating (RQ1, RQ2)
querying-by-example” and e Procedural LOs involve up-
related procedures side-by-side |  ¢hifis (RQ3)
Substitute or functionally ® Procedural' LOs involved
Procedural equivalent materials more creating (RQ1, RQ2)
f)eba'rniflg Relevant conceptual e Procedural LOs involved
jectives knowledge to inspire the more creating (RQ1, RQ2)
creation of novel procedures
e Downshifts to understand
Interactive space to copy, common in all LOs (RQ3)
summarize, organize, connect, |® Factual LOs involved more | e Sticky-note tool [15]
and modify evolving remember (RQ2) + Note-taking [37]
knowledge e Procedural LOs involved | @ Note-taking and
more creating (RQ1, RQ2) highlighting [39]
Trails of searcher’s own search | ® Downshifts to understand | e Search trails of other
history common in all LOs (RQ3) searchers [7, 47]
F%lter sear ch results across e Transitions back to the same | ® Perspective-based
dimensions such as CP common in all LOs (RQ3) | search system [43]
complexity, perspective, and
All Learning originating source
Objectives e Understand to analyze com-
Related facts, concepts, and mon in all LOs (RQ3)
procedures; highlight e Factual LOs involve down-
differences/similarities shifting to remember (RQ3)
e Conceptual LOs involve
downshifting from evaluate
to analyze (RQ3)
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analyze the relations between concepts or evaluate the relevance of concepts in a given scenario).
Participants often iterated over multiple understand LIs (i.e., understand-to-understand transi-
tions) by reviewing definitions, summaries, and examples from different perspectives. We propose
three tools and features to support such understand-level processes during conceptual objectives.

First, given a conceptual knowledge query (e.g., “cubism”), systems could diversify and organize
search results by definitions, overviews, and examples. Commercial search systems already do
this to some extent (albeit inconsistently). For example, in response to the query “cubism”, Google
displays dictionary definitions, encyclopedic articles, and images of cubist paintings. However,
systems could organize these different types of results more clearly with explicitly marked sections
on the SERP.

Second, to deepen their understanding, participants often explored examples of a concept from
different perspectives. To support these activities, systems could present and organize examples
of a concept by type within the SERP. To illustrate, Bernoulli’s principle (B) can be demonstrated
in multiple ways (e.g., B and sail boats, B and wings, B and Venturi tubes, B and chimneys, B and
shower curtains, B and curveballs in baseball, and B and topspin in tennis). Grouping examples
by type may encourage searchers to explore examples from different perspectives and learn about
common themes, deepening their understanding of a concept.

Third, and perhaps more ambitiously, systems could enable searchers to test their own un-
derstanding of a concept. In prior search-as-learning studies, understand-level learning has of-
ten been measured using closed-ended tests (e.g., fill-in-the-blank, true/false, and multiple-choice
tests). Such tests could potentially be automated by a search system. For instance, a system could
show a searcher a set of images and ask them to select which ones exemplify a given concept (e.g.,
“Which of these images exemplify Bernoulli’s principle?”). Answering such automatically gener-
ated questions may help searchers identify knowledge gaps and assess whether they understand
a concept well enough to pursue more complex subgoals (e.g., analyze or evaluate). Prior research
has investigated systems that enable searchers to assess their own knowledge using automatically
generated questions [18, 19, 42]. For example, Syed et al. [42] evaluated a system that prompted
participants to answer automatically generated factoid questions to assess their comprehension of
passages read during the session (i.e., remember/factual learning). Future research could extend
such systems by asking more complex questions to support a wider range of LOs during search.

6.2 Tools to Support Procedural LOs

Next, in Table 14, we discuss four potential tools and features to support searchers during proce-
dural LOs.

Our results found that procedural objectives involved more create LIs (RQ2) and create-to-create
transitions (RQ3). As previously noted, during procedural objectives, participants often simplified,
modified, combined, and created new procedures based on their unique preferences (e.g., familiar
techniques) and constraints (e.g., available tools and materials). We propose three tools to support
such create-level processes during procedural objectives.

First, systems should prioritize linking procedures through “querying-by-example”, enabling
searchers to efficiently find alternative procedures for the same task. Additionally, systems could
display related procedures side-by-side and emphasize their similarities and differences. Helping
searchers find and compare related procedures may enable them to: (1) gauge the range of alter-
native approaches to the task at hand; (2) identify steps that are skippable or modifiable; and (3)
discover different ways to execute a step. Ultimately, such tools could help searchers combine ideas
from related procedures to fit their preferences and constraints.

