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Abstract

The role of plasticity and epigenetics in shaping cancer evolution and response to therapy has taken
center stage with recent technological advances including single cell sequencing. This roadmap
article is focused on state-of-the-art mathematical and experimental approaches to interrogate
plasticity in cancer, and addresses the following themes and questions: is there a formal overarching
framework that encompasses both non-genetic plasticity and mutation-driven somatic evolution?
How do we measure and model the role of the microenvironment in influencing/controlling
non-genetic plasticity? How can we experimentally study non-genetic plasticity? Which
mathematical techniques are required or best suited? What are the clinical and practical
applications and implications of these concepts?

© 2022 The Author(s). Published by IOP Publishing Ltd
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1. Introduction to the roadmap on
plasticity and epigenetics in cancer
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cer Center, United States of America
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Genetic mutations play a key role in cancer pro-
gression and the evolution of treatment resistance.
But while these mutations provide the substrate
for processes driving somatic evolution, evolution
also depends on selection at the phenotypic level,
which is driven by epigenetic and microenviron-
mental factors enabling plasticity in tumour cell
populations. Exploring the genetic mechanisms in
cancer has driven much of the basic research in the
last few decades but new techniques such as sin-
gle cell sequencing and mathematical modelling have
allowed scientists to study the role of plasticity and
epigenetics in shaping cancer evolution and response
to therapy.

In this roadmap we focus on some of these
state-of-the-art mathematical and experimental
approaches to interrogate plasticity in cancer. Here
we summarize the specific contributions from experts
and identify current challenges to understanding
the mechanisms and role of phenotypic plasticity
in cancer progression as well as discussing ways of
translating these ideas into therapeutic opportunities.

1.1. Experimental challenges and opportunities
One of the key challenges in the study of plasticity lies
in characterizing and defining phenotypic states.
For example, defining cell states with cell surface
markers or antibodies with flow cytometry can give
us a very different perspective than using more high-
dimensional technology such as single cell genomic
sequencing. Even after a phenotypic state is defined,
it remains difficult to experimentally isolate cells in
specific states to study subpopulations and hetero-
geneity within a given sample. Another layer of com-
plexity is the possibility of a continuum—rather than
discrete set-of states. Cells that are in a state of flux,
or transition, between phenotypic states are particu-
larly difficult to identify in vivo, where states may exist
simultaneously or dynamically change due to envi-
ronmental factors. Critical experimental challenges
also include developing approaches to observe the
time scale and frequency of state transitions, which
are needed to guide experimental designs.

In addition to defining and observing phe-
notypic states and transitions, understanding the
mechanisms driving these behaviours, which may
change in space and in time, poses another signif-
icant challenge. Inter- and intra-cellular signalling,
for instance, is a dynamic, feedback-driven process
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that depends on the cell microenvironment. There
is currently a limited ability to measure or quantita-
tively interrogate potential mechanisms since many
model systems either lack or utilize a vastly simplified
representation of the cell microenvironment.

To complicate matters even more, cancer thera-
pies which directly or indirectly modify epigenetic
states may impact transition rates or induce novel,
previously uncharacterized states. These challenges
constitute opportunities to develop new experimen-
tal model systems and methods of interrogation. This
is an active area of research and is ripe for innovation,
as discussed in sections by Strelez et al and Mitchell
and Lathia.

1.2. Mathematical challenges and opportunities

In contrast to experimental challenges, which require
technological advances and cleverly designed exper-
iments, mathematical models are limited by our
understanding of biology and the resolution and
quality of the experimental data. The development of
new mathematical models and theories can be used,
in conjunction with experimental and clinical data,
to aid in testing hypotheses about characterization of
states, heritability and transience, dynamics of popu-
lations, directionality preferences, and environmental
effects. However, this requires analyses of evolution-
ary models which reflect known and hypothesized
mechanisms of phenotypic switching, to produce
model predictions to compare with experimentally
observable measurements.

A pressing practical challenge for mathematical
modelling in cancer plasticity includes the need for
statistical techniques to estimate transition rates and
characteristics of individual states from bulk data and
single time point snapshots of the dynamic system.
As shown by Frankhouser et al, this is important for
estimating parameters and rate constants in order to
quantify and characterize the behaviours of individ-
ual states, as well as determine critical time scales of
transition dynamics.

At a conceptual level, challenges remain in how
to identify and model genetic and non-genetic evo-
lution in cancer. This distinction is critical to cor-
rectly modelling the mechanism(s) of epigenetic
states and plasticity. Genetic and non-genetic evolu-
tionary dynamics may differ substantially and have
important implications for therapy design. As sug-
gested by Marusyk et al and Huang, integrated
modelling frameworks reflecting both genetic and
non-genetic evolutionary dynamics are crucial for
understanding complex tumour behaviours and
response to therapy.

1.3. Translating to clinical applications

Ultimately, most studies of epigenetic phenotypes
and cellular plasticity in cancer are motivated by the
goal of improving the application of existing ther-
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apies as well as the development of new ones. The
two major contributors to mortality in cancer are
metastases and therapy resistance, both of which
are mediated by plasticity. Hari and Jolly describe
how the integration of clinical and experimental data
with machine learning and mathematical multiscale
modelling is the key to design new rational thera-
peutic strategies. From a data-centric point of view,
Hatzikirou shows how mathematical models can inte-
grate machine learning-based tools with evolutionary
theories of cancer evolution to provide opportunities
for biological insight and innovation in therapeutic
design.

The pharmaceutical industry, tasked with trans-
lating these novel scientific advances into practice, has
begun to recognize the role of plasticity and epige-
netic states in cancer treatment. In particular, indus-
trial research groups more frequently now employ
both experimental and mathematical models to ratio-
nally design treatment strategies that prevent epige-
netically driven resistance or use therapies targeting
epigenetic processes. At a practical level in the clinic,
there is a pressing need to connect experiments and
modelling to understand clinical responses to epi-
genetic or cell state modifying treatments such as
immunotherapies.

As suggested by Poels et al, novel treatment strate-
gies are needed to combat drug-resistance driven by
tumour plasticity, and mathematical models can be
leveraged to inform the design of such strategies.
These efforts will require improved monitoring of
dynamic tumour responses in vivo, which may be
enabled by promising new technologies such as detec-
tion and analysis of cell-free DNA and circulating
tumour cells.

Plasticity not only provides therapeutic challenges
but also shows us novel therapeutic targets that have,
by and large, been ignored and that could be exploited
to improve outcomes. For example, Robertson-Tessi
et al consider cellular plasticity in the context of bet-
hedging strategies employed in tumour cell popula-
tions that drive escape from therapy. They suggest
that the mechanisms of phenotypic memory in bet-
hedging may be targeted to increase the efficacy of
primary therapies.

1.4. Concluding remarks

Together, the perspectives from leaders in the field fea-
tured in this roadmap present a nuanced view of plas-
ticity, highlighting the new experimental techniques
to capture epigenetic mechanisms that drive plasticity
at the single cell level as well as the mathematical mod-
els and methods that enable integration of data with
theory. Together, advances in experimental methods
and mathematical modelling and analysis help us bet-
ter understand the therapeutic implications of cell
plasticity in cancer.
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2.1. Status

Cancer-associated fibroblasts (CAFs), the dominant
stromal cell type within the tumor microenvironment
(TME), have been linked to several tumor promoting
mechanisms across cancer types, including increased
tumor cell proliferation and invasion, and protec-
tion against drug-induced apoptosis [1]. Research
surrounding CAFs has historically focused on
identifying markers that uniquely define this cell
population. Several studies have attempted to target
CAF-specific markers in in vivo models and clinical
trials, yet these attempts have been unsuccessful
[1]. Of late, CAF studies have evolved to include
sophisticated subpopulation analyses, revealing
significant intra- and inter-tumoral CAF hetero-
geneity. The presence of CAF diversity may explain
why the identification of CAF-specific targets has
been challenging and unsuccessful in clinical trials.
Increasingly, research in the field suggests that certain
CAF populations are indicative of poor patient
prognosis, confer drug resistance, and increase tumor
invasion and metastasis, while other CAF populations
are capable of restraining tumor growth, stimulating
a pro-inflammatory TME, and predicting response
to immunotherapy [2]. While CAF heterogeneity
is acknowledged, there remains limited insight into
the functional implications of this heterogeneity on
cancer progression.

2.2. Current and future challenges

Important work is being done to identify CAF
subpopulations, yet there is a critical need to connect
these findings to an impact on tumor cell behavior.
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Figure 1. CAFs are comprised of multiple subpopulations that can interconvert based on the cues from the TME. CAF subtypes

Moreover, it is now appreciated that CAFs are highly

plastic and respond to diverse cues from cancer cells
and the TME [2]. Rather than existing in a terminally
differentiated state, CAFs can adapt to surrounding
factors and interconvert between states, thus influenc-
ing tumor cells in a diverse manner. An example of
CAF plasticity was recently highlighted in a pancre-
atic ductal adenocarcinoma (PDAC) study, where the
authors identified spatially and functionally distinct
CAF subpopulations, termed inflammatory CAFs
(iCAFs) and myofibroblasts (myCAFs). They con-
cluded that myCAFs reside closer to the tumor foci,
while iCAFs are further away, and an intermediate
subpopulation that expresses both myCAF and iCAF
markers was also detected. Further work by this group
demonstrated that the cell state transition between
myCAFs and iCAFs was dependent on TGF-f3 and
IL-1/JAK/STAT signaling from the tumor cells [3]. A
deeper understanding of CAF plasticity in the con-
text of tumorigenesis remains an important research
challenge with significant clinical implications.

To tackle this challenge, we must address
fundamental questions such as: what cues from
genetically diverse cancer cells or the TME are
responsible for CAFs switching cell states? To what
extent does CAF heterogeneity depend on intrinsic
mechanisms (e.g., cell of origin) or stochastic gene
expression? How do CAF subpopulations evolve
over time? How do CAF phenotypic states influence
cancer progression? To respond to these questions,
it is imperative to recreate and tune aspects of
the TME and measure the resulting changes to
CAFs and cancer cells (figure 1). This requires
(1) biological model systems in which, at a bare
minimum, cancer cells and CAFs can be physically
cultured together, (2) the ability to deconvolve
CAF and cancer cell behavior, (3) measurements that
capture spatial and temporal dynamics, (4) devel-
opment of mathematical models to understand the
dynamics at timescales difficult to directly measure,
and (5) validation of findings with human tumor
tissue.




10P Publishing

Phys. Biol. 19 (2022) 031501

Roadmap

7

Biomimetic Models

\

.
i Experimental Tools R
*i';”é'.a.:‘ “
\ -

- N
| S— Perturbations\|\|\A r,< _/
\_ _J

based on model perturbations.

