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ABSTRACT. Following the idea of Aganagic—Okounkov [2], we study vertex functions for hypertoric varieties,
defined by K-theoretic counting of quasimaps from P!. We prove the 3d mirror symmetry statement that
the two sets of ¢-difference equations of a 3d hypertoric mirror pairs are equivalent to each other, with
Kaéhler and equivariant parameters exchanged, and the opposite choice of polarization. Vertex functions of
a 3d mirror pair, as solutions to the g-difference equations, satisfying particular asymptotic conditions, are
related by the elliptic stable envelopes. Various notions of quantum K-theory for hypertoric varieties are
also discussed.
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1. INTRODUCTION

1.1. Motivation and background in physics. Let Gr be a compact Lie group, and M be a quaternionic
representation of G. The pair (Ggr, M) defines a 3d A/ = 4 supersymmetric gauge theory in physics, where
GR is the gauge group, and the representation M describes the collection of matter fields. There are two
interesting components of the moduli space of vacua associated with such theories, called the Higgs branch
and Coulomb branch respectively, which recently received plenty of attention in mathematics. Given a 3d
N = 4 theory T, its Higgs branch Mg (7)) is mathematically the hyper-Kéhler quotient associated with the
Gr-representation M, while its Coulomb branch M (7)), also admits a mathematical construction recently
by Bravermann—Finkelberg—Nakajima [55, 10], in the case where M = N @ N* is of cotangent type.

3d mirror symmetry [40, 17, 18, 21, 34, 11] predicts a duality phenomenon between certain pairs of 3d
N = 4 supersymmetric gauge theories, 7 and 7, which are called mirror pairs. Given explicitly in terms
of lagrangian descriptions, these two theories are expected to be different presentations of the same physical
theory, and hence admit the same, or equivalent correlation functions. Moreover, a particular property of
the duality is that, the Higgs and Coulomb branches of a mirror pair is expected to be exchanged:

Mu(T) = Mc(T'), M (T) = Mu(T'),

as well as the FI parameters and mass parameters, which are often added to deform the theories and result
in resolutions of the branches.

There are several aspects of the 3d mirror symmetry, from which one can extract interesting mathematical
conjectures.

e Asin [11], one can introduce boundary conditions in the Omega background, which implies an equivalence
of categories of modules over the quantized Higgs and Coulomb branches. Mathematically, this is realized
as Kozsul duality for the category O’s, or symplectic duality, for symplectic resolutions on the categorical
level [8, 9].
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e One can consider geometric interpretations of the identification My (T) = Me(T’) between Higgs and
Coulomb branch of a mirror pair. For example, the Hikita conjecture [38] and related works [44].

e There should be some interplay between the Coulomb branch Mc(T) and Higgs branch Mg (T) of the
same theory. In particular, the (quantized) Coulomb branch could be related to quasimap counting on the
Higgs branch. There are several attempts in this direction, for example [12] and recent papers [54, 39].

e Correlation functions or partition functions of a mirror pair should be equated or related, for example
[13, 16]. The approach of this paper is also of this kind, where we follow the idea of Aganagic—Okounkov
[56, 2, 3]. Physically, the invariants we consider are the vortex partition functions with domain S* x, D%,
or the 3d holomorphic blocks, in the sense of [5]. Mathematically, these are the generating functions of
quasimaps to the Higgs branch, or quantum K-theory, as we will explain in the paper, which also implies
symmetries among geometric objects called elliptic stable envelopes. Attempts in this direction are such
as [20, 48, 60, 61]. We also notice the recent work [38], related to hypertoric elliptic stable envelopes.

1.2. Vertex functions, ¢-difference equations, and elliptic stable envelopes. From now on, in the
algebraic-geometric language, we consider a complex reductive group G (which is considered as the com-
plexification of Gg), a G-representation N. The quaternionic representation, with a fixed chosen complex
structure, is considered as M = N @ N*. The hyperkahler quotient is then equivalent to the holomorphic
symplectic reduction. More precisely, the Higgs branch of the associated 3d N = 4 theory is the GIT quo-
tient X := u~1(0)//¢G, where p : M — g* is the complex moment map, and 6 is a chosen character of G,
serving as the stability condition.

A quasimap from P! to the holomorphic symplectic quotient X is defined to be a morphism from P!
to the stacky quotient [~1(0)/G], which generically maps into the stable locus X. In [56], A. Okounkov
introduced the vertez function V(q,z,a), defined as generating functions for the K-theoretic equivariant
counting of those quasimaps, which satisfy an extra requirement that the point oo € P! (or the co of the
last bubble component, in the relative version) is not a base point. Here, ¢ is a fixed complex number such
that |¢| < 1; z and a stand respectively for the collections of Kéhler parameters (which records the degrees
of the quasimaps) and equivariant parameters.

In the case that X is a Nakajima quiver variety, the vertex function is shown to satisfy two sets of ¢-
difference equations: either by ¢-shifts of z-variables, or by g¢-shifts of a-variables. The analytic property of
such g¢-difference equations as studied in [56, 58] shows that the associated ¢-difference modules are holonomic
and admit regular singularities with respect to the variables z and a separately, but not simultaneously. The
vertex function (scaled by an appropriate prefactor), by definition, happens to generate the z-solutions, i.e.,
(multi-valued) solutions that are holomorphic in z-variables in a punctured neighborhood of the limit point
z — 0, but have infinitely many poles in any punctured neighborhood of the chosen limit point a — 0. It is
then natural to look for the monodromy transformation that relates the two kind of solutions: z-solutions
and a-solutions, which is done by Aganagic-Okounkov [2]. The monodromy matrix is found to be the elliptic
stable envelopes, an elliptic analogue of the cohomological and K-theoretic stable envelopes [53].

Motivated by 3d mirror symmetry, it is naturally conjectured by Aganagic—-Okounkov [2] that in cases
where the 3d mirror X’ of X exists, the a-solutions are indeed the vertex functions defined for X', and
the two sets of g-difference equations for X’ are the same as those for X, with Kahler parameters z and
equivariant parameters a exchanged with each other. As a corollary, one can also deduce a conjecture that
the elliptic stable envelopes for X and X', properly renormalized, are transpose to each other. The 3d mirror
symmetry for elliptic stable envelopes is proved for T*Gr(n, k), n > 2k in [60], and cotangent bundle of a
complete flag variety in [61]. In this paper, we prove the 3d mirror symmetry for both the vertex functions
and elliptic stable envelopes, in the hypertoric case.

1.3. Hypertoric 3d mirror symmetry. In the special case of abelian gauge theories, in other words,
the gauge group is a torus, the mirror theory always exists and admits very explict descriptions [18, 45].
Mathematically, their Higgs branches are abelian hyper-Kahler quotients of a quaternionic representation,
which are called toric hyperkdahler varieties or hypertoric varieties. To define a hypertoric variety, one starts
with a short exact sequence

0 Zk_tsgn P ga 0.
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The map ¢ then describes a action of the torus K := (C*)¥ on N = C”, and then on the symplectic vector
space T*C™. The hypertoric variety is then defined as

X = p71(0)//eK,

where g : T*C" — (C*)Y is the complex moment map. 6 here is a character of (C*)¥, which we identify
with an element in (Z*)V. We will always assume that 6 is chosen generically, in which case X is smooth.
We will consider the group action on X by T := T x Cj, where T := (C*)" acts on C™, which descends to
X, and Cj scales the symplectic form, whose equivariant parameter we denote by A.

We denote by ay,--- ,a, the equivariant parameters of T, considered as coordinates on the torus A :=
T/K = (C*)?. We also take z1,- - , 2, as Kdhler parameters, treated as coordinates on K. Both collections
of parameters are redundant and subject to certain relations (see Section 2.7).

Denote by p; = 0 € P! and py := co € PL. Let QM(X,3) be the moduli space of quasimaps from P!
to X, with degree 5 € Hy(X,Z). It is equipped with the natural perfect obstruction theory, and hence the
associated virtual structure sheaf O,;, € Kr(QM(X, §)). Let QM(X, 5)us p, be the open substack consisting
of those quasimaps where ps is nonsingular, i.e., not a base point. The (bare) vertex function with descendent
insertion 7, is defined as

V(T) (% & a) = Z Zﬁ €V2,x (QM(X7 ﬁ)ns P2 5vir : eVI T) S K’JI‘X(CZ; (X)]OC[[ZEH(X)]L
BEEH(X)

where 7 € K7(X) is a Kirwan lift of K-theory class to the stacky quotient X := [ 71(0)/K], evy and evy are
evaluation maps at p; or ps from the moduli stack to X or X, depending on whether the point is assumed
to be nonsingular, and @Vir is the twist of Oy by a square root of the virtual canonical bundle and a
chosen polarization T)l(/ 2, i.e., a “half” of the tangent bundle Tx. Moreover, ¢ is the character of T}, P!
under the action of the torus (CZ on P!. The invariants have to lie in KTX(C; (X)10¢, which means to apply
Cy-localization and pass to the fraction field C(q), because the map evs is not proper, and its push-forward
has to be defined via such localization.

The geometry of hypertoric varieties can be described very nicely in combinatorics, using the language
of hyperplane arrangements, which makes it convenient to apply T x Cj-localization computations. , The
vertex functions can then be calculated explicitly, and written in the form of a contour integral of Barnes—
Mellin type. One can then realize them, appropriately renormalized by some prefactors and denoted by V,
as solutions of ¢-difference systems. Let Z; (resp A;) be the operators that shifts z; — ¢z; (resp. a; — qa;)
and keeps other variables unchanged.

Theorem 1.1 (Theorem 5.14). 1) The modified vertez function VV(q, z, a)|p is annihilated by the follow-
ing q-difference operators:

[Ta-z) [[a-nz)-= [T -nz) [[(a-2). S=8T"US": circuit!,
€St 1€S™ €St 1€S™
where zy,; := z;(—h~1/2), B is the curve class corresponding to S, and zf = [Licst 2t [ Lics zﬂ_ll

Inzy ;lna;

2) The modified vertex function 17(1)((], 2, a)‘p ce”Xi=ima s annihilated by the following q-difference

operators:
H (1-A4A) H (1 —qh™'A;) — (ha)® H (1—qh 'A)) H (1-A), R=R"UR™ : cocircuit?,
i€ERT 1€ER™ i€ERT 1€ER™

where o is the root corresponding to R, and (ha)® =[], g+ (hai) [[;c - (hai) ™.

LA circuit is a minimal subset S C {1,---,n}, such that {8(e;) | i € S} are linearly dependent in C¢, where e;’s are
the standard basis for C™. A circuit admits a unique decomposition S = ST LU S~ such that Zies+ e; — Ziesf e; € ker 3,
determined by the stability condition 6. Circuits correspond to indecomposible effective curves of X. For details, see Section
2.2.

2A cocircuit is a minimal subset R C {1,--- ,n}, such that {¢v (e) | i € R} are linearly independent in C*, where e}’s are the
dual standard basis for C*. A cocircuit admits a unique decomposition R = R IR~ such that Zz‘eR+ e — ZiER* ey € ker A
determined by the cocharacter o. Cocircuits correspond to simple roots of the torus action on X. For details, see Section 2.6.
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Here for the equations 2), as in [53, 56], one also needs to choose a cocharacter o : C* — A, which we
identify with an element in Z?. The choice of ¢ determines a chamber in the space of equivariant parameters,
as well as an ordering of the fixed point set XT.

The 3d mirror of a hypertoric variety X is still a hypertoric variety X', constructed by dualizing the
defining short exact sequence

\%

00— (Zd)v T g (Zn)\/ Y (Zk)v 0.
The stability condition and cocharacter of X’ is chosen as ' = —o, ¢’ = —f. There are natural identifications
of the spaces of parameters K’ = AV, A’ = KV, and also bijections between the fixed point sets XT and (X’)T,.

We consider the vertex function V'(q, 2’,a’) for X’, but defined for an opposite choice of polarization TY?.

We finally have the following main result.
Theorem 1.2 (Theorem 6.7). Under the identification of parameters

Fvtx KY x Ax C; = A" x (K')Y x Cj, (24,3, @i, 1) — ((a<)71,zé7i,qh71),

the product

V'(g,7',d) =B -V(gz,0) € Krn(X")
forms a global class in K1/(X'), and coincides with the vertex function V'(q,2’,a’) of the 8d-mirror X', with
the opposite polarization T)l(/,z.

Stabo(a)lp
(T *|p)
renormalized by other factors contributed from the fixed point p. For any fixed point q € X', the elliptic
stable envelope Stab,(q) is defined as a particular section of a line bundle over the equivairant elliptic
cohomology scheme Ellt(X) x Ellyv (pt), and admits an explicit expression as a monomial of theta functions.
They also satisfy a 3d mirror symmetry correspondence as follows.

Here the matrix B is defined via the elliptic stable envelope matrix ., P,q € XT, appropriately

Theorem 1.3 (Theorem 6.4). Under the isomorphism of parameters

Kstab : KY X Ax C; = A" x (K')Y x Cj, (zi,ai, h) v~ (al, 2, B 1),

719~

we have:
1) There is a line bundle M on Ellrxrxc; (X x X') such that
(i5)" 0 = M(p), (i) M =M(p').
2) There is a section m of M, called the “duality interface”, such that
(ip)*m = Stab,(p), (ip)'m = Stab., (pp/).

