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ABSTRACT

Turbulent viscosity v; and resistivity 7; are perhaps the simplest models for turbulent transport
of angular momentum and magnetic fields, respectively. The associated turbulent magnetic Prandtl
number Pry = v;/m; has been well recognized to determine the final magnetic configuration of accretion
disks. Here, we present an approach to determining these “effective transport” coefficients acting at
different length-scales using coarse-graining and recent results on decoupled kinetic and magnetic
energy cascades (Bian & Aluie 2019). By analyzing the kinetic and magnetic energy cascades from a
suite of high-resolution simulations, we show that our definitions of v, 1y, and Pr; have power-law
scalings in the “decoupled range.” We observe that Pr; =~ 1 to 2 at the smallest inertial-inductive
scales, increasing to ~ 5 at the largest scales. However, based on physical considerations, our analysis
suggests that Pr; has to become scale-independent and of order unity in the decoupled range at
sufficiently high Reynolds numbers (or grid-resolution), and that the power-law scaling exponents of
velocity and magnetic spectra become equal. In addition to implications to astrophysical systems, the
scale-dependent turbulent transport coefficients offer a guide for large eddy simulation modeling.
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1. INTRODUCTION

Magnetohydrodynamic (MHD) turbulence is central
to our understanding of many astrophysical systems, in-
cluding the solar wind, interstellar medium (ISM), and
accretion disks.

Most of these systems are characterized by very large
Reynolds numbers (Re). For example, Re ~ 10° — 107
in the cool ISM (Elmegreen & Scalo 2004), Re ~ 4 x 10°
in the solar wind (Verma 1996), and Re ~ 10* in type
Ia supernovae (Kuhlen et al. 2006). High-Re turbulent
flows involve a wide range of dynamical scales, called the
“inertial-inductive” range, over which the evolution of
the flow and magnetic field are immune from the direct
effects of external forcing and microphysical dissipation.
Similar to hydrodynamic turbulence, it is widely ex-
pected that MHD turbulence over the inertial-inductive
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range has universal statistics with power-law spectra, al-
though details of such scaling remain a subject of debate
(Goldreich & Sridhar 1995; Biskamp 2003; Zhou et al.
2004; Verma 2004, 2019; Boldyrev 2005; Schekochihin
2020). While the large scales in a high-Re MHD flow are
immune from the direct effects of microphysical trans-
port (Aluie 2017; Zhao & Aluie 2018), they are indi-
rectly influenced by the microphysics due to the “cat-
alytic” role of turbulence via the cascade process, which
acts as a bridge between the large and microphysical
scales. For example, it is widely believed that turbu-
lence plays an important role in the outward transport
of angular momentum in accretion disks for inward mass
accretion (Balbus & Hawley 1998).

The simplest conceptual framework to think of tur-
bulence is as an effective (or turbulent) viscosity v,
which leads to the “turbulent diffusion” of angular mo-
mentum at scales far larger than viscous scales, and
has long shaped our thinking of accretion disk dy-
namics (Shakura & Sunyaev 1973). Similarly, magnetic
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fields, which are essential for launching and collimat-
ing jets (Blandford & Znajek 1977; Blandford & Payne
1982; Jafari & Vishniac 2018), can be transported out-
ward by an effective (or turbulent) resistivity 7;. In
this way, the magnetic field configuration in accretion
disks may be influenced by a balance between the inward
advection by accretion and the outward diffusion by
turbulent resistivity (Lubow et al. 1994; Lovelace et al.
2009; Guan & Gammie 2009; Fromang & Stone 2009;
Cao 2011). This balance between the competing ef-
fects of vy and 7; is captured by the turbulent mag-
netic Prandtl number Pr; = v;/n;. Whether global
scale structures or turbulent stress dominate the overall
angular momentum transport is still an open question
and important for determining the budget of thermal vs.
non-thermal emission (Blackman & Nauman 2015).

For turbulent astrophysical flows, current comput-
ing resources are unable to solve all relevant scales.
Large eddy simulations (LES) rely on subgrid-scale
modeling to represent the small-scale effects on re-
solved scales (Meneveau & Katz 2000; Miesch et al.
2015). Miiller & Carati (2002); Chernyshov et al.
(2007); Grete et al. (2015) studied different subgrid-
scale (SGS) models. Renormalization group (RG) anal-
ysis was used to develop scale-dependent turbulent co-
efficients (Zhou 2010). However, the studies on MHD
scale-dependent turbulent transport coefficients are few
compared to hydrodynamic turbulence.

We remind readers that the turbulent magnetic
Prandt]l number is different from the microscopic mag-
netic Prandtl number Pr,, = v/n, where v is the
microscopic viscosity, and 7 is the microscopic resis-
tivity. Pry, is large in the ISM while being small
in stellar interiors and liquid metals (Davidson et al.
2012). Many studies have focused on the effect of
Pr,, (e.g., Lesur & Longaretti 2007; Brandenburg 2014;
Fromang & Stone 2009; Brandenburg & Rempel 2019).
The extent to which existing simulations accurately cap-
ture the physics of realistic extreme regimes of low and
high Pr,, is uncertain.

In this paper we focus on Pr;, not Pr,,. Turbulent
transport coeflicients have been studied both analyti-
cally and numerically. Estimates using mixing length
theory vy =~ n ~ U//3 (characteristic velocity U and
characteristic scale £) (Yousef et al. 2003; Kéapyla et al.
2020) are consistent to order of magnitude with 7n; cal-
culated with the test-field method (K&pyld et al. 2009)
and shearing box simulations (Snellman et al. 2009).
The quasilinear approximation (Kitchatinov et al. 1994;
Yousef et al. 2003) and RG analysis (Forster et al. 1977,
Fournier et al. 1982; Verma 2001a,b) suggested that
04 < Pr; < 0.8. Zhouetal (2002) developed

eddy and backscatter viscosity and resistivity using
eddy-damped quasinormal Markovian statistical closure
model (EDQNM).

Numerical studies have traditionally identified “tur-
bulence” as fluctuations from a (temporal or ensem-
ble) mean flow, and have typically yielded Pr; =
1. Yousef et al. (2003) measured Pr; from the de-
caying large-scale fields in forced turbulence sim-
ulations. The results showed that Pr; is near
unity and insensitive to Pry,. These simula-
tions were conducted with a fixed small magnetic
Reynolds number. Several groups studied the turbu-
lent transport coefficients using shearing box simula-
tions (Guan & Gammie 2009; Lesur & Longaretti 2009;
Fromang & Stone 2009). Guan & Gammie (2009) in-
ferred 7y from the evolution of an imposed mag-
netic field perturbation in an already turbulent flow.
Lesur & Longaretti (2009) imposed an external mag-
netic field and defined 7; using the electromotive force
induced by the field. Fromang & Stone (2009) calcu-
lated 7y from the spatially varying magnetic fields in-
duced by an electromotive term added in the induction
equation. 1, was defined using Reynolds and Maxwell
stress tensors in these studies. Despite different defi-
nitions, numerical schemes, and magnetic field config-
urations among these studies, they all find Pr, ~ 1.
Képyld et al. (2020) computed v; using both Reynolds
stress and the decay rate of a large-scale field, and 7
using the test-field method, where a set of test fields
are used to calculate the components of turbulent diffu-
sivity tensors (Schrinner et al. 2005, 2007). The results
suggested that Pr; increases with increasing Reynolds
number and saturates at large Reynolds number with
0.8 < Pry <0.95.

Other than the RG and EDQNM analyses, the afore-
mentioned studies did not analyze v, and 7 as a
function of length-scales, which is not possible from
a Reynolds (mean vs. fluctuation) decomposition
(e.g., Guan & Gammie 2009; Lesur & Longaretti 2009;
Fromang & Stone 2009; Képyla et al. 2020). Determin-
ing the scale dependence of transport coefficients can
improve the fidelity with which we characterize astro-
physical turbulence in cohort with its practical applica-
tion to subgrid scale modeling. For example, if Pry oc £¢
with o« > 0, Pry grows at larger scales, indicating that
the large-scale component of a flow, which is still part
of the ‘fluctuations’, feels a stronger v; relative to 7.