Figure 2. Integration of novel technologies to better understand CAF heterogeneity. Biomimetic models, experimental tools, and
functional readouts are used to generate experimental data that can be coupled with mathematical models to make predictions

2.3. Advances in science, technology and
mathematics to meet challenges

Recent scientific and technological advancements
have improved our ability to define and perturb the
functional significance of CAF diversity in cancer
biology.

Biomimetic models: cell culture advances have led
to organ-on-chip and spheroid/organoid models that
confer 3D spatial relationships in a tunable human
TME context while maintaining a degree of through-
put previously limited to 2D cell culture studies [4].
The full complexity of organ-level interactions has
yet to be captured in these biomimetic models, but
the current technologies are conducive to mimick-
ing physical interactions between CAFs and cancer
cells and unraveling how CAF populations change in
response to the TME [5].

Experimental tools: advances in experimental tools
have focused on improving resolution from the cell

population level to the single cell level. Technologies
such as single-cell RNA seq (sc-RNAseq), DNA bar-
coding, and spatial-omics methods (e.g., seqFISH+)
offer interrogation of individual cell transcriptomes,
lineage tracing, and a spatial context for the cells,
respectively [6—9]. While these technologies tend to
generate massive amounts of data that require signif-
icant computational power for analysis and individu-
ally may lose spatial or full heterogeneity context, they
have the potential to provide unparalleled insight into
dynamic CAF cell states in a spatiotemporal manner,
especially when coupled together.

Functional readouts: functional readouts such as
tumor cell viability (particularly in response to
drug therapies) and migration/invasion assays offer
contextual analysis for how CAFs impact tumor
cell behavior. Methodological advances in live cell
imaging (e.g., light sheet microscopy, time-lapse
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microscopy, high-content screening), have trans-
formed our ability to visualize diverse behavioral
profiles in a spatiotemporal manner at single cell res-
olutions [10]. While technical considerations must be
weighed, including phototoxicity and resolution lim-
itations, advanced imaging and analysis techniques
offer greater insight into the functional significance
of individual cell states compared to conventional
static, population-level readouts. As biomimetic
models and assay technologies improve, tumor cell
behavior can be studied in a more physiologically
relevant context.

Mathematical modeling: mathematical models,
which are broadly categorized as discrete, contin-
uum, and hybrid, can provide useful predictions of
experimental results and offer information at diffi-
cult to observe timescales [11]. In one instance, a
mathematical model was used to describe the inter-
actions between cancer cells and fibroblasts using
nonlinear differential equations to model state tran-
sitions between pro- and anti-tumor fibroblasts and
investigated the role of phenotypic switching on can-
cer progression [12]. While mathematical models are
immensely powerful, they are inherently biased by the
underlying experimental data and theories/principles
used to create them. However, this concern can be
alleviated via robust experimental protocols that limit
experimental bias and maintain the predictive power
of the models.

Integration and applications: the advances outlined
above offer new avenues to interrogate the complex-
ity of CAF phenotypic states and the resulting impact
on tumor cell behaviors. For example, in the con-
text of treatment strategies, two studies combining
sc-RNAseq analysis of PDAC CAFs with data from
patient tissue and clinical trials revealed that some
CAF populations can influence tumor response to
immunotherapy [13, 14].

To expand our understanding of CAF plasticity,
we suggest a workflow that combines the areas of
biomimetic models, experimental tools, functional
readouts, and mathematical models (figure 2). For
instance, to better study the effect of CAFs on tumor
metastasis, a biomimetic organ-on-chip model could
be used to accurately recreate the tissue-tissue inter-
face of vessel structures and cancerous tissue while
tuning the model to include CAF vs no CAF sce-
narios [15]. Combining an experimental technique,
such as sc-RNAseq of CAFs, with the functional
readout of cancer cell intravasation on-chip, mea-
sured by live cell imaging, would yield powerful
insights into the phenotypic heterogeneity of CAFs
and the effects of those phenotypic profiles on inva-
sion. A mathematical model could be developed
from the sc-RNAseq and intravasation data and used
to generate predictions for how perturbations of
the TME influence the composition of CAF sub-
types and subsequent tumor cell invasion behaviors.
Together, these scientific and technological advances
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offer unprecedented approaches to studying CAF het-
erogeneity and, when combined with patient samples
and large-scale clinical datasets, can begin to con-
nect the functional relevance of CAF heterogeneity to
patient outcome.

2.4. Concluding remarks

It is evident that CAFs are important mediators of cell
behavior in the TME and although there are signifi-
cant challenges to studying this cell type, understand-
ing how these cells interact with their surroundings
(and systematically targeting these interactions) has
the potential to significantly impact patient care.
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3.1. Status

Cellular heterogeneity has long been appreciated as
a hallmark of advanced cancers and the significance
of these century-old histological observations has
been recently confirmed by molecular and functional
studies demonstrating distinct cell populations in a
given human tumor. First in leukemias, then in breast
and glioblastoma (GBM), the demonstration of a
cancer stem cell (CSC) population capable of gener-
ating heterogeneous tumors from transplantation of
a small number of human cells in a xenograft model
provided unprecedented opportunities to better
understand tumor progression and identify new
molecular targets for therapeutic development [16].
While one of the first phenotypes attributed to CSCs
was resistance to standard of care approaches, includ-
ing radiation and chemotherapies, CSCs have been
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linked to other key oncogenic processes including
metastasis, angiogenesis, and immune evasion [17].
More recent studies have demonstrated multiple
populations of CSCs in a given tumor with distinct
cell cycle states and metabolic dependencies, as well as
different underlying gene networks [ 18], highlighting
the circumstance that there is heterogeneity within
the CSC compartment. Transcriptional profiling of
GBM tumors at single cell resolution has indicated
that CSCs likely do not represent distinct populations,
but rather a cell state, similar to epithelial and mes-
enchymal states, and CSCs exhibit plasticity in their
capacity to flow in and out of this CSC state. If we
maintain that the CSC state is a major contributor to
treatment failure, experiments designed to gain
mechanistic insight into the cell intrinsic and extrin-
sic mechanisms controlling transition into and out of
the CSC state have the ability to provide much needed
information into how tumors develop, progress, and
resist therapy.

3.2. Current and future challenges

The initial observations of CSCs were based on
enrichment via cell surface markers and validation
in xenotransplantation and surrogate in vitro self-
renewal assays. While these approaches have pro-
vided a strong foundation for the understanding of
CSC properties—namely self-renewal, tumor initia-
tion and recapitulation of tumor heterogeneity—they
have been limited in their ability to capture the

dynamic and heterogeneous nature of CSCs. For
instance, monitoring CSC properties in real time
(both in vitro and in vivo) at high resolution is tech-
nically challenging, thereby mechanisms driving cells
in and out of the CSC state have been elusive and sub-
ject to inference based on static analyses. Some initial
progress has been made in this area though the gener-
ation of reporter systems such as fluorescent protein
promoter reporters of pluripotency transcription fac-
tors (NANOG, SOX2, OCT4) shown to be elevated in
CSCs [19] or via assessment of the dynamics of CSC
division (via symmetric or asymmetric cell division)
observed in CSC cultures [20]. These reporter sys-
tems have provided some understanding of molecular
mechanisms enriched in CSCs and CSC behavior in
vivo, and leveraging them for high resolution profiling
(single cell genomics) or real time tracking in thera-
peutic contexts in vivo could provide deeper under-
standing of these populations. Specifically, reporter
systems could help address the timescale and dynam-
ics of transitions into and out of the CSC state, signals
and pressures that induce and reverse these transi-
tions (such as therapeutic pressure and microenviron-
mental interactions), initial and longer-term clonal
diversity of cell types that resist therapy, and the rela-
tionship between transcriptional states and reported
clonal diversity. Utilization of the abovementioned
pluripotent reporter systems may reveal methods to
perturb the CSC state through inhibiting plasticity
and blocking transitions into the CSC state.
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Genetically-engineered mouse models have pro-
vided important insight into the mechanisms driv-
ing tumor initiation, growth, and progression, and
serve as pre-clinical models for therapeutic develop-
ment efforts, however, the ability to assess the CSC
state in real time in these models remains challenging
[21]. While immunodeficient models are attractive
due to the ability to implant and test therapeutics
on primary human tumor cells, given our increased
understanding of the importance and coordination
of the immune system in GBM, it seems prudent
that we also utilize models that recapitulate the
immune infiltration and suppressive mechanisms
occurring in human tumors [22]. Incorporating these
tumor-immune interactions into our experimen-
tal modelling of tumor cell states in GBM will be
important not only for predicting (immune) ther-
apy clinical outcomes, but also for monitoring CSC
dynamics in the context of cell extrinsic pressures.
Some exciting progress has been made on this front
in brain tumor models (GBM, medulloblastoma)
[23, 24], and as with reporter systems described
above, there is great potential in using these models
for high resolution profiling studies and in-depth in
vivo assessments.

3.3. Advances in science, technology and
mathematics to meet challenges

As discussed above, the dynamic nature and clinical
relevance of CSCs invoke the need to visualize and
track the CSC state in the context of tumor devel-
opment and in response to therapy, both in con-
ventional mouse models and human-derived models.
Below are a summary of advances in CSC systems that
have the potential to be leveraged with mathemati-
cal modelling to eventually develop, test, and validate
integrated therapeutic approaches.

(a) Representative models of human cancers
and CSC compartment(s): patient-derived
organoid models have led to further under-
standing of tumor growth dynamics through
their increased maintenance of cellular diver-
sity compared to sphere culture, allowing the
modeling of CSCs and their non-CSC progeny
in parallel. Moreover, the engraftment of
tumor-derived organoids into normal human
tissue organoids, as has recently been done
in GBM models [25-27], provides additional
layers of complexity and opportunities to study
how tumor cells shape non-tumor niches and
vice versa. Organoids provide the opportunity
to interrogate the CSC state in an ex vivo
system that maintains crucial features of primary
tumors such as cellular and microenvironmental
heterogeneity, cell-cell interactions, invasive-
ness and heterogeneous therapeutic response.
Such molecular insight can be leveraged for
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mouse models and next-generation reporter
systems.

(b) The development of high fidelity CSC reporter
systems: as introduced above, current CSC
reporter systems have been built around core
pluripotency transcription factors (NANOG,
SOX2, OCT4) [19] or cellular processes such
as cell division, and provide assessment of the
CSC state in real time. Expanding these systems
to include lineage tracing elements via genetic
approaches to mark individual populations
(e.g. confetti [28], MADM [29], ClonTracer
[30], macsGESTALT [31]) could be leveraged
for powerful dynamic modelling studies. Fur-
ther, incorporating these reporter systems into
organoid and genetic mouse models may vastly
improve our understanding of CSC dynamics in
the setting of external stimuli.