Second, during procedural objectives, create LIs often occurred when participants considered
alternative techniques, tools, and materials to implement a specific procedure. To support this
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process, search systems could automatically identify and suggest alternative techniques, tools, and
materials when a searcher is reviewing a specific procedure. For example, if a recipe calls for heavy
cream, the system could automatically point out that half-and-half is a common replacement.®

Third, participants sometimes used concepts (and their definitions) as inspiration to create new
procedures. For example, one participant used the concept of a diameter to develop their own
approach for finding the center of a circle.® To better support this process, search systems could
display related concepts in response to a procedural knowledge query.

Our results also found that procedural objectives had more upshift transitions to more complex
processes (RQ3). To support these upshifts, systems could enable searchers to “query-by-example”
based on explicitly stated goals. In other words, the system could enable searchers to submit a
specific procedure as a “query” and explicitly request either: (1) background information (i.e., to
support upshifts to understand); (2) example videos of the procedure being executed (i.e., to support
upshifts to apply); (3) alternative procedures with the same objectives (i.e., to support upshifts to
analyze); (4) pros and cons of the procedure (i.e., to support upshifts to evaluate); or (3) potential
modifications (i.e., to support upshifts to create).

6.3 Tools to Support All LOs

Finally, in Table 14, we discuss four potential tools and features to support searchers with LOs of
any knowledge type.

First, our results found that remember and understand were frequent LIs regardless of the objec-
tive (RQ2). In other words, as might be expected, remember- and understand-level processes seem
to be foundational in support of more complex subgoals. To support searchers with remember- and
understand-level processes, systems should provide interactive spaces for searchers to copy/paste,
summarize, organize, and annotate information as they search. Prior studies have found that such
tools can provide learning benefits [15, 37, 39]. As an implication for future research, we believe
that such tools should be designed to support and encourage both remember- and understand-level
processes. Remember-level processes can be easily supported by allowing searchers to copy/paste
and save information. More importantly, to support understand-level processes, tools should en-
courage searchers to summarize information in their own words and organize information using
their own knowledge representations (e.g., labeled clusters).

Second, downshifts to understand were common regardless of the LO (RQ3). To support these
downshifts, systems could provide users with search trails of their own search history. In our study,
participants often downshifted to understand by revisiting pages to reread content or reissuing
queries to examine alternative search results. Providing users with access to their own search
trails could streamline this process. Prior studies have investigated the benefits of search trails
from other searchers who performed a similar task [7, 47]. Our results suggest that users may also
benefit from having access to their own search trails during a learning-oriented session.

Third, transitions back to the same CP were frequent regardless of the LO (RQ3). For example, if a
searcher is evaluating, it is likely that they will continue to evaluate in the next subgoal. We noticed
this happening when participants wanted: (1) simpler or more complex content to better integrate
new information with their existing knowledge; (2) content from a different source to verify newly
acquired knowledge; or (3) content from a different perspective to deepen their knowledge. This

SProcedural knowledge sites such as Wikihow often include user-generated comments that mention functionally equiv-
alent techniques, tools, and materials. A system could mine such resources to identify interchangeable techniques, tools,
and materials.

®Use a string to find the longest “chord” of the circle (i.e., the diameter), and then fold the string in half to find the center
of the circle.

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 77. Publication date: January 2022.



Understanding the “Pathway” Towards a Searcher’s Learning Objective 77:33

trend is consistent with results from Liu et al. [31], which found that learning-oriented searches
often involve repeated iterations of the same overall intent. To support these iterative transitions,
systems should enable users to filter search results along dimensions such as complexity (or tar-
get audience), originating source, and perspective. Developing systems that can filter results by
complexity and source seem relatively straightforward. Developing systems that can filter results
by perspective seem more challenging and are area of ongoing research. Tabrizi and Shakery [43]
describe the different hypothetical components of a perspective-based search system.