Our study aims to define and measure vy, 1;, and Pry
at different scales using the coarse-graining approach
(Eyink 2005; Aluie 2017) and the eddy-viscosity hypoth-
esis (Boussinesq 1877). Our analytical and numerical re-
sults show power-law scaling of the turbulent transport



coefficients in the “decoupled range” over which the ki-
netic and magnetic cascades statistically decouple and
become conservative (Bian & Aluie 2019).

2. METHODOLOGY
2.1. Coarse-grained energy equations

We analyze the incompressible MHD equations with
a constant density p

ou+ (w-Viu=-Vp+IxB+vViu+f, (1)
0B = Vx(uxB) + nV’B, (2)
V-au=V-B=0, (3)

where u is the velocity, and B is the magnetic field nor-
malized by /4mp to have Alfvén (velocity) units. p is
pressure, J = V XB is (normalized) current density, f is
external forcing, v and n are microscopic viscosity and
resistivity, respectively.

We use the coarse-graining method to analyze the
flow and define the turbulent magnetic Prandtl num-
ber. A coarse-grained field in n-dimensions f,(x) =
J[d"rGi(x — r)f(r) contains modes at length-scales
greater than ¢, where Gy(r) = £~"G(r/{) is a normal-
ized kernel with its main weight in a ball of diameter £.
The coarse-grained MHD equations for 1y, By, and the
quadratic MHD invariants were shown by Aluie (2017).
Hereafter, we drop subscript £ when possible.

The coarse-grained kinetic energy (KE) and magnetic
energy (ME) density balance (at scales > ¢) are,

o) 0.

M -S,BB, - wSP+fa ()
oBL) 4 v

= T, +5,B:B; —n[3* (5)

where V:[---] denotes spatial transport terms, S =

(Vu+ Vu®)/2 is the strain-rate tensor, £ is the en-
ergy injection rate at forcing scale £ = 2n/ks (ks are
the modes of the forcing f). Microscopic dissipation
terms v|S|? and n|J|? are mathematically guaranteed
(Aluie 2017; Eyink 2018) and numerically demonstrated
(Zhao & Aluie 2018; Bian & Aluie 2019) to be negligible
at scales £ > ({,,4,), where ¢, and ¢, are the viscous
and resistive length scales, respectively.

The KE cascade term I, = —S;: 7, in eq. (4)
quantifies the KE transfer across scale ¢, where 7;; =
Te(ui, uj) — 70(B;, Bj) is the sum of subscale Reynolds
and Maxwell stresses generated by scales < ¢ acting on
the large-scale strain E-j, resulting in “turbulent viscous
dissipation” to scales < £. Subscale stress is defined as

3

7(f,9) = (fg), — f,g, for any two fields f and g. Simi-
larly, ME casade term ﬁz = —J,€ in eq. (5) quantifies
the ME transfer across scale £, where the subscale elec-
tromotive force (EMF) & = uxB —uxB is (minus) the
electric field generated by scales < ¢ acting on the large-
scale current J = V X B, resulting in “turbulent Ohmic
dissipation” to scales < ¢. Both ﬁz and ﬁz appear as
sinks in the energy budgets of large scales > ¢ and as
sources in the energy budgets of small scales < ¢ (Aluie
2017).

Term ?ijﬁiﬁj quantifies KE-to-ME conversion at all
scales > ¢ and appears as a sink in eq. (4) and a
source in eq. (5). Bian & Aluie (2019) showed that
(S;;BiB;) ({...) denotes a spatial average) is a large-
scale process, which only operates at the largest scales in
the inertial-inductive range (which was called the “con-
version range”) and vanishes at intermediate and small
scales in the inertial-inductive range (which was called
the “decoupled range”). In the decoupled range, (IT,)

and (I,) become constant as a function of scale (i.e.,
scale-independent). The observation of constant KE and
ME fluxes (IT,) and <ﬁ2> is important since it indicates
separate conservative cascades of each of KE and ME,
which arises asymptotically at high Reynolds number
regardless of forcing, external magnetic field, and mi-
croscopic magnetic Prandtl number.

2.2. Scaling of turbulent transport coefficients

Oftentimes, turbulence is modeled as a diffusive pro-
cess via effective (or turbulent) transport coefficients.
For example, mixing length or eddy viscosity models
represent the subscale stress Ty, due to scales < {, as
Ti; = —2vXS,;, where ¥ is a turbulent viscosity® (e.g.,
Pope (2001) and references therein). Similarly, the sub-
scale EMF can be modeled as € = —n*J + aB, where
the n*J term models the subscales as turbulent resistive
diffusion (Miesch et al. 2015) and the aB term is the
a-effect of dynamo theory (Moffatt 1978). The a-effect
is expected to play a role in flows where the driving
mechanism is helical. To simplify our analysis and the
presentation of our approach, we shall neglect the oB
term and assume that the subscale EMF can be mod-
eled solely as Ohmic diffusion, & = —n*J. Note that
v¥(x,t,0) and n¥(x,t, ) are generally functions of space
X, length scale ¢, and time.

1 Strictly speaking, the eddy viscosity definition is FU = —21/,5?1-]-,
where ﬂj = Tij — 0ijTkk/3 is the traceless part of the stress.
For our incompressible flow analysis here, which is based on the
energy flux, this distinction does not matter.



A main goal of this paper is extracting the turbulence
transport coefficients, v and ny*, as a function of length-
scale. However, we do not pursue a phenomenological
analysis similar to that of Smagorinsky (1963) or of a
mixing length framework (Tennekes & Lumley 1972) in
part because we lack a consensus MHD turbulence the-
ory analogous to that of Kolmogorov (1941). To achieve
our goal, we shall instead analyze the energy budgets
resultant from the eddy viscosity model. Within our
coarse-graining framework, this is equivalent to having
the rate of energy cascading to scales smaller than ¢
equal a turbulent dissipation acting on scales > ¢:

20 (1S,[*) = (T0,), (6)
= —b
e e?) = (). (7)
These two relations are definitions for v, and 7,. Note
that unlike in relation 7;; = —2Vt"§ij, the turbulence

transport coefficients in eqs. (6)-(7) are defined using
scalar quantities (IT}), (IL), {|S¢|?), and (|T¢|?). For ho-
mogeneous turbulence considered in this study, we rely
on spatial averages, (...}, rendering v; and 7; indepen-
dent of location x but still a function of scale .

Consistent with the eddy viscosity hypothesis, eq. (6)
(eq. (7)) models the kinetic (magnetic) energy cascading
from scales > ¢ to smaller scales as effectively being
dissipated by a turbulent viscosity (resistivity). From
these, we can also extract a scale-dependent turbulent
magnetic Prandtl number,

(TT,) (2[Se]?)

What power-law scaling can we expect these turbulent
transport coefficients to have? It is possible to relate
vy and 1 to energy spectra. Indeed, the space-averaged
turbulent dissipation can be expressed in terms of energy
spectra:

Pri=wv/m =

—u — k
II,) = 2v4(|S¢*) = 2ut/0 E2E“(KYdk',  (9)

k
@y = ([ T[2) = 20, / KPENK)AK,  (10)

where E“(k) (E°(k)) is the kinetic (magnetic) energy
spectrum with (dimensionless) wavenumber k = L /¢ for
a periodic domain of size L.

The scaling of spectra in turn are related to the scaling
of velocity and magnetic field increments (Aluie 2017)

Su(l) o €7+, 5B(£) o £, (11)

where increment §f(z;¢) = f(x + €) — f(x) (see details
in Eyink (2005); Aluie & Eyink (2010); Aluie (2017)).