3) In the hypertoric case, the duality interface m admits a simple explicit form:

n

m= H I(z;x}).

i=1

In particular, it comes from a section of a universal line bundle on the prequotient EllTXT/XC;LXTV x (1) (Pt),
and does not depend on the choices of 6 or o.

Corollary 1.4 (Corollary 6.5). We have the following symmetry between elliptic stable envelopes:

Staby(p)lq  Stabl,(q')|p/
Stab, (q)lq  Stabl,, (p')|p’’

where p,q € XT, and p’,q’ € (X’)T/ are fized points corresponding to each other.
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1.4. Quantum K-theory. From the enumerative geometric point of view, quasimaps play a crucial role in
Gromov—Witten type theories. Using the notion of relative quasimaps introduced in [56], where one allow
the domain to “bubble” at oo, in [59, 49] a version of quantum K-theory (which we call PSZ quantum K-
theory to avoid confusion) is defined, as a deformation of the usual ring structure Kp(X). The ¢-difference
system above satisfied by the vertex functions, with respect to the z-variables, actually determines the PSZ
quantum K-theory ring structure.

Theorem 1.5 (Theorem 5.16). We have the following presentations of ring structures (which are equivalent
to each other):

1) The PSZ quantum K -theory ring of X is generated by the quantum tautological line bundles Ei(z), 1<
i <n, up to the relations

[T @=Lix) = [T @ =nLi(2)) =2 [] A =hLi(z) = [ 0 - Li(2)), S =STUS™: circuit,
€St €S~ €St €S~

where zy; = 2i(=h~Y?), B is the curve class corresponding to S, z"f = [Lics+ 2 [ Lics- zgil, and all
products [| are quantum products *.
2) The divisorial quantum K -theory ring of X is generated by the line bundles L;, 1 < i < n, up to the

relations
[Ta-cy [T a-nL) -2 [T a—nL) [ @=Ly,  S=8"1S": circuit,
€St €S~ €St €S~

where zy,; := z;(—h~'/2), B is the curve class corresponding to S, and zf = [Lics+ 2 [ Lics- ztfil.

The quasimap we considered here is actually a special case of the e-stable quasimaps for ¢ = 0+ with
a parametrized domain component defined by [15, 14]. It is then natural to ask how it is related to the
quantum K-theory defined via counting stable maps by Lee and Givental [50, 31]. In general, it is expected
to be studied via certain e-wall-crossing techniques for stability conditions over the moduli stacks. But for
us, thanks to the explicit computations available, we are able to extract information directly from the vertex
functions.

Corollary 1.6 (Coroallary 7.4). Let 7 be a Laurent polynomial in q with coefficients in Kv(X) ® A. The
descendent bare vertex function

-1
1=V 2, g
lies in the range of permutation-equivariant big J-function of X.

Here one has to consider Givental’s permutation-equivariant quantum K-theory [30], which behaves better
with localizations and twisted theories [32]. We then introduce a Givental type quantum K-theory, based
on the the K-theoretic Gromov-Witten potential with both permutation-equivariant and ordinary inputs.
Following the idea in [41], there are some operators B; com € End K1(X) ® A, introduced via g-difference
operators. Let tg € Kp(X) ® A be the point where (1 — ¢)V 1) (g7, Z>|zu:Q = J(to, Q).

Theorem 1.7 (Theorem 7.5). Let X be a hypertoric variety, and to € K(X)® A be as in Theorem 7.5. We
fix the insertions x = 0 and t = 1p.

1) For any circuit S = ST U .S™, and the corresponding curve class 3, the identity class 1 € K1(X) is
annihilated by the following operator

H (1 - Bi,com) H (h - Bi,com) - QB H (h - Bi,com) H (1 - Bi,com)a
€St €S~ €St €S~

where QF = [Lics+ Qillies- Qi_l'
2) The Givental quantum K-theory ring of X is generated by the classes B;coml, 1 < i < n, up to the
following relations: for any circuit S = ST U S™, and the corresponding curve class f3

H (1 - Bi,com]-) ° H (h - Bi,coml) = Qﬂ H (h - Bi,com]-) L4 H (1 - Bi,com]-);
€St €S €S+ €S~
where all the products are the quantum product e.
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1.5. Structure of the paper. The paper is organized as follows. In Section 2, we review basic constructions
and the equivariant geometry of hypertoric varieties. We explicitly described the K-theory Kt(X), the
tautological line bundles L; and the characters one obtains when restricting them to a fixed point p. In
Section 2.7, we introduce the redundant and global equivariant and Kéahler parameters. In Section 3, we
recall the definition of elliptic stable envelopes and their characterization via theta functions in the hypertoric
case. We define the vertex function and PSZ quantum K-theory in Section 4, and then compute them in
Section 5 via T-localization. In Section 6, we prove our main theorems on the 3d mirror symmetry for vertex
functions and elliptic stable envelopes. The relationship to Givental’s permutation-equivariant quantum
K-theory is studied in Section 7.

1.6. Acknowledgements. The authors would like to thank Mina Aganagic and Andrei Okounkov for their
extraordinary work [2], where we learn the idea and start this project. The second author would also like to
thank Ming Zhang and Yaoxiong Wen for discussions on Givental’s quantum K-theory. The work of A.S. is
supported by NSF grant DMS - 2054527, the Russian Science Foundation under grant 18-01-00926 and the
AMS travel grant. The work of Z.Z. is supported by FRG grant 1564500, and World Premier International
Research Center Initiative (WPI), MEXT, Japan.

2. GEOMETRY OF HYPERTORIC VARIETIES

2.1. Basic construction. In this section we review the definition and geometric properties of hypertoric
varieties. For the details, there are plenty of references, such as [7, 35, 36, 37, 46, 47]. As hyperkéhler
analogues of toric varieties, which can be constructed as symplectic reductions of complex vector spaces,
hypertoric varieties are hyperkahler reductions of quarternion vector spaces.

Let k,n be nonnegative integers, with & < n. Consider a short exact sequence of free Z-modules:

(2.1) 0 /Sy 0.

Denote the complex tori by K := (C*)¥, T := (C*)" and A := (C*)?. When tensoring with C, the embedding
¢ specifies an embedding of the complex torus K into T, and hence defines an action of K on the affine space
C". The abelian groups Z* and Z" above are viewed as lattices of cocharacters of the tori.

The K-action naturally extends to the cotangent space T*C™ = C" ¢ C™, preserving the canonical holo-
morphic symplectic form. Let u : T*C"™ — Lie(K)V be the moment map of this action. With a choice of a
stability parameter 6 € Lie(K)V, the hypertoric variety X is defined as the GIT quotient

X = p7H(0)//6K = u=H(0)* /K,
where £ ~1(0)* C p~1(0) is the semistable locus, which is open. We will also consider the stacky quotient,
denoted by X := [71(0)/K], of which X is an open substack.

Remark 2.1. Later we will see that the quasimap theory actually depend on the presentation of the GIT
quotient, i.e. the sequence (2.1), rather than the resulting quotient variety X itself. More precisely, we
will consider hypertoric data up to automorphisms of Z* and Z¢. In other words, two sets of hypertoric
data as (2.1) will be considered equivalent, if they can be related by change of bases for Z* and Z?. The
corresponding Kahler and equivariant parameters will also be understood up to those changes of bases.

2.2. Hyperplane arrangement and circuits. The information of a hypertoric variety can be conve-
niently organized in the combinatoric data of a collection H of affine hyperplanes in R?, called a hyperplane
arrangement.

In the sequence (2.1), let ¢; € Z", 1 < i < n be the standard basis. Consider the dual exact sequence

0—> (Zd)v L_ (Zn)\/ W

(Z*)V 0.

Let 6 € (Z")V be a lift of 6 along .¥. Then the hyperplane arrangement H = {H; | 1 <i < n} is defined
as the collection of the following (affine) hyperplanes

Hy = {z € @] (2, 8(es)) = —(6,e)}.
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The hypertoric variety X can be recovered from such an . A different choice of the lift ] corresponds to
translating the hyperplanes simultaneously by an element in (Z?)V, which does not affect the associated X.

Each hyperplane H; divides (R?)Y into two half-spaces:
Hf = {z e ®Y)Y | (z,8(c))) > —(,e)},  Hy :={xe®R)Y |(z,8(e:)) < —(,e:)}.

A hypertoric variety X is smooth if and only if the hyperplane arrangement H satisfies the following two
conditions:

1) simple, i.e., for any 0 < m < n, every m hyperplanes in A intersect, if nonempty, in codimension m;
2) unimodular, i.e., any collection of d linearly independent vectors in the conormals {S(e1), - ,B(en)}
form a basis of Z¢ over Z.

Unless otherwise specified, we will always assume that our hypertoric variety X is smooth, which is always
the case when the stability condition 6 is chosen generically. In that case we have p=1(0)% = p=1(0)%, i.e.
the semistable locus coincides with the stable locus.

A subset S C {1,---,n} is called a circuit, if it is a minimal subset such that (),.g H; = 0. In other
words, it gives a minimal relations among the images of e;’s for i € S.

Each circuit has a unique splitting S = ST LU .S™, determined as follows. The smoothness assumption on
X implies that in the relation among e;’s for i € S, all coefficients of e;’s must be 1. The subsets S* are
determined by the presentation of the relation

Bg = Z e; — Z e; € ker 3,
€St €S~

such that (8s,6) > 0.

2.3. Equivariant geometry and line bundles. Analogous to toric varieties, the hypertoric variety X
admits a torus action, naturally inherited from the standard torus action by (C*)™ on C™. Moreover, there
is a 1-dimensional torus C; that scales the cotangent fiber of 7*C", which also descends to X. Hence X
admits a torus action by T := T x C}, whose equivariant parameters are denoted by a1, - , an, i € Kr(pt).

Each character in (Z™)Y defines a natural T-equivariant line bundle on X. In particular, for the standard
dual basis ef € (Z™)V, 1 <i < n, we have line bundles

Li == =1 (0)* xk Ce:,

where 1~1(0)® C p~1(0) is the stable locus for the K-action, and C.x denotes the 1-dimensional K-representation
defined by the character (Ve;.

Similarly, each character in (Z*)V defines a (non-equivariant) line bundle on X. Let { fr11<j<k}be
the standard dual basis for (Z¥)¥. We have the tautological line bundles

N; = uil(O)S XK (Cf]?*.

The relationship between L; and N;’s is encoded in the map ¢:

k
(2.2) Li=Ce: @ Q@ N,

j=1
where (¢;;) is the n x k matrix given by ¢.

We are interested in the T-equivariant K-theory of X. Recall that [35] Kp(X) satisfies the Kirwan
surjectivity 3, i.e. the following surjection

K’H‘(pt)[sitlu T 7Ski1] - KT(X)v
where the image of s; is the K-theory class of N;.

3The statement in [35] is only on the Kirwan surjectivity for cohomology. But the GKM method adopted there applies also
to the K-theory, and allows one to obtain the explicit presentation (2.3)
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More precisely, the kernel of the surjection can be described explicitly. We have
(2.3) Kp(X) = Clat?, - ot mE st s/ H (1—1) H (1 — hz;) | S is a circuit),
i€s+ i€S-

where z; is the class of L; in Kp(X), which can be expressed in s;’s through (2.2), i.e., z; = a; H§:1 s;7.

In particular, if we view Spec Kt(X) as an affine scheme embedded in an algebraic torus (C*)"**+1 with
coordinates a;, A, s;, it is given by the intersection of certain hypersurfaces, each defined by a circuit S
as a union of hyperplanes in the torus. Moreover, one can see that this intersection is indeed transversal,
reflecting the fact that X, equipped with the T-action, is a GKM wvariety (i.e., admits finitely many fixed
points and finitely many 1-dimensional orbits).

Remark 2.2. In later sections of the paper, we will sometimes choose particular bases of Z¥ and Z? to
make computations more convenient. The corresponding constructions, such as N;, 6, will change according
to the change of bases. However, we will always fix the basis of Z™. In other words, the line bundle L; and
the stability parameter 6 will stay the same for all choices.

2.4. Restriction to T-fixed points. To conclude this section, we would like to specify the restriction
of line bundles N; and L; to each fixed point in X*. The T-invariant loci of X can be described by the
hyperplane arrangement H: a T-fixed point of X corresponds to a vertex in H; a T-invariant 1-dimensional
orbit corresponds to an edge, etc.

Let p={p1, - ,pa} C{1,---,n}, with p; < --- < pg, be a subset with d elements such that
1EP
By our smooth assumption, the above intersection of H;’s is a vertex in H, and therefore corresponds to a
fixed point p € XT. From now on, we will abuse the notation p (and also q) for the followings:

(i) the subset p,

(ii) the bijection from {1,---,d} to the set p,
(iii) the vertex in the hyperplane arrangement,
(iv) the fixed point p € XT.

Let Ap := {1,---,n}\p be the complement subset. Denote that Ap = {Ap1, -+, Ap i}, where Apq1 <
- < Ap ;. We will also abuse the notation Ay for the bijection from {1,---,k} to Ap.

In particular, for (ii) above, we mean that if i = p; for some 1 < I < d, we denote by I = p~1(i); similarly
if j = Ap, s for some 1 < J < k, denote J = (Ap)~*(4).