Finally, upshifts from understand to analyze were frequent regardless of the LO (RQ3). This
means that understanding a fact, concept, or procedure, typically leads to analyzing its relation
(e.g., similarities and differences) to other facts, concepts, and procedures. In other words, under-
standing something in isolation typically leads to understanding it in a greater framework. To sup-
port these understand-to-analyze transitions, systems should enable searchers to explore related
facts, concepts, and procedures in response to an understand-level query. Commercial systems al-
ready do this to some extent (albeit inconsistently). For example, in response to the query “burj
khalifa skyscraper height”, Google also shows results for other skyscrapers in the “People also
search for” section. By making this related information more accessible, searchers may be able to
situate newly acquired knowledge in a greater framework. For example, the Burj Khalifa is 2,717
feet tall and (more impressively) more than twice as tall as the Empire State Building.

As an implication for future work, systems should enable searchers to explore related facts,
concepts, and procedures in a more consistent and self-directed manner (e.g., “See related [facts
| concepts | procedures]”). Enabling searchers to explore related facts, concepts, and procedures
may encourage searchers to transition from understand- to analyze-level processes and may pro-
vide different benefits. As in the example above, exploring related facts may help searchers gain a
deeper appreciation of a fact. Exploring related concepts may help searchers understand the unique
aspects of a concept in relation to similar concepts. Exploring related procedures (i.e., procedures
to accomplish a different but related task) may help searchers deepen their understanding of im-
portant concepts and techniques used in related tasks. Ultimately, such tools could help searchers
situate newly acquired knowledge in a greater framework (i.e., an analyze-level process).

7 CAVEATS AND OPPORTUNITIES FOR FUTURE WORK

Our study and results have a few caveats worth noting,.

First, participants completed tasks with LOs associated with three (out of six) CPs from A&K’s
taxonomy. As previously mentioned, we omitted the CPs of remember and understand because
they are the least complex, and we omitted analyze because analyzing is a necessary component
of evaluating. Future work might consider the full range of CPs as LOs.

Second, participants were given a maximum of 15 minutes to complete the search phase of each
task. Naturally, time constraints can influence search behaviors and outcomes [12]. In our case, the
15-minute time limit may have influenced the pathways taken by participants to achieve the given
objective. Future work is needed to investigate how time constraints may influence the pathways
taken by searchers toward an objective. In our study, the 15-minute time limit was imposed to keep
the study session under 1.5 hours. Additionally, after several rounds of pilot testing, we determined
that 15 minutes was enough time for participants to complete our tasks. Ultimately, participants
spent about 10 minutes searching on average (M = 9.79, S.D. = 5.39).

In Urgo et al. [45], we reported on the effects of the objective on task completion time. The cognitive process of the
objective had no significant effects. Conversely, participants took longer to complete tasks with conceptual objectives
(11.65 minutes) versus procedural objectives (8.43 minutes).

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 77. Publication date: January 2022.



77:34 K. Urgo and J. Arguello

Finally, in our study, we did not explicitly consider knowledge gain as a main dependent variable.
In other words, participants did not complete pre- and post-tests to measure learning during the
search process. Instead, participants were asked to demonstrate their achievement of the LO in a
2-minute video recorded by the moderator. We believe that the video demonstration phase of each
task encouraged participants to achieve the given objective. Participants had to explain their main
solution to the task “live” and in front of the moderator.

In terms of learning outcomes, we see important opportunities for future work. In our study,
we used qualitative techniques to investigate the learning process during search. Future studies
could adopt similar techniques to investigate how the learning process might influence learning
outcomes.® An important open question is: What are characteristics of pathways that lead to greater
knowledge gains? For example, are greater knowledge gains achieved when pathways are longer,
more diverse, or have more upshift transitions? Our study focused on how objectives influence
pathways. Future work should also consider how pathways impact learning.

8 CONCLUSION

In this article, we have introduced the notion of a pathway—a sequence of learning instances
(or subgoals) followed by a searcher toward a specific LO. We leveraged A&K’s taxonomy [3] to
characterize both LOs and pathways. We studied the impact of a objective’s knowledge type and
CP on the pathway length, diversity, and CPs traversed. Additionally, we analyzed the transition
probabilities between CPs conditioned on the knowledge type of the objective.

Our research makes several important contributions. First, from a methodological perspective,
we present a method for analyzing search sessions to gain insights about the learning process dur-
ing search. In this article, we analyzed how the LO (i.e., the end goal) can influence the learning
process. Future studies could use our methodology to more closely investigate how pathway char-
acteristics influence learning outcomes.