From eq. (11), the kinetic and magnetic energy spectra
scale as

E¥(k) oc k=277 Eb(k) oc k=200 71, (12)

The relation between increments and spectra does not
make any assumptions about the specific exponent val-
ues, only that they are o, < 1 (Sadek & Aluie 2018).
Scaling exponents o, and o, are a measure of smooth-
ness of the velocity and magnetic fields, respectively (see
Fig. 1 and related discussion in Aluie (2017)). A value
of o = 1 indicates that the field is very smooth (e.g.,
of a laminar flow) with a spectrum decaying as k=3 or
steeper. Canonical hydrodynamic turbulence has in-
termediate smoothness, with o, = 1/3 according to
Kolmogorov (1941) (K41). The larger is the value of
o, the smoother is the field.

For sufficiently high Reynolds number flows,
Bian & Aluie (2019) showed that each of (II,) and

(ﬁ?) become constant, independent of scale in the de-
coupled range. From definitions (6)-(8), and considering
the scaling relations discussed above, we can infer that
the turbulent transport coefficients vary with scale as
follows:

Vp X k72(17‘7“),77t x kiQ(lf‘”’), Pr; o kfz(gr"“), (13)

for scales k in the decoupled range. It is possible to
obtain scaling relations (13) from either the scaling of
spectra in egs. (9)-(10), or the scaling of coarse-grained
strain and current, [Sy| ~ du(f)/¢ and |J4| ~ dB(¢)/¢
(Eyink et al. 2013; Aluie 2017). Eq. (13) highlights that
Pr; is independent of scale only if o, = 0.

Regardless of the specific value, and consistent with
existing MHD turbulence phenomenologies, we expect
that o, < 1. Indeed, a 0,3, > 1 would correspond
to a smooth flow that is inconsistent with the qualita-
tive expectation of a ‘rough’ or ‘fractal’ turbulent flow.
Therefore, relations (13) indicate that v; and 7; decay
as £ = 0 (or k — o0). This is consistent with phys-
ical expectations since the ‘eddies’ effecting the turbu-
lent transport become weaker at smaller scales, yielding
smaller transport coefficients.

We highlight a technical, albeit important aspect of
scaling relations (13). Our coefficients seem to scale with
the inverse of coarse-grained strain and current magni-
tudes, v; ~ [S¢|72 ~ £2729% and 1 ~ |Jy|72 ~ (2729
but do not appear to depend on the subscale stress and
EMF, 7, and &y, respectively. At face value, this result
seems counter-intuitive wherein o — 1 associated with
smoother fields and weaker ‘eddies’ leads to an increase
rather than a drop in the turbulent coefficient values in
eq. (13). However, a key assumption in arriving at re-

lations (13) is that fluxes (II,) and <ﬁ2> are constant,



independent of scale. For scale-independent fluxes to be
established, consistent with a persistent cascade to ar-
bitrarily small scales (in the Re — oo limit), o, and o3
have to take on fixed values that are yet to be deter-
mined and agreed upon by the community. If o, ; were
to be somehow increased above those values, the cascade
would shut down (fluxes would decay with k) before car-
rying the energy all the way to dissipation scales (Aluie
2017). For scale-dependent fluxes, relations (13) have to

be modified to also include the scaling of (IT,) and <ﬁz>
(see Aluie (2017) for details).

To infer the scaling of turbulence transport coeffi-
cients, the approach we adopt in this paper circumvents
using values of o, and o} (in the asymptotic Re — oo
limit) from a specific MHD phenomenology—whether it
exists or not— by relying on results from Bian & Aluie
(2019) of scale-independent, fluxes (IT, ) and <ﬁlg>.

Under K41 scaling o, = 1/3 (Kolmogorov 1941),
our scaling of v, o (2727« o (*/3 is equivalent to
that from mixing length theory v; = £2|S| o (7u+!
¢4/3 (Smagorinsky 1963). Our analysis is also com-
patible with different scaling theories and observa-
tions in MHD turbulence (Iroshnikov 1963; Kraichnan
1965; Goldreich & Sridhar 1995; Boldyrev 2005, 2006;
Boldyrev & Perez 2009; Boldyrev et al. 2011). For ex-
ample, solar wind observations (Podesta et al. 2007;
Borovsky 2012) suggest that E“(k) ~ k~3/2 for the ki-
netic energy spectrum, corresponding to du(f) ~ /%,
and E®(k) ~ k~°/3 for the magnetic energy spectrum,
corresponding to dB(¢) ~ £1/3] yield

v~ k732 g~ k3 Py~ kTS, (14)
for k in the decoupled scale-range.

2.3. Alternate measure of the coefficients

Instead of analyzing the energy budgets to determine
v, nt, Pry and their scaling, we can alternatively focus
on the budgets for vorticity and current. Similar to egs.
(4)-(5), we can derive the budgets

at(@)-‘rV'[...]:---—?g (15)
at(¥)+v-[...]=---—74 (16)

Here, Z; = w-VX(V-T) and Y, = —J-V XV XZ are
the only “scale-transfer” terms in the coarse-grained eqs.
(15)-(16) involving the interaction of subscale terms T
and &, with large-scale quantities (here, @ and J) to
cause transfer across scale £. From the models 7, =
—21,S; and & = —’I]tjg, we have alternate definitions

for the turbulent transport coeflicients:

_ (Y
TS ED (18)

Note that unlike energy, vorticity and current density
are not ideal invariants and, therefore, do not undergo a
cascade in the manner energy does. Yet, to the extent 14
and n; are able to capture the subscale physics embedded
in T, and &y, it is reasonable to expect that the turbulent
transport coefficients are consistent with the budget of
any quantity derived from the underlying dynamics.

In Fig. 1, we compare v; and 1 when calculated from
egs. (17)-(18) to those obtained from the energy budgets
in egs. (6)-(7). We find that the two definitions yield
fairly similar results with slight quantitative differences.
This consistency lends support to our approach of using
the energy budgets to calculate vy and n; (eqs. (6)-
(7)) and make inferences about turbulent diffusion or
dissipation of quantities other than energy.

2.4. Implications to subgrid modeling

It is almost always the case that astrophysical sys-
tems of interest are at sufficiently high Reynolds num-
bers (both magnetic and hydrodynamic) that it is im-
possible to simulate the entire dynamic range of scales
that exist (Miesch et al. 2015). In practice, most sim-
ulations are either explicit or implicit Large eddy sim-
ulations (LES), resolving only the large-scale dynamics
(Meneveau & Katz 2000). The former include explicit
terms in the equations being solved that model the un-
resolved subgrid physics, whereas the latter rely on the
numerical scheme to act as a de facto model for such
missing physics. Our analysis here can offer guidance
for tuning the turbulent coeflicients when conducting
explicit Large Eddy Simulations using eddy diffusivity
models. It can also offer us insight into whether relying
on a similar scheme and grid for simulating both the
momentum and magnetic fields is justified.

In the inertial-inductive range, using eq. (6), |S¢| ~
du(f)/¢, and the Ansatz (Aluie 2017)

u(6) o s <§) , (19)

where u,ms = (Ju[?)1/2, L is a characteristic large scale
such as the integral scale or that of the domain, and we
ignore intermittency corrections, we then have
M) (e () (f )
Vs = — ~ ~ —_ .
(2|S¢]?) |ou|? u2, ) L? L

™ms

(20)



In an LES with grid spacing Az, the turbulent vis-
cosity accounting for subgrid scales should be evaluated
at a coarse-graining scale {. = L/k. proportional to Az
(Pope 2001), where k. = L/{. is a dimensionless cutoff
wavenumber:

M) (1
= =g, k) 0 Y

for (¢,,¢,) < {. < L, where dimensionless constant C,,
defined as the proportionality factor of the relation

ou—1
Q. |2\1/2 _ Urms £
B -ctz (1) e

Figure 6 in the Appendix shows that C,, is indeed a pro-
portionality constant that is scale-independent within
the decoupled range, taking on values from 2 to 5 in
various simulated flows.