The orientations given by the conormal vectors S(e;) of H;’s, for i ¢ p, determines a splitting A, =
Al U A, where

Al ={idp|peH}, Ay ={idp|peH}

Lemma 2.3. The following system of equations

o o {1, me Al
AmSy™ 8 = 1 _
h m e Ay
admits a unique set of solutions (s1(p),- - ,sk(P)). The restriction of the line bundle N; to p is
Njl, = s5(p)-
The restriction of the line bundle L; to p is
1, i€ Al
(2.4) Lil, =3 h7", ie A,
ais1(p)" -+ sk(p)", i €P.

Proof. This is essentially Theorem 3.5 in [35]. O
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We choose the basis of ZF such that the matrix ¢ is of the following special form:
(2.5) tmi(P) = Omy, tij(p) = Cij(p), m,j ¢ p, i €P

where Cj;(p) is a d x k-matrix, with indices taken in p x Ap. Moreover, one can choose a basis of 74 such
that the matrix f is also of a special form:

(2.6) Bij(p) = —Cij(p), Bi(p) = dir, JE€Pp, i,lep.

Here the p in parentheses is to emphasize the dependence on p. We call this choice of bases the standard
p-frame.

Corollary 2.4. For the standard p-frame, the relationship between x; = L;; 1 < i < n, and s; = Ny,
1<J<LEk, is

a;Sy, iZ.ApJ E.Ap
Ti = Cipg Cipe .
a;s; sy F, 1 € Pp.
The restriction of the line bundle Ny, 1 < J <k to p is
1 . +
a. -, ] = Apﬁ,] cA
(2.7) Ny, =ss(p) = { T4 , ’
h a; ", j=Aps € Ap.
The restriction of the line bundle L;, 1 <i <mn to p is
1, ieAf
h,1 . —
(28) Lz|p _ ) 1€ Ap
a; H aj—Cij(p) CH 2 jepe— Cij(P). icp,

Jjé€p

We would like to rewrite this formula in a more intrinsic way. The presentation of Kp(X) (2.3) can be
expressed as
n
Claf!, -, aft pFt 2t .. ,xfﬂ/(H(xi/ai)ﬁji -1,1<5<d; H (1—x;) H (1 = hz;), S : circuits).
i=1 €St 1€S™
The picture of the affine scheme Spec Kp(X) is clear (view 7 as a constant): the first set of relations cuts
out a codimension-d subspace in the ambient torus (C*)?", and the second furthermore cuts out a union of
subspaces, each isomorphic to (C*)™, intersecting transversally. Each fixed point p € X T corresponds to an
irreducible component Spec K1(p) 2 (C*)" of Spec K1(X).
View x; as a function on Spec K1(X). The restriction formula (2.8) can then be written as the residue of
the function z; along one of the components:
dlnzy A---ANdlnz,

Tilp = Li|p:/ Ti - J
@ A (S Bid )

m=1

where v(p) is the compact real k-cycle around the irreducible component Spec Kr(p), specified by z; = 1,
jeAfand z; =nt, j e Ag.

2.5. Effective curves, walls, and chambers. There is a bijection [46] between circuits and primitive
effective curves in X. We will abuse the notation and denote also by Ss the primitive effective curve
corresponding to the circuit S.

All irreducible T-invariant curves C' in X are of the following form. Let p and q be two vertices in the
hyperplane arrangement, such that p = (q\{j}) U{i} and q = (p\{¢}) U {j}, for some 1 < i # j < n. There
is a unique T-invariant curve C' connecting the fixed points p and q. It is clear that the circuit that defines
Cis

Spq :=pPU{j} =qU{i}.

Lemma 2.5. (i) degL =0, for m & Spq; degLi‘C ==+1,ifi € Af;.

mlo



3D MIRROR SYMMETRY AND QUANTUM K-THEORY OF HYPERTORIC VARIETIES 11

(i) The character

I'L|p7 1€ AZ’I_
TpC: -1 _—1 . —
a7 p, i€ Ag-

Proof. (i) is true by direct computation. (i) follows from the fact that x|, = @;|q - (TpC)%€ e, and
Tilq =1 or h~!, depending on i € Afl. =

Recall that as in [46], the space R of stability parameters of X admits a wall-and-chamber structure.
For each circuit S = S+ LU S™, there is a codimension-1 hyperplane

Ps := Spang{.Ve} | i ¢ S} C RF,
which we call a wall in RF. A connected component of the complement of walls

RCRM |J Ps
S:circuit

is called a chamber.

Constructed by the real moment map in the hyperKéahler definition, there is a family of (possibly singular)
hypertoric varieties over R*. For each § € R*, the fiber over 6 is the hypertoric variety X defined with the
choice of stability condition #, which is smooth if € is away from all the walls. The geometry of X stays the
same for all §’s in a given chamber K, and admits a symplectic flop phenomenon when 6 crosses a wall.

With the space R* identified with H2(X,R), the real moment map can also be understood as a real period
map, whose image is the real Kéhler class. In this sense, the chamber 8 is nothing but the Kdahler cone of
X. The effective cone Eff(X) ® R can be described as the dual of K.

2.6. Roots, walls and chambers. Following Maulik—-Okounkov [53], the space of equivariant parameters
R? = R"/R* also admits a wall-and-chamber structure. Choose a cocharacter of the torus o : C* — (C*)4,
which we view as an element in Z¢. Let X° C X be the fixed loci of X under the action of the 1-dimensional
subtorus defined by 0. We also choose a lift & € Z™ of o along 3, i.e. 8(c) = 0.

The subset in R? where o is “generic”, ie., X7 = X" = XT. is the complement of a union of
hyperplanes, which we call walls. Each wall is of the form W, := {\ € R? | (\,a) = 0}, for some primitive
a € (Z4)V, which we call a root.

Alternatively, if we identify o with its image 8*a in (Z™)Y, then a root is a minimal relation among
images of the standard basis vectors :Ve}. Therefore, we may also identify o as a cocircuit, i.e. a subset
R c{l,---,n}, with unique splitting R = R™ U R~, such that

ag = Z el — Z ef € kert”,
1ERT i€ER™
and (ag,0) > 0.
A connected component of the complement of the union of all root hyperplanes is also called a chamber:
CcRN ] W
a:cocircuit

For a fixed choice of 7, a root « is called positive if it is nonzero and (7, ) > 0.

2.7. Equivariant and Kahler parameters. To end this section, we would like to elaborate more on the
parameters which our vertex functions and elliptic stable envelopes will depend on. Recall the multiplicative
version of the short exact sequence (2.1):

expt exp f3

1 K T A 1,

where K = (C*)*, T = (C*)™ and A = (C*)?. We have used the action by (C*)" in the previous section
to define the equivariant K-theory. The coordinates a1, -+ ,a, on T are called the equivariant parameters.
They correpond to the standard basis on Z™, which we fix once and for all.
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However, this torus action is actually redundant: it acts by the factorization through the morphism
expfB: T — A. The actual non-redundant equivariant parameters are functions on the quotient torus A, or
in other words, monomials in a1, - - , a, that vanish on the kernel K.

Every choice of basis on Z?, or equivalently, every presentation of the map 3, defines a particular choice
of coordinates on A. For example, let p be a vertex in the hyperplane arrangement #H. If we choose the
presentation § = (—C, I) in the standard p-frame, the corresponding choice of coordinates would be

—Cij .
a;(p) ::aiHaj 7, i€ p.
JEP
The same happens for the Kahler parameters. Consider the dual exact sequence of tori

exp BV exp ¢V

1 AY TV KY 1.

We fix coordinates on z1,---,2, on TV once and for all, as the “redundant” Kiahler parameters. Then the
non-redundant Kahler parameters are coordinates on the quotient torus KV, or equivalently, monomials in
21,** , Zn, vanishing on the dual kernal AV.

Every choice of basis on ZF, or equivalently, every presentation of the map ¢, defines a particular choice of

coordinates on KV. For the standerd p-frame, ¢ = , there is a particular choice of Kéhler parameters,

1
C
or in other words, a choice of representatives for the Kahler parameters
Cij .
G =z [[=" iép
i€p
The vertex function for X, once defined, will be a Kp(X)-valued function, over the product of the dual

Kahler torus K and the equivariant torus A (and furthermore, certain partial compactifications of them).
In particular, for any effective curve 3, with associated circuit S = ST LU S™, the monomial

S =11 ="
€St ieS—

is a well-defined function on the quotient torus KY. Similarly, for any root o 4, with associated cocircuit
R = RT™ U R™, the monomial
a® = H a; H a; !

i€Rt  i€ER™
is a well-defined function on the quotient torus A.

2.8. Polarization. The notion of polarization, although not essentially, is important for our formation of
elliptic stable envelopes and vertex functions.

Definition 2.6. Let X be a hypertoric variety.

1) A collection of K-theoretic classes TS/ ’ e Kr(p), for p € X7, is called a localized polarization, if it
satisfies

T2+ N (TY?)Y = Txlp € Kr(p), peX™

2) A localized polarization is called a global polarization, or simply a polarization, if it comes from a global
K-class, i.e., there exists T;(/Q € Kp(X), such that TS/Q = T;(/2|p.

Usually a polarization will be given as a Kirwan lift in the K (X), i.e., as a Laurent polynomial in the
Chern roots x;’s.

4Unfortunately, we use « for both roots and equivariant parameters. To distinguish them, an equivariant parameter will
always be followed with a dependence on its associated fixed p, e.g., a;(p).
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3. ELLIPTIC COHOMOLOGY AND STABLE ENVELOPES

3.1. Equivariant elliptic cohomology for hypertoric varieties. Let ¢ € C* be a complex number,
with |g| < 1, and let E := C*/¢” be the elliptic curve, with modular parameter q. Equivariant elliptic
cohomology is a covariant functor that associates to every T-variety a scheme Ellp(X). In this section, we
describe explicitly the T-equivariant elliptic cohomology and its extended version of the hypertoric variety
X. For general definitions of equivariant elliptic cohomology, we refer the readers to [22, 23, 24, 33, 52, 62].

For X = pt, the equivariant elliptic cohomology is the abelian variety
&r = Ellp(pt) = BT

the coordinates on which we refer to as the elliptic equivariant parameters, and by abuse of notation, still
denote by ay,--- ,a, and h. Let S(X) := E¥, whose coordinates we call elliptic Chern roots, and still denote
by s1,---, sg.

Let X be a hypertoric variety, which is in particular, a GKM variety. The explicit description of equivariant
K-theory Kp(X) can be generalized to the elliptic setting, hence the following diagram

Ellp (X)) S(X) x &

l

ér.
Again, Ellp(X) is a closed subvariety in the ambient space S(X) x &, finite over &r, with simple normal
crossing singularities.

By T-localization, the irreducible components of Ellp(X) are parameterized by the fixed point set X7,
and each of them is isomorphic to the base &r. We denote by Op the irreducible component corresponding
to a fixed point p € XT, and call it an orbit. The fact that X is a GKM variety implies that orbits are glued
in a very nice way to form the scheme Ellp(X):

Proposition 3.1. We have

Ellp(X) = ( 11 op)/A,

peXT

where /A denotes the intersections of T-orbits Op and Oq along the hyperplanes
Op D X& C Oq;

for all p and q connected by an equivariant curve C, and xc 1is the T-character of the tangent space TpC.

The intersections of the orbits Op and Oq are transversal and hence the scheme Ellp(X) is a variety with
stmple normal crossing singularities.

Let &v := E™ ° be the space whose coordinates we call the elliptic Kdhler parameters and still denote
by 21, -, zn. The extended equivariant elliptic cohomology of X is defined to be the product

ET(X) = EHT(X) X g—rv.
It admits the same structure as above Ep(X) = ( [] ap)/A, with 6p := Op x &rv and A the same as

peXT
above.

Remark 3.2. Recall that in (2.5) and (2.6), we can choose different presenation of ¢ and 3, for different
fixed points p. That means for different orbits Op, we have chosen different coordinates sq,--- , s, on the
ambient space S(X).

5In [2], this is called Epicr(X)-
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3.2. Elliptic functions. We define the theta function associated with E explicitly by:
19(17)::(171/2—1771/2)1_[ 1—q%z) Hl—qd -, zeC.
d=1 d=1

Note that ¥(1) = 0 and 9(qz) = —¢~*/?2~"9(z), which means that ¥(z) defines a section of a line bundle
of degree one on the elliptic curve E. It will be convenient to describe sections for line bundles on product
of elliptic curves in terms of theta functions.

For a sum of variables ), x;, we denote
@(sz) = Hﬁ(zl)

3.3. Elliptic stable envelopes. Recall that A = (C*)"/(C*)* is the quotient torus. Since K = (C*)* acts
on X trivially, A is the actual non-redundant torus acting on X. Equivariant parameters on A can be viewed
as functions on (C*)" that vanish on (C*)*. As in Section 2.7, For a given fixed point p € XT and the
correponding standard p-frame, there is a convenient choice of coordinates of equivariant parameters:

a p):aiHaj_C”, i €p.
Jgp
The elliptic stable envelope depends on the choice of a polarization (see Definition 2.6). In this section,
we choose the polarization as T;(/Q =>" L —O% or 3" x; — k, written in terms of Chern roots.

One also needs to choose an element o € Z%, which determines a cocharacter o : C* — A. Let 5 € Z" be
a lift of 0. We assume that o is chosen generically, such that the fixed point set X“ under the 1-dimension
subtorus action by ¢ is the same as XT.