3.4. Concluding remarks

The cancer biology field continues to experience rapid
advances across a variety of areas—ranging from
the fundamental understanding of tumor initiation
and progression to visualizing tumors at the single
cell level—providing great promise for the identifica-
tion of new treatment strategies. Decades of research
support the idea that strategies to compromise the
CSC state will likely be therapeutically effective.
To facilitate this translational goal, a more nuanced
understanding of the CSC state is required and this
will require enhanced models, both human-derived
and genetically engineered mouse models, as well as
the ability to fully appreciate the CSC state in real
time in vitro and in developing and refractory tumors
(in vivo). Overall, the future utilization of high-
fidelity experimental models in combination with
mathematical modelling approaches holds promise
for deeper understanding and prediction of the
dynamics of CSC state transitions and for the identi-
fication of putative vulnerabilities to be exploited for
therapeutic benefit (figure 3).
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4.1. Status

Although cancer is typically viewed as a clonally
evolving disease caused by inherited or acquired
genetic mutations, epigenetic alterations may also be
required for malignant transformation. Epigenetic
mechanisms identified in cancer progression include
changes in DNA methylation (DNAm), histone mod-
ifications, post-transcriptional changes, or altered
expression of messenger or micro-RNA (mRNA,
miRNA). In this context, an epigenetic landscape
represents the set of all possible epigenetic states
during transformation from a healthy to diseased
state. Consequently, a cancer-specific epigenetic
landscape can be viewed as a cancer state-space
(figure 4(A)) where cancer evolves through distinct
steady states characterized by distinct genetic and
epigenetic alterations corresponding to healthy, per-
turbed, or cancer states. State-space representations
have been used to infer cell differentiation and as
fitness landscapes in a number of different contexts
at the cellular level [32-36], however, these represen-
tations often focus on state-transitions of individual
cells and not state-transitions of the collection of
malignant and non-malignant cells.

The epigenetic state-space approach to studying
cancer initiation and progression has many poten-
tial research and clinical applications by associating
an epigenetic configuration with a specific pheno-
type. With a state-space constructed empirically with
genomic data, biological mechanisms associated with
epigenetically driven phenotypic states can be discov-
ered. For example, specific topologies of gene regula-
tory networks (GRNs) have been shown to produce
attractor states in the landscape [37-39].

Clinically, the state-space has diagnostic, predic-
tive, and prognostic potential. By following a patient
longitudinally over time to capture sufficient infor-
mation about the disease state-space, an individual’s
disease trajectory can be predicted by solving stochas-
tic equations of motion in the landscape (figure 4(B)).
Trajectories in the epigenetic state-space can be used
to predict disease progression or response to treat-
ment for an individual patient. Personalised predic-
tions from epigenetic states can add an additional
layer of information that clinicians can use to tai-
lor therapeutic decisions to an individual’s predicted
course of disease. However, several challenges remain
to translate these concepts into the clinic which are
outlined in current and future challenges.

Acute myeloid leukaemia (AML) is an ideal model
system for investigating the dynamics of epigenetic
state-transitions of cancer because the disease can
be directly assayed through the peripheral blood
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at sequential time points without invasive proce-
dures. In AML, epigenetic mechanisms of DNAm and
miRNA expression play an important role in dis-
ease initiation and evolution [40, 41]. Although DNA
mutations have been observed years before diagnosis
[42, 43] and DNAm has been investigated for its role
in AML state-transition [44], miRNA have often been
overlooked as an epigenetic mechanism, despite their
role in post-transcriptional regulation of onco- and
tumour suppressor gene expression. We have shown
that mRNA and miRNA expression levels in blood
cells—both normal and leukemic cells—can be used
to create an AML state-space where it is possible to
follow the system undergoing state-transition dur-
ing AML development, thereby reinforcing the role of
epigenetic states for AML pathogenesis and in general,
for malignant transformation [32].

4.2. Current and future challenges

The most formidable challenge in a state-space
approach is constructing and identifying the dimen-
sionality of the state-space. First, the number of stable
and unstable states must be observed or hypothe-
sized, which requires multiple sequential observa-
tions of the system. Unstable states are less likely
to be observed than stable states and therefore
their existence must be hypothesized or inferred.
Moreover, longitudinally collected samples from indi-
vidual patients are expensive and difficult to obtain.
One approach to address this challenge is to use
samples from different individuals at different stages
of cancer development to increase the number of
observations and create pseudo trajectories; how-
ever, genetic variation across individuals makes this
approach challenging. An alternative approach is to
use a disease model, such as a mouse, where sam-
ples can be more easily obtained, from the induction
of driver gene mutations and throughout the course
of disease development. In addition to the challenge
of having a ‘good’ mouse model recapitulating the
human disease, we also face the challenge of mapping
between mouse and human.

Another challenge is quantitatively mapping the
underlying biological mechanisms that produce or
alter empirically derived state-spaces. In system-wide
state-spaces derived from bulk samples where mul-
tiple cell types contribute to the observed epigenetic
state, identifying a mechanism is difficult, and math-
ematically impossible to solve uniquely. To address
this challenge, one approach is to compare landscapes
constructed with single cell genomic sequencing to
the landscape derived from bulk samples. However,
single cell experiments present an additional set of
challenges; for example, single-cell data can be sparse
due to gene dropouts which are false negatives cre-
ated when certain genes are not observed in all cells.
Future studies need to investigate whether similar
information regarding the system’s epigenetic state
is contained in both single-cell and bulk samples.
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Figure 4. The epigenetic cancer state-space. (A) A phenotypic landscape derived from epigenetic states is shown for normal (left)
and cancer (right). The cancer state-space is the normal landscape perturbed by oncogenic events resulting in a lower energy
barrier and therefore a higher probability of undergoing a state-transition to the cancer state. In both cases, the evolution of the
system is modelled as a particle undergoing Brownian motion in the state-space. (B) (Left) The evolution of the system
represented as a trajectory in the state-space over time. The location in the state-space is shown for two samples; one (red
samples) that undergoes state-transition to cancer, defined by the red line and one (blue samples) that does not. (Right) Once the
state-space is constructed, new samples can be projected into the space to make individual predictions based on the evolution of
the probability density function with Fokker—Planck equations corresponding to the equation of motion.
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To this end, we have already shown that changes in
gene expression may be detected from bulk samples
before either phenotypic changes or leukemic cells
can be detected; this supports the concept that cancer
initiation may induce system-wide epigenetic state-
transitions [32].

4.3. Advances in science, technology and
mathematics to meet challenges

The most significant advance to enable epigenetic
state-space models of cancer is the routine collection
of ‘omics’ data at sequential time-points from diag-
nosis through treatment, which is supported by the
precision medicine approach. Although longitudinal
collection of genomic data remains mostly in research
centres, such data may enable the creation of patient-
specific epigenetic state-transition trajectories corre-
lated with clinical features and outcomes. Moreover,
the use of standardized sequencing arrays enables

quantitative and reproducible state-spaces and tra-
jectories that reduce the variability in genomic data
due to sequencing technologies and bioinformatics
methods.

In parallel to the collection of genomic data over
time, advances in mathematical methods to construct
the state-space are equally important. Although not
a recent advance, dimensionality reduction methods
such as the singular value decomposition (SVD) com-
bined with information-theoretic measures such as
mutual information, can be used to quantitatively
identify genomic features most relevant to cancer
state-transition. Using SVD which produces lower
dimensional representations of the data, a state-space
can be constructed from one or more principal com-
ponents; the associated eigenvector(s) describes how
each gene contributes to the state-space construction.
This enables inference of state-transition dynamics
and identification of eigenvectors of gene expression,
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or ‘eigengenes,’ that contribute to the normal, per-
turbed, transition, or cancer states [32, 45].

A generalisation of the SVD, the tensor GSVD,
provides a method to simultaneously integrate multi-
ple data types, (ex. mRNA, miRNA, DNAm) derived
from the same sample to identify novel multi-omic
defined epigenetic states [45]. Integrating multiple
epigenetic data from bulk samples may provide more
accurate predictions of future states and has the
potential to reveal multifaceted underlying mech-
anisms of cancer state-transition. In support of a
multi-omic view of epigenetic state-transition, we
have shown that an AML state-space can be con-
structed using bulk miRNA as well as mRNA expres-
sion profiles from peripheral blood in a mouse model
[35]. Intriguingly, the miRNA-derived state-space is
very similar to the mRNA-derived state-space, but not
identical. This raises the possibility that mRNA and
miRNA contain complementary information about
AML induced epigenetic state-transition.

Another advance is the use of data-driven math-
ematical models to predict the evolution of epige-
netic states over time. By identifying critical points in
the state-space, an individual’s epigenetic state can be
modelled as a particle undergoing Brownian motion
in the landscape. Importantly, given the location of a
sample in the state-space, the probability of finding
the location of the particle at some future time can
be predicted with the solution of the Fokker—Planck
equation corresponding to the equation of motion in
the state-space (figure 4(B)).

Our studies of AML state-transition illustrate
how an epigenetic state-space provides an analyti-
cal framework to investigate biological processes and
predict disease evolution. Since the location in the
state-space represents a phenotypic state in cancer
development, the state-space can be used to align
individuals with different disease states and rates
of disease progression. We have leveraged this to
investigate biological processes specific to states of
cancer development and have discovered nonlinear
dynamic patterns of mRNA and miRNA expression
that can be used to identify potential therapeutic
targets.

4.4. Concluding remarks

The conceptualization of cancer as an epigenetic
state-transition of the system, beyond the transfor-
mation of individual malignant cells and through dif-
ferent states of the disease and treatment response,
is a powerful and potentially insightful approach for
understanding cancer dynamics that compliments the
DNA mutation and clonal evolution centric view.
With genomic sequencing becoming more routine
in the clinical management of cancer and preci-
sion medicine, state-transition models can be a pow-
erful predictive tool to guide the development of
therapies that target critical points in epigenetic
state-transitions.
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therapy resistance
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5.1. Status

A revolution in molecular biology has enabled an
explosion of studies leading to an in-depth interroga-
tion of molecular mechanisms that underlie cancer-
specific phenotypes (hallmarks) [46]. These studies
resulted in the identification of molecular tar-
gets, whose suppression induces remarkable clinical
responses with minimal toxicities, enabling control
of disease over months or even years, such as with
inhibitors of mutant EGFR and anaplastic lymphoma
kinase (ALK) in lung cancers. Unfortunately, these
responses do not translate into cures in advanced
metastatic neoplasia. A similar situation is observed
in cancers that are treated with more traditional, cyto-
toxic chemotherapies, where cancers typically relapse
despite strong initial responses.