Second, our results found that the objective can influence the pathways followed by searchers.
Importantly, the knowledge type of the objective had a much stronger effect than the CP. For
example, factual objectives involved more remembering (e.g., memorizing), conceptual objectives
involved more understanding (e.g., summarizing and exemplifying), and procedural objectives
involved more creating (e.g., simplifying, modifying, and combining). Prior studies have also
leveraged A&K’s taxonomy to investigate how objectives impact search behaviors and outcomes.
However, studies have primarily leveraged the CP dimension and ignored the knowledge type
dimension. Our results indicate that searchers may need different types of support during
objectives involving factual, conceptual, and procedural knowledge.

Finally, our analysis of CP transitions revealed several important trends. Our results found sev-
eral likely transitions irrespective of the objective. Participants were likely to start with understand,
iterate on the same CP, transition from high- to low-complexity processes, and transition from un-
derstand to analyze. Additionally, our results found several transitions to be likely depending on
the knowledge type of the objective. For example, during factual objectives, participants were more
likely to start with remember and transition to remember from more complex processes. During
conceptual objectives, participants were more likely to start with understand and transition back
to understand from more complex processes. During procedural objectives, participants were the
most likely to transition upwards from low- to high-complexity processes. We have discussed impli-
cations from our results for designing search environments (i.e., search features and auxiliary tools)
to support learning. In future work, we plan to explore the impact of scaffolding tools that support
the development and externalization of subgoals based on the pathways observed in our study.

8In Section 2, we briefly summarize different methods used to quantify knowledge gains during the search process.
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A APPENDIX
A.1 Coding Guide

The coding guide was developed based on A&K’s book [3], situating LOs at the intersection of two
orthogonal dimensions: the CP dimension and the knowledge type dimension. This coding guide
associates LIs with a particular CP and a particular knowledge type. Because metacognitive knowl-
edge was not part of our analysis, the guide includes three knowledge types (factual, conceptual,
and procedural) and six CPs (remember, understand, apply, analyze, evaluate, and create). Thus,
there are 18 possible coding combinations. Each of these combinations (e.g., Factual/Remember)
are outlined below.

The LI units consisted of recorded screen activities (e.g., queries) and think-aloud comments.
When considering how to categorize an LI, the coder asked themselves “What is the intention
of the learner at this moment?” Then, the coder used the following criteria to determine the
most appropriate category. Criteria for these categories include particular actions and associated
examples.

Factual

Factual/Remember

e Reads a fact (e.g., person, date, and place)
e Copy/pastes a fact without additional verbal or written elaboration
e Memorizes a fact
e Issues a query using specific language of fact
- e.g., “tallest building”
o Notes having seen or heard of fact before

Factual/Understand

o Finds example of fact in a visualization
o Restates fact in own words
e Makes an estimation of a fact
e Writes down a fact with additional verbal elaboration
e Acknowledges or includes source of fact
e Makes a query using general language of fact
- e.g., “tall buildings”
e Investigates a particular fact beyond just noting/reading the fact
- e.g., “I don’t know Abraham Lincoln. Let’s look into him a bit more.”
- e.g., “This artist keeps coming up, so I'll look into them a bit more.”
e Makes some inference about fact
- e.g., “This mentions that Americans have an average of 2.5 doctors for every 1,000 people
while Europeans have an average of 3.5, we Americans must generally be less healthy”

Factual/Apply
e Uses one fact with second fact to find third fact
Factual/Analyze

e Compares and differentiates facts that clarify or explain fact
o Compares two facts to arrive at most reasonable average or estimation

ACM Transactions on Information Systems, Vol. 40, No. 4, Article 77. Publication date: January 2022.