The choice of ¢ determines a splitting p = p™ Lip~, where
(3.1) p" = {i€p|{a(p),o) >0},

and similar with p~.

We denote by
Attry(p) :={z € X | tlim o(t)-x =p}
—00

the attracting set of the fixed point p. The full attracting set Attrf: (p) is defined to be the minimal closed
subset of X which contains p and is closed under taking Attr,(-)

The attracting set has the following description, originally given [63]. Recall that the hyperplane arrange-
ment A associated with X gives a collection of affine hyperplanes H; in R?. The space R is then divided
into polytopes by H;’s, where each polytope corresponds to a T-invariant lagrangian submanifold in X. Each
fixed point p is identified with a vertex, which is the intersection ﬂiep H;. Given the chosen cocharacter o,
consider the cone defined as

() B'n () H .

iept iEpT
The attacting set Attr,(p) is then the union of lagrangians corresponding to the polytopes in this cone. In
particular, we have:

Lemma 3.3. Given p,q € X', q € Attr,(p) if and only if q € Nicp+ H N Niep- H; » which is also
equivalent to Ay Np™ = Al Np~ =0.

The polarization, when restricted to a fixed point, decomposes into three parts T)l(/ 2 lp = T)l(/ 2 |;§ —I—T)l(/ 2|;A, +

T2 . . . . S
/ |p, whose characters are positive, zero and negative with respect to o. For our choice of polarization

T;(/2 =37 @ —k, we see that T;(/2|é = iepTilp: T Ty 2|i > iept Tilp-

The elliptic stable envelope [2] associates each fixed point p with a section Stab, (p) of a certain explicit
line bundle 7 (p) on the orbit Op C Et(X), which is the pull-back of a line bundle 7°°(p) on the ambient
abelian variety S(X) x & x &tv along the elliptic Chern class map Er(X) — S(X) x ér x &rv. The line
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bundle is uniquely determined by the g-quasi-periods of its sections, which can be read off from the explicit
formula for Stab,(p) we give in Theorem 3.5.

Theorem 3.4 ([2]). There exists a unique section Stab,(p) of T(p), holomorphic over &, meromorphic
over &v and in h, satisfying the following properties:

(i) Supp(Stabs(p)) C Attr](p);

(i) its restriction to p is

Stab, (p)lp = (~1)P'1O(N;) = [T 9(railp) [] 9(@ils),

iept i€EpT
where N is the negative half in the decomposition Tp X = NIJ; + N, which pairs with o negatively.
We have the following explicit formula for the elliptic stable envelope. Note that in our hypertoric case,

Stab, (p) is actually supported on Attr,(p), which is stronger than the general definition.
Theorem 3.5. The stable envelope Stab, (p) is the pull-back along S(X) x & x &rv of the following section

O (2, (p)h~ Ziewt G O(2;¢;(p)h~ Liep+ Cia
H ﬁ(h.fz) H 19(:170 H ( 757 — — ) ( VAV — C”)
iept o geas (G Zeer @) Sl o(hG ) Bieer )
of the line bundle T°%(p).

Proof. The shift of h-factors here is exactly determined by the line bundle 7°%(p). It suffices to check that
the given section satisfies (i) and (ii), which follow from Lemma 3.3 and direct computation. 0

4. VERTEX FUNCTION AND QUANTUM PRODUCT

4.1. Quasimaps and bare vertex. Recall that the hypertoric variety X = u=1(0)//oK = p=1(0)*/K is a
subscheme of the quotient stack X = [ =1(0)/K]. Consider the following definition from [56].

Definition 4.1. A quasimap from P! to X is a morphism f : P! — X, such that away from a 0-dimensional
subscheme in P!, the morphism f maps into the stable locus X C X.

Let L;, 1 <4 <mand Ny, 1 < j <k be the tautological line bundles® on X, defined similarly as in previous
sections. The datum of a quasimap f is equivalent to the collection of line bundles f*/V;, and sections of
@, L ® h " @), L', satisfying the moment map equations and stability condition. A point on P! is
called a base point for f if it is mapped into the unstable locus ¥\ X.

For a quasimap f, taking the degrees of f*N; defines a homomorphism H?(X,Z) — Z, or equivalently,
a curve class deg f € Ho(X,Z), which we call the degree class of f. We will call deg f effective, if it lies in
Eff(X), the monoid of effective curve classes in X.

Now we consider the moduli of quasimaps. Let Hom(P!,X) be the moduli stack parameterizing all
representable morphisms from P! to X, which is an Artin stack locally of finite type. Since the domain
of quasimaps is fixed, the universal curve is a trivial family over the moduli stack, fitting in the following
universal diagram

Hom(P', %) x P — > %

|

Hom(P!, X).

6Here we use the same notations for tautological line bundles on X and X, since they are defined in the same manner and
compatible to each other via the inclusion X C X.
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There is a perfect obstruction theory, with virtual tangent complex given by
Tvir = R.W*f*T_'{.
One observes that the obstruction part actually vanishes. Hence Hom(PP!, X) is a smooth Artin stack.

Fix 8 € Eff(X), and p; = 0, po = oo € PL. Let QM(X, ) be the stack parameterizing quasimaps
from P! to X, which lies in Hom(PP*, X) as an open substack, and is of finite type since we fix the degree.
Hence QM(X, S3) is a Deligne-Mumford stack, equipped with the inherited perfect obstruction theory. The
standard construction in [6, 50] defines a virtual structure sheaf

Ovir S K'JT(QM(Xa ﬂ))

By Okounkov [56], it is more natural to twist the obstruction theory by a certain square root line bundle
and form a modified virtual structure sheaf.

Let T)l(/ % be a fixed global polarization. The modified virtual structure sheaf is defined as:

R det f*7~1/2| 1/2
(4.1) Ovir == Oy ® (KV “) € Kr(QM(X, B)),

ir_det f*T1/2|

p1

where Ky, := det T , and 7/2 is the tautological bundle associated with a lift of the polarization T)l(/ 2 to

vir?
Kr(%X). The existence of the square root line bundle Kil/rz relies on the existence of a polarization on the
target X, and a spin structure K[Fl,l/ * on the domain, which only makes sense if the target is symplectic and
the domain is fixed. This crucial modification has the effect of making the obstruction theory equivariantly

symmetric.

In order to define invariants, one has to be able to insert K-theoretic classes from X. Consider the

following open substack
QM(X, B)ns p C QM(X, )
consisting of those quasimaps for which ps € P! is nonsingular, or in other words, not a base point. There
are evaluation maps
eve : QM(X, Bns p, — X, evi : QM(X, B)ns p, — X,

where a quasimap f is mapped to the image f(p2) or f(p1). Let C, be the torus on P!, where q € Kc: (pt)
is the character defined by T}, P'.

A general K-theoretic invariant one can define is to pair the modified virtual structure sheaf @Vir with
classes pulled back from X or X via evs or evy, and then push forward to X or alternatively, to pt. As
the stack QM(X, B)ns p, is not proper, but admits proper fixed loci under the action of T x Cj. the push-
forward in the last step is only well-defined if we work in the localized Cj-equivariant theory, i.e., to work in
Krxcs (Xoe := Krxc; (X) ® C(g).

Definition 4.2. Given 7 € K(X), the bare vertex function with decendent insertion 7 is defined as

ve (q’ Z) = Z 2 OVax (QM(X, B)ns P29 6Vir : 6V>1k T) € K’JI‘XCZ (X)loc[[ZEH(X)]].
BEES(X)

Remark 4.3. General definitions of stable quasimaps are given in [15]. Our definition of quasimaps with
fixed domain P! is the special case of Definition 7.2.1 there, as stable quasimaps of genus 0 to X, with one
parameterized domain component, and without any marked points.

4.2. Relative quasimaps and capped vertex. Another version of the vertex function comes from count-
ing the relative quasimaps, motivated from the relative DT /PT theory. Let [ > 0 be an integer. Consider
the following

Pl :=P'UP'U---UP!,
constructed by attaching a chain of [ P'’s to the domain P' at the point co. The newly attached rational
curves are called bubbles or rubber components. Let p2 be the point co on the last bubble.

Definition 4.4. A relative quasimap to X is a map f : P[] — X, for some integer [ > 0, such that it
generically maps into the stable locus X C X, and moreover, the point ps is not a base point.
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Rather than quasimaps with fixed domain P! in the previous section, relative quasimaps admit nontrivial
automorphisms from scaling the bubbles. To describe this construction, we adopt the language from the
relative GW/DT/PT theory. For more detailed definitions, see for example [51, 1, 57, 56, 64].

By constructions in [51, 1], there exists a smooth Artin stack B, together with a universal famity C over
B, parameterizing all possible extended pairs of the form (P*[l], p2), in the following sense. For any geometric
point Spec C — B, the fiber of the family C — B over that point is of the form P[l], for some integer [ > 0.
Moreover, the automorphism group for this point is (C*)!, acting on the fiber P*[l] by scaling the I bubbles.

Definition 4.5. Let S be a scheme. A family of expanded pairs of (P!, o0) over S is the family Cs — S,
arising from a Cartesian diagram of the following form

Cs ——=C

o

S ——B.

A family of relative quasimaps (with respect to the divisor co € P!) is a family of expanded pairs 7 : Cs — S,
together with a map f : Cg — X, such that over each geometric point s € S, the fiber gives a relative
quasimap.

Definition 4.6. A relative quasimap f : P! — X is called stable, if its automorphism group is finite.
Equivalently, it means that the degree of f on each bubble is nontrivial.

Let X, be the affine quotient, defined by p=*(0)//s—oK. Let QM(X, )rel p, be the stack parameterizing
all stable relative quasimaps to X. Standard argument as in relative DT/PT theory shows that it is a DM
stack of finite type, proper over X, and it admits a perfect obstruction theory, relative over the smooth
Artin stack parameterizing principal K-bundles over the fibers of C — B. After the same twisting as in (4.1),
we have the modified virtual structure sheaf 5Vir.

Similarly we have the evaluation maps
eva QM(Xv ﬂ)rcl P2 — X7 evy QM(Xv ﬂ)rcl P1 — X.

However, this time evs is proper, and one can work in the non-localized Cj-equivariant theory or the non-
equivariant theory.

Definition 4.7. Given 7 € K1(X), the capped vertex function with descendent insertion T is defined as

‘7(7—)((]73) = Z Z'B €V2 (QM(Xa ﬂ)rfbl ;Dzvé\vir . T‘Pl) S KTX(C; (X)[[ZEH(X)H
BEEf(X)

Its non-equivariant counterpart with respect to C7, defined by the non-equivariant pushforward along the
evaluation map, is called the quantum tautological class:

7(2) =V, € Kn(X)[["L.

Remark 4.8. The notion of relative quasimaps is also a special case of Definition 7.2.1 in [15]. For each do-
main P![]] of the relative quasimaps, there is a contraction map P![I] — P!, mapping all bubble components
to the node where the bubbles are attached to the rigid P'. The contraction map can also be defined in
families. Let QMS {( A 4(X , B)para be the moduli stack of stable quasimaps of genus 0 to X, with one param-
eterized domain component, and 1 marked point p. The moduli space of relative quasimaps QM(X, 5)rel ps
is the closed substack in QMOCf M (X, B)para, consisting of quasimaps where the marked point p is mapped
to pz € P! under the contraction map.

4.3. Gluing operator, degeneration and PSZ quantum K-theory. More generally, if we choose N
points p1,--- ,py on P!, one can specify a “nonsingular” or “relative” condition at each point, and insert
appropriate descendent insertions at other points. Pushforward by the evaluation map evy X - - - X evyy would
define a K-theory class in K(X)®" i.e. an N-point class. However, one has to work with the Cy-equivariant
theory or non-equivariant theory, depending on the following specific cases.
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(i) If N < 2, and all points p; (identified with either 0 or co € P!) are equipped with the “relative”
condition, this N-point class can be defined to lie in the non-localized ring Krxc; (X)BN[[ZPH]),

(ii) If N < 2 and some of the points p; (identified with either 0 or oo € P!) are equipped with the

“nonsingular” condition, then it lies in the localized ring Krxc: (X YEN[BEO]).

(iii) Finally, if N > 3, then C; does not preserves the points p;’s, and all p;’s have to be assigned the
“relative” condition. The push-forward map only makes sense Cj-non-equivariantly, producing an N-point

class in Kp(X)®N[[zFF(]).

Let Kx denote the canonical line bundle. A natural nondegenerate bilinear form on Kt(X) is
(F.9) =x(X, Fogo k'), F.geK(X).

By the Fourier-Mukai philosophy, an (N + M)-point class in Kt(X)®®™+M) can be viewed as an operator
K1(X)®N — K1(X)®M | where we are free to choose N points as the input and M points as the output. In
particular, a class O € Kp(X)®? defines an operator O € End Kt(X) by OG := pry, (O ® pr5G). We will
often abuse the same notation for both the class in K1(X)®? and the operator in End K1(X).

Definition 4.9. The gluing operator is defined as

Glg.2):= Y 2Pevp, xevp,)s (QM(X, B)rel py.rel pw@vir) € Krxes (X)22[[ZPC07).
BEBM(X)

The gluing operator plays a crucial role in the degeneration of quasimap theory. Note that the 8 = 0 part
has only contribution from the constant maps, and therefore G = (AX)*K;(ﬂ—i—O(z) € Krxc; (X)®2[[BEC0]).