One obvious cause of acquired resistance is that
therapies fail to eliminate all tumor cells in advanced
metastatic cancers. This failure is the consequence of
tumor heterogeneity: genetic and phenotypic differ-
ences between individual neoplastic cells in tumor
cell populations, as well as differences in TMEs.
While most tumor cells can be eliminated by properly
selected therapy, some tumor cells can avoid elimina-
tion due to cell-intrinsic properties that make them
tolerant [47, 48] or resistant to treatment, or microen-
vironmental location [49] that limits drug penetra-
tion or provides signals that counteract the effects of
therapies.

While the key importance of intratumor hetero-
geneity as a cause of therapy resistance is widely recog-
nised in the field, development of therapy resistance

11



10P Publishing

Phys. Biol. 19 (2022) 031501

Roadmap

from integration of multiple contributing inputs.
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Figure 5. Models of acquired therapy resistance. (A) Pre-existent fully resistant subpopulations expand due to therapy-induced
competitive release. (B) Full resistance develops from tolerant cells or cells sheltered from therapy by proximity to protective
stromal niches due to stochastic occurrence of resistance-conferring (epi)genetic mutation. (C) Resistance as the result of
plasticity-mediated therapy induced phenotypic ‘reprogramming’. (D) Multifactorial, gradual acquisition of resistance resulting

by initially sensitive tumors has another salient cause:
the ability of populations of tumor cells to change
under therapy-induced selective pressures.

In the simplest case, when fully resistant cells are
present in a tumor before treatment, therapy causes
their competitive release and expansion (figure 5(A)).
At some point, this expansion translates into net pos-
itive growth of tumors, leading to relapse. On the
other hand, undeniable experimental and clinical evi-
dence shows that strong resistance can be acquired
by cells that are initially sensitive or weakly resistant
(persistent/tolerant) to therapies [50]. Whether resis-
tant cells pre-exist or arise de novo is still a subject of
debate. However, it is hard to reconcile pre-existing
resistance with remission that lasts for months and
years before re-emergence of rapidly growing tumors
(most patients on front line therapies in ALK+ and
EGFR mutant lung cancers).

5.2. Current and future challenges

Arguably, an adequate understanding of how and
why resistance develops is prerequisite to develop-
ing therapeutic strategies that can achieve substan-
tial improvements in clinical outcomes. While great
advances have been made in the understanding of
individual resistance mechanisms, our knowledge of
how resistance develops from sensitive or weakly
resistant cells is very limited. In the case of genetic

resistance mechanisms, such as target amplification
or point mutations that disrupt binding of the drug,
resistance is assumed to be a result of a single
stochastic mutational event (figure 5(B)). Emergence
of non-genetic resistance mechanisms is less clear.
Some evidence points to the possibility of stochastic
hardwired epigenetic changes, analogous to genetic
mutational events [47]. On the other hand, ample evi-
dence points to the importance of therapy-induced
changes, where at least some tumor cells transition
to more plastic phenotypic states [36] (frequently
referred to as CSCs). While stemness and epithelial
to mesenchymal transition (EMT) in carcinomas are
commonly considered to be sufficient to fully account
for resistance [51], recent studies as well as first prin-
ciples point to a distinct phenomenon, where pheno-
typic plasticity enables cells to adjust GRNSs, achieving
phenotypic states that no longer rely on the activity of
the therapeutic target [36, 52, 53] (figure 5(C)).
While epigenetic adaptations to therapy-induced
stress clearly fall outside of the conventional Dar-
winian paradigm of stochastic heritable variability,
and have closer parallels to the Lamarckian paradigm
[36], the resulting resistant phenotypes can and do act
as a substrate for selection forces that act on the popu-
lation level [52]. Importantly, stochastic (both genetic
and epigenetic) and induced changes are not mutu-
ally exclusive. Our recent work [54], as well as studies
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from other groups [53] suggest that therapy resistance
represents complex, multi-step adaptations, where
resistance reflects a combined contribution of multi-
ple individual resistance mechanisms, including both
genetic and epigenetic changes. Moreover, in vivo,
these changes occur within spatially diverse microen-
vironmental contexts that can dramatically impact
therapeutic sensitivity, phenotypic state transition
and evolutionary dynamics (figure 5(D)).

5.3. Advances in science, technology and
mathematics to meet challenges

We posit that despite undeniable utility, reductionis-
tic studies are not sufficient to provide an adequate
understanding of therapy resistance, much like how
a catalogue and detailed studies of airplane parts
cannot explain how an airplane flies, and increasing
resolution of mechanistic detail can only obfuscate
the answer. Instead, we need to develop knowledge
that integrates the multiple molecular inputs that lead
to the development of resistance and understand the
spatiotemporal dynamics of this process. Since linear
logic is not suitable for this task, the challenge can only
be addressed with the help of mathematical modelling
tools, even if an appropriate toolset still needs to be
tully developed and refined.

Specifically, we will need to understand the pro-
cess of phenotypic adaptation from a biology per-
spective as a trajectory across a cell state land-
scape, incorporating the input of induced and
stochastic changes. Similarly, we need to understand
evolving resistance as a trajectory on an adaptive land-
scape in a way that incorporates the impact of muta-
tional and expression level changes that impact cell
fitness.

A stiffer, unresolved challenge is to integrate
consideration of both cell state and adaptive land-
scapes, while accounting for the impacts of distinct
microenvironmental niches, limited heritability of
many of the epigenetic changes, and interactions
between evolving subpopulations in space and time
(figure 6).

Addressing these challenges is not trivial, as it will
require the development and integration of new con-
ceptual frameworks as well as new experimental and
modelling pipelines. Moreover, ideal integration of all
of the essential determinants of resistance is likely to
be unrealistic. Yet, this does not mean that the mis-
sion is impossible, as even partial advances in this
area could translate into improved ability to optimize
therapies towards long term outcomes rather than
maximizing short term gains.

5.4. Concluding remarks

Adequate understanding of acquired therapy resis-
tance requires acquisition, and modelling assisted
integration of knowledge of epigenetic, genetic and
microenvironmental determinants of resistance,
within evolving neoplastic populations. Achieving
meaningful progress in this direction must start with
the recognition that the problem of cancer cannot
be fully solved within the dominant reductionistic
frameworks. At least equal efforts need to be devoted
towards the more challenging task of integration.
As progress in this area requires development of
conceptual frameworks, experimental and modelling
tools, as well as fully integrated research teams, it
is not realistic to expect a quick fix and immediate
translation before adequate understanding is gained.
Still, as we build up the knowledge, it will enable
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progressive development of more effective thera-
pies, using existing and future drugs and treatment
modalities.
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6. A dynamical systems framework for
uniting the Darwinian and Lamarckian
schemes of treatment-induced tumor
progression and analyzing single-cell
omics profiles
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6.1. Status

The rapid recurrence of tumors after treatment
defies the prevailing Darwinian paradigm of ran-
dom mutation and selection as driver of progres-
sion [36, 55-57]. The recent spate of single-cell
resolution gene expression profiles of tumors reveals
non-genetic phenotype plasticity of cancer cells
that allows regulated cell state transitions into new,
inheritable phenotypic states without mutations.
This property is at odds with somatic Darwinian evo-
lution of tumor cells. It permits Lamarckian [36]
dynamics and calls for cancer biology to embrace
principles that govern the process by which the same
set of genes collectively produces a variety of discretely
distinct stable cell phenotypes, such as the canonical
cell types.

Reliance on genetic mutations and a 1:1-genotype
<> phenotype correspondence in Darwinian think-
ing [36] obviates the need for mathematical theory
to explain new phenotypes. But how can an invari-
ant genotype (the genome) produce a diversity of
phenotypes, i.e. the phenotypic states of cells?

In metazoan the most elementary phenotype is the
cell type, commonly defined by a particular configu-
ration (state vector) x of the expression levels of all
the m genes of the genome, x = [X1,X2,, .., Xi, -, X,
which is approximately measurable as the transcrip-
tome. The genome can produce only a particular set
of stable configurations x* (that we observe as phe-
notype) because genes are not independent but reg-
ulate each other via the GRN that is ‘hardwired’ in
the genome via the cis and trans regulatory sequences
[58]. The GRN is the dynamical system x = F(x) that
actuates the change of expression, x;, of gene i, and
thereby drives the cell state x towards stable steady-
states x* with F(x*) = 0, or attractor states, where
regulatory driving forces vanish.
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F contains non-linear terms, as is generally the
case for functions describing gene-regulatory inter-
actions, and thus can generate a vast number of sta-
ble steady-state configurations x*. Importantly, this
multi-stable dynamics (for a certain class of net-
works to which GRN belong) can produce gradient-
like dynamics [59, 60] in that the driving force that
push the state x (¢) towards x* can for most regions of
the state space be approximated as F (x) = —VV (x),
even if the system is non-integrable. Thus, it is per-
missive to represent the multi-stable dynamics by a
quasi-potential landscape with ‘elevation’ V(x) at x
and ‘potential wells’, much as Waddington envisioned
with his ‘epigenetic landscape’ in which attractors
(valleys) correspond to cell types [58, 60].

An essential corollary is that cells can switch
between the discretely distinct stable and inherita-
ble phenotypes encoded by attractor states x without
change in the genotype. Two non mutually-exclusive
modes for cell transitioning from one attractor to
another, x;, — x; can be considered:

(a) Due to gene expression noise, state x fluctu-
ates in high-dimensional space almost randomly
around attractor state x* and can occasionally
overcome the attracting force, resulting in cells
jumping’ out of the basin of attraction of x,
(first exit) into that of neighboring attractor state
xj, manifest as a stochastic phenotype conver-
sion. Macroscopically, this event appears like that
resulting from a random mutation, but differs
from it because the new phenotype is latently
present as a developmental potentiality (unused
attractor) and thus, there is a much higher prob-
ability for a single ‘chance event’ to produce
a complex self-stabilizing and selectable pheno-
type [61].

(b) Because F(x) captures regulation of gene expres-
sion, it provides an entry for environmental
influences as the ‘regulator’ of x, e.g. via tran-
scription factors responsive to external signals
which change the values of parameters in F (x).
This modulation alters the topography of the
landscape in ways constrained by the form of
V(x), such as lowering the height of an ‘energy
barrier’ AV(x) between attractors. Environmen-
tal signals thus act as bifurcation parameters that
can ‘catalyse’ attractor (phenotype) transitions
[55, 62].

Of importance for cancer progression after treat-
ment is that a neighbouring attractor into which
a perturbation shifts the cells often encode stem
cell-like states that may have evolved for injury
response [55].

