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Capped vertex with descendants for zero
dimensional A, quiver varieties

H. Dinkins and A. Smirnov

Abstract

In this paper, we study the capped vertex functions associated
to certain zero-dimensional type-A Nakajima quiver varieties. The
insertion of descendants into the vertex functions can be expressed
by the Macdonald operators, which leads to explicit combinatorial
formulas for the capped vertex functions.

We determine the monodromy of the vertex functions and show
that it coincides with the elliptic R-matrix of symplectic dual variety.
We apply our results to give the vertex functions and the characters of
the tautological bundles on the quiver varieties formed from arbitrary
stability conditions.

1 Introduction

Our main objects of study in this paper are certain K-theoretic enumerative
invariants of Nakajima quiver varieties known as vertex functions, see Section
7 in [Okol5] and Section 2 below. Let X be a Nakajima quiver variety, see
(Gin12], [Nak98], or Section 2 in [MO12] for an introduction. Vertex functions
for X come in two flavors, capped and uncapped. The vertex functions
are defined by an equivariant count of quasimaps to X, and the type of
vertex function is determined by whether the moduli space of quasimaps is
considered with a nonsingular condition or a relative condition, see Section
2 below.

One can consider either type of vertex function with descendants inserted,
and these give a collection of natural classes in the K-theory of X. Starting
with a vector bundle on X and an evaluation map on the appropriate moduli
space of quasimaps, we can pullback the vector bundle under the evaluation



map to obtain a class on the quasimap moduli space. The insertion of a
descendant into a vertex function refers to the quasimap count obtained
by tensoring the structure sheaf of the quasimap moduli space with a class
obtained in this way. The K-theory of Nakajima quiver varieties is generated
by a collection of tautological vector bundles, one for each vertex of the
quiver, and any of these gives rise to a descendant that can be inserted into
a vertex function.

For quiver varieties arising from type-A quivers, there are known pro-
cedures for computing the vertex functions as a power series in the Kahler
parameters, see Section 1 in [AO17], Section 4.5 in [PSZ16], and Section 2.4
[DS19b]. In this paper, we restrict our attention to the capped and uncapped
vertex functions with descendants for zero-dimensional type-A quiver vari-
eties. Such varieties are indexed by partitions, and we denote them by X,
for a partition \.

Our main result is that the insertion of descendants into the uncapped
vertex function can be realized by the action of the difference operators of the
trigonometric Ruijsenaars-Schneider model (also known as the Macdonald
difference operators). Let V,(z) be the uncapped vertex function for X,
and let V(;)(z) be the uncapped vertex function with descendant 7, then the
Theorem 3 reads:

T(r)Va(z) = V() (1)

where T'(7) is the Macdonald difference operator associated with .
In [DS19b], we proved
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where 25 denotes a certain monomial in the Kahler parameters depending
on the box O in the Young diagram for A, see (7) below.

This result allows us to explicitly compute the vertex functions with de-
scendant insertions. For instance, if V), is the tautological vector bundle on
X corresponding to nth vertex of the quiver and 7,,, = A" V,, then from
(1) and (2), we obtain the following rational function for the capped vertex
function with descendant 7, ,:
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where Cy(n) and Sy(OJ) denote certain subsets of boxes in A\, and (g are
monomials in (;, related to the Kahler parameters by z; = Siz1

In Sections 5 and 6, we give an application of our formula to quiver va-
rieties with non-canonical stability conditions. In general, Nakajima quiver
varieties are defined as geometric invariant theory quotients and thus de-
pend on a choice of stability condition 6 € Lieg(K), where K is the Kéhler
torus K := (C*)l and I is the vertex set of the quiver. The varieties Xy
are determined by the positive stability condition, see (3) below. In the
literature, explicit computations involving Nakajima quiver varieties almost
always consider only the positive and negative stability conditions.

As the stability condition varies, the varieties obtained from them change
only when crossing certain hyperplanes. This gives rise to a collection of cones
in Lieg(K). The toric compactification K of K given by the fan generated by
these cones is known as the Kahler moduli space.

The vertex function of X is the solution of a ¢-difference equation (see
[OS16]), and it is expected that the vertex functions of the varieties given
by the same dimension data as X, but with different stability conditions,
solve the same ¢-difference equation. Furthermore, the vertex function corre-
sponding to a choice of stability condition gives a solution of this ¢-difference
equation holomorphic in a neighborhood of the limit point on the Kahler
moduli space corresponding to this stability condition.

By studying the explicit form of the ¢-difference equation in Section 5, it
is straightforward to give a formula for the solution holomorphic in a neigh-
borhood of an arbitrary limit point of the Kahler moduli space. For the
reasons explained above, such solutions are expected to coincide with the
vertex functions of the quiver variety with the appropriate stability condi-
tion. As further evidence of this expected correspondence, we examine the
monodromy of the ¢-difference equation and verify that this agrees, up to a
constant, with the elliptic R-matrix of the symplectic dual variety, see [AO16].