In particular, G = K;(/2 ® +0(z) as an operator, and admits an inverse G~ 1.

We introduce the following N-to-M operator

C(pN+1, DNt | Prs- - pn) - K1(X)®N — K (X)@M[[oPECO))

defined by quasimap counting. Let p1,--- ,pn,as be points on C' = P*.
Definition 4.10. For any N, M > 0, define

CpNt1,- »PN+M | P1y - pN) (Fr, -+, FN)

N
= Z Zﬂ(eVPN+17”'7PN+1W)* (QM(Xv B)relmw',pz\HMvOVir ® HeV;i (G_llq—l]:N)> ’

BEEM(X) i=1

where the push-forward ev,,, ., .. is taken to be Cj-non-equivariant.

WPN+M

Now suppose that the domain C' = P! degenerates into the union of two rational curves Co = C, UC_.
Degeration formula relates the quasimap theory with domain C to the relative quasimap theories with
domains Cy, with respect to the new relative points introduced by the node. The degeneration formula [56]
states that the operators satisfy the identity

C(on+1,- sPN+M | D1+, pN) = CL(DN41, - DN4M | ')0G_1|q:1 oC_(e|p1, -+ ,pN),

where e denotes the new relative point introduced by the node. Moreover, if N + M < 2, the degeneration
formula also works Cj-equivariantly, and the non-equivariant gluing G~ 4=1 should be replaced by the
equivariant version G 1.

In particular, the quantum tautulogical class associated to the identity can be recovered as the 1-point

function: 1(z) = C(p1 | ), and the specialization of the inverse gluing operator can be recovered as the
2-point function: x(X,F ® (G(q, 2) " t4=1-G)) = C( |p1,p2)(F,G).

We are particularly interested in the case (N, M) = (2,0) and (2,1). The following definition is made by
Pushkar—Smirnov—Zeitlin [59].
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Definition 4.11. The PSZ quantum K-theory ring of X is defined as the vector space K(X)[[zPF(X)]],
equipped with the quantum pairing (, )psz, the quantum product *, and the quantum identity i(z), defined
as follows

(F.G)psz = C(|p1,p2)(F,G), FxG:=C(ps | p1,p2)(F,G), 1(z):==C(p1 | ).

As in [59], one can prove that this is actually what we expect:

Proposition 4.12. The quantum K -theory ring defined as above is a Frobenius algebra.

4.4. Capping operator and g-difference equation. The two versions of vertex functions are related by
the following capping operator ©

Vg, 2) := Z zﬁ(evm X €Vp, )« (QM(X, Bns pi, rel pas Ovir) € KTxC; (X)%z[[zEH(X)]],
BEEM(X)

where the notation means we consider quasimaps that are required to be nonsingular at p; € P! and allowed
to bubble out at po € P'. The relationship between the bare and capped vertices is the following, which is
proved in [56] by relative localization and degeneration.

Proposition 4.13. View ¥(q, z) as in End Krxc: (X)1oc. We have
VD (q,2) = W(q,2) V7 (g, 2).

Remark 4.14. Note that both factors on the right hand side lie in the localized K-group, while the left
hand side is a non-localized K-class. This would be clear in a more precise way as we consider the ¢ — 1
asymptotic of this equality.

Analogous to the quantum differential equation in the cohomological theory, the capping operator satisfies
a certain g¢-difference equation. Consider the operator

Mi(q,z) = Z 2P (evp, X evp, )« (QM(X, B)rel pr. rel pas Ovir - det H*(L; @ W*Op2)> oG™!
BEEf(X)

€ KTxC;(X)Q@Q[[ZEH(X)Hv

where 7 : P1[I] — P! is the projection, and the term H®(—) here means the (virtual) tautological bundle on
the moduli space QM (X, ) whose fiber at a quasimap is represented by the (virtual) space H*(L; @ 7*Op, ).
It is important that the operator M;(z) here lies in the non-localized K-group. The following equation is
proved by considering the degeneration of capping operators with descendents [56, 58].

Proposition 4.15. View ¥(q, z) as in End Krxc: (X)ioc. The capping operator V(z) satisfies
Zi¥(q,2) = (L '®) 0 (g, 2) 0 Mi(q ™", 2),
where Z; is the operator which shifts z; — qz; and keep the other Kdhler parameters.

Moreover, the non-equivariant limit (with respect to C;) of M; is the quantum multiplication by the
quantum tautological line bundle:

M;(1,2) = Li(z) *.

4.5. Divisorial quantum K-theory. In this subsection we would like to slightly modify the PSZ ring
structure, and obtain one that can be compared with Givental’s quantum K-theory. Recall that X =
[171(0)/K] is the stacky quotient, and K1(X) = Kq(BK) consists of Laurent polynomials in 1, ,x,, up

to the linear relations:
n

Kp(%) = Claf!, - ,aft, B 2! - ,:E,fﬂ/(H(xi/ai)'B“ -1,1<j5<d).
i=1
The ordinary K-theory ring Kt(X) is the quotient of K1(X) with relations parameterized by the circuits of
X. We will define a new ring structure, also as a quotient of Kp(X), which deforms Kt(X). On the other
hand, it is essentially “the same” as the PSZ ring.

7Our convention here is different from [56] and [59]: p1 and p2 are exchanged. Under this convention we always view

K-classes from pj as inputs and those from ps as outputs. Our V¥ is the conjugate of the original one, with g+ ¢~ 1.
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Lemma 4.16. Given 7,m € K1(X), one has
7i(z) = 7(2) * 7(2)-

Proof. By definition, 77j(z) is the evaluation at ¢ = 1 of V(" (q,z). The descendent insertion is (T |p1 5
which is equivalent to 7|, - 7|y, under the ¢ = 1 evaluation, where ps, p3 are two arbitrary points on P'. By
the degeneration formula, this is the same as 7(z) * 7(2). O

The lemma implies that the following
T := {7 € Kz(¥)[[:"")] | 7(2) = 0},
is an ideal in Kp(X)[[zP#(X)]]. Furthermore, the bilinear pairing
(r,m) = (7(2),1(2)) Psz
vanishes for any 7 or n € Z, and hence descends to a pairing { , )4i, on the quotient. The map
(4.2) Ep(X)[*/T = (Ke(XO[T)], %), 7 7(2)

is an isomorphism of Kr(pt)[[z®T(#)]]-algebras, preserving the pairings. It is therefore an isomorphism of
Frobenius algebras.

Definition 4.17. We define the quotient ring Kp(X)[[z®%(X)]]/Z as the divisorial quantum K-theory of
X, with quantum identity 1, and quantum pairing { , )4i. In particular, it is a Frobenius algebra, whose
specialization at z = 0 recovers the ordinary K-theory ring Kr(X).

5. LOCALIZATION COMPUTATIONS

5.1. Bare vertex and integral presentation. In this section we compute the explicit formula for bare
vertex functions of the hypertoric variety X, by equivariant localization. Let p C {1,--- ,n} denote a vertex
in the hyperplane arrangement H, and also the corresponding T-fixed point.

For this particular p, we choose the standard p-frame as in (2.5) and (2.6). For example, if p = {k +
1,---,n}, then the matrices 8 and ¢ take the form

G- (-C 1), L_<é>.

The prequotient vector space M = C", as a T-representation, splits as
n
M=% C;=3 Co+) Co
i=1 igp icp
whose associated tautological bundle (by (2.8)) can be written as
n
M=3"Li=> Li+ > h'@Li+Y a[[a; @ h e Cug [T LY.
i=1 icAf icAp i€p  J¢Ep i¢p
Lemma 5.1. Let f : P! — X be a T-equivariant quasimap whose image lies in the fized point p. Then
deg f*L; >0, foranyie A;,r; deg f*L; <0, foranyi€ A;.

Proof. Let (z,w) € T*C" be a representative of p. We know from [36] that z; # 0, w; = 0 for i € A}, and
z; =0, w; # 0 for 1 € Aj. Since f generically maps to p, the section of f*L;tl defined by f is nonzero, for

i€ Ag. The lemma follows. O

The lemma states that all quasimaps mapping into p lie in the cone

H RZQ X H RSO C H2(X,R)
i€ A i€AL
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Lemma 5.2. [[,c 4+ R0 X [[;c4- R<o is a subcone of Eff(X) @ R. We denote it by Eff,(X).
P - P -

Proof. As 1V = (I,CT), given stability condition 6 € (Z*)¥, we can choose an equivalent lift 7j € (Z")" as
7 = 0; for j ¢ p, and 7; = 0 for i € p. By definition we have AL = {j €p|0; >0}, A, ={j &p|0; <O0}.
In other words, 6 lies in the cone Eff5(X)Y = Hz‘eA; R>g X HieA; R<o C H?(X,R). On the other hand,
the Kéhler cone & = Eff(X)Y ® R is the smallest k-dimensional cone generated by ¢¥e}, which contains 6.
Therefore, we have 8 C Eff5(X)Y. Taking the dual proves the lemma. O

Let f : P! — X be a T-equivariant quasimap whose image lies in the fixed point p. The virtual tangent
sheaf at the moduli point [f] is

Tie = H (M@ R M*) — (1 + b1 (Z(’))
i¢p
By the definition (4.1), i.e
-
I AT, /)

vir

) 6v1r - q 2 3 deg T Ovir & Ki/2

Ovir’ =5* (Tv ir

vir

we see that the contribution to O, from a term
al +hta L7, with deg L = d
in Tyir f is
a(ha)a 1y2,—1/2v—a__ (@ ")—a
=(— Y e dez,
@aa ~ T e

L B(x) z) = ¥ -
@i= gy o= T10-da

Note that ¢(x) is convergent if we view ¢ as a complex number with |¢| < 1, and {a}q being rational, is
well-defined for general q.

{a}a = (—g'2n71/2)

where

Proposition 5.3. The bare vertex function is

(5.1) VO(g2)= S PG T O [ ai)p, - m(21q, - 2ag™n),
BEEM(X) im1
where x; = L; € Kp(X), D; :==degL;, for 1 <i<n, 7 =71(x1, - ,2n) € K1(X) is a Laurent polynomial

in n variables, and 27 = 2P ... zPn .
Proof. Note that the expression on the RHS of (5.1) is independent of the choice of basis for Z*. The
proposition follows from direct computations of the vertex function, restricted to each fixed point. O

Remark 5.4. Note that by our definition of Kihler parameters in Section 2.7, we have 27 = 21t ... zDn

g ¢j(p)P7. Moreover, the z term of the restriction V(T)(q,z)|p of (5.1) to the fixed point p vanishes
unless 8 € Eff 5 (X).

Note that different choices of the global polarization T)l(/ 2, and hence the associated 7%/2, result in different
vertex functions. But they are related by g¢-shifts of the K&hler parameters. As observed in [2], with some
extra factors, the bare vertex function can be written in the form of an integral over the Chern roots, along
some appropriately chosen contours.

Definition 5.5. 1) Choose the global polarization as

(5.2) TY? = ZL O@k:zn:xi—k e Kp(X).

Define the shifted Kéahler parameters

/
z"f =27 (—h%ﬂ'detT; 2), ie. 2y =z - (=h7Y/?), 1<i<n.
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2) Define the localized polarization as

(5.3) Polp(z) := > h7'z;'+ > mi—kh' € Kp(X).
1EAS i€ Ap Up
In particular, the restriction Poly(z)|p = >, @ilp = T)l(/2|p is well-defined. Define another version of
shifted Kahler parameters

B 25 . (_q1/2h71/2)%(71+ﬁ-dct Polp (2))

€

, ie. 2ei(P) = 24 - (qh™H)~¢®),

where €(i) = 1 if i € A, and €(i) = 0 if i € A, Up.
3) Define the modified bare vertex functions as

n Inz. ;(p)Inz;lp

VO (g, 2)|p = VD (g, 2)|_ et~ " a - d((g — BT |p),

e
P
where ® be the multiplicative function determined by ®(>", ;) := [[; o(zs).

Remark 5.6. Recall that the bare vertex function V(7| lives in K1(X), and depends only on the choice

of the global polarization T)l(/ 2, However, the modified bare vertex function 17(T)|p depends also on the
localized polarization Poly, which is only defined for each fixed point p, and does not necessarily lift to
a global class in Kp(X). In general, one is allowed to choose a different localized polarization such as
Poly, (z) = Ez‘eA;Up/ htet +EieA; Upr i — kh~', and the corresponding z. such as e(i) = 1 if i € AJUP/,
and €(i) = 0if i € Ay Up”. We will see such a different choice on the mirror side.

Direct computation yields the following.

Proposition 5.7.
1

|p 270)* Jor () /\:ln:1 (Z?:l ﬂmidlnxi)

where qy(V) is a noncompact real k-cycle in (C*)F = {[\" (z;i/a;)?* =1} C (C*)", enclosing the following
q-shifts of poles:

dl A---dlnz, n Inz;(p)Inz;
0 i el TR (g — B)Poly(2)) - (1, @),

di : +
b d; >0, ie A
(5.4) T = {q P

hlgd, d; <0, i€ Ay,

Remark 5.8. If we use z.;, i € p as the coordinates, then up to an exponential factor, the integral is
convergent in the region described as follows:

7] <1,
for any 8 € Eff(X) — {0}. In particular, we have |(;(p)| < 1 for i € Af and |G;(p)| > 1 for i € A, and

there is a limit point
Gp) =0, ieAl;  G(p) oo, i€ A,

We will denote by ((p) %, 0 the process of taking the limit of {, or equivalently z, in the manner as above,
in the well-defined #-dependent region. In particular, under this limit, 2% — 0 or co if and only if -6 > 0
or < 0.