Similarly, the turbulent resistivity at the cutoff
wavenumber is

=0 220,
(IL) 1 ’
k = kjc = —_—"= _— B 23
77t( ) CngmS/Lg k. ( )
where Byps = ([B—Bog|?)/? (By is the uniform external
magnetic field), and dimensionless constant Cj defined
as

_ B é (Tb—l
2\1/2 _ ms e
(19e%) Co—7 (L> : (24)

Fig. 6 in the Appendix shows that Cj is indeed a pro-
portionality constant that is scale-independent within
the decoupled range, taking on values from 10 to 15 in
various simulated flows.

If the grid is sufficiently fine to resolve some of the
scales in the decoupled range, then eqs. (21),(23) sim-
plify to

c 1 2—20,
Vt(k = kc) = 7203u%m5/L2 (k_c> 9 (25)
2_2(717
Ep 1
kj = kjc = —n -— 5 26
=) = a2 (k> (26)

with scale-independent fluxes (I, ) = ¢, and <ﬁ2) = &p.
These are the KE and ME cascade rates, which were
found by Bian & Aluie (2019) to reach equipartition in
the decoupled range, €,, = ¢, = €/2, half the total energy
cascade rate, €.

Egs. (21),(23) (and egs. (25),(26)) connect the scaling
of turbulent transport coefficients with the scaling of
velocity and magnetic spectra, and are compatible with
different MHD scaling theories. For example, if E%(k) ~

k=5/3 (corresponding to du(¢) ~ ¢/3) as in the theory
by Goldreich & Sridhar (1995), eq. (21) reduces to the
turbulent viscosity model of Verma (2001a) derived from
an RG analysis (see also Verma & Kumar (2004)).

Table 1. Simulation parameters. ABC (helical) and Taylor-
Green (non-helical) forcing are applied at wavenumber ky.
B — | /max,[E®(k)] is at the magnetic spectrum’s [E° (k)]
peak. Each simulation set includes runs with the same pa-
rameters except grid resolution (Reynolds numbers). N2 o
denotes the highest resolution in each set. Subscripts a, b,
¢, and d denote resolution of 2562, 5123, 10242, and 20483,
respectively. More details are given in Table 2 in Appendix.

Run Forcing kf Prm |Bo|/BP™ N2..
I ABC 2 1 0 10243
II ABC 2 1 10 10243
111 TG 1 1 0 10243
v TG 1 2 0 10243
IV(Pr,=01) TG 1 01 0 5123
IV(Pry,=5) TG 1 5 0 5123
IV(Pr,=10) TG 1 10 0 5123
\Y ABC 2 1 2 2048°

3. NUMERICAL RESULTS

We conduct pseudo-spectral direct numerical simula-
tions (DNS) of MHD turbulence using hyperdiffusion
with grid resolutions up to 20483. Simulation parame-
ters are summarized in Table 1 (see details in Table 2
in Appendix). To discern trends in the high-Re asymp-
totic limit, each set of simulations is run under the same
parameters but at different grid resolutions (Reynolds
numbers). Our flows are driven with either non-helical
forcing (Runs IIT and IV) or helical forcing (Runs I, II,
and IV). Since we do not account for the a-effect when
modeling the turbulent EMF, €, which may be impor-
tant in helically-driven flows, we focus on results from
Runs III and IV in the main text while those driven
with helical forcing (Runs I, II, and IV) are shown in
Appendix for completeness. We note that all simula-
tions yield remarkably similar results, regardless of the
type of forcing.

In our simulations, we observe a scaling of E"(k) ~
k=%/3 in Run I, I, and IV, and E*(k) ~ k=3/2
in Run II. and V4 (see Figs. 10,11 in Appendix),
corresponding to scaling exponents of o, = 1/6 and
oy = 1/4, respectively. E'(k) ~ k=°/3 in all runs (at
the highest resolution), corresponding to scaling expo-
nents of o, = 1/3. The E’(k) scaling is consistent with
that reported in solar wind studies (Podesta et al. 2007;
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Figure 1. Panels (a)-(b) show v, n:, and Pr; calculated using their respective definitions in egs. (6)-(8), at different scales
k = L/¢. Panels (c)-(d) show an alternate calculation of v; and 7 from eqgs. (17)-(18). We use the highest resolution runs of
Run IIT and IV (Taylor-Green forcing) in Table 1. Three reference lines with a slope of -1/3, -5/3 (black dash-dotted), and
-4/3 (black solid) are added. Note the reference line of -1/3 and Pr; use the RIGHT y-axis, while others use the LEFT y-axis.
Scales < ¢4 are not shown. Simulations with helical forcing are shown in Fig. 7 in Appendix.

Borovsky 2012). The E“(k) ~ k~*3 scaling is con-
sistent with that reported by Grete et al. (2020b) us-
ing the code K-Athena (Stone et al. 2020; Grete et al.
2020a), and is slightly shallower than k~3/2 reported in
other studies (Haugen et al. 2004; Borovsky 2012), pos-
sibly due to the pronounced bottleneck effect from using
hyperdiffusion (Frisch et al. 2008).

Without placing too much emphasis on the specific
values of o, and o for now, we wish to check if the
scaling we derived in eq. (13) is consistent with the o,
and o, we observe in our simulations. Figure 1(a),(b)
(also Fig. 7 in Appendix) shows the effective transport
coefficients 14, ¢, and Pr; as a function of scale cal-
culated using their respective definitions in egs. (6)-
(8). We can see that (k) ~ k=53 (or ~ k=3/2)
and n;(k) ~ k=*/3, consistent with relation (13) when
o, =1/6 (or o, = 1/4) and o, = 1/3 as in our simula-
tions. Moreover, we see in Figure 1(a),(b) (and Fig. 7
in Appendix) that Pry(k) ~ k='/3 (or ~ k~'/%), which
is also consistent with the derived scaling in eq. (13)
with o, = 1/6 (or o, = 1/4) and o, = 1/3 in our sim-

ulated flows. Panels (¢)-(d) in Figure 1 also show v,
7t, and Pr; but calculated from egs. (17)-(18). Turbu-
lent resistivity is very similar to that in Fig. 1(a),(b)
with a n; ~ k=% scaling, whereas v; has a scaling that
is slightly shallower than that in Fig. 1(a),(b). Since
Pry = vy /m, it is sensitive to slight changes in the scal-
ing with Pr; ~ k~'/3 only over the decoupled range
k € [50,200] but not for smaller k.

Qualitatively, the scalings of transport coefficients in
Fig. 1(c),(d) are consistent with those in Fig. 1(a),(b),
generally increasing at larger scales. We believe that this
agreement between the different definitions of transport
coefficients will be enhanced as the dynamic range in-
creases and more definitive power-law scalings emerge.
Indeed, we will present evidence below that the dynamic
range in simulations that are possible today, including
ours here, do not yet have a converged power-law scal-
ing.

The scaling of n; ~ k~*° agrees with our eq. (14)
applicable to the solar wind, as does v; ~ k~3/2 from
Runs II, and V4. The scaling of v, ~ k~%/3 in Runs

4/3
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I, III., and IV, decays faster than k=3/2 in eq. (14)
since o, < 1/4 in those simulations, associated with a
shallower spectrum. This may be attributed to the bot-
tleneck effect from hyperviscosity (Frisch et al. 2008),
which produces a pileup at the small scales (see the spec-
tra in Fig. 10 of Appendix).

Figure 1(a)(b) also shows Pr; larger than unity in the
inertial-inductive range, decreasing to Pr; =~ 1 to 2 at
the smallest inertial-inductive scales ¢4 in all cases (see
also Table 3 in Appendix), where ¢4 is defined as the
scale where (IT; +1I,) = v(|Va@|?) + 7(|VB?). For non-
unity Prp,, {q = max(ly, ;). ¢, and ¢, are defined as
scales where (IT,) = v(|V|?) and <ﬁ2> =n(|VBJ|?).