Putting all this together, we start with the capped vertex function with
descendant 7 for the variety with positive stability condition, and examine
the limit as the Kahler parameters approach a limit point corresponding to a
general stability condition #. This provides us with the character of 7 on the
quiver variety with identical dimension data as X, and arbitrary stability
parameter 6.
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2 Quasimaps and Vertex Functions

2.1

Let A be a Young diagram rotated by 45° as in Figure 1. Let v; e N, i € Z
denote the number of boxes in the ith vertical column, as oriented in the
Figure. We assume that ¢ = 0 corresponds to the column which contains the
corner box of \. Let v = (v;) and w; = §; . Let

Figure 1: The partition A = (5,4,3,2) rotated by 45° and v = (v;) =
(...,0,0,1,1,2,2,3,2,2,1,0,0,...).
X)\ = M(V, W) (3)

denote the A, Nakajima quiver variety defined by these data, with stability
condition given by the character

0+ (g:) = Hdet(gi).
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We will refer to this stability condition as the canonical or positive stability
condition. One of the goals of this paper is to analyze the enumerative invari-
ants (vertex functions) of quiver varieties arising for generic 6 = (01,...,0)
stability conditions corresponding to characters

0:(g:) — Hdet(gi)ei.

Throughout, we will assume that the A, quiver is oriented with arrows
pointing to the right. Nakajima quiver varieties come equipped with a natural
action of a torus T and a collection of T-equivariant vector bundles which we
call V;, i € Z. We denote by h the weight of the T-module Cw, where w is
the symplectic form on X,.

2.2

To define the vertex functions, we need to study moduli spaces of sta-
ble quasimaps from P! to a Nakajima quiver variety X, as introduced in
[CKM14]. We review the main objects of study in the case of Nakajima
quiver varieties, see Section 6 of [Okol5] and Section 2 of [PSZ16].

The definition of a quasimap to a variety X requires a presentation of
X as a geometric invariant theory quotient. For a Nakajima quiver variety
arising from a quiver () with vertex set I and dimensions v, w, this takes the
form

X = 17 (0) /5 Gy = w7 (06,

where 4 is the moment map associated to the G, := [[,.; GL(v;) action on
T* Repg(v, w), the cotangent bundle of the space of framed representations of
Q and p71(0)7° is the intersection of p~1(0) with the stable points defined
by a choice of 6 ([Ginl2]).

In the context of the varieties X, this data looks as follows. The di-
mension vectors correspond to vector spaces V; and the space T* Repg(v, w)
consists of 4-tuples (A, B, I, J) so that

A=@A. B=EB, A eHom(V, Vi), B;€Hom(Viir, V).
iE€ZL €7

and
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The moment map is u(A, B,I,J) = [A, B] + IJ and the tuple (A, B, I, J) is
6 -stable if and only if

C(A, B)I =PV (4)
i€z
where C(A, B) denotes the ring of (noncommutative) polynomials in A, B.

For generic choice of 6 the condition (4) should be substituted by more
complicated conditions described in Proposition 5.1.5 in [Ginl2].

2.3

We recall some facts about quasimaps to a quiver variety X. For more details,
see [CKM14] and [Okol5] Sections 4-6.

Definition 1. A stable genus zero quasimap to X relative to py,...,pm, is
given by the following data

(C,ph, - 0 P f, )
where

e (' is a genus zero connected curve with at worst nodal singularities and
the pi,...,p,, are nonsingular points of C.

e P is a principal G, bundle over C.
e fis a section of the bundle P x¢, T* Repg(v, w) satisfying p = 0.
e m:(C — D is a regular map.

satisfying the following conditions

1. There is a distinguished component Cy of C' so that 7 restricts to an
isomorphsism 7 : Cyp = D and 7(C'\ Cp) is zero dimensional (possibly
empty).

2. ©(p;) = pi-

3. f(p) is stable in the sense of (4) for all but a finite set of points disjoint
from pf,...,pl, and the nodes of C.



4. The line bundle wg (ZZ Pt qj) ® Ly is ample for every rational

€ > 0, where Ly = P x¢, Cy, C is the closure of C\ Cy, g; are the nodes
of C', and Cy is the one dimensional GG,-module defined by the stability
condition 6.

U
Py

/
P

p3

P4
P1 po

Figure 2: An example of the domain of a relative quasimap with four marked
points. A chain of rational curves is attached to each point p;, and condition
4 implies that the last component of each chain has a marked point p}. The
map 7 collapses each chain to a single point.

Definition 2. A relative quasimap (C,p!,...,p.,, P, f,7) is nonsingular at
p € Cif f(p) is stable in the sense of (4). In this case, f(p) gives a point in
the quiver variety.

Definition 3. The degree of a quasimap (C,p},...,p.,, P, f,7) is the tuple
d = (d;)iez where d; is the degree of the rank v; vector bundle P x4, V; — C.
Theorem 1. ([CKM14] Theorem 7.2.2) The stack (})Ml‘felmvep1 _____ o, PaTame-
terizing the data of stable genus zero quasimaps to X is a Deligne-Mumford
stack of finite type with a perfect obstruction theory.

Definition 4. Let QMgonSingph_._’pm be the stack parameterizing the data of
degree d quasimaps to X relative to pi,...,pm such that C = D = P!
For such a quasimap, most of the conditions in Definition 1 become trivially
satisfied.



d
relative py,...,

Restricting the obstruction theory of QM

d
nonsing p1,...,Pm

o 8lVes a perfect ob-

struction theory on QM . The symmetrized virtual structure sheaf

on such a space will be denoted by O% | with the context determining exactly

which quasimap space we are considering.
Given a quasimap (C, py,...,p.., P, f,m) and p € C, there is an evaluation
map to the quotient stack:

evp(C.pys - P P ) = f(p) € [071(0)/G]

Given a Schur functor 7 in the tautological bundles on X, let Tyacc be
the associated K-theory class on [¢~1(0)/G,]. Then we can define an induced
K-theory class on QM4

relative p1,...,pm :

~

T|p = eV;(TStaCk) (5)

24

The action of the torus T on a quiver variety X and of C; on P! induce an
action of T x Cx on quasimaps to X. Let p; = 0 and p; = oo in P!. In what

follows, we will denote 2% = IL de and use this notation to keep track of the
degree of quasimaps. The variables z; are known as the Kahler parameters,
and are characters of the Kahler torus

K:.= ((CX)

]

where [ is the vertex set of the quiver.
The evaluation maps on relative quasimaps are proper ([Okol5] Section
7.4), and thus we can make the following definition.