5.2. Asymptotics. In this subsection, we would like to prove a rigidification result which particularly holds
for hypertoric varieties, which follows from an estimate of the behavior of the are vertex function as ¢ — 0
or 0o. The result does not hold in general for non-abelian holomorphic symplectic quotients.

Theorem 5.9. Let X be a hypertoric variety. The capped vertex function 17(1)((],2) is independent of q,
and hence equal to the PSZ quantum identity class 1(z). Moreover, one has the limit
1(z), qg—0

V<1)(Q7Z) - —1 -
G(Qaz)|q:1 1(2)7 q — O0.
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Recall that by definition i(z) = limg_44 V(l)(q, z), and by Proposition 4.13 the capped and bare vertices
are related by the capping operator

VW(q,2) = W(q,2)- VP (q, 2).
Let’s study the ¢ — 1 asymptotic behavior of this equation.
Lemma 5.10. The capping operator U(q, z) satisfies

Id, q—0
G(q, 2)|g=1, q— o0

U(q,z) —>{

Proof. This is Lemma 7.1.11 in [56]. O

Lemma 5.11. The bare vertex function V(l)(q, z) admits finite limits when ¢ — 0 or co.

Proof. We have the explicit formula

v Z‘ _ FEPREDS RIS B PPN
(¢ )p Z q 11;11{ lp}D:

BEEf(X)

By definition, we have for any x and D € Z,
|D]/2

(2} const - q
Trp ~
const - q_‘DW,

q—0
q — 0.

We see that the factor ¢~ Zi=1 Di g completely controlled by the term g*2=i=11Pil/2 and hence V(1) (q, 2)
is bounded as ¢ — 0 or co. O

Proof of Theorem 5.9. As a class in the non-localized K-theory ring Krxc: (X)[[zPFX)]], each zP-term of

the capped vertex V(l)(q, z) is a Laurent polynomial in g. Moreover, by the previous two lemmas, it admits
no poles at ¢ = 0 and oo, which implies that it is actually constant in g. Therefore,

im T — lim P
lim Vi(g, 2) = lim Vi¥(g, 2).

The last statement follows from Lemma 5.10. O

For some special targets X, one can explicitly compute the limit of the vertex function, and hence the
PSZ quantum identity class. Consider the following two assumptions:

(A+) for any circuit 8 # 0, there exists some ¢, such that D; > 0;
(A—) for any circuit 8 # 0, there exists some i, such that D; < 0.
For example, T*P" satisfies (A4) but not (A—); A, satisfies both (A+) and (A—).

Corollary 5.12. 1) If X satisfies (A+), then 1(z) = G(q,z)‘q:1 - 1.
2) If X satiesfies (A—), then 1(z) = 1.

5.3. g-difference equations. For any function f(a, z) depending on the (redundant) equivariant parameters
a; and Kahler parameters z;, 1 < i < n, consider the following g-shift operators:
(Aif)(a’lv"'uaiu"'a/naz) = f(a/la"'uqai7"'a/n72)
(Zif)(&,zl,"',Z,L',"',Zn) = f(a’azla"'aqziv"'azn)'
The effect of the inverse operators A; L and zZ; L are to shift the variables by ¢~ .

We would like to apply those shift operators to the vertex function

% 1 P(q)* dlnzy A---dlnzx, n Iz Ena
(1) — -_ . i=1 In g
(%2)“’ 2ri)* (ah™1)" Joyp) A (§ "B -dlnx-) ‘
m=1 \ 2ui=1 Pmi i




24 ANDREY SMIRNOV AND ZIJUN ZHOU

JIgr = Doqp e

zE.AJr i i€ AL Up

=: / V@),
av(p)

Recall in Definition 5.5 2) that zy; = 2; - (=A™ /2) = z.;(p) - (gh~ 1)V, where (i) = 1 or 0 for i € Af or
A~ U p respectively. Note that unlike z., 24 is independent of p.

Lemma 5.13. The g-shift operators act as:

~ 1= _ _ 11—z ! x
ZiV<1>(q,z)\p=/ ( )xi-eW(””), ATV M (g, 2)| ) = (gh 1)%_1/ ( )(71) W@
qY (P qv(p

1—ghtz;
~ 1 — hz;
AiV(l)(q,z)} = Zu,i/ ( i ) V@),
P ar(p) M~ i
In particular, all these q-shift operators commute with each other.

Proof. The only nontrivial actions are those of A;, i € p, since they not only act on the integrand, but also
shift the contour ¢y(p). Let’s consider the case i € A;,r; the case i € A is similar.

Recall that the contour ¢(p) encloses poles of the integrand, described as in (5.4). The operator A;l for
i € AJ shifts to a contour A7 (qy(p)). The poles enclosed by A;*(gy(p)) sasitsfy the same conditions as in
(5.4), except for i: x; = ¢**9 d; > 0. Note that the points with x; = ¢ are no longer poles of the integrand.
Thus it does no harm to change the contour back to ¢y(p). We then have

~ 1—z!
—1y7(1) =2 (p)~ L Ry S W 1 4 €D
A7 V(g 2)| ) = zei(p) / (1—qh—1x;1) eV (@),

qv(p)
The action of A; follows directly. O
Theorem 5.14. 1) The modified vertex function 17(1)((],2)’1) is annihilated by the following q-difference
operators:
(5.5) [Ta-2z) [[a-nrz)-2 [[a-hz) [[(0-2), S=STUS™ : circuit,
€St €S~ €St €S~

where zy,; := z;(—h~'/2), B is the curve class corresponding to S, and zf = [Licst 2t [Lics ztfil.

~ n In z ’iln a;
2) The modified vertex function V(l)(q,z)’p Lem T g is annihilated by the following q-difference
operators:
5.6) JJa-4) J] a-an™4) = (ha)* J] @ —qh4) J[ 01— A4),  R=R"UR : cocircuit,
i€ERT i€ER™ i€ERT i€ER™

where « is the root corresponding to R, and (ha)® := [],c g+ (hai) [T;c g (ha;) ™

Proof. Let My be the left D;-module generated by ‘N/|p. We know that XN/‘p only depends on the non-
redundant equivariant parameters a;(p) = a; ngp a;Cij , 1 € p. So for each circuit S = St U S, the
operator [[;cqr Ai[l;cs- A;l acts as identity in Mj. In other words, on M; we have

IT4=1I4 vi¢v

€St 1€S5~
On the other hand, for any i, the relation between Z; and A;’s (in M) is (1 — qZZ-)zﬂ_ilAl- =1-hZ;, or
equivalently (using qu-zu =2y, '7)
(5.7) 2 (1= Z)Ai =1 - hZi,
Therefore, we have in M1,

€S+ €S €S i€eStuUS— €S~
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IR

€S~ i€eStus- €St
= o [[a-nz) [] (-2,
€S+t 1€S™
We obtain 1).

n Inzy ;Ina;

For 2), let My be the Dy-module generated by V(l)(q, z)‘p -e 4i=1" mma . There is an isomorphism
My =2 My, sending Z; — a;Z;, Aj — 2z,;A;. One can check that

Zlnz“ )Ina;|p — Zlnz“ )na; = Z In¢ ;(p)Ina; — Z In ¢ ;(p) In(ha;),

jG.A;; JEAL

and hence for each cocircuit R, the operators [[;cp+ Zi [[;cp- Z{l act as identity in Ms. On the other
hand, by (5.7), we have 1 — A; = (ha;)(1 — gh~ ' A;)Z;. By similar arguments, we obtain 2). O

The vertex functions can be uniquely characterized as solutions of the ¢-difference equations (with respect
to either Kéhler or equivariant parameters), with prescribed asymptotes.

Lemma 5.15. Given p € X", the function v(l)(q,z)‘p is the unique solution of the q-difference system
(5.5), with asymptotic behavior

- " lnzeZ(p)lnzl\p T |
V(l)q7Z ~ e&~i=1"__ Inq qu 1+0<p ,
(0, 2)], J@l Sl €(p)))

as C LN 0, where the limit is explained in Remark 5.8.

Proof. By the standard approach, the higher order g-difference system (5.5) can be written as a first-order
holonomic g¢-difference system, of rank rk Kp(X). The existence and uniqueness of the solution follows from
discussions in [4, 19, 2]. O

5.4. Relations for PSZ and divisorial quantum K-theory. The PSZ quantum K-theory ring we in-
troduced in Section 4.3 can be explicitly determined by the g-difference equations 5.5 with respect to Kahler
parameters.

Theorem 5.16. We have the following presentations of ring structures (which are equivalent to each other):

1) The PSZ quantum K-theory ring of X is generated by the quantum tautological line bundles El(z), 1<
i <n, up to the relations

H (1= Li(2)) * H (1= hLi(2)) — z‘j H (1= hLi(2)) * H (1—Li(2)), S =STUS: circuit,
€St €S~ €St €S~

where zy; := 2 (—h~1/?), B is the curve class corresponding to S, z"f = [Lics+ 2 [ Lics- zgil, and all
products [| are quantum products *.
2) The divisorial quantum K -theory ring of X is generated by the line bundles L;, 1 < i < n, up to the

relations
[Ta-z) JJa=nL) -2 J[Ja-nLy) [[a-L), S=8StuS : circuit,
€St €S €S+ €S~

where zy; = 2 (—=h~/2), B is the curve class corresponding to S, and zf = [Lics+ 2t [ Lics— zﬂ_il.

Proof. Recall that in Lemma 5.13, the action of the g-difference operator Z; on the bare vertex function is

Zi"}(l)(qu)’p — / ( )wi RO f/(zi)(%z)‘p'
av(P

In general, let 7(z1,- - ,z,) be a Laurent polynomial in z1, - - - , z,, with coefficients in Krxc: (pt). We have

T(Z1, - 2V (g, 2)|, = Vg, 2) -
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Now suppose that for some 7, and for any p € X7, we have 7(Z1,- - - , Z,)VV(q, z)‘p = V)(q, z)‘p =0. It

follows that V(7)(g,z) = 0, and hence V(7)(q, 2) = ¥(q, z) - V() (¢, z) = 0 by Proposition 4.13. Evaluating
at ¢ = 1, we have

T(L1(2), -+, Ln(2)) = 7(2) = 0,
by Lemma 4.16, where for products in 7 on the LHS we take the quantum product *. The theorem then
follows from equation (5.5). O

Remark 5.17. The result can also be obtained following the approach in [59]. The quantum K-theory
relations here can be interpreted as Bethe-ansatz equations.

6. 3D MIRROR SYMMETRY FOR HYPERTORICS
6.1. Abelian mirror construction. To construct the dual of the hypertoric variety X, consider the dual
of the sequence (2.1):

(6.1) 0 zd L ogr L 0,

where o/ = Y, and B’ = V.

With given stability parameter 6 and chamber parameter o of X, we choose the stability and chamber
parameter for the mirror as

(6.2) 0 =-5, & =-0.

We now view the dual sequence (6.1) as the defining sequence for a new hypertoric variety, denote by X’.
We define X’ as the 3d mirror of the hypertoric variety X. Denote by K’, T’, A’ the corresponding tori,
and by H’ the hyperplane arrangment. Let L be the tautological line bundle defined by the i-th standard
basis vector in Z", and let 2 be its K-theory class. Let a}, z., s} be the equivariant parameters, Kéhler
parameters and Chern roots for X’ respectively.

Let p C {1,---,n} be the subset corresponding to a vertex in H. Take p’ := A, = {1,--- ,n}\p.

Lemma 6.1. p’ is a verter in the dual hyperplane arrangement H'.

Proof. Recall that the hyperplane H; has normal vector a; = ((e;) € R%. The fact that p = ﬂiep H; # 0
is equivalent to the linear independence of the vectors {a; | i € p}. In particular, in the standard p-frame,
this is equivalent to the fact that the matrix £ is of the form (—C, ), where the identity submatrix I is for

I>, where T is for the rows {j & p}.

the columns {i € p}. Also, the matrix ¢ is of the form (C

Now we look at the dual picture. The matrix 3’ = ¢V is of the form (I, C7), whose columns indexed by
{j € p'} ={j &€ p} are linearly independent. Therefore, p’ is a vertex in H'. O
As a result, we have the following natural bijection between the fixed point sets:
(6.3) bj: XT X (X)),  pep.

For a given p, if we choose the standard p-frame (2.5) (2.6), the dual variety X’ will also be in the
standard p’-frame. More precisely, this means

wi(P) =0u,  (P)=-Ciyp), Ligp, jep,
B}'(pl) = Cij(p)7 B; (pl) = Ojm, i¢p', jmep.

Recall that the choice of 6 determines the splitting Ap = A;,r UAp, and the choice of o determines the

splitting p = p™ U p~. The stability and chamber parameters on the mirror side, specified by (6.2), also
determines the similar splittings of Ay = p and p’ = Ap.
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Lemma 6.2. We have
Arjf, =pT, (p)* = AF.