6.2. Current and future challenges

A series of observations made by new technologies,
such as ultra-deep tumor sequencing, single-cell tran-
scriptomics and clonal analysis, has recently exposed
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cracks in the fundament of the Darwinian somatic
mutation theory of cancer [36, 56, 57]. Single-cell
transcriptomics data is commonly displayed such that
each cell is a dot in some dimension-reduced space
(typically, a 2D plane) at position x of its state x.
These points form ‘clusters’ that represent cells in
the same attractor, with the dispersion reflecting gene
expression noise. Treatment stress imparts a broad
perturbation to the GRN of each individual cell,
affecting their state x differently. This increase of cell
population dispersion is manifest as broadening of
the cell clusters or the increase in the number of
clusters (=occupied attractors). Thus, treatment can
push cells into nearby attractors some of which may
encode their developmentally neighbouring stem-like
phenotypes [36, 53, 63, 64].

With single-cell resolution measurement we can
observe the temporal change of N individual cells in
state x, i.e. the ‘cell number density’ N(x, t) and can
write for the temporal evolution of the distribution
of the cell states x a Fokker—Planck type equation:

ON(x,t)

BN =V [D(x)VN (x,t) — F(x) N (x,1)]

+ 8 (*)N(x,1). (1)

This equation considers the probability of cells,
due to stochastic gene expression, to be in state x
(diffusion term in equation (1) with diffusion D (x))
and the cell state change driven by multi-stable GRN
dynamics (second = drift term F (x)); a third term not
encountered in systems with mass conservation, cap-
tures changes of the number of cells in state x with
growth rate constant g (x).

The Darwinian and Lamarckian dynamics are both
contained in equation (1): if the dynamics of N (x;, 1)
is driven mostly by the growth rate g (x) that differs
between for various phenotypes x, we have Darwinian
selection. If change is mostly due to the drift term
F (x) that can be modulated by environmental regu-
lation, we have Lamarckian induction. Thus, the Dar-
winian and Lamarckian schemes represent extremes
of the same underlying behavior [63, 65]. The chal-
lenge is to predict and measure N (x, t).

6.3. Advances in science, technology and
mathematics to meet challenges

Obviously, it is not realistic to expect to soon know the
specific form of F (x). But we can still make sense of
burgeoning single-cell transcriptome (or proteome)
data X (T) with

X(m=|: - 2)
Xy e X5

by analyzing it through the lens of GRN and cell pop-
ulation dynamics without invoking F (x). Here, x! is
the transcription level of gene i in cell j for a total
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of m genes and c¢ cells. The data matrix X (T) is a
snapshot of the states of cells in a population, mea-
sured in condition T where T can be time points
in tumor ‘evolution’, e.g. before and after treatment.
We consider X (T) to represent the ¢ cells within one
(unimodal) cluster (in one basin of attraction). Its
population structure is manifest in the distribution of
the cell vectors u', #%, . . ., u° (columns in X (T)). But
of importance are also the gene vectors vy, v2, ..., Uy
(rows in X (T)) which reflect the GRN dynamics, as
explained below.

The data structure of X (T') must somehow man-
ifest the underlying dynamics of F (x). The property
that near x* the cells descend to an attractor state x*
in a (nearly) gradient-driven fashion, allows us to
formulate, without F(x) but using permissive
approximations and assumptions (linearization, dis-
cretization in time, ergodicity, hyperbolic attractor)
and the reversion of a perturbed state x to x* (where
x = x* 4+ Ax), the dynamics in terms of the Jacobian
J of F (x) at x* [62]:

Ax(t+1) = Ax (1) J(x"). (3)

We are interested in destabilization of the attrac-
tor because treatment involves the destabilization of
the attractor that cancer cells inhabit, causing cells to
exit it and enter the basin of attraction of an apop-
tosis state [55]. However, attractor destabilization in
a multi-attractor landscape also means loss of con-
trol, such that some cells may aberrantly ‘spill’ into
nearby attractors encoding stem-cell like phenotypes
that become accessible [55]. This would explain the
inevitable adoption of stem-like phenotypes in cells
that survive harsh treatment.

With (additive) gene expression noise and above
approximations and assuming X (T) to represent a
snapshot sample of cells fluctuating around x*, we
link the statistics to the dynamics: E (x) = x* that is,
the attractor state is (approximately) the expected
value E for x. Connecting X (T) to the dynamics
expressed as J(x*) in equation (3) via its eigenvalues
A; and using E (x) = x* we ask: what happens to cell
vectors #/ and gene vectors v; in X (T) during desta-
bilization when the largest eigenvalue A, goes from
Ay < 0to zero (or 1 for discrete models)?

It is intuitive and can be shown that destabiliza-
tion of the attractor increases the dispersion of cells, as
experimentally confirmed [62]. Thus, the correlation
between cell vectors 1/ on average decreases, making
the cell population more heterogeneous.

For gene vectors v; in X (T) the interpretation
is less intuitive. One can show that for A, — 0 the
average correlation between pairs of gene vectors v;
increases towards a maximum at the bifurcation point
[62, 66]. Thus, the gene vectors align as the attractor
states destabilize in the direction of the eigenvector of
] (x*) corresponding to \,.
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In summary, generic dynamical systems prin-
ciples without a specific model suggest that as
destabilization of an attractor towards a bifurcation
proceeds, dispersion of cell vectors and alignment of
gene vectors in the data set X (T') increase. These two
changes are manifest as decrease or increase of the
average Pearson correlation (|R(...,...)|) between
the cell vectors v/ or the gene vectors u;, respectively.
‘We can summarize this as a ratio Io(T) that increases
when the attractor state destabilizes towards a bifur-
cation [62]:

_ (IR (i) 1)
Ic(T) = W (4)

An increase in Ic(T) or just in gene-gene cor-
relation has been observed in various single-cell
transcriptome experiments of cell state transitions
[62,66,67].1c(T) may thus be used to identify tumors
in the process of destabilizing and acquiring a new
phenotype, such as stemness.

6.4. Concluding remarks

The single most daunting challenge in treatment of
invasive cancer is the near-inevitable recurrence of a
more resilient cancer. The need to embrace gene reg-
ulatory dynamics, manifest in non-genetic plasticity
of cell phenotype, to complement Darwinian somatic
evolution of the cancer cell is increasingly appreci-
ated. But single-cell resolution molecular profiles of
tumors are still overwhelmingly analyzed using ad
hoc, descriptive, heuristic computational algorithms
detached from theory or biological first principles.
While scientific ‘bottom up’ models of the GRN to
predict patterns in the data remains unrealistic, we
can solve this dilemma by engaging in coarse-grained
approaches, still grounded in principles of how biolog-
ical systems work to identify meaningful structures in
the data.

Cancer progression is more than ‘survival of the
fittest (cell)’ and its study in terms of fundamen-
tal principles of dynamical systems, even without the
specific details, may help in designing therapeutic
control of a complex non-linear behaviour that too
often generates cells in stem-like states upon cytotoxic
perturbation.
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7. Towards multi-scale mechanistic
models of phenotypic plasticity in
metastasis and drug resistance
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7.1. Status

The concept of clonal genetic mutations has largely
dominated cancer biology research. However, in the
past two decades, a focus on phenotypic plastic-
ity as a driver of cancer has emerged thanks to the
increased understanding of two critical aspects of can-
cer: metastasis and drug persistence.

Metastasis remains the cause of more than
90% of cancer-related deaths. Despite the exten-
sive efforts, no unique genetic changes (mutations)
have been associated with metastasis. Instead, cel-
lular/phenotypic plasticity—the ability of metasta-
sizing cells to adapt to the repertoire of dynamic
adverse conditions that they face and doing so in a
fast and reversible manner—has been emerging as
a hallmark of metastasis [68]. Cellular plasticity in
metastasis takes various forms. The most well-studied
among them is epithelial-mesenchymal plasticity
(EMP) [69], a developmental process that involves
cells dynamically acquiring a spectrum of pheno-
types ranging from an adherent, low-motility phe-
notype (epithelial) to a less-adherent, more-motile
(mesenchymal) one. Other ‘axes’ of plasticity that
are intricately coupled to EMP include stemness and
metabolic reprogramming [70].

In drug evasion scenarios, phenotypic plasticity
manifests as drug-tolerant persisters (DTPs). As a
phenomenon, persistence is extensively observed and
studied in bacterial systems. When bacteria encounter
stressful conditions, such as antibiotics, they undergo
a phenotypic transition involving a decelerated cell
cycle and metabolism while not altering their genetic
makeup [71]. This, of course, is not the only mecha-
nism of survival, others being resistance (acquisition
of mutations that provide selective advantage) and
tolerance, but persistence has the least response time
of all. An interesting aspect to note here is that every
bacteria cell in a population can achieve persistence.
However, only a fraction of cells achieves it in a given
time. Furthermore, isolating and re-populating per-
sister cells and exposing them to adversity leads to
a similar fraction of persisters in the population as
before [71].

Similarly, in cancer, the presence of therapy-
evading cancer cells has been noticed for over three
decades. However, the classification of these escapees
into resistant and persistent cells has only been
made possible recently by technological advance-
ments. While separating tolerance from persistence
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is hard in cancer, reversible tolerance to treatment
has been noted through cancer DTPs which do
not involve changes in cell’s genetic makeup [72].
Depending on the treatment administered, cancer
DTPs can have various characteristic functions: decel-
erated cell cycle, adaptive cell metabolism, transdif-
ferentiation, or hijacking their micro-environment.
These DTPs can serve as reservoirs of cells that can
often lead to genetic ‘resisters’ that can survive ther-
apy at long timescales, as they can ‘buy time’ to hedge
their long-term ‘solutions’ [50].

Mechanisms regulating cellular plasticity are col-
lectively termed ‘epigenetic.” They can be broadly
divided into two categories: molecular/chromosomal
epigenetics (covalent changes at the chromatin struc-
ture that control access to the promoter/enhancer
regions, thus controlling expression and protein
levels) and non-chromosomal epigenetics (stochas-
ticity, cell cycle differences, regulatory networks at
transcription, translation, signal transduction levels
etc) [73].

In metastasis, multiple experimental and com-
putational studies have identified that complex
regulatory networks underlying EMP across cancer
types can lead to a spectrum of inter-converting
cell states, suggesting non-chromosomal epigenetic
regulation [74]. A common theme emerging from
preclinical and clinical observations is that the more
‘plastic’ hybrid epithelial-mesenchymal phenotypes
are ‘fitter’ for metastasis [75]. Recent data from
ChIP-Seq, ATAC-Seq etc has begun to map the chro-
mosomal changes that can work in tandem with non-
chromosomal mechanisms during EMP. For instance,
presence of ‘master’ EMT-inducing and MET
(the reverse of EMT)-inducing epigenetic factors
at active chromatin can give rise to a bistable system
emerging from concentration variations in these
antagonistic factors [76]. Detailed dynamic under-
standing of such mechanisms is crucial to better
decode EMP.