Definition 5. The capped vertex function with descendant 7 inserted at p;
is the formal power series

V(T)(‘z) = Zevp%*((ggir ® T’Pl? QM;ielativepg)zd S KT<X)HZ]]
d

d

where O4_ is the symmetrized virtual structure sheaf on QM lative ps -

vir

d

nonsing pp 15 1Ot proper, the restriction

While the evaluation map ev,, on QM
to the qu-ﬁxed locus

evy, ! (QMd )C; — X

nonsing p2
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is ([Okol5] Section 7.2). Using equivariant localization, we can thus make
the following definition.

Definition 6. The bare vertex function with descendant 7 inserted at p; is
the formal power series

V(T) (Z) = Z CVpy x (O\C/llr & 7—|p17 QMgonsingpg)Zd € [(TX(C;< (X)lOCHZ]]
d

~

where O d

is the symmetrized virtual structure sheaf on QM e, -

In what follows, we will omit the superscript (7) in the bare vertex func-
tion when 7 = 1.
2.5

Definition 7. The capping operator is the formal series

T(2) =Y ey ® eV o (O, QM 1iivep, ) 2% € KFH(X)i0c][2]]

d nonsing p2

Ad . . d
where OF, denotes the symmetrized virtual structure sheaf on QMrdat;ve -
nonsing p2

The standard pairing on equivariant K-theory
(F.6) =x(F®9)
allows us to interpret ¥(z) as a linear map
®(2) : Kr(X)iocl[2]] = K7(X)ioc[[2]]
We have the following theorem:
Theorem 2. ([Okol5] Section 7.4) The capping operator satisfies the equa-

tion

VO(z) = U(2)V7(z)



2.6

In the simplest situation of the zero-dimesnional quiver varieties X, which
we consider in the present paper, we have K1(X) )i = Q(A, ¢). Thus, in this
case all the functions defined above are power series in the Kahler parameters
with some rational coefficients in A, g:

VO (2), VO (2),¥(2) € Q(h, ¢)[[z]

Let us denote g(z) = VI (z). With this notation, it follows from the previous
theorem that for X, we have

(2)
-3

and thus the capped vertex with descendent 7 has the form:

o V()
VO = o)

We see that g(z) appears as a normalization prefactor in the formulas for
the capped vertex. Thus, it will be convenient to redefine the capped vertex
function by normalizing as V(7(z) = V7 (2)/¢(2).

Let us note here that the function g(z) can be computed explicitly. It
coincides with the multiplicative identity of the quasimap quantum K-theory
ring, see Section 3.2 [PSZ16]. In the case of X}, it is given by the gluing
matrix G. It can be shown [KS] that the gluing matrix of X equals the
zero slope K-theoretic R-matrix of the symplectic dual variety X'. The K-
theoretic version of Proposition 6 then gives:

1—Z[|
OeX

3 Vertex Functions for X,

3.1

Fix a partition A, We do not distinguish between a partition and its Young
diagram. Let v = (v;) be as in Section 2.1. We define the following functions
for O € A. Let ¢,(J) denote the content of [, or the horizontal coordinate
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of [J when the Young diagram of A is rotated as in Figure 3. We assume the
corner box has content 0. Let C)(n) be the set of all boxes of content n.

Let hy() denote the height of OJ in A, normalized so that the heights of
the boxes with content i take all the values between 1 and v;. Let a)(OJ) and
[x(O) denote the length of the arm and leg (not including [J) based at OJ,
respectively. If [J has rectangular coordinates (i, 7), then

WO =X—j and ax(O) =X, -1

where ) is the transpose of A.
Define

L hx(O) .
(o= <E> Ce@ytan@ if ¢(d) >0
N g\ (0) .

<f_l) CC(D)—ZA(D)_1 if C(D) <0

where (; are a collection of variables related to the Kahler parameters by
2z = %= Define the difference operator

Gi
pif(G) = f(qG)
where f is some function of (;. Then define

c(0)+ax(0) .
by — {H (0 )ivc@ moy P 1 (@) 20

c(D)+1x(O)— )
Hl =c(0 )>\ C([\)Jrh)\(lj) 1 Pi if C(D) <0

See Figure 3 for an example.

3.2

Fix n,r € Z so that 1 <r <\v,,.
We define the following difference operator:

Ay —
_ prr-1)/248(n Z 11 gCD - gCD e
ICCx(n) D€l R Y
|I|=r D’er(n)\

where f(n) = |n| if n < 0 and 0 otherwise. We note that up to normalization
and relabeling of the variables, the operators T\ are exactly the Macdonald
difference operators, also known as the difference operators of the trigono-
metric Ruijsenaars-Schneider model, see [Mac79] and [Korl8]. In particular
the ¢-difference operators 7" commute with each other. We denote by

RS = Q[T)?\/LJ]TL,TEZ

the commutative ring they generate.