Proof. The vertex p = (v;)iep € R? is the unique solution to the equations (p, 3(e;)) = —<§, e;), 1 € p. In
particular, in the standard p-frames, the unique solution is v; = —6,, ¢ € p.

Recall that by definition, A:)‘ C p’ consists of those j € p’ for which p € H ;r . This means that
(B*(p),e;) = (p, B(e;)) > —0;. Therefore, in the standard p-frame, the inequalities become

Z(—Oij)vi = ZO”@ > —5j.

i€Ep i€p
Applying the mirror construction & = —5, we have
(@; [T(a).5") <,
i€p

which is exactly the condition (3.1) characterizing (p’)~. Hence we've proved that Al = (p’)~, and the
others are similar. O

The restriction formula of tautological line bundles to a fixed point p’ (under the standard p’-frame) is

L, jeA
—-1 . —
e B h j € Ap,
:Ej p = j p’ = ) *Z, - C;Z
af [T(af) = n 75 j€p,
i¢p’
1, JEP
o Tl e jgp,
i€p

6.2. Duality of wall-and-chamber structures. Recall that in Section 2.5, the space R* of stability
conditions of X admits a wall-and-chamber structure. Each circuit S defines a wall Pg, and the stability
condition 6‘~, or essentially its image 6 = ng, specifies the Kéhler cone K in the complement of all walls. The
boundary walls of & form a basis of the effective cone Eff(X).

Similarly in Section 2.6, the space R? also admits a wall-and-chamber structure, where each wall W, is
indexed by a cocircuit, or equivalently a root a. A generic choice of the chamber parameter o, or essentially
its image o = (37, singles out a chamber €, whose boundary walls give the positive simple roots.

Now let’s consider the dual hypertoric variety X', with the choice of ' and &' specified in (6.2). We
denote &' and €’ the chambers determined by the choice. The following duality between the wall-and-
chamber structures follows from the definition of circuits and cocircuits.

Proposition 6.3. The wall-and-chamber structures of X and X' are dual to each other. More precisely,
this means that

e There is a bijection between the circuits of X and the (negative) cocircuits of X', and vice versa.
e A =0 ¢ =R In particular, indecomposable effective curves of X can be identified with negative
simple roots of X', and vice versa.

6.3. Duality interface and elliptic stable envelopes. Recall the definition of equivariant and K&hler
parameters in Section 2.7. For a hypertoric variety X, equivariant parameters are defined as coordinates on
the quotient torus A = (C*)?. On the other hand, by our mirror construction, AY = K’ for X’. In other
words, there is a canonical isomorphism between the equivariant parameters of X and the Kéhler parameters
of X'. We also include the C} factor and denote it by

(6.5) Kstab : KY X A x Cj. A x (K'Y x Cy, (2, ai,h) — (al, 2! hil).

[RNad B
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We see that sstap is actually induced by the identity map of TV x T =T’ x (T')V, together with the natural
interpretation of K, A, KY and AY as sub-tori or quotient tori of T or TV. In particular, in the standard
p-frame, the isomorphism x can also be written explicitly as

Gp) = o), alp) @), h—hl
where j € p, i € p.

By the explicit formula of elliptic stable envelopes, we can write down the formula on the dual side, which
by Lemma 6.2 is

Stab:,/ (pl)

- Zj ?’ ;l i G - ZJ' p’ ;1
[T o)) II o) 1 O iee!)n o ) o O(zcimn e<>+0/)
jem)* @) e, 9(<£ (p/)h e Cﬂ) Ny 9(h—1gg(p/)7f iewnt Cﬂ)

o= ) p(atcipnes )

= 0(h' 0(x .
AL oo 1L e 11 o (citon™ess ) 1 o(n 1 )
The diagonal elements are

Stab’,, = II ¢@ile) [T 0ralle) = (~1)Helo(,)),

jG.AJr JEAL

whose image under x~! are exactly the denominators in Stab,(p). In other words, we can consider the

following normalized version of elliptic stable envelopes

Stab,(p) := Stab,(p)- Stab.(p')|,,
= H 9 hxz H 9 ./L'l H@( 74-7 h ZzEp+ Cl])
iept i€p~ J€P

Consider the product X x X', viewed as a T x T’ x C-variety, and the following equivariant embeddings:

X = X x {p e X x X< Ofp) x X' = X,
We view X x {p} as a T x T' x C}-variety with trivial action on the second factor. Then
Ellryrixc; (X x {p'}) = Ellp(X) x & = Ex(X),
where we apply the identification (6.5) & = &rv. Similarly, Ellrxrwc; ({p} x X') = Ep (X').

Let X := [p=1(0)/K] be the stacky quotient, and X’ similarly. The diagram above hence induces the
following

-

Er(X) — =+ Ellry7xc; (X x X') < Er (X')

|

EllTxT/xC;xTVx(T’)V(pt) - EHTXT’X(CE (:f X :{1)

We have the following main theorem.
Theorem 6.4. Under the isomorphism of parameters
Kstab : KY x Ax Cy = A" x (K)Y x C}, (25, a5, h) v~ (a}, 2, k™ 1),
we have:
1) There is a line bundle M on Elltyrxc; (X % X') such that
(i5)" 0 = M(p), (i) M =M(p').
2) There is a section m of M, called the “duality interface”, such that
(ip)*m = Stab,(p), (ip)'m = Stab’, (pp/).
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3) In the hypertoric case, the duality interface m admits a simple explicit form:

m= ﬁ O(x;}).
i=1

In particular, it comes from a section of a universal line bundle on the prequotient EllTxT/XchTv x (1) (Pt),
and does not depend on the choices of 6 or o.

Proof. Tt suffices to check 3). We compute (iy,)*m by restricting #; to the fixed point p’ € X', followed by
the change of variables k. By (6.4) we have

(ip/)'m = H O(h ;) H 0(x;) HO( H i hZzEp+C”-:vj)

jept JjeEP™ i¢p iep
ST o) I 6)) H9(§j(P) T iept G 507)
jept jep~ i¢p
= Stab,(p).
The computation for (iy,)m is similar. O

Corollary 6.5. We have the following symmetry between elliptic stable envelopes:

Staby (p)lq _ Stab (q')|pr
Stab (q)lq  Stabj: (p')]p’

where p,q € XT, and p’,q’ € (X’)T/ are fized points corresponding to each other.

6.4. Opposite polarization and vertex function for mirror. Recall that to define the vertex function,
we need to choose a global polarization; to add prefactors and form modified vertex functions, we need to
choose a localized polarization. We choose them for the mirror X’ as follows.

(i) The global polarization T' // in the definition of vertex functions would be
)1</,2—Zh I - nlo® = Zh et —dn,

which is opposite, compared to the choice TX/ % in (5.2). As a result, the shifted Kahler parameters zé
are

2y =2 (—=h/?).
(ii) The localized polarization Pol;,, is chosen as
Poli, ()= Y h'@)t+ D af—dnh.
AL U(p) - A U(p)*
The shifted Kahler parameters z. are
o= (ghm)TCO),
wheree()—Oforz€A+ u(p’), ande() —1forie A, U(p)*

Under these choices, we restate the characterization for vertex functions of X”.

Lemma 6.6 (Theorem (5.14) and Lemma (5.15) for X'). Given p’ € (X)T', the modified bare vertex
function (V'Y (q,2")|p is uniquely characterized by the following.

(i) It is annihilated by the following q-difference operators
(6.6) II a-2z) T[ a-nz)—(@n'=p° T a-nz) 1] -2,
i€(S)* i€(S)~ i€(S")* i€(S)~

where Z! is the operater z\ — qz}, 8" = (S')T U (S")™ runs through all circuits of X'.
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(i) It admits the asymptotic behavior

~, , no Izl DIl ¢(qh_1($l')_1| /) (qr|p) 1ot
(1) ~ i=1 Tnq . 2 RS2 A
Va2 v e I @ 1 Sy @ rec®

iEA;U(p’)* €A, Up/

as ¢’ LN 0, where the limit is explained in Remark 5.8.
6.5. Mirror symmetry for ¢-difference equations and vertex functions. In this subsection, we study
the mirror symmetry statement for g-difference equations and vertex functions.
Consider the matrix B whose entries are defined by 2
1/2
Stab?. (q)|p ®((q — h)TX/ ’p)
oy’ Fvx(®((a - h)Polg|qr))

for q,p € X7, where Stabg(q) is defined as the stable envelope Stab,(q) with change of variables ;(q) —
C4.;(q@)71, and kyix is the identification of parameters in the following main theorem.

.
(=T wila,

ieqt

Ba,p ==

Theorem 6.7. Under the identification of parameters

Kytx KY x Ax C; = A" x (K')Y x Cj, (24,4, @i, 1) — ((a’»)fl,z&i,qh*l),

the product

V'(g,2',d) =P -V(g,2z,a) € Kp(X")
forms a global class in K1.(X'), and coincides with the vertex function V'(q,2’',a’) of the 8d-mirror X', with
the opposite polarization T)l(/,z.

The following two lemmas provide the key incredients in the proof of this main theorem.

Lemma 6.8. Given ¢ € (X')T', under the change of variables kvix, the functions

’ ’ ’
n Wzl @)mefl,

Kvtx(e =t a @((q—h)PO';/|q/)) : (%V(%Zaa))’q
are annihilated by the q-difference operators (6.6) for the mirror X'.

Proof. Explicit computation shows that the g-shifts of

Stabf (q H 0(hz;) 0 e(iju,j(Q)’lﬁ— Ticat Cw‘) 1 e(xjéﬁ,j(Q)’lh‘ Licat C”) 10 0(z;)
— 2 ij — —15— 2 ij —1pm1y’
©(Poly). b 9(553‘)9(@,]‘((1)_1}1 >ieat @ )jEA; 9(%‘)9(h 1Gy.j(q)th Zieat © )ieAﬁ o)
with respect to variables a;, z; and s; are the same as

- Inz;Inx; 2 Inz i Ina;|q Inz;|qInh Inz;Inh
exp(z Ing Z Ingq Z Ingq + Z Ing )

i=1 i=1 cqt e AL

Therefore B - V(q, z, a) satisfies the same g¢-difference equations (with respect to z;’s and a;’s) as

lnzél(p) lntl\p In zé’i(q) lnmi\q_ Inz;|qglnh qxz
§ Z ~ Ingqg Z Ing z:ie«:lJr Ingq H 1|q H¢ |p . (q,Z,CL)|p

ieqt iEp

where we have used the observation that 7" Inz.;(p)Inz;|p, = > In 24 ; In2;|p. Hence, by Lemma A.2,
we have

n In zéyi(ql) In zg\q,
Kvtx(e =t a @((q—h)PO';/|q/)) : (%V(%Zaa))’q
satisfies the same g-difference equations as

’ ’ ’
lnzé,i(q )lnmi\q/ n Inz, ;(@)lnz;|q Inz;|glnh

n 3
eZiZI Tng —2ui=1 Tng 721’6(1* Ing H leq q,z a)

ieqt

8This matrix B differs from the one in [2] by an exponential factor.
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n In(¢h—HInn

T Tiaeag S )
3

Inzy ;lna;

= e
By Theorem 5.14, it satisfies the equation (5.6), which under the change of variables Ky, is the same as the
equation (6.6). O

Lemma 6.9. Under the change of variables kyix, the functions (B -V (q, z, a))‘q admit the following asymp-
totic behavior

(8 Ve, ~ (1 +o(ala))
as a(p) = 0 (see Appendiz B).

Proof. We first consider the asymptotic behavior of the function along a generic ¢-geometric progression of
the form
ai(q) = wigtY, ieqt, N — oo.

Consider Kyix (fb((q - h)PoI;,|q/)) (P - V(g 2, a))}q, which is

ab?
> Conty i= (=420 [l 35 2250 (g - T 0p) - Via. 2,0,

1/2 P
peXT ieqt peXT 6( |p)
We claim that along any generic g-geometric progression of the above form, the summation over p is domi-
nated by the diagonal term. Let’s analyze the contributions from each fixed point p in more details.
Case 1: p # q.

Let p € X' be such that q # p. It’s clear that the matrix §3q p vanishes unless q € Attr,(p). The
contribution from p, viewed as a function in terms of a;’s and z;’s, is a product of factors of the following
three types (using the identity 0(x) = 2'/2¢(qz)p(z~")):

(i) 2l p or aflg, 1 < i <m;

(b(uxil lp) . .
(ii) ——F—=, 1 <i < n, where v and v are some monomials of ¢ and h;
P(va; |p)
uly. 1p#L
(iii) ¢(¢(ifr])(§() R J( |)2F)1)7 j ¢ q, where u and v are some monomials ¢ and A, and z;|p # 1;
Ty Ip)P UG\

(IV) V(qv Z, a)|P'

We see that along a generic g-geometric progression {a;(q) = w;qg™V}, as N — oo, factors of type (i) and
(ii), either have finite limits, or have asymptotes of the form const - (u/v)". Factor (iv) admits a finite limit
by Proposition B.1. However, factors of type (iii) have the asymptotic form (u¢y ;(q)T*)". Therefore, the
contribution from p is asymptotically of the form

Conty ~ 7(a. 1) -gla.h ) (T Gute) T] @)

jEAqNPT JEAGNP~
where f is a monomial in ¢ and £, only depending on ¢ and A, and independent of the initial point w;, and
g is a function depending only on ¢, & and (;. Now as p # q, we always have Aq Np # 0, and one can
uniformly choose (; ;(p) sufficiently small (or large, depending on j € Aq N pT), such that the asymptote
above goes to 0, as N — oo.