While cancer DTPs can arise from non-
chromosomal mechanisms as well, chromosomal
epigenetic mechanisms have been extensively
reported. Many of these chromosomal changes
can be inherited over a few cell generations, thus
allowing for the inheritance of persistence and
thereby enhanced survival. Epigenetic factors such
as SETDBI in lung cancer, KDM6A in GBM, and
KDMS5B in melanoma have been associated with
persistence. In DTPs, how these factors influence
many downstream processes, such as the expression
of cell-cycle related genes, is well-studied [50].
However, it is unclear how these factors get recruited
precisely at appropriate chromosomal locations to
execute corresponding functions.

Roadmap

7.2. Current and future challenges

To curb cellular plasticity and consequently cancer
aggressiveness, we need to understand the underly-
ing epigenetic mechanisms. The following challenges
arise in doing so.

(a) Multi-tier regulation in non-chromosomal epige-
netics: multiple non-chromosomal mechanisms
have been shown to underly metastasis, includ-
ing transcriptional, translational, and metabolic
regulation etc. Cellular plasticity is an emer-
gent behavior of these regulatory modules. While
these modules are being studied individually, a
systems-level understanding of these regulatory
modules is lacking.

(b) Regulatory and inheritable mechanisms of chro-
mosomal epigenetics: chromosomal or molecular
epigenetics involves modifying chromosomes via
various mechanisms, including DNA methyla-
tion or acetylation. While the downstream effects
of these factors have been well documented in
EMP and persistence, mechanisms of regulation
of these factors are relatively unclear. Given the
shorter timescale of epigenetic mechanisms of
adaptability, their inheritance ensures mainte-
nance of adaptability for a longer time until the
‘desired” mutation can be acquired. However,
mechanisms and timescales of such inheritable
epigenetic ‘memory’ require further decoding.

(¢) Multi-axial plasticity: cellular plasticity has mul-
tiple interconnected flavours. Hybrid E/M phe-
notypes have been shown to have higher stem-
ness and drug recalcitrance [75, 77]. Similarly,
in EMP, the two types of epigenetic regulations
discussed above are often seen to act in tandem.
Prolonged exposure to EMT inducer can not only
drive the cancer cell population towards a mes-
enchymal phenotype but also can induce epi-
genetic locking of phenotypes via chromosomal
modification [78]. In the case of drug persistence,
epigenetic alterations and intracellular signaling
together drive properties such as metabolic adap-
tivity [50]. Hence, it is crucial to understand
these interactions between these different axes of
plasticity by integrating mechanistic models with
high-throughput data.

7.3. Advances in science, technology and
mathematics to meet challenges

Mathematical models have made significant contri-
butions in generating new hypotheses and testable
predictions to guide experiments. Many such mod-
els have been constructed to test different epige-
netic mechanisms and their implications in regulating
cellular plasticity. Classic models of epigenetic regu-
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Figure 7. Crosstalk among the chromosomal and
non-chromosomal epigenetic arms can drive emergent
phenomenon in cancer cells, enabling phenotypic plasticity
in many interconnected dimensions/axes.

lation deal with a beads-on-string model of a chro-
mosome, where each bead is a nucleosome and can
have one of these states: unmodified, acetylated and
methylated. Dodd et al proposed the balance between
cooperativity and noise in recruitment as a possi-
ble mechanism to induce epigenetic ‘memory’, which
can then help in the faithful inheritance of epigenetic
state of chromosomes across cell generations [73].
In another attempt, Sandholtz et al [79], using Hi-
C data, have shown that selective binding of HP1 to
methylated regions can help in nucleosomes regain-
ing their parental methylation patterns upon repli-
cation. How these patterns are affected upon EMP
to understand the emergence of phenotypic plastic-
ity across cell generations remains to be investigated.
Jia et al showed through a mathematical model that
recruitment of epigenetic factors upon EMT induc-
tion could help fix the state in absence of the inducer,
especially upon a prolonged exposure to the inducer
[78]. Thus, decoding the dynamics of cellular plas-
ticity across scales of length, time, and regulation
is essential to decoding hallmarks of metastasis and
drug resistance.

Collection and analysis of high-throughput data at
bulk and single-cell level (RNA-seq, ChIP-seq, ATAC-
seq, etc) is feasible now; thanks to our advanced
technological and computational prowess. Efforts
are being made to collect and integrate data at
multi-tier regulation levels [80]. These advancements,
together with the mathematical models, can help in
decoding both the underlying design principles and
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perturbation strategies for the interconnected multi-
scale regulatory interactions underlying cellular plas-
ticity [81].

7.4. Concluding remarks

Integrative approaches involving mechanistic mod-
els and machine learning are now being developed
to identify patterns in the plethora of data avail-
able. This integration can provide a platform to
establish causal connections among multi-tiered and
multi-modal dynamic data and characterize the epi-
genetic (figure 7) (both chromosomal and non-
chromosomal) regulation dynamics in cancer, with
valuable contributions towards designing new ratio-
nal therapeutic strategies.
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8.1. Status
Phenotypic plasticity has been recognized as one of
the main factors that contributes to tumour het-
erogeneity and eventually in cancer progression and
therapy resistance [82]. Many phenotypic plasticity
mechanisms have been identified such as the War-
burg effect, the epithelial-mesenchymal transition
(EMT/MET), migration/proliferation plasticity (Go
or Grow) etc. For example, the latter implies that the
propensity of motile phenotypes is reduced at the
expense of proliferative ones and vice-versa.
Mathematical modelling has been proven instru-
mental in understanding the impact of pheno-
typic plasticity mechanisms in tumour progression,
growth dynamics or designing appropriate therapeu-
tic approaches. In the case of migration/proliferation
plasticity we have shown the existence of an emer-
gent Allee effect for low grade glioma tumours [83]
and no ‘one size fits all’ therapeutic approach can be
implemented in high grade gliomas [84]. However,
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developing such models involves a number of rea-
sonable assumptions since not all molecular regula-
tion pathways of the different phenotypic plasticity
mechanisms are known. Although modelling insights
enhance our qualitative understanding of how pheno-
typic plasticity impacts disease dynamics, their trans-
lation to reliable clinical predictions faces important
challenges.

8.2. Current and future challenges

In clinical reality, the need of quantitative tumour
growth and progression predictions is pivotal for
designing individualized therapies. To achieve this a
plethora of examinations is conducted to assess the
tumour lesion state, spanning from blood sample
analysis, clinical imaging (e.g., CT, MRI), biopsy sam-
pling, -omics screening etc. Such medical data corre-
spond to snapshots in time of the patient’s state and
in the current standard of care their collection relies
on patient’s clinical presentation. This implies that we
cannot acquire many data timepoints hampering the
personalized calibration of mathematical models and
their corresponding prediction potential. Moreover,
many clinical data types are not useful in informing
phenotypic plasticity models hindering their clinical
applicability.

In a nutshell, the use of phenotypic plasticity mod-
els in the current cancer standard of care faces the
following challenges: (C1) data collection is sparse
in time since it relies on patient’s clinical presen-
tation, (C2) we lack the knowledge of the precise
pathways involved in regulating phenotypic plastic-
ity mechanisms, and (C3) medical data cannot always
inform mathematical models. Overcoming the afore-
mentioned challenges to predict the future of a disease
and propose an appropriate treatment (e.g., choice of
a drug targeting proteins expressed in the tumour) is
a formidable but not impossible task.

8.3. Advances in science, technology and
mathematics to meet challenges

In this section, I present two different approaches that
can address the above challenges.

8.3.1. A top-down approach

The first approach involves the development of
methodologies that combine dynamic modelling and
machine learning allowing for heterogeneous data
integration and enabling predictions under par-
tial biological/mechanistic knowledge. The so-called
physics (here biology)-informed machine learn-
ing holds the promise of revolutionizing the field
of engineering and quantitative sciences [85]. In par-
ticular regarding clinical tumour predictions, we have
developed a Bayesian combination of machine learn-
ing and mechanistic modelling (BaM?) [86] that
allows for improved clinically relevant predictions
(see figure 8). The method uses mechanistic model
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predictions as intelligent priors, even when mecha-
nisms and parameters are partially known (C2). In
turn, it corrects model predictions by harnessing the
predictive power of infrequent non-modellable data
(C1, C3). We demonstrated BAM® potential on a
synthetic dataset for glioma and two real cohorts
of patients with leukaemia and ovarian cancer.
Predictions from the method are in close agree-
ment with actual clinical data for individual patients,
suggesting its potential applicability in enabling
accurate personalised clinical predictions. The only
limitation of the BaM® framework is related to the
fact that the probability distribution of unmodellable
data should be in a quasi-time invariant, otherwise
prediction quality is hampered (for more details
see [86]).

8.3.2. A bottom-up approach

An alternative and ambitious approach to address
(C2), i.e., when regulatory mechanisms of pheno-
typic plasticity are not fully known, is to focus
on potential principles that dictate cell decision-
making. Such principles have been proposed by the
pioneering work of W Bialek [87]. The starting point
is how single cells process microenvironmental infor-
mation. Regarding cells as energetically constrained
Bayesian decision-makers that infer their pheno-
type according to microenvironmental cues, such as
other cell type densities, ligands, chemical concen-
trations, ECM densities, expressed proteins, spatial
transciptomic data to name a few, we have recently
proposed least environmental uncertainty principle
(LEUP) [88, 89]. According to LEUP cell phenotypes
change to minimize the entropy, i.e., uncertainty, of
their corresponding microenvironment. Microenvi-
ronmental entropy can be regarded as a potential
functional in the sense of Waddington’s epigenetic
landscape.

LEUP can be used for developing agent-based
models (bottom-up approach) of tumor develop-
ment, where single cells stochastically decide over
their phenotype according to LEUP. This will allow
for integrating the existing cell plasticity regulation
mechanisms and fill the knowledge gap by the imple-
mentation of LEUP. Such LEUP-driven models may
produce reliable simulations able to shed light in the
role of phenotypic plasticity in tumor progression
dynamics and in the design of new therapies.

Currently, LEUP has been used to explain
collective migration patterns of spherical Serratia
marcescens bacteria [90] and the robustness of
avian photoreceptor mosaic patterns [91]. In both
applications, the common denominator was the
partial knowledge of the involved mechanisms
regarding bacteria migration direction decisions and
photoreceptor fate selection.