11
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Figure 3: The values of (g are shown inside the boxes of C,(0). If O is
the box with content 0 and height 1, then a)(CJ) = 3 and [,(O) = 4. Also,

_170+3 1 1.1
po = Hi:0+3—1 p; =Dy P3 -

3.3

Let us recall that the descendent insertions of the vertex functions are labeled
by elements (5) of the ring:

K([n™'(0)/G\]) = char(G,) where G, =[] GL(v)
i€z
Let us denote by V,, the v,,-dimensional fundamental representation of GL(v,,).
Then this ring is generated by the classes 7, , := A" V... Let us define a ho-
momorphism
T : char(G,) — RS

by T(7,,) = Ty"". Applying the substitution z; = Cigl , the elements of RS act

as g¢-difference operators on the vertex functions. Our main result involves
expressing the insertion of a descendant as the action of such operators:

Theorem 3. The insertion of descendent 7 into the bare vertex function can
be expressed as

T(r)Va(z) = Vi(2)
Clearly, to prove the theorem it is enough to show that

TV (z) = Vi (2).

12



3.4
Before giving the proof of Theorem 3, we explore an important consequence.

Define
20 = H /Z\c(lj’)

O'eHy (O)

where the shifted parameters z; are

—~ h ox(®) . Vi1 — V; if 4 ;é 0
Zii= | — z; where 0,(i) = o
q vi_1—V;+1 if 1=0

and H, () denotes the set of boxes in the hook based at [J in \. See Figure
4.

Figure 4: The shaded boxes are an example of a hook in A = (5,4,3,2). If O
is the box at the base of the hook shown, then zo = z <§Z1) 29 (gzg) and
(o= §C3-

In [DS19b], the authors prove the following formula for V,(z):

Theorem 4. ([DS19b] Theorem 1)

Vi(z) = Hnﬂ (7)

1—zpnqt
Oex i=0 ng
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Note that 25 can be expressed in terms of the (; as

ex(B)+ax(0) ox(i)
Cor(@)—ix@)-1 AN
2 = 22O-h@)-1 | | = (8)

Cer(@)+ax (D) imea@-1r@) 1

Using our notation above, the set of all boxes with the same content as a
given box [0 € X is denoted C)\(cx([0)), There is a minimal rectangular Young
diagram p C A containing Cy(cx(O)). Explicitly, if ¢,(O) = ¢ < 0, then p =
(p1,- .. py;) where p; = —i4+v;. If ex(0) =4 > 0, then p = (p1,. .., fity,)
where p1; = v;. With this notation, we define the slice inside A through [ as:

S\(0) = row containing [J C if ex(O) >0
M column containing O C 1 if ¢;,(0) <0

where the row and column are understood in the “rectangular” sense, see
Figure 5.

Figure 5: Two slices inside A are shown. The red boxes make up the slice
through the box with content 1 and height 1. The blue boxes make up the
slice through the box with content -2 and height 1.

Combining Theorem 3 with (7), we obtain the following corollary, giving
an explicit combinatorial formula for the capped vertex with descendant.

14



Corollary 1.

r(Tnr) r(r— n hCD’ 1— ZD’
V" (z)=h R Z HCD,_@H H 1—th/

ICCx(n) D{ez Oel resSy(
[I|=r O'¢l

Proof. By Theorem 2, we know that

- Vi (z)
V(Tn,r) 2) = A
A ( ) V)\(Z)
Applying Theorem 3, we obtain
7 (Tn,r) T;’TV)\<z>
Vi"(z) = ——=
A ( ) V)\(Z)

From (6) and (8), we see that the operator pg has the following effect on 2y
(Z ) . qzov, O e S)\(D)
polc) = v, O ¢ Sy (0)

From (7), we see that the bare vertex function transforms under the scaling
of a fixed 2 by ¢ as follows:

1-— 20
V) o = T V(2)
Putting all this together, we have
~ Tn’rV)\(Z)
V(Tn,r) z) = A AT
(2) Vil2)
]_ 1 hCl:” — CD 1 — ZD/
_ 'r r—1)/2+8(n
Vai(z) Z H -G H H 1— hoy V@)
ICCy(n) D€l Oel VS, (EI)
[I=r O'¢l
Moy — o 11—z
r r—1)/2+8(n
ICCZ H (o — o H /H 1_hZD’
A(n) D€l Del 'eSy(
[Il=r O'¢I

O

We note that for |¢| < 1, \A/'(;"”) (z) converges to a rational function of the
Kéhler parameters. Rationality of descendant insertions in the case of the
cohomology of the Hilbert scheme of points in C? was established in [PP13].
It is expected that the same is true in K-theory for general Nakajima quiver
varieties, see [AO17].
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4 Proof of Theorem 3

4.1

The vertex functions for type A Nakajima quiver varieties can be described
by natural integral representations of Mellin-Barnes type see Section 1.1.5-
1.1.6 in [AO17]. These integral representations were investigated for the
quiver varieties isomorphic to cotangent bundles over Grassmannians and
partial flag varieties in [PSZ16; Kor+17; Korl8]. We explain below what
this description looks like.

Let X be a Nakajima quiver variety arising from a type A, quiver with
vertex set I, dimension vector v, and framing dimension vector w.