77:36 K. Urgo and J. Arguello

e Differentiates between categories of facts
- e.g., “OhIsee this is the number of years a cat lives, but this is the number of human years
a cat lives”
e Compares facts to find correlations or themes among the facts or generalizations
- e.g., “Most of the deep parts of the ocean are in the Pacific Ocean.”
e Lists or identifies correlations (or lack of correlation) or themes among the facts
e Identifies an outlier among correlations or themes
- e.g., “Most of these are in the Pacific Ocean, but I see this point is in the Atlantic.”
e Disambiguates two facts
- e.g., “The Challenger Deep exists within the Mariana Trench, they are not separate loca-
tions”

Factual/Evaluate

The existence of a “judgment” word or phrase does not in and of itself elicit an evaluate code (e.g,
“that’s interesting”, “so that’s good”, or “that’s not what we need” are not coded as evaluate). It is
important that the judgment is made with respect to the learning subgoal or overall objective (e.g.,
“T can see that most of these paintings are from post-1900, so date of creation is a good potential

explanation for the high cost of the painting””)

e Judges, critiques, or questions validity of a fact
e Judges or critiques importance or validity of a fact that explains other fact
e Judges, critiques, or questions resource validity of fact
e Verifies a previously known fact.
e Making a judgment about a fact being good/bad at explaining something.
e States why a fact is good/bad at explaining something.
e Judges usefulness of criteria for assessing reasoning behind fact
- e.g., “This cat breed chart’s variables are a good way to assess why cats are such popular
pets”
e Selects a reason for explanation of fact
- e.g., “I think this cat is so expensive because the breed is so rare.”
e Compares lists of facts to find agreement
- e.g.,, ‘Tm actually not finding a lot of overlap between the two lists of most expensive
paintings.”

Factual/Create

e Generates new logical reason substantiating a fact that is not explicitly or implicitly cited in
resource

Conceptual

Conceptual/Remember

e Reads through definition of concept

e Memorizes definition of concept

e Writes down or copy/pastes definition of concept without additional verbal or written elab-
oration

e Reads through (notes) techniques or concepts associated with main concept without addi-
tional verbal or written elaboration
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e Reads through (notes) definitions of techniques or concepts associated with main concept
without additional verbal or written elaboration

e Reads or notes (not queries) name of concept without additional verbal or written elaboration

e Recalls definition of concept

Note: If examples are involved in any way then move up (at least) to understand

Conceptual/Understand

e Reviews example of concept (e.g., reads the labeled parts of an example of concept, looks at
paintings that exemplify an artistic style)
o Summarizes definition of concept in own words
o Writes down concept and elaborates verbally
- e.g., notes concept and states that they do not understand the concept
- e.g., notes concept and states they will look into it later
e Reviews examples of techniques or concepts associated with main concept
e Summarizes definition of techniques or concepts associated with main concept
e Reviews example or representative work of concept
e Reviews example or representative work of technique associated with main concept
e States that they are attempting to “understand” a technique or concept
e Makes a guess at the definition of a concept in own words
- e.g., “So it seems like surrealism might be art that is made from an artist’s perception of
dreams or other alternate realities””
e Makes some inference about concept
- e.g., “It says that insurance can be included in a mortgage, so it’s probably not mandatory.”
e Issues exploratory query of concept
- e.g., “Ireally don’t know what this is, but I'll start with this’ Bernoulli’s principle”
e Reads, writes down, or notes example of concept
- e.g., “So water through a hose with a thumb partially covering the hole is an example of
Bernoulli’s principle”
e Recognizes explanations of phenomena that use different concepts
- e.g., “So there are two different explanations for why the sky is blue, Tyndall Effect and
Rayleigh Scattering.”
e Uncovers conflicting or disputed information
- e.g., “So it looks like there is disagreement on which is the appropriate theory to explain
why the sky is blue”

Conceptual/Apply

e Talks through application of concept (e.g., expresses how essential components of concept
function or are represented in a given example)
e Questions whether example is instance of concept by citing definition or characteristics of
concept
e Applies essential components of concept to specific novel example
e Revisits example to apply participant’s newly acquired characteristics of concept to example
- e.g., “Ah yes, I see now that this is made up of corners consisting of perpendicular lines as
I learned from the definition of a square.”
o Investigates a particular application of a concept to a scenario
- e.g., ‘T understand the general idea of Newton’s second law, but I am really interested in
how this applies to a kayak moving through the water””
e Applies concept to example from memory (example is not explicitly stated in site)
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- e.g., “oh so the Tyndall Effect is like when you see blue smoke from motorcycle exhaust.”
(when motorcycle example had not ever been mentioned during search session)