Predicting cell phenotypic dynamics using LEUP
works as any other entropy maximization method by

19



10P Publishing

Phys. Biol. 19 (2022) 031501

Roadmap

.--ll-ll-ll.l...l.ll..ll"
-

-

- I -
L
....III LA R AR R RN RRERENNRSEHS] .I..-.

MRI, CT data

Additional patient data
(Laboratory data,
biopsy, -omics etc)

‘.ll.Il..I.II'IIII'IIIlI'I-III'I.'I.'IIII.ll...-..

‘(.I) L d‘-) - .8 x(uN)
y(I) y(i) y(H)
" <>
a~ -
§\§ - e -‘\.5 L ;sé.
Q I e

-

.. L]
SEsEEEEEEEEEEEEEEEEEERS

Mechanistic model

=
o
S
=4 (wo)
4]
: z
o
3 Y
]
[(e]
¥
Infitraton Width

Figure8. The BaM® method. A schematic representation of the data and method integration of the BaM® method. Details can be

Intitration WAGh

—

Infiltration Width

Tumor Size

found in [86].
Model
interpretability 4 Mechanistic
- models
=
g ”
LEUP models

Machine

§ learning

Low

Figure 9. LEUP features. LEUP allows for predictions even when lacking exact mechanistic knowledge. Machine learning offer
solutions in similar situations. However, LEUP models are still more interpretable and facilitate generalisation.

High Biological mechanism
knowledge

integrating raw data and prior mechanistic knowledge
in the form of optimization constraints. Interestingly,
LEUP inferred dynamics offer a good compromise
regarding model interpretability and required mecha-
nistic knowledge when compared to machine learning
and detailed biophysical models, as shown in figure 9.
Although this approach is promising, it still requires

significant research in order to be validated and fur-
ther tested against real data, before becoming useful
in a clinical setting.

8.4. Concluding remarks
Although phenotypic plasticity mechanisms have a
critical impact in tumour heterogeneity and therapy
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design, their regulation is not always fully known.
This fact makes clinical predictions a formidable
task. Here, I have presented two approaches to
deal with this challenge: (i) the combination of
mechanistic modelling of phenotypic plasticity with
machine learning and (ii) focus on the principles that
dictate cell decision-making and in particular pheno-
typic plasticity. Currently, the former offers ready to
go solutions for clinical implementation, where the
latter requires further research.
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9.1. Status

Tumor plasticity encompasses a vast array of bio-
logical mechanisms and its impact on therapeutic
response is equally large, leading to resistance against
a diverse repertoire of cancer therapies [92, 93].
Elucidation of the primarily factors leading to drug
resistance is critical for pharmaceutical decisions
regarding clinical drug regimens, combinations, new
target selection and drug design requirements. Fur-
thermore, within the pharmaceutical industry, the
multi-faceted challenge created by tumor plasticity
requires practical and timely action.

While TME, immune involvement, bypass sig-
naling pathways and drug transporters can lead to
plasticity and drug resistance, for molecularly tar-
geted agents there has been a significant focus on
genetic mutations that render targeted therapies inef-
fective against cancer cells. As an example, for ALK
inhibitors, emerging data following patient treatment
with sequential first, second and third generation
ALK inhibitors reveal distinct on-target (EML4-ALK)
resistance mutation profiles that are dependent upon
the therapeutic sequence [94]. A better understanding
of genetic mutation evolution is useful to inform opti-
mal therapeutic and drug development decisions. Yet,
monitoring the emergence of genetic-driven resis-
tance in treated patients remains a challenge due
to heterogeneity in tumors and treatment response.
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Non-genetic plasticity presents additional complexi-
ties that can be particularly difficult to appropriately
and efficiently capture in patients. Similarly, at the
bench (pre-clinical setting) it can be problematic to
elicit, measure or properly define clinically meaning-
ful non-genetic plasticity. Given these emerging com-
plexities associated with tumor plasticity, it is critical
that technologies are available to monitor tumor sta-
tus in patients. In this regard, liquid serial biopsies
(i.e., circulating tumor DNA (ctDNA) and circulat-
ing tumor cells (CTCs) [95]) are showing promise as
a tool to monitor post-therapy genetic and signaling
changes in tumors.

Along with robust collection of longitudinal data,
we advocate for novel modeling methods that can
integrate these serial clinical measurements with
other patient data as well as in vitro and preclinical
knowledge to create a wholistic view of emerging
therapeutic resistance patterns to explore alterna-
tive therapeutic approaches. Encouragingly, model-
ing approaches in academia and industry are available
to begin this endeavor [96—98].

Here we review some of the challenges and oppor-
tunities tumor plasticity presents to oncology drug
discovery and development.

9.2. Current and future challenges
While modeling approaches are a useful tool to
de-risk decisions at various points in the drug-
development pipeline (figure 10), especially when
dealing with complex problems such as connecting
plasticity signals across various datasets, models need
to be appropriately calibrated and supported by data.

We outline three main challenges concerning our
ability to obtain data that informs our understand-
ing of tumor plasticity and associated drug-tolerant
cells [92]. First, most molecular causes that predis-
pose tumor cells to undergo a phenotypic conversion
are still unknown, and a stochastic nature of such
conversions further complicates our understanding.
Second, the sequential dynamics of tumor cell phe-
notypic plasticity upon treatment are not well under-
stood. Third, the mechanisms influencing plasticity
may vary across patients, treatment schedules and dis-
ease progression. Thus, ascertaining time-dependent
profiles reflective of tumor heterogeneity, plasticity
and corresponding drug-tolerant or resistant cells
requires advancement and refinement in the resolu-
tion of our screening procedures in patients, permit-
ting tumor assessment down to the single cell level
[92, 99]. Liquid biopsies appear to be a promising
alternative to conventional biopsies, providing both
precise molecular data to improve the clinical man-
agement of patients (with most notable examples in
lung cancer) as well as a less invasive way to sequen-
tially monitor tumor behavior.

Mathematical modeling and early clinical evi-
dence have suggested that repeated detection, profil-
ing and targeting of surviving cells would improve
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Figure 10. Modeling impact in a pharmaceutical setting.

patient outcomes [100, 101]. Liquid biopsies are top
contenders for non-invasive and iterative methods
to assess resistance/plasticity in the clinic. In this
regard, both CTC and ctDNA could assist therapeutic
decision-making and supply an adequate reflection of
intra-tumor heterogeneity [95].

Iterative collection of ctDNA can address tumor
heterogeneity and may predict acquired treatment
resistance driven by genetic and epigenetic mecha-
nisms. Methylated ctDNA has been evaluated as a
potential liquid biopsy-based biomarker but its appli-
cation to NSCLC in the clinic is less common than
the serial assessment of genetic alterations in ctDNA
[102]. Unfortunately, no protein or functional read-
outs are available from ctDNA data, which could be
informative in respect to a tumor’s changing phe-
notype. Additionally, ctDNA analysis remains lim-
ited due to a lack of pre-analytical conditions [95].
In contrast, CTC studies allow for evaluation of can-
cer phenotype and assist in molecular characteri-
zation of the disease. CTCs constitute a small and
fragile population of cells with broad heterogeneity,
which can make it harder to identify them. However,
if successfully captured, they could provide comple-
mentary information to that obtained from ctDNA.
Unfortunately, both ctDNA and CTC have low signal-
to-noise ratio in current screening procedures, espe-
cially in early-state disease, so emerging tumor
variants may not be detected. This technical hurdle
as well as cost and broad accessibility will need to be
addressed to improve and better define the clinical
utility of these measurements. Importantly, there has
been progress in this area in recent years, especially
in next-generation sequencing for analyzing ctDNA.
The sensitivity of ctDNA detection methods has sub-
stantially increased through the optimization of a
patient-specific library preparation, and the imple-
mentation of novel computational and experimental
error correction strategies [96, 103].

9.3. Advances in science, technology and
mathematics to meet challenges

An emerging challenge is achieving consensus around
technical approaches to collect the most robust and

reproducible patient data, while also integrating it
with insights from pre-clinical in vitro or animal data.
Mathematical modeling approaches can be useful in
bridging these gaps. In the pharmaceutical setting, a
range of models are used to guide timely and practical
strategies to monitor and optimize tumor response in
the presence of treatment, as outlined below and in
figure 10.

Pre-clinical modeling. Mathematical modeling in
drug discovery informs on basic biological under-
standing, therapeutic design [104] and ultimately
translation of preclinical exposure-response rela-
tionships into humans. Emerging clinical data may
guide therapeutic opportunities and experiments
for model-based quantification of exposure-response
relationships through ODE-based PK/PD models
[105]. Pre-clinically, tumor complexity is often sim-
plified to permit testing of the therapeutic potential
against specific mutations or nodes in cellular path-
ways; thus tumor plasticity is decoupled into simpli-
fied, data-driven, testable pieces.

Clinical development: early stages (phase I/II).
Here, models are used to inform selection of the
recommended dose for expansion. In addition, vir-
tual clinical trial simulations leveraging quantitative
systems pharmacology models can connect clinical
biomarkers with pre-clinical biological mechanisms
to inform on biomarker selection and study design,
while subsequently integrating the collected infor-
mation for further learnings. Later stages. Popula-
tion PK, PK/PD and disease progression (statistically
driven) models are leveraged to define therapeutic
performance across a population of individuals.

While early discovery modeling efforts currently
focus on identifying and delivering the right com-
pound to the clinic, integrated clinical modeling
approaches can impact strategies for minimizing
resistance and plasticity when focused on: (i) careful
selection of drug regimen and (ii) the use of rational
combination treatments that prevent the activation
of pathway-compensation mechanisms. We list some
examples below that show promise in these two areas.

Optimal dose selection. Historically, the dose
finding paradigm in oncology has been dominated
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by the maximum tolerated dose (MTD) approach
wherein phase I dose escalation studies are employed
to find MTD using pre-defined dose limiting toxic-
ity criteria. However, this approach has the poten-
tial to shift tumors into a stress-response state that
encourages resistance of the cells that will survive
treatment either due to unequal access to drugs, or
heterogeneity of tumor cell phenotypes that encour-
age escape from treatment. Recent work of Poels
et al is an example where tumor evolution and resis-
tance modeling are integrated with design of a clinical
trial [98]. More work is needed in this space; eco-
logically inspired adaptive therapies tied to clinical
studies from academic groups could have the poten-
tial to shift the traditional paradigm and also influ-
ence modeling approaches in the pharmaceutical set-
ting [106].

Modeling drug combination effects. Models that
incorporate translation of pre-clinical datasets into
clinical efficacy projections for multiple drug combi-
nations have incorporated some pathway resistance
components [97]. However, translational modeling
that can impact tumor plasticity is lacking in this
space and we believe this is an area that can be impact-
ful in the near term, particularly as more novel com-
binations are tested in the clinic.