For a character wy + ...+ w,, € K1(X) we denote

oo

O(wy + ... +wy) =@w)...o(wy), pw):= H(l—qu).

and extend this definition by linearity to polynomials in K1(X) with negative
coefficients. Let P be the bundle over X associated to the virtual G-module

& Hom(W;, V) + @ Hom(V, Vi) — @ Hom(V;, Vi) (9)
i€l i—] el

where ¢ — j denotes the sum over the arrows of the quiver.
If 2;1,...,2;y, denote the Grothendieck roots of i-th tautological bundle
(i.e. the bundle over X associated to the G-module V;) and a;; denote the

equivariant parameters associated to the framings for j = 1,...,w;, then
Vi Vi1 " Vi
Py (L) (L) o2 (L) (S0
iel \j=1 j=1 iel \j=1 j=1
Vi Vi
(%) (L) e s
iel \j=1 j=1

We abbreviate the set of Grothendieck roots of the tautological bundles
by @ and define the following formal expression:

e(x,z) :=exp (ﬁ Z In(z;) In(det VZ)> = exp (ﬁ Z i In(z;) ln(xi,j)>

i€l el j=1
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For t € K1(X) and p € X7, let t|, € Kt(p) be the restriction of t. Then the
restriction of the vertex function to a fixed point p € X7 is

V(a,z) = ! V7 (a,2), (10)
@ ((a = WP, )e(al, 2)
where -
Véf)(a, z) = H / dg; j CI><(q — h)P)e(m, z)7(x)

and the integral symbols denote the Jackson g-integral over all Grothendieck

roots:
a

[dut@) = flaan)

0 n=0
For an indeterminate x, we define the g-Pochhammer symbol by

_p(x)
(@) := o(zq?)

We note that (10) is a power series in z; with coefficients given by combina-
tions of g-Pochhammer symbols in the equivariant parameters.

Equation (10) arises when one analyzes the torus fixed points on the
quasimap moduli space and computes the vertex function using K-theoretic
equivariant localization.

4.2

The cotangent bundle of the full flag variety can be described as a Nakajima
quiver variety corresponding to the A, _; quiver with dimension vectors v =
(n—1,n—2,...,0) and w = (n,0,...,0). In [Korl8], Koroteev proves that
the vertex function of the cotangent bundle of the full flag variety restricted
to an appropriate fixed point is an eigenvector of the tRS operators, with
eigenvalues given by the elementary symmetric functions of the equivariant
parameters.

More generally, we can allow some redundant information which disap-
pears upon taking the quotient. We start with a partition A with associated
dimension v as before, and some integer n which will correspond to the con-
tent of a set of boxes in A. If n > 0, we consider the quiver variety with
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dimensions given by the number of boxes in the Young diagram strictly to
the right of the nth column. If n < 0, we obtain our dimensions from the
portion of the partition strictly to the left of the nth column. The number
of boxes with content n gives the framing dimension.

The corresponding quiver variety is canonically isomorphic to the cotan-
gent bundle of the variety parameterizing full flags inside a v,-dimensional
vector space. The vertex functions of the quiver varieties differ, as the vertex
functions are sensitive to the way in which the quotient is taken. Because
of this difference, we refer to the flag variety obtained by a partition A and
choice of n as a “redundant flag variety.”

For an example of this “partition truncation”, see Figure 6. In this nota-
tion, the usual quiver variety description of the cotangent bundle of the full
flag variety can be obtained from square partitions.

Figure 6: Obtaining the dimension information for a redundant flag variety
from the partition (5,4, 3,2,1) with n = 0. The framing corresponds to the
square node.

With this in mind, we can make sense of (5 as before for [J inside a
truncated partition.

18



Let

o — @Oy ~
T — hr(rfl)/2 LT AU o
T , Z H (v — (o H
CCx(n) Uel Derl
|I|=r ¢l
where po = %pg
As before, with the change of variables z; = CZC the operators T, act on
the vertex functions of the redundant flag variety. In our notation, Koroteev’s

theorem can be generalized to the following:

Theorem 5. ([Korl8] Theorem 2.6) Fix A and n. Let V,(a, z) be the bare
vertex function of the associated redundant flag variety restricted to the fixed
point p at which the weights of the tautological bundle V; are {a; : 1 < j < v;}
for all . Then

T.V,(a,z) =e.(a)V,(a, z)

where e,.(a) denotes the rth elementary symmetric function in the equivariant
parameters.

4.3

Let A be a partition so that the associated dimension vectorisv = (v_,, ..., vy).
Fix n € Z. For definiteness, we assume n > 0. Let V,(a, z) be as in The-
orem 5. In other words, V,(a, 2z) is the restriction to a fixed point of the
vertex function of the quiver variety with dimension (vj41,...,Vs) and fram-
ing dimension (v,,0,...,0).

Note 1. The proof of Theorem 3 involves interpreting certain terms in the
power series for V,(z) as vertex functions for redundant flag varieties with
specialized equivariant parameters. For definiteness, we will assume through-
out that n > 0. If n < 0, the same arguments given below can be modified
in the obvious manner.

Lemma 1. Specializing the equivariant parameters to a; = A '¢% and
relabeling the Kéahler paramters in V,(a, z), we have

1,7 n,j
SDOL0 101 EE0 15 | AT,

d; i=—r j=1 i=n+1 j=1
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where W represents ¢ function terms in (10) that do not depend on d; ; for
1> n.