Conceptual/Analyze

e Differentiates between two or more concepts
e Connects the dots among examples, extrapolates, generalizes concept
- e.g., “So it looks like all of these are abstract and involve lions.”
- e.g., “The image search is not really bringing up what I expected...it’s almost like it’s [con-
cept is] broader than I assumed”
e Differentiates between forms, representations, or types of concept
- e.g., “If this needs to include all systems of democracy I should include parliamentary and
presidential”
e Groups examples by form, representation or type of concept
e Realizes that two different concepts together best explain a phenomena
- e.g., “Ok, so I guess you need to know about the continuity equation and Bernoulli’s equa-
tion to analyze the flow of a fluid”

Conceptual/Evaluate

The existence of a “judgment” word or phrase does not in and of itself elicit an evaluate code
(e.g, “that’s interesting”, “so that’s good”, or “that’s not what we need” are not coded as evaluate).
It is important that the judgment is made with respect to the learning subgoal or overall objective
(e.g., “T think Bernoulli’s principle is easier to understand than Newton’s laws of motion when
explaining lift”)

e Judges or critiques effectiveness, appropriateness, and/or validity of concept to explain a
phenomenon
e Judges or critiques a concept given some characteristics (e.g., efficiency, effectiveness, con-
text, complexity, ease, and appropriateness)
- e.g., “So that makes sense and it’s a little bit easier than the general definition of Bernoulli’s
principle”
e Judges or critiques usage of concept
e Judges, critiques, or questions resource validity of concept
- e.g., “In order to be super thorough I am going to visit another link just to make sure the
information about the components of a mortgage are consistent across sources.”

Conceptual/Create

e Generates new representation of concept
e Draws connections among concepts beyond those explicitly or implicitly stated in resource

Procedural

Procedural/Remember

e Reads or notes steps of procedure
e Rotely memorizes steps of procedure
e Copy/pastes steps of procedure

Procedural/Understand

e Summarizes steps of procedure
e Reviews example of procedure with verbal or written elaboration
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e Reviews diagram of procedure’s end product with verbal or written elaboration
e Issues exploratory query of procedure
- e.g., ways of paper airplane making
e Notes some characteristic of procedure
- e.g., “So that said it would be x number of steps but it is really y number of steps’

]

Procedural/Apply
e Executes/narrates/visualizes a procedure
Procedural/Analyze

o Explores options (e.g., materials, steps, and tools) that meet criteria for procedure
e Compares and contrasts two or more procedures
- e.g., “This one has a lot of steps, this one has fewer steps. It seems like there is a wide
range of steps that it might take to fold an airplane”
e Selects essential components of procedure
o Explores tradeoffs of a particular method or methods
o Explores suggestions or techniques for improving execution of procedure
e Compares own version of steps of procedure with procedure on site
- e.g., “I'm just going to make sure my steps that I've written down match with what I see.”
o Identifies important techniques in executing procedure that make the end product most ef-
fective
- e.g., “I think it is important to hold the string very taught to make sure it is a straight
line, and it is also important to make sure both lengths of string are measured exactly or
it won’t be accurate.”
o Assessing which of the steps need to be executed for personal subjective context
- e.g., “Talready have a starter for my bread dough, so I won’t need to do the first three steps;
I can start with step four”

Procedural/Evaluate

The existence of a “judgment” word or phrase does not in and of itself elicit an evaluate code
(e.g, “that’s interesting”, “so that’s good”, or “that’s not what we need” are not coded as evaluate).
It is important that the judgment is made with respect to the learning subgoal or overall objective
(e.g., “I think the Kite would be a better choice for my nephew because it can fly farther and do
more tricks than the Hammer.”)

e Judges or critiques a procedure given some characteristics (e.g., efficiency, effectiveness, con-
text, complexity, expertise of executor, ease, enjoyment, attractiveness, and appropriateness)
o Checks that procedure was executed correctly
e Qutlines criteria used to judge methods
- e.g., “SoIam looking for methods that are challenging, interesting, and have many steps.”
o Makes judgement that a procedure is difficult or too difficult/not worth the effort
o Makes judgement that a procedure is interesting or fun
e Judges steps of procedure to be (in)correct or expressed (in)correctly
- e.g., ‘It doesn’t make sense to do these steps in this order, I wouldn’t arrive at the end
product.”
e Judges, critiques, or questions resource validity of procedure
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Procedural/Create

Finds useful/appropriate replacement materials for a procedure
Modifies step(s) of a procedure in order to suit a particular application
Combines steps of procedures into new procedure

Generates a novel procedure
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