Figure 2 (and Fig. 8 in Appendix) shows ratios
(ﬁb/(ﬁz) and {]J¢|?)/(2|S¢|?), the product of which
yields Pry in eq. (8). (II,) /<ﬁ2> becomes constant in
the decoupled range due to the conservative (constant)
KE and ME cascades in this range. (|J¢|?)/(2/S¢|?)
is equal to [ K2EP(K)dK'/ i K*E*(K')dk'. The ra-
tio (|J¢|?)/(2|S¢|?) increases because E’(k) < E*(k)
at forcing scales (forcing in velocity field) but E°(k)
catches up and exceeds E“(k) at larger k. The ratio
(|Te|?)/(2]S¢|?) decays after reaching a peak since (1)
each of J; and Sy is dominated by the largest wavenum-
bers below the cutoff k < L/¢, and (2) E*(k) is shallower
than E°(k) at high k in the inertial-inductive range,
making [Sy|? grow faster than |J,|? as £ — 0.

4. DISCUSSION

We now provide the physical explanation for why Pry
seems to increase at larger scales and discuss whether
or not this trend is expected to persist for an arbitrarily
wide dynamical range (Re — o0). As we have men-
tioned above, % and o’ are a measure of the veloc-
ity and magnetic fields’ smoothness, respectively (Aluie
2017). If o, < op (corresponding to a shallower scal-
ing of E%(k) relative to E°(k)) as in our simulations
and many other independent reports from solar wind
observations and simulations (e.g., Podesta et al. 2007;
Mininni & Pouquet 2009; Borovsky 2012; Grappin et al.
2016), then the velocity field is rougher than the mag-
netic field. This implies that small-scale velocity “ed-
dies” have a higher proportion of the overall kinetic en-
ergy compared to the proportion small-scale magnetic
“eddies” contribute to the overall magnetic energy (i.e.,
smallscale KB, smallscale ME) -~ Note that the latter
statement is not based on comparing E%(k) to E°(k) at
high k in absolute terms, where we see E®(k) > E“(k).
Rather, it is based on the strength of “eddies” relative
to the overall velocity or magnetic field, respectively.

The coarse-grained strain and current, Sy and Jy, are
cumulative quantities, i.e., they include the contribu-

tion from all scales larger than ¢, for any £. It follows
from the above paragraph that as the coarse-graining
¢ is made smaller, the relative contribution from scales
near ¢ to |Sy|? is more significant than to |J,|2. From
the definition of Pry in eq. (8) and with (I, )/ <ﬁ2> be-
ing scale-independent in the decoupled range, we have
Pry o< (|J3?)/(2|S¢|?) in the decoupled range. Clear ev-
idence of this is shown in Fig. 2 (and Figs. 3,8). As ¢
decreases (or k increases), both |S|? and |J,|? increase
because contributions from < ¢ are included. However,
due to larger roughness of the velocity field, the increase
in |Sy|? is more pronounced than that in |J,|?, leading
to a decrease in the ratio (|J¢|2)/(2|S¢|?). This explains
why Pr; seems to decrease with larger k over the decou-
pled range (range over which each of (II;) and <ﬁz> is
scale-independent).

In the conversion range over which (II,) and (ﬁz>
are still varying with ¢, the scaling of Pr; depends on
both <ﬁ§>/<ﬁ§> and (|J¢|?)/(2|S¢[?). On the one hand,
(ﬁb / <ﬁ2> > 1 since energy is input into the veloc-
ity field at the largest scales and more kinetic energy
is cascading compared to magnetic energy, such that
I,/ (ﬁz> — 00 as { — £y approaching the forcing scale
. On the other hand, we have the ratio (|J,|?)/(2[S¢|?)
decreasing in that limit of £ — ¢ since the strain be-
comes relatively stronger at the forced scales. From Fig.
2, we find that in our simulated flows, the Pr; scaling
over the conversion range either decaying weakly or flat
as k increases. Since the conversion range is limited in
extent and does not increase with an increasing dynamic
range (Bian & Aluie 2019), it is not very meaningful to
discuss a scaling of Pr; over this range.

Crude estimates of the competition between large
scale magnetic flux advection and large scale magnetic
flux diffusion in accretion disks require Pry(R/H) >
1 (where H is the disk scale height and R is the
disk radius) for the former to be competitive with
the latter in the disk interior (Lubow et al. 1994;
Blackman & Nauman 2015).> That we find values of
Pr; > 1 means that large-scale MHD flow may be
more efficient at advecting large scale magnetic flux
while shedding angular momentum outward (via vy)
than would be the case for Pr; < 1. That said, pin-
ning down the exact implications are difficult given the
additional dependence of disk physics on stratification
with the possibility of flux advection in surface layers
(e.g., Lovelace et al. 2009; Zhu & Stone 2018).

2 The turbulent Prandtl number used in Lubow et al. (1994) is the

inverse of Pry
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Figure 2. Plots showing Pr; and its two components (ﬁ;}/(ﬁ;) and {(|T¢|*)/(2|Se|?) at the highest resolutions of Run III
and IV (Taylor-Green forcing) in Table 1. A reference line with a slope of -1/3 (black dashed) is added. The plots show that

<ﬁ§>/<ﬁ§> approaches a constant in the decoupled range. Simulations with helical forcing are shown in Fig. 8 in Appendix.

4.1. Pr; scaling under different flow conditions

We have tested the scaling of Pr; under different mi-
croscopic Pr,, flow conditions. We remind the reader
that our results here pertain to the decoupled range,
which is within the inertial-inductive range. These
scales are immune from the direct influence of both re-
sistivity and viscosity. We do not expect our results here
(and those of Bian & Aluie (2019) upon which this anal-
ysis is based) to hold in the viscous-inductive (Batche-
lor) range at high Pr,,, or in the inertial-resistive range
at low Pr,,. From practical modeling considerations,
such as when simulating a galactic accretion disc at
global scales, grid-resolution constraints render it vir-
tually impossible to have Az ~ ¢ within the viscous-
inductive range. Therefore, the restriction of our analy-
sis to inertial-inductive scales is still pertinent to mod-
eling as well as being of theoretically import.

Fig. 1(a)(b) shows the case (Run IV) of Pr, = 2,
where we find a scaling of Pr; similar to the case of unity
microscopic Pr,,. We also conduct simulations (Table
1) at Pr,, = 0.1, 5, and 10, albeit at a lower resolution
of 5123 due to the computational overhead required by
non-unity Pr,,. Fig. 3 shows that scale-dependence of
Pr, is consistent with that of unity-Pr,, runs, although
the scaling is not as clear. Due to the lower resolu-
tion, the decoupled range is barely established in the
non-unity Pr,, cases. Non-unity Pr,, simulations re-
quire even larger Reynolds numbers to achieve a signif-
icant decoupled range and still make an allowance for a
viscous-inductive or an inertial-resistive range of scales.
This is beyond our computing capability for this work.

Our results also suggest that within the limited dy-
namic range of our simulations, increasing the external
B-field strength from 0 (Run I) to 2 (Run V) to 10 (Run
IT) seems to change the Pr, scaling slightly from k—1/3

to k=16 due to o, increasing from 1/6 to 1/4 (see Fig.
7 in Appendix). However, we do not believe this trend
will persist at asymptotically high-Re as we discuss in
the following subsection. We also note that our analy-
sis here does not distinguish the anisotropy in turbulent
transport. Our effective transport coefficients in this pa-
per are isotropic even though the underlying turbulent
flow may be anisotropic such as in Runs IT and V (see
Fig. 5 in Appendix). We hope this work is extended to
anisotropic turbulent transport in future studies.

4.2. Pry scaling at asymptotically high-Re

Can we expect the scaling of Pr; in Fig. 1(a),(b),
which is in support of our relations in eq. (13), to ex-
trapolate to the wide dynamical ranges (high-Re) that
exist in many astrophysical systems of interest?