Proof. From (10) vertex function for X is

th 1 do;)
X;H hﬂqd“ @(ghi=1)

120 j=1 k=1 ¥ p(Rh= jq R d”) p(gh*=I=1)
Vi Vit1 hk ]+1) (qhkqudm,k*di,j)
QJHNH (hk— J+1 qlivrk=dii) - p(ghk=d)

k—j k—j+1 d; p—d; ;
H H (qh*7) o(h ¢ ) L (1)

k h—di k—j+1
iz iy PRIt h) (AR
where each d; ; is summed from 0 to oo.
Separating the terms corresponding to the ith column for ¢ > n, we have
Vi Vn+1 i—j i1 k—dn,j
qh ]q n+1,k n,])
i,

- I T 2 )

d;,; i=—r j=1 =1 k=1

Vi VZ“ hk Jq i+1,k— dw)
)

H HH hhk ]qz+1k di,;

i=n+1 j=1 k= 1
hk_]qdz k—d; ] S Vi

H H qhk quk d”

i=n+1 j,k=1 i=n+1 j=1

where W represents some ¢ function terms, which do not depend on d; ; for
1> n.

On the other hand, from (10) the vertex function of the redundant flag
variety arising from a partition A and integer n at the fixed point p has the
form
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Vn Vn+1 SD (q qfn+1 k> 90 (ha_k)

Vo(a, zntt,. .., 2s) = ’ d

i i=1 k=1 <qa—j> © (hz_l;qfn+l,k>
s—1 v; V4 ak o fiv1,k—fij ag
o) o(n)
i=n+1j=1 k=1 2 (q(fl—f) ¥ (hz—’;qfi“*“fi‘j>
s Vi ak o fik—fij O s Vi

S0<h%'q J) @(q%) fig

11 » II 1=

i=n+1 j k=1 2 <h§> 2 (qa] qf‘ ko f”) i=n+1 j=1

We reindex the summation as follows. First, replace f, ; by d, ;. Second,
substitute f; ; by d; ; — d,, ; for i > n. By examining the terms in V,(z), we
see that a term in the sum is only nonzero if and only if the d; ; give a set
of interlacing partitions (see [DS19b] Proposition 7). In particular, we must
have d; ; — d,,; > 0 and so the sum for V,(a, 2,41, ..., %) can be reindexed
as

Q

Vp Vp+1 SO (qzk qdn+1,k7dn,k> 90 <ha_k>
J

J

Vp(a’7 Bn4ly -« 23) - Z H ak d —d o
dij j=1 k=1 ¢ (h_ L k) Y (q“_>

s Vi

J

Vi Vit1 (qu qd1+1,k7dn,k7(di,j7dn] > (

11

ientl j=1 kel <h‘;_l;qdi+1,k_dn,k dzj_dnj)> <qa
vi ak (di p—dp p—(dij—
S gp (haj q 7 n
i=n+1jk=1 (qak gtk iy =n.) ) <

@lk

<l

9@

di,j—dn,j
7

) 111
4)

i=n+1 j=1

Next, we substitute a; = A~ '¢% and obtain
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V,(a,zpt1,. .., zs)‘a__hi,l dp s

B Zﬁvﬁl qhk J s k= d,”) (hhkf]:qdn,kfdn,j>
i o P (AREIgt ) o (qRET g

i= n-‘rl] 1 k=1 hhk Tqheres d”) e ])

hk) ]q ik — dl]) (qhk—jqdn,k—dn,]’) S \'23 dijfdnj
o B

k—j zk dzg k—j dn,k_dn,j
i=n+1 j,k=1 qh q ) So(hh q t=n+1 j=1

We simplify some of the terms in the above summation:

Vn vn+1 hk ank d"J s—1 v v1+1 hk ]q nk— dnj)
hk Jq nk— d’n])

s—1 v; Vz+1 hh ]an dn] S hk Jq n,k— dn])
_HHH hk jan dnj H H hk ank dn])
i=n j=1 k=1 i=n+1 jk= 1
i Al
i=n j= v1+1+1k 1 hk ]q e dnﬂ)
- I i)
; qhk dgqtnk=dn.s)

Vi—Vjt1= 1

From (10), it is easy to see that all of these ¢ function terms appear in W.
Thus we have shown that

/ ’L] n]
EZ‘I’ TTTT= T1 TT= Voo 2 2l
i=—r j=1 i=n+1 j=1

where U’ is a product of ¢ function terms, none of which depend on d;; for
1 > n. This proves the lemma.

[]
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4.4 Conclusion of the proof

Gi-1

Let O € X be the box with content n and height m. Substituting z; = 2

and applying pg to Lemma 1 we have

V(s :wHH(@) I 11 (%

i=—7 j=1 1=n+1 j=1

) qdn’mpEIVp(ay C)lai:hi—lqdn,i

=3 H Hl (C’ ) HH ( ) 5Vl 0) |y 1y
And so . ] J
SR 11 H( ) H H( ) TV, 0], eosins
—Z%ﬁr}l(i:)

1T H( ) (g B )V (@, )y
e

which concludes the proof.

5 Monodromy of vertex functions

5.1
Let K be a torus with coordinates z = (21, ,2,). Let 0 = (01,...,0,) €
cocharg(K) be a cocharacter. We denote zq” = (2147, ..., 2,q°) for some

q € C* with |¢| < 1.
Let us consider scalar g-difference equations (qde) of the form:

U(zq”) = Mo(2)¥(2), (12)

where ¥(z) denotes a C-valued function on K and M,(z) € Q(z1,...,2,)
satisfies

: 5
lim Mo (¢°) # 0, 00 (13)
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for generic § € cocharg(K). Clearly, the limits above will not change if we
scale the cocharacter 6 — 1§ for some real [ > 0. This provides a decompo-

sition
Lieg(K) D [] ¢

into a set of cones for which the limits (13) remain the same. The cones €
are sometimes called asymptotic zones of the qde (12).