Finally, we highlight a new generation of models
that incorporate novel liquid biomarkers with tumor
evolution models [96]. This approach has potential to
optimize trial designs, especially if it can be adapted
in settings in which monotherapy or combination
treatments are included.

9.4. Concluding remarks

Robust treatment approaches combating tumor plas-
ticity will require improved monitoring of individ-
ual time-dependent patient responses, by promising
novel technologies such as ¢ctDNA and CTC. This
information in turn can be optimally leveraged in
association with mathematical modeling methods.
Quantitative models from the academic setting are
well equipped to account for new types of data, such
as ctDNA, but progress and consensus regarding tech-
nical approaches in biomarker data collection and
analysis is needed to augment the real impact of these
models in the clinic. We hope that a more synergis-
tic union of the intellectual creativity of academicians
and the resources from industry will aid in defeating
tumor plasticity in the clinic.
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10.1. Introduction

Cellular plasticity is one of the driving mechanisms
behind the emergence of treatment resistance in can-
cer. Although the theory of bet hedging has long been
studied in many living systems [107—112], it is only
in recent years that the idea has been explored in
cancer [113—118]. Importantly, a better understand-
ing of stochastic plasticity has the potential to sig-
nificantly alter the way therapies are delivered. The
general principle of bet hedging is that two or more
phenotypes are generated within an isogenic popu-
lation, and these phenotypes have different fitness in
different environments. For example, persister cells in
bacteria [107, 119, 120] are a phenotype that has low
fitness in environments that favor the growth of the
primary ‘normal’ phenotype, while having high fit-
ness in toxic environments where the normal bacteria
rapidly die. A strain of bacteria may therefore stochas-
tically and rarely produce persister phenotypes, which
act as a hedge against a future toxic environment to
prevent population extinction.

Here, we focus on phenotypic memory in the set-
ting of bet hedging [117], wherein a population that
is using bet hedging can alter its phenotypic probabil-
ities such that recently successful strategies are more
favored. Although numerous biological mechanisms
could create this memory effect, here we use a chemi-
cal reaction network (CRN) to illustrate that rich pop-
ulation dynamics can arise from a very simple mem-
ory bet-hedging scheme. This has implications for
cancer therapy, especially if mechanisms that foment
phenotypic memory can be targeted, which would
increase the efficacy of primary agents.

10.2. Bet-hedging dynamics

We use a parsimonious agent-based model of bet-
hedging (without phenotypic memory, to begin with)
to illustrate some key behaviors that depend on gen-
eralized physical properties of the system (figure 11).
The model simulates individual cells that can be
in either of two phenotypes: fast-growing 100%-
sensitive (S, green) or slow-growing 100%-resistant
(R, red). Upon division, a cell produces two daugh-
ter cells, and each can change its phenotype with
a probability that is determined by the outcome
from the iteration of an ‘approximate majority’
CRN (figure 11(A); see [114] for details). The net-
work is initialized with a certain number of each of
two molecules (s and r, representing the S and R
phenotypes respectively). Note that the b molecule is
a transient product of the reactions and starts and
ends at zero. We define the genotype of a cell as the
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Figure 11. Bet hedging without phenotypic memory. (A) CRN (approximate majority) that is a bistable switch between states of
all s or all r molecules, using a facilitating molecule b. (B) Probability that the CRN produces phenotype S, for a given fraction of
starting s molecules. (C) Simulation using 53s and 47r upon cellular division (dashed line in panel (B)) and treating with six
pulses of therapy. (D) Simulation using 46s and 54r, with the same therapy as panel (C).

fixed initial numbers of s and r molecules produced,
and these numbers determine the probability of the
daughter cell being phenotype S or R. For example,
if the network commences with 50 of each type of
molecule, the CRN will resolve to have 100 molecules
of s (and therefore an S phenotype cell) about half
the time, and 100 molecules of r (and phenotype R)
the other half. The CRN is run twice at the time of
cell division: once for each daughter cell, to determine
their phenotypes independently. Figure 11(B) shows
the probability of producing an S daughter for dif-

ferent fractions of s molecules present at the start of
the CRN iterations, given a total of 100 molecules of
either type.

We are interested in the dynamics of these pop-
ulations under therapy (here, six pulses of a drug
that kills only S cells). Figure 11(C) shows the case
with genotype 53s/47r (which produces about 75%
S daughter cells). The behavior is like that of a per-
sister population: the R subpopulation prevents the
species from going extinct. Figure 11(D) uses geno-
type 46s/54r (which produces >80% R cells); here, the
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population is mostly resistant to therapy, representa-
tive of multicellular tissue where significant cell death
is undesirable.

10.3. The impact of phenotypic memory

A key limitation faced by the above populations is
that the fitness of each genotype is not optimal. In
the persister-like case (figure 11(C)), the number of
R cells needed to prevent extinction during ther-
apy is large, and this reduces off-treatment fitness;
in the multicellular-like case, the highly fit sensitive
cells always have a minor presence, and again the
population is poorly fit for growth off-treatment. Ide-
ally, a population would be better served if success-
ful phenotypes tended to not switch strategies, while
unsuccessful phenotypes would favor switching. This
is a form of phenotypic memory and can be mod-
eled as follows: rather than reinitializing the CRN
with the fixed initial s and r molecules upon division,
daughter cells inherit half the molecules present in
the parent at time of division. Importantly, after the
CRN is run and phenotype determined, the remain-
ing molecules undergo decay, such that the longer
a cell has lived before dividing, the fewer molecules
it passes to its daughters. These remaining inher-
ited molecules are then added to the fixed genotype
molecules before running the CRN for each daugh-
ter; this has the effect of reducing the probability of
switching phenotypes from the parent. Figure 12(A)
illustrates: the baseline genotype of initial 53s/47r
molecules normally produces about 75% S pheno-
types. If a sensitive parent has 20 s molecules left after
some time, the chemical reaction in each daughter
will start the CRN with (53 + 10)s/47r molecules,
which will have a much greater probability of produc-
ing an S-phenotype daughter. Note that the genotype
defined by the number of molecules added (53s/47r)
remains the same across cells, and it is the remaining
molecules that shift the probabilities from the baseline
defined by the genotype alone. Similarly, a resistant
cell with 20 r molecules remaining at time of divi-
sion will have a greater probability of producing an R
daughter than the baseline of 25%. The longer a cell
takes to divide (i.e., the lower the proliferative fitness),
the fewer molecules remain in the cell and there-
fore the daughter phenotype probabilities approach
the original unbiased probability determined by the
genotype. The net result of this system is one that
has phenotypic memory, where cells that are divid-
ing more rapidly will tend to keep their phenotype,
relative to the baseline chance of switching without
memory.
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Figure 12. Bet hedging with phenotypic memory. (A)
Adding molecular memory and decay shifts the probability
curve when the dividing cell still has molecules remaining.
Green and red curves show the shifts for 10s and 10r
remaining molecules at division, which are added to the
53s/47r baseline. This will bias the probability of producing
daughter cells toward preserving the parental phenotype.
(B) Simulation with 53s/47r, slow s-decay, and fast r-decay
shows a persister population: there is no sustained relapse
during remission, only survival, then rapid regrowth once
treatment ends. (C) When decay rates are swapped (s-decay
is fast and r-decay is slow), we see a population that
maintains a high density, representative of a multicellular
tissue. Unlike in figure 11(D), the off-treatment population
has almost 50% sensitive cells. (D) With a different
genotype (57s/43r) and slow decay for both molecules, the
population can grow continuously under therapy. Compare
with panel (B), where indefinite therapy would hold the
population to low-level spikes rather than sustained
growth. (E) For some parameters, the population can be
driven extinct, suggesting that agents that affect the hedging
and decay rates may be powerful combination therapies
that could enhance the primary cytotoxic agent’s effect.
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By exploring different ratios of the genotype
molecules and their decay rates (figures 12(B)—(E)),
a wide variety of phenotypic dynamics can be gen-
erated. Key elements of the illustration are that
(1) the steady-state ratio of S and R cells can be
fine-tuned through genotype ratio and decay rate;
(2) this pre-treatment S/R ratio affects the initial
response due to therapy; and (3) the responses to
therapy include a micro-persister strategy (panel
(B)), a tissue-preservation strategy (panel (C)), and
a hybrid strategy (panel (D)) where the population
can grow equally well in both conditions. Figure 12(E)
shows a case where the parameters can even lead to
tumor extinction. In the latter, the decay rates are fast,
and the probability of producing resistant cells is very
low.

An interesting aspect of this system is that
evolution can easily act on the properties of
these molecules to change their expression levels
(e.g., changes to transcriptional control) and their
decay rates (e.g., via phosphorylation, localization,
mutation, etc). Depending on the desired function-
ality of the cells and tissue in question, a suitable
strategy can be found in the evolutionary landscape
that would maximize the fitness of the population
subject to treatment (or other perturbations). Impor-
tantly, figure 12(E) suggests that agents that alter
the mechanisms of phenotypic stochasticity (such
as those that target epigenetic controls like HDAC)
could be powerful combination therapy agents that
improve the efficacy of cytotoxic drugs.

10.4. Challenges and opportunities

A key challenge in researching plasticity is that the
biology is vastly more complicated than the simple
illustration presented above. Cellular networks often
use dozens if not hundreds of interacting molecules,
which in turn produce many more than two phe-
notypes; subtle temporal aspects also likely play a
significant role, since molecules are constantly being
transcribed from the genome and then degraded
by cellular processes, complicating the meaning of
‘resolution’ for a CRN. Furthermore, the microenvi-
ronment of a cell is also a key input into phenotypic
expression. Molecules may be acquired from the envi-
ronment, either as metabolites or signals produced
by other cells, and these can influence the balance
of phenotypic outcomes. This effectively acts as an
‘environmental memory’: as cells generate success-
ful phenotypes in a changing environment, they may
release signaling molecules that bias nearby cells to
switch to the same fitter phenotype with more likeli-
hood, and therefore produce faster population growth
than would be seen with independently switching
cells.

Along with the advanced experimental techniques
needed to study phenotypic heterogeneity, mathe-
matical modeling is a key component to disentangling
these complexities. The primary challenge remains in
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identifying realistic networks, timescales, and mecha-
nistic interactions from the biology.

10.5. Concluding remarks

Bet hedging with phenotypic memory can create a
wide range of dynamics from stable resistant tissues
to small-population persister-type dynamics. These
behaviors occur even in a system with only two
phenotypes; indeed, it is the way in which these phe-
notypes arise that leads to the rich variation. Under-
standing these dynamics will give insight into the
process of therapy resistance through plasticity, which
in turn can inform epigenetic-based treatments that
enhance the effect of existing therapeutic agents.
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