Figure 4 (and Fig. 9 in Appendix) examines the
scaling of Pr(k) at different Reynolds numbers. Each
panel shows results from a suite of simulations under
the same parameters except for Re (or grid-resolution).
The plots show that Pri(k) takes on a value between
1 and 2 at the smallest scales within the inertial-
inductive range, regardless of Re (also Fig. 16 and
Table 3 in Appendix). These scales near ¢; are bor-
dering the dissipation range. The reason Pry(k =
L/¢g) = 1 to 2 can be understood from definition (8) of

Pro = ((T)/() ((T42)/(2802). Due to equipar-
tition of the cascades in the decoupled range, we have
(T)) /(L)) ~ 1, whereas (| T|2)/(2[S¢|?) ~ 1 to 2, as is
clear from Fig. 2 (and Figs. 3,8). The latter can also be
inferred from comparing the spectra E*(k’) and E°(k’)
in Figs. 10-11 via egs. (9)-(10).

Based on these observations, it is physically reason-
able to assume that for a sufficiently wide dynamical
range (or large Re), (|J,|?)/(2[S¢,|?) converges to a
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Table 1. A reference line with a slope of -1/3 (black dashed) is added. Simulations with helical forcing are shown in Fig. 9 in

Appendix.

constant when ¢ ~ ¢4 (or k = ky), independent of the
dynamical range extent (i.e., independent of Re). That
is, the ratio (|Jy,[?)/(2|S¢,[?) has the same value un-
der successive refinement of the grid. This effectively
provides us with a conceptual boundary condition on
Pri(k) at those smallest scales k ~ kq.

These logical considerations, when combined with the
scaling Pry(k) ~ k=2(@=%) in eq. (13) (with empirical
support in Figs. 1(a)(b),7), may lead us at face value to
the uncomfortable conclusion that at any fixed %k in the
inertial-inductive range, Pr:(k) will keep increasing with
increasing Re (or higher resolution) as Fig. 4 (and Fig. 9



in Appendix) seems to indicate. That is unless the MHD
dynamics eventually yields o, = o in this asymptotic
limit, i.e., at successively higher resolution simulations.
Indeed, there are indications from Figs. 4,9 that the
Pr(k) sensitivity to Re decreases with increasing Re as
we now discuss.

At first glance, Fig. 4 seems to indicate that Pr.(k)
at any fixed wavenumber, e.g., k = 50 within the de-
coupled range, Pri(k = 50) increases with increasing
resolution. Yet, as we shall now argue, Fig. 4 high-
lights how certain metrics such as Pr; in our simulations,
which are very high-resolution by today’s standards, are
still not fully converged to the high-Re limit. From the
definition of Pr; in eq. (8), this increase can only be

due to an increase of the cascade ratios (II,)/ <ﬁ2>, or
the current-to-strain ratio, (|J¢|?)/(2|S¢|?), or both. We
find in Fig. 15 that the latter accounts for most of
this increase. Fig. 15 suggests that the cascade ra-

tio (TT,)/ <ﬁ§> is fairly converged with resolution in our
largest simulations at ¢ = L/50. Physically, we expect
{|Te|?)/(2]S¢|?) to also converge since the ratio depends
on the strain and current (or equivalently, the spectra)
at scales larger than L/50. These should not remain
sensitive to the smallest scales in a simulation once a
sufficiently high resolution has been achieved. Fig. 15
in Appendix indicates that the high resolution of our
simulations is still not sufficient for the convergence of
these quantities ((2|S,|?) and (|J,|?)). Ignoring conver-
gence trends under the guise of “having conducted the
highest resolution simulation to date” can be rife with
pitfalls. In general, when analyzing simulations of tur-
bulent flows, it is vitally important to study trends as
a function of Reynolds number and check if the phe-
nomenon under study persists and can be extrapolated
to the large Reynolds numbers present in nature.

What conclusion on Pri(k) scaling do these conver-
gence considerations lead us to? If we accept that with
increasing resolution, Pr:(k.) has to converge to a spe-
cific value for any fixed k. within the inertial-inductive
range, and if we also accept that at the smallest scales
within the inertial-inductive range =~ £4, Pri(kq) also
converges to a constant value, then as the gap be-
tween k. and kg widens with a wider dynamical range
(kg — 00), we must have that Pry(k) ~ k=2(00=7u) ~ E0
approach a k-independent scaling with o, = o, in the
asymptotic limit Re — oco. Our Figs. 4,9 lend some
support to our assertion as they show that the Pr.(k)
is converging (but not converged) at the largest scales
with increasing resolution.

Such a conclusion would have wide-ranging implica-
tions, foremost of all regarding the power-law scaling of
spectra in MHD turbulence. However, it is important

11

that our results are further verified by the community
under different parameter conditions, e.g., By strength
and Pr,,, and perhaps also from higher resolution sim-
ulations.

5. CONCLUSION

In this paper, we are proposing a somewhat new
method to measure turbulent transport coefficients (tur-
bulent viscosity v, resistivity 7;, and magnetic Prandtl
number Pry) at different scales using the coarse-graining
approach. To our knowledge, this is the first determi-
nation of Pr; as a function of length scale. From an-
alyzing the kinetic and magnetic energy cascade rates,
we infer power-law scaling in eq. (13) for v, n:, and
Pr; given our definitions of those transport coefficients.
This approach circumvents relying on particular values
for the spectral scaling exponents (o, and o) from a
specific MHD phenomenology —whether it exists or not—
by relying on results from Bian & Aluie (2019) of con-
servative KE and ME cascades. Our analysis here relied
on high-resolution DNS under different forcing, external
B-field strength, and microphysical Pr,.

Our DNS results indicate that Pr; ~ 1 to 2 at the
smallest inertial-inductive scales, increasing to Pr; =~
5 to 10 at the largest scales. For accretion disks, conser-
vative minimalist estimates for advection of large scale
vertical magnetic fields to win over turbulent diffusion
require Pry(H/R) > 1, so that larger values of Pr; im-
prove the efficacy of flux advection over diffusion (e.g.,
Lubow et al. 1994). This condition and the direct ap-
plicability of our specific results are both textured by
detailed disk physics (e.g., Zhu & Stone 2018), includ-
ing stratification, not studied here.

Nevertheless, based on physical considerations, our
analysis suggests that Pr; has to become scale-
independent and of order unity in the decoupled range at
sufficiently high Reynolds numbers (or grid-resolution),
and that the power-law scaling exponents of velocity and
magnetic spectra become equal.

If indeed the power-law scaling exponents of velocity
and magnetic spectra (o, and op) become equal in the
Re — oo limit, it would have wide-ranging implications,
foremost of all regarding the power-law scaling of spectra
in MHD turbulence (Politano & Pouquet 1998a,b; Aluie
2017). However, as discussed above, our Pr; scaling is
not quite converged, despite showing a converging trend.
It is important for our results to be further checked by
the community using simulations of higher resolution
and for a wider range of parameters, e.g., By strengths
and Pr,, values.

Our results also suggest that the presence of a
mean B-field does not affect Pr; significantly. How-
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ever, we only consider Pr; as a scalar in this study.
Lesur & Longaretti (2009) considered an anisotropic
turbulent resistivity tensor with an external B-field. Un-
der non-unity microphysical Pr,,, our results are con-
sistent with those of Pr,, = 1, although we could not
establish a clear decoupled range due to insufficient sim-
ulation resolution.

In addition to potential implications for astrophysi-
cal systems, our analysis of how 1y, 1y, and Pr; vary
with length-scale provides a practical model for these
quantities that does not rely on any particular MHD
turbulence phenomenology.