Definition 8. We say that a function F'(z) is analytic in an asymptotic zone
¢ if it is given by a power series

F(z)= Y caz (14)

with non-zero radius of convergence. Here, (-,-) denotes the natural pairing
on characters and cocharacters.

It is convenient to view the asymptotic zones € as “infinities” in certain
toric compactification K of K. The closure of each chamber € is a strongly
convex rational polyhedral cone, and the set of such cones generates a fan
A. The toric variety K associated to this fan contains K as a subvariety. See
Figure 7 below for an example. The chambers € then correspond to certain
points O¢ € K. A function F(z) is analytic in an asymptotic zone € when (14)
is the Taylor series of a function on K holomorphic in a non-zero neighborhood

of O@.
O
¢, €2
¢ O¢1
. ¢

n

Figure 7: An arrangement of chambers in Lieg(K) and the corresponding
toric compactification K.

We will use the following notation

My (0¢) := lim Mo (¢), €€
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Proposition 1. For a chamber € there exists a unique solution of (12) of
the form:

In(a?)

Ue(z) = 2@ Fe(2) (15)

where F¢(z) is holomorphic near 0¢ with Fg(O¢) = 1 and a” = M,(0¢).

Proof. Substituting (15) to (12) we see that it is consistent near O¢ and
coefficients cq4 in (14) are fixed uniquely by ¢y = 1. O

We call Fg(z) the analytic part of the solution W¢(z).
Definition 9. The g-periodic function
R€1<—¢2(z) = \Ijﬁl(z)wggl(z)

is called the monodromy of the qde from asymptotic zone €, to zone €.

5.2
Now, let K = (C*)/l be a Kihler torus of Xy. From (7) we have:
Proposition 2. The vertex function of X satisfies the ¢-difference equation:

]__ZD
1—Z[|h

Vi(zoq) = Vai(zo) (16)

This is a special case of the qde’s associated with quiver varieties discussed
in [OS16].

Each zp corresponds to a K-character og. The complement of the hyper-

L
planes og

Lieg(K)\ {0 : De X} =]]¢ (17)

is the union of chambers defining asymptotic zones of (16). The correspond-
ing compactification K is sometimes called Kdhler moduli space of the quiver
variety X. The vertex function (7) is the unique solution of the qde (16) for
the chamber defining the positive stability condition:

Q:Jr = {‘9 € L1eR(K) : <0,0’D> > O,D € )\}

The solutions for other chambers are easy to describe.
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Proposition 3. The solution of (16) corresponding to a chamber € equals:

Ure(2) _Zl?“(?‘g) H H S H Hll—_zzlmhl (18)

Oe, =0 1 —zo¢ De),
(00,8)>0 (00,8) <0
In(hg )
where z ™@ denotes the weight determined by the transformations

In(hg) In(hig)
20— 20 = z @ — zh@ pPe

where pe = [{J € A: (00, €) < 0}] € Z.

Proof. 1t is elementary to check that this function solves (16_) . It is also clear
that the analytic part of ¥, ¢(2) is holomorphic near O¢ € K O

5.3

Let us discuss the geometric meaning of the solutions described in Proposi-
tion 3. Recall that to define a Nakajima quiver variety one needs to specify a
stability condition for the geometric invariant theory quotient. The stability
condition is specified by a choice of 6 € Lieg(K). The corresponding quiver
variety changes (by a symplectic flop) when 6 crosses certain hyperplanes
in Lieg(K). The complement of these hyperplanes divides the space into a
set of chambers €. The quiver variety obtained from a choice of cocharacter
depends only on the chamber that contains it.

The vertex function for a quiver variety X formed by a stability condition
from a chamber € is given by a power series over the degrees of effective
curves, which are given by ¢:

VX@ —1—|— Z CdZ

(d,€)>0

The relation between the vertex functions for different stability conditions is
described by the following idea:

Conjecture 1. The quantum difference equations for quiver varieties are
invariant under a change of the stability condition.

26



In the case of equivariant cohomology, this conjecture was proven in
MO12].

This conjecture implies that the vertex functions for X¢ are solutions of
the same qde (independent of €), analytic near different points of the Kdahler
moduli space.

Let X, ¢ be the quiver variety obtained from the dimension data given
by A with the stability condition €.

Corollary 2. If Conjecture 1 holds then the analytic part of (18) is the
vertex function of the quiver variety X ¢.

In the rest of this paper we assume that Conjecture 1 holds.

5.4
Proposition 4. The monodromy of (16) from €, to €; equals:

I 9(o) 11 9(oh)

(2) = (— 1/2)p . n(he,) In(he,) <UDDgl)S<O (JDD661)5>0
Re e, RL/2)Per—Pes 5y Tnte) — Tate) 02 i
Il 9(z) II 9(a0h)
OeA OeA
(00,€2)<0 (og,C2)>0
where -
I(z) = (7 =) [[(1 = 2g)(1 = 27
=1
denotes the odd Jacobi theta function.
Proof. By definition
\If)\ ¢ (Z)
R z) ==
€1<—€2( ) \Il/\,Q‘Q (Z)
and the result follows immediately from (18). O

By Theorem 3, the descendent vertex function differs from vertex function
with trivial descendent insertion by a rational function. Taking the analytic
parts of (18) we obtain:

Proposition 5.
Vi, (2) = Reyee(2) Vi, (2)

)
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where

I[[ 9(a) II 9(h)

( Dﬁe); 0 ( DQG/\> 0
R 2) = (_pKL/2yPe, —pey LTOEUS og,€1)> . 19
@1762( ) ( ) 1—[ ’19(25) H ﬂ(zuh) ( )
OEA OEA
(UD7¢2><0 <O’D,Q:2>>O

9.9

Let X} denote the symplectic dual variety of X,. As explained in Section
4.7 of [DS19b], X} = T*CM equipped with an action of the torus K x C},
where the second factor acts by scaling the symplectic form with weight .
The K-fixed set of X} consists of a single point p (the origin of C*l). The
character of the tangent space was computed in Proposition 4.9.1 of [DS19b]:

char(T,X}) =Y 20+ 25'h " (20)
Oex

Thus the chambers (17) are the equivariant chambers of the symplectic dual
variety!. In view of this observation the previous proposition can be refor-
mulated in the language of the elliptic stable envelopes [AO16].

Proposition 6.

Reyee(2) = APer P ZREN(2) (21)

1

where Ré{é%(z) is the elliptic R-matrix of the symplectic dual variety Xj|:

Rare,(2) i= Stabg! o Stabe,,

and Stabg denotes the elliptic stable envelope of X3 for an equivariant cham-
ber €.

Proof. The elliptic stable envelope of X3 is defined by a set of axioms, see
Section 3 in [AO16]. In the case of a finite fixed point set these conditions
were explained in Section 2.13 of [Smil9]. The diagonal restrictions of the

By definition, these chambers are connected components of the complement of hyper-
planes wt C Lieg(K) where w runs over the weights appearing in normal bundles to fixed
components, see Section 9.1.2 in [Oko15]
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elliptic stable envelope are described there by formula (21). For X} there is
only one fixed point and the character of the tangent space is given by (20).
Thus,

Stabe = [[ () ] ﬁ(zmih>:<_1)pc [T 9Go) I 9Goh)

OeA OeA OeA OeA
<O—E\7Q:><0 <JE\7Q:>>0 <J|:|7Q:><0 <J|:|7Q:>>0

and the proposition follows from (19). ]

This result generalizes the relation between vertex functions of zero-
dimensional varieties and characters of tangent spaces of symplectic dual
varieties which we discussed in [DS19a].

6 Characters of tautological bundles over X

6.1

Let 7 € char(G,) which we understand as a symmetric polynomial 7(x) in
the Grothendieck roots © = {zn}ney of the tautological bundles.

The associated tautological bundle over the quiver variety X, ¢ defines a
Laurent polynomial:

7(®e) € Kex(Xae) = Q]

where ze = {1, for some me(0) € Z.

For the positive stability condition 6, the integers m¢(0) are easy to com-
pute, see Section 2.6 in [DS19b]. For a general €, we can analyze the stability
conditions as described in Proposition 5.1.5 of [Gin12]. This is, however, an
indirect description, and it is not obvious how to compute the characters ax¢
in this approach. In this section, we derive an explicit combinatorial formula
for ¢ from the properties of vertex functions discussed previously.

6.2

The computation of ¢ is based on the following two simple results.

Proposition 7. Let \A/'(;él(z) and ng& (z) be capped vertex functions of
the quiver varieties X ¢,, and X} ¢,, respectively. Then

V() (2) = V() (2) € Q(z,4,h)
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Proof. From the Proposition 5 we see that:

Vi (2) =

For the positive stability condition the capped vertex function is described
by Theorem 3 and is obviously rational. O]

Proposition 8. The capped vertex function V&Té(z) has the following ex-
pansion:

\A/E\T%(z) = 7(x¢) + Z caz®
(d,€)>0

where cq € Q(g, h).

Proof. By definition, the capped vertex function is a power series over degrees
of quasimaps in the effective cone determined by €:

(d,€)>0
The quasimaps of degree zero are trivial which means QM?IOnsing p = X, and
thus the degree zero coefficient in this expansion is 7(x¢) € K1(X)). O

Corollary 3. The capped vertex function for X, ¢, where € is the chamber
corresponding to 6, satisfies

T(xe) = Vi (0c).

Proof. This follows immediately from Proposition 7 and Proposition 8. [

6.3

Let op be as before. Let op vy be the K-character corresponding to E—DD/. We
define me(0) € Z by

me(0d) = {00 e C\(O) : O £ 0, (oo, €) > 0}—|{T € Sx(0O) : (o, €) < 0}

Theorem 6.
T(xe) = T({R™O}).
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Proof. The character 7(x¢) is given by substitution of the Grothendieck roots
by some monomials v — A<, As 7(x) are symmetric in the Grothendieck
roots of the tautological bundles, it is enough to prove the proposition for
the n-th tautological bundles corresponding to the polynomials:

Y

OeCy (n)

By definition, for 6 € €

vg\m(m))(o@) = iii% V&Tn(m))(e(w))

where w denotes coordinate on C* and V (@) (z) denotes the capped vertex
function for X, ¢, . By Corollary 1, we have

D S | IR

OeCx(n) O'eCy(n) DIGSA(D)
[y #£0 2 — 00

o
o= —0
where 2z — o0, C% — 0 describes the behaviour of these weights as w —

0. These limits depend only on € and these conditions are equivalent to
(00, €) < 0 and (on o, €) > 0 respectively. O
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