The simulations we conducted here are fairly idealized
(incompressible flows in a periodic domain with artificial
forcing). We hope that this work offers a path to ana-
lyzing more complicated flows since our method can be
applied to more realistic simulations such as of global ac-
cretion disk flows. For the pursuit of isotropic diffusion
coeflicients, measuring v; and n; at any length-scale from
eqs. (6),(7) does not require the existence of an inertial
range or even turbulence, even though in the present
paper we applied the method to a case of fully devel-
oped turbulence. For some applications, we believe that
our approach complements existing approaches such as
test-field methods (Schrinner et al. 2007; Képyla et al.
2020) of measuring turbulent transport. These meth-
ods involve taking the velocities computed from a nu-
merical simulation and then separately solving for the
transport coefficients using an imposed test magnetic
field. Traditionally these have been restricted to the
kinematic regime of a weak magnetic field (although see
Képyld et al. (2021)).

Finally, our work should not be construed as an
endorsement of the “eddy viscosity/resistivity” model
wherein turbulent processes 7, and €, representing scales
< ¢ are modeled as purely diffusive. Our approach can
be extended to models in which transport is not entirely
diffusive, such as those which include the the helical a-
effect.
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APPENDIX

This Appendix provides more details about the numerical setup, evidence of convergence, and the effects of a
non-unity microscopic Prandtl number.

A. NUMERICAL SETUP

Our numerical simulations of mechanically forced turbulence are conducted in a periodic box T = [0, L)3, with
L = 2w. We use a pseudo-spectral code with phase-shift dealiasing. The time integration method is a second-order
Adam-Bashforth scheme. We solve the incompressible MHD equations with hyperviscosity (Borue & Orszag 1995)
and hyperresistivity with a Laplacian of exponent o = 5:

ou+ (wV)u=-Vp+IXB — v, (~V?)*u+f, (A1)
OB = Vx(uxB) — n,(-V?)*B, (A2)
Vau=V-B=0, (A3)

where vy, is hyperviscosity, and ny, is hyperresistivity coefficients. Hyperdiffusivity is commonly used in MHD turbulence
studies (Cho & Vishniac 2000; Kawai 2013; Beresnyak 2015; Meyrand et al. 2016; Kawazura et al. 2019) to reduce the
dissipation range extent, thereby allowing for a longer inertial-inductive range of scales. The velocity and magnetic
field are initialized in k-space with %t ~ |k|2e_‘k‘2/11 spectra and random phases.

Runs I, I, and V (see Table 2 for simulation details) are driven by ABC forcing (named after Arnold, Beltrami, and
Childress):

f=[Asin(ksz) + Ccos(kry)les + [Bsin(krz) + Acos(krz)le, + [Csin(ksy) + Bcos(ksz)le,, (A4)

where A = B = C' = 0.25, ky is forcing wavenumber, e;, e,, and e, are unit vectors in z, y, and z, respectively. ABC

forcing is helical, which injects kinetic helicity into the flow. Kinetic helicity is an example of a pseudoscalar which

facilitates large-scale dynamos (e.g. Parker 1955; Moffatt 1978; Mininni & Montgomery 2005; Blackman 2016).
Taylor-Green (TG) forcing, which is non-helical, is used to drive the flow in Runs III and IV:

f= folsin(kyx) cos(kyry) cos(ksz)ey — cos(kyx)sin(kyy) cos(krz)eyl, (A5)

where the force amplitude fo = 0.25. TG forcing injects no global integrated kinetic helicity into the flow.

The simulations are conducted at different Reynolds numbers with different grid resolutions. Detailed parameters
are shown in Table 2, where subscripts a, b, ¢, and d (e.g., Run V, vs. V}, vs. V. vs Vg) denote simulations using the
same parameters but at different grid resolutions and Reynolds numbers. Run I-IV are conducted with grid resolution
of 2563, 5123, and 10243. Run V is also conducted at 20482 resolution. For Rum III, Pr,, = 0.1, Pr, = 5, and
Pr,, = 10 at grid resolution of 2563 and 5123 are added to study the effects of non-unity microscopic Prandtl number.

Figure 5 visualizes the magnitude of velocity and magnetic fields (Ju| and |B|) in two simulations. The anisotropic
structures are significant with the presence of an external magnetic field (Fig. 5(c,d)).

Fig. 6 shows that C,, and Cj used in eqgs. (21),(23) are indeed proportionality constants that are scale-independent
within the decoupled range.

B. HELICAL FORCING RESULTS

The section shows numerical results from simulations with helical forcing. The a-effect of dynamo theory is believed
to be important in helical turbulence. We show here the helically forced results for completeness, although neglecting
the « term in eq. (7) may not be justified. Nevertheless, our results are remarkably similar to those in the main text.

Figure 7 shows v4, 1, and Pr; scaling at the highest resolution in helical forcing simulations, as a supplement to
Fig. 1(a)(b). The results are v;(k) ~ k=53 (or ~ k3/2) and n;(k) ~ k=*/3, and Pr(k) ~ k=1/3 (or ~ k~1/6), similar
to the non-helical simulation results. As we mention in the main section, o,, is ~ 1/4 rather than 1/6 in the presence
of a strong external B-field (Run II), leading to the change in the scaling of v; and Pr;.

Figure 8 shows (IT,)/ (ﬁz> and (|J;|?)/(2|S¢|?) at the highest resolution in helical forcing simulations, as a supplement
to Fig. 2. The results suggest constant (II,)/ <ﬁ2> in the decoupled range and the same scaling of (|J,|)/(2|S¢|?) and
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Table 2. Simulations parameters: Pry, is the magnetic Prandtl number. B'*** = /maxy, [Eb(k)] is at the magnetic spectrum’s
[E®(k)] peak. ABC (helical) and TG (non-helical) forcing are applied at wavenumber k.

Run Grid  Forcing ky Pry, |Bo|/Bp* vp, Mh

L. 2565  ABC 2 1 0 5x 1071 5% 10716
I, 5123 ABC 2 1 0 2x107% 2x107%
I. 1,024®> ABC 2 1 0 4%x107% 4x107%
I, 2563 ABC 2 1 10 5x 1071 5x1071¢
I, 5123 ABC 2 1 10 2x1072 2x 107
1. 1,024  ABC 2 1 10 4x107% 4x107%®
111, 2563 TG 1 1 0 5x 1071 5x1071¢
111, 5123 TG 1 1 0 2x107% 2x 107
111, 1,024> TG 1 1 0 4%x107% 4x107%
IV, 2563 TG 1 2 0 2x1071% 1x1071¢
IV, 5123 TG 1 2 0 4x107% 2x 107
IV 1,024> TG 1 2 0 4x107% 2x107%
IVa(Prm = 0.1) 2563 TG 1 01 0 2x 10717 2x 1071
IVu(Pry, =0.1) 512° TG 1 01 0 2x 1073 2x 107
IVa(Prmm = 5) 2563 TG 1 5 0 1x107'% 2x107"
IVy(Prm = 5) 5123 TG 1 0 1x1072° 2x107%
IVa(Pry, = 10) 2563 TG 1 10 0 2x 1071 2x 1077
IVy(Prm = 10) 5123 TG 1 10 0 2x 107 2x 1072
Va 2563 ABC 2 1 2 5x 10716 5x 1071¢
Vi 5123 ABC 2 1 2 2x1072 2x 107
Ve 1,024  ABC 2 1 2 4x107% 4x107%
Va 2,0482 ABC 2 1 2 1x107% 1x107%7

Pry in the decoupled range, similar to the non-helical simulation results. The scaling of (|J¢|2)/(2[S¢|?) is explained
in the main section.

Figure 9 shows Pr; at different Reynolds number in helical forcing simulations, as a supplement to Fig. 4. The
results are similar to non-helical simulation results.

C. RESULTS AT DIFFERENT REYNOLDS NUMBERS

Figure 10 shows the kinetic energy spectrum at different Reynolds numbers (grid resolution). The slope becomes
steeper as Reynolds number increases. The slop is near -3/2 at the highest resolution in Run II and Run V (with
external B-field), while shallower than -3/2 in other simulations. Grete et al. (2020b) observed a kinetic energy
spectrum of -4/3, which is also shallower than -3/2.

Figure 11 shows the magnetic energy spectrum at different Reynolds numbers. The slope agrees well with —5/3 for
all Reynolds numbers. Figure 12 shows the kinetic and magnetic energy spectra of Run IV with Pr,, = 0.1, 5, and 10.

Figure 13 shows that the scaling exponent of v; is near —5/3 (—3/2 in Run II. and V4) at the highest resolution.
As Reynolds number increases, it becomes steeper and approaches -3/2. Figure 14 shows the scaling exponent of 7;
at all Reynolds numbers is near —4/3, consistent with eq. (14).

Figure 15 shows that (IT,)/ <ﬁ§> and (|J,|?)/(2|S¢|?) at different Reynolds numbers (grid resolution).

Figure 16 shows Pr; at different Reynolds numbers with z-axis normalized by kg = L/¢4, where £, is defined as the

scale at which (IT, +ﬁz> = v(|Vu|?) +7(|VB|?). For non-unity Pry,, {4 = max({,,{,). ¢, and £, are defined as scales
where (IT,;) = v(|Va|?) and <ﬁz) =n(|VBJ|?). Pr; at different Reynolds numbers collapse at k = kg, as expected (see
also Table 3).

Figure 17 shows (II,)/ <ﬁz) at different microscopic Prandtl numbers (Pr,, = 0.1, 1, 5, 10). Since the decoupled

— —b
range, over which each of <HZ) and (IT,) becomes scale-independent, is barely resolved, these plots neither reinforce nor
conflict with the expectation of asymptotic equipartition of the kinetic and magnetic cascades predicted in Bian & Aluie
(2019), irrespective of microscopic Pry,. It is worth emphasizing that the observation of Brandenburg (2014) of a



17

= N W b~ U
= N W b~ U

m B

(a) |u| (Run I.) (b) [B| (Run T.)
8 8
6 6
4 4
2 2
0 0
() |u| (Run TI.) (d) [B| (Run TL)

Figure 5. Slices of magnitude of velocity field |u| and magnetic field |B|. Panels (a) and (b) show results from Run I. without
an external B-field |Bg| = 0. Panels (c) and (d) show results from Run II. with |Bg| = 10. The plots show significant anisotropic
structures in Run Il..

positive correlation between Pr,, and the ratio of kinetic dissipation to magnetic dissipation, does not have a direct
bearing on the ratio of the cascades. This is because the cascades (II,) and <ﬁ2> in the decoupled range are not
necessarily equal to the kinetic and magnetic energy dissipation, respectively. This is especially true at non-unity Pr,,
at scales smaller than ¢; beyond the decoupled range, where kinetic-magnetic conversion is expected to occur (e.g., in
the viscous-inductive range at high Pr,,) before all energy is dissipated microscopically.

Table 3. Pry at k/kq =1, where kg = L/{4.

RunI RunIl RunIIl RunIV RunV

256°  1.23 1.31 1.40 1.44 1.30
512  1.50 1.29 1.45 1.68 1.45
1024%  1.41 1.25 1.51 1.67 1.10

20483 1.36
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Figure 6. Plots showing C, and C} of Run I-V at highest resolution. Cj is calculated with o, = 1/3. C, is calculated with
0w = 1/4 in Run II. and Run V4 and o, = 1/6 in other cases.
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Figure 7. Plots showing turbulent viscosity v;, turbulent resistivity 7, and turbulent magnetic Prandtl number Pr; calculated
using their respective definitions in eqs. (6)-(8), at different scales k = L/¢. We use the highest resolution runs of Run I, II,
and V (ABC forcing) in Table 1. Three reference lines with a slope of -1/3, -5/3 (black dash-dotted), and -4/3 (black solid) are
added. Note the reference line of -1/3 and Pr; use the RIGHT y-axis, while others use the LEFT y-axis. Scales < ¢4 are not
shown.
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(I)

- — (I

102 10° 10°
k

Figure 8. Plots showing the turbulent magnetic Prandtl number Pr; and its two components (ﬁ;}/(ﬁ;) and (|J¢%)/(2|S¢|?)
at the highest resolutions of Run I, I, and V (ABC forcing) in Table 1. A reference line with a slope of -1/3 (black dashed) is
added. The plots show that <ﬁ?>/<ﬁ§> approaches a constant in the decoupled range. Note that with a strong external B-field

(Run II), we expect <ﬁ§>/<ﬁ§> to plateau at sufficiently high Reynolds numbers (Bian & Aluie 2019).
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~ ~ /\
SO ~ ~
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\\ \\\ I ~
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10° 10°
10° 10" 102 10° 10" 102
k

Figure 9. Plots showing the turbulent magnetic Prandtl number Pr; at different Reynolds numbers (grid resolution) of Run

I, II, and V (ABC forcing) in Table 1. A reference line with a slope of -1/3 (black dashed) is added.
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Figure 10. Plots showing kinetic energy spectrum E*(k) at different Reynolds numbers (grid resolution) of Run I-V. We show
two reference lines with a slope of -3/2 (black solid), -5/3 (black dash-dotted). The slope becomes steeper as Reynolds number
increases. The slop is near -3/2 at the highest resolution in Run IT and Run V (with external B-field), while shallower than -3/2
in other simulations. Note Grete et al. (2020b) observed a kinetic energy spectrum of -4/3, which is also shallower than -3/2.
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Figure 11. Plots showing magnetic energy spectrum E°(k) at different Reynolds numbers (grid resolution) of Run I-V. We
show two reference lines with slope of -3/2 (black solid), -5/3 (black dash-dotted). The slope of magnetic spectrum agrees well
with solar wind observations (-5/3).

— E"256% — — Ev512% — E"256% — — Ev512% — FE"256° — — Ev512%
—— EY256° — — E"512° —— EY256° — — E"512° —— E"256° — — E’512°

Figure 12. Plots showing kinetic and magnetic energy spectra, E*(k) and E°(k), of Run IV with Pr,, = 0.1, 5, and 10. We
show two reference lines with slope of -3/2 (black solid), -5/3 (black dash-dotted).
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Figure 13. Plots showing turbulent viscosity v; at different Reynolds numbers (grid resolution) of Run I-V. Reference lines
with slope of -5/3 (black dash-doted) and -3/2 (black solid) are added.

256° 256°

— — 512%

Figure 14. Plots showing turbulent resistivity of n; at different Reynolds numbers (grid resolution) of Run I-V. A reference
line with slope of -4/3 (black solid) is added. The scaling exponent agrees well with the expected value -4/3.
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Figure 15. Plots showing (IT,)/ (ﬁZ) (blue lines) and (|J¢|)/(2|S¢|?) (red lines) at different Reynolds numbers (grid resolution)
of Run I, IIT and V. The z-axis in bottom panels is normalized by kq = L/{q4. A reference line (black dashed) of 1 is added.
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Figure 16. Plots showing Pr; at different Reynolds numbers (grid resolution) of Run I-V with z-axis normalized by kq = 27 /4.
A reference line with a slope of -1/3 (black dashed) is added. Pr; at different Reynolds numbers collapse at k = kq, as expected
(see also Table 3).
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Figure 17. Plots showing (II;)/ (ﬁZ) at different microscopic Prandtl numbers (Pr,, = 0.1, 1, 5, 10). The parameters are

detailed in Table 2. These simulations are conducted on 512% grid. A reference line (black solid) of 1 is added in all panels.
Note our usage of fifth-order hyperdiffusion in the simulations. Another reference line (black dashed) of 1/,11/ ° / n}l/ ® is added as an
estimate for the microscopic magnetic Prandtl number corresponding to normal (Laplacian) diffusion. The estimate is 0.63, 1,

1.38, and 1.58 for Pr,, = 0.1, Pr,, =1, Pr,, =5, and Pr,, = 10, respectively. Since the decoupled range, over which (ﬁ;) and

<ﬁ§> become scale-independent, is barely resolved, these plots neither reinforce nor conflict with the expectation of asymptotic
equipartition of the kinetic and magnetic cascades predicted in Bian & Aluie (2019), irrespective of microscopic Pry,.
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