In other words, for q # p, locally in some open subset U(q) of the domain of (y, the limit of Contp (0 -
Vg, z,a)) |q along any generic g-geometric progression is 0. Note that as q € Attr, (p), AqNpT = Aé[ Nnp*
by Lemma 3.3, and one can always take the open subset U(q) such that it does not depend on p.

Case 2: p=q.

We can compute the diagonal contribution explicitly. Recall that Stab¥ (q)|q = (—1 )‘qﬂ@( q )- Hence

Contq = (_1)\q+\(_hl/2)\q+| H Tilq - % ®((q—h)T 1/2|q) V(q,z,a)‘q
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_ 1/2yla*| (hailq) (qilq)
GO | E HM Hmzh Vg, 0)lq

zeq+ zecfr |q
sb (qilq)
= 1= H¢ L9l Vg2 a)g.
ieqt |q

hxilq)

As a(q) Z 0, by Proposition B.1, it has the limit limoé(q)i>0 V(g,z,0)|q = Kvix (@((q - h)Po|;,|q/)>.

Now let’s go back to the lemma, and consider ZpG 1 Contgq. We will apply the holomorphicity results
from Aganagic-Okounkov [2]. By Theorem 5 of [2], the function (B - V(g,z,a))|q is holomorphic with
respect to a;’s in a punctured neighborhood of the limit point a(p) < 0. On the other hand, within
the region {3 € U(q), comibing Case 1 and 2, we see that it has a finite limit kv (@((q - h)Po|;,|q/))

along any g-geometric progression. The lemma then follows from Riemann extension theorem and analytic

continuation. ]
n lnz;yi(pl)lnz;\p/

Proof of Theorem 6.7. To prove the theorem, it suffices to check that e2~i=t Tig -(PB-Vig,z a))‘q

satisfies the uniqueness criteria for V in Lemma 6.6. Now Criterion (i) and (ii) there are respectively checked

in Lemma 6.8 and 6.9. The theorem follows. 0

Remark 6.10. It is interesting to ask how the results can be generalized to the orbifold case, i.e. to
hypertoric DM stacks, introduced in [42, 43]. In that case, the unimodular assumption does not hold any
more, which implies that entries of the matrix ¢ are no longer restricted to +1 and 0. There will be extra
increase of orders for the g-difference equations and quantum K-theory relations. We expect there are some
new nontrivial phenomenon happening in the orbifold theory, which deserves future exploration.

7. RELATIONSHIP TO GIVENTAL’S QUANTUM K-THEORY

7.1. K-theoretic Gromov—Witten theory and J-function. As in the usual Gromov—Witten theory,
the K-theoretic analogue, introduced by Givental [25] and Lee [50], considers the moduli space of stable
maps ﬂo, ~(X, B), parameterizing genus-0 stable maps into X. The usual GW perfect obstruction theory
defines a virtual structure sheaf Oyi,. Most of the properties of cohomological GW theory can be generalized
to K-theory, although in an essentially nontrivial way.

In [30], Givental introduced another variant of K-theoretic GW theory, called the permutation-equivariant
quantum K-theory. The idea is to consider the invariants not merely as numbers, but as Sy-modules, keeping
track on the permutations of marked points. The permutation-equivariant theory turns out to behave much
better than the ordinary version of K-theory.

Let X be a quasiprojective variety. Let A be a A-algebra ? over Q, which contains the ring of symmetric
functions on a certain number of variables, and the Kéhler parameters @;. Let t(¢) be a Laurent polynomial
in ¢ with coefficients in K(X) ® A. The moduli space of stable maps My (X, 3) admits an action of the
group Sy, permuting the marked points. The virtual structure sheaf Oy, is equivariant under the Sy-action,
and hence defines a K-theory class on the quotient.

The correlation functions are defined as
(6(L), - (L)), 5 = ( [Mon (X, 8)/Sx] , Ouie ® Ht )

where L; is the tautological cotangent line bundle at the i-th marked point.

The genus-0 invariants are encoded in the big J-function, defined as

T@.Q =1 gt + Y altm) b0, L) Qr

iNoap 1—qgL/0o,N+1

9The Adams operation of A naturally includes the usual U* operators on symmetric functions, and also on the Kahler
parameters UF(Q;) = Qf.
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where Sy only acts on the first NV points, {¢;} is a basis of K(X) and {¢'} is the dual basis with respect to
the Mukai pairing.

The language of the loop space is introduced to describe the range of the big J-function. Consider the
space K := K(X) ® A(q), consisting of rational functions in ¢ with coefficients in K(X) ® A. K admits
a symplectic form Q(f,g) = (Resg=0+ Resg=cc) (f(q),g(q’l))%, and a decomposition into Lagrangian
subspaces K = K, @ K_ = T*K,. Here K, is the subspace K(X) ® Alg,q™ ], and K_ is the subspaces of
reduced rational functions, i.e., rational functions in ¢, regular as ¢ — 0, and tends to 0 as ¢ — co. The big
J-function can be viewed naturally as the graph of a function from K4 to K_, with t(q) € K4, and 1 — ¢
the dilaton shift of the origin. When X admits the action by a torus T, as before, everything can be made
T-equivariantly.

The aim of this subsection, is to prove the vertex functions V(l)(qfl, z), defined in previous sections for
hypertoric varieties, multiplied by (1 — ¢), represents a value of the big J-function, up to a certain ¢-shift of
Kahler parameters. To show that, we will apply a criteria by Givental which characterize the range of a big
J-function.

Let X be a GKM variety, with the torus action by T. We take the A-algebra to be
A= Kr(pt) [Q%T,
and let Ay to be the ideal generated by 1 — ajtl, 1 — A*! and Q. We assume that all coefficients t, of t(g)
are taken in K(X)® A.

Remark 7.1. When A does not contain the ring of symmetric functions, following Example 4 of [30], we
will refer to the permutation-equivariant quantum K-theory as symmetrized quantum K-theory. The full
permutation-equivariant invariants, when A includes the ring of symmetric functions, actually contain all
information about the pushforward of O,;, along the projection [ﬂo, N(X,8)/S N] — BSy.

Let {f(p) € A(q) | p € XT} be a set of elements. For p,q € X* connected by a 1-dimensional T-invariant
curve C, we denote by Ap g the T-character T,C. The proof of the following proposition is the same as in
[26].

Proposition 7.2. Suppose that {f®) € A(q) | p € X"} satiesfy the following two criteria.

(i) For each p € X¥, considered as a meromorphic function in q with only poles at roots of unity, f®)
represents a value of the big J-function Jyy of a point target space.

(i) Outside ¢ = 0,00 and roots of unity, f®) may have poles only at ¢ = /\Il,{zln, m=1,2,---, with residues
dg ___ QT
q mEp q( m)

where [C] is the curve class of the curve C, and

Res 1/ f®)(q) OO,

-— v
Epq(m) = /\ (TsaMO,?(Xa m|[C]) — TpX)
where ¢ : P! — C C X is the deg-m covering map over C, ramified at 0 and oo.

Then there exists t(q) € Kt(X)[q,q7 '], such that f®) = Jx (t(q))|,, for each p € XT. In other words,
f®)’s represents a value of the permutation-equivariant big J-function Jx of X.
Theorem 7.3. Let X be a hypertoric variety, and zy be the g-shifted Kdhler parameters defined as zy; :=
2 - (=h~Y2). The vertex function

1=V ), _,
represents a value J(to, Q) of the big J-function of X, for some ty € K1(X) ® A.

Proof. Take p € XT. Explicitly, one can compute that

n

V(1)(q72)‘p: Z 2 H hxz|p

BEEM(X)  i=1 (ailp)p
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where D; = 8- L;. By similar arguments as in Corollary 1 of [27], we see that Criterion (i) holds. Indeed, it
follows from Theorem in [26], which describes the big J-function of a point, and Lemma in [27], which gives
a set of difference operators that preserves the range of the big J-function of a point.

We now check that V(1)(q, z) satiesfies Criterion (ii), with ¢ replaced by ¢~'. Let q be another vertex in
the hyperplane arrangement, such that p = (q\{j}) U {i} and q = (p\{i}) U {j}, for some 1 < i # j < n.
Let C be the T-invariant curve connecting p and q. Then we have two cases as in Lemma 2.5 (ii). For
simplicity, we assume that 7 € AJ; the other case i € Ay is similar. We have A := Ap q = Zi[p.

Let m > 0 be an integer. Consider the coefficent of Q° in V(1) (g, 2)|p. Tts residue at ¢ = A~™1/™ vanishes
unless D; > m. In that case, for § € Eff ;(X), we claim that the curve class 8 — m[C] € Eff4(X). In fact,
for any | ¢ p U q, we know that in R? the vertices p and q lie on the same side of the hyperplane H;, which
implies that Ag and Aac only differ by the indices ¢ or j. On the other hand, the curve class [C] is defined
by the circuit Spq = p U q; in other words, it is of the form [C] = e; + Eleq €e;, where ¢, = +1, depending
onl e Sg[q. Therefore, we have

(8, L), Le Ap\{j} = A\{i}

w—m[CLLl)—{D__m o

We see that 5 — m[C] € Effq(X). The claim holds.

Direct computation shows that

Res, 1/ (hailp)p. dg _ 1 (hwilp)m ~ (hwilq)Di—m
- (qzilp)p, ¢ m (@ilp)m |jp-1/m  (@%ila)Dimm [gmr—1/m
(hai]p) b, _ (hifq) Dygm _(hai|p)sm le SEA)
(gz1lp) D, g=A—1/m (¢21lq) Dim g=A—1/m (qz1lp)£m g=A—1/m i

and on the other hand,

Bl (m) _ H (hxlh))m

i (g1]p)m

. H (hi|p) —m
- (qz1lp)—m

g=X—1/m g=X—1/m

1€SEq

We see that Criterion (ii) is satisfied. The theorem follows from Proposition 7.2. O

Corollary 7.4. Let 7 be a Laurent polynomial in q with coefficients in Kv(X) ® A. The descendent bare
vertex function

T —1
1=V 2, g
lies in the range of big J-function of X.

Proof. By the Theorem 2 of explicit reconstruction in [29], given a point ) sl 5Q” in the rangle £ of big
J-function, the point

> 15Q%r (g™ ng”n)
B
also lies in £. The corollary then follows. O

7.2. Quantum K-theory (in the sense of Givental). In Section 4.3, we defined a quantum K-theory
ring in terms of virtual counting of parameterized quasimaps from P! to X. On the other hand, it is standard
to define quantum cohomology or K-theory ring [50], in terms of genus-zero stable maps into X. It is natural
to ask whether these two versions of quantum K-theories coincide. The question is somehow complicated
due to the lack of divisor axiom in K-theory, as opposed to the cohomological theory. We will see later that
the PSZ quantum K-theory is essentially the same as the algebra generated by the A; operators, introduced
in [41], but in general different from Givental’s quantum K-theory.

Let’s review the definition of Givental’s quantum K-theory ring, which we denote by e. Let X, A as in
the previous subsection. In [28], Givental introduced a genus-zero K-theoretic GW potential with mized
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mnpuls:
= s Q°
]:(Xat) = Z Z <X(L)a aX(L)at(L)v at(L)>0,JX/[+N)B Mv
BEE(X) M,N=0
where x(¢q), t(q) are Laurent polynomials with coefficients in K (X )®A; only t’s are considered as permutation-
equivariant inputs, and x’s are considered as ordinary inputs.

The graph of the potential F(x, t) (up to dilaton shift) therefore defines a mized J-function J(x(q),t(q), Q)-
In particular, the permutation-equivariant J-function can be recovered by setting x = 0.

Let {¢o} be a basis of K(X). We take constant Laurent polynomial as inputs: x(¢) = z = Y, 2%¢a,
t(g) =t € K(X)® A. Given basis elements ¢q, ¢, 9, € K(X), the quantum pairing is defined as
2

G0 b5) 1= 5o Fla 1)
The quantum product is determined by the 3-point function of three basis elements ¢, @3, ¢~
83

Gl 96 01) = Graperoe
By the WDVV equation in [28], the ring is equipped with a structure of Frobenius algebra, with pairing G,
product e (both dependent on z and t), and identity 1 € K+(X). Similar as in the comological theory, one
can define a quantum connection using the quantum product e and then the quantum K-ring structure can
be packaged in the language of D-modules.

F(x,t).

For given constant Laurent polynomials x and t as above, there is an operator S(x,t,q)" ! : K(X)® A —
K _, whose inverse is defined as

g (oo at t,—E VY @
S(I‘,t7q) ¢ = ¢+ Z ¢Z<¢7x7 7«r7t; 7t; 1 — qL>O7M+N+2M!

i,M,N,B

S is a symplectomorphism, i.e., satisfying S(q) = S*(¢~!). In particular, the J-function J(z,t,Q) = (1 —
q)S(z,t,q)~11. The image S(x,t,q) " K, is called the ruling space, which satisfies the following properties
28, 29]:

(i) The range Lperm of permutation-equivariant big J-functions t(g) — J(0,t(g), Q) of X is swept by the
images of S(t,q)~!:

ﬁpcrm = U (1 - Q)S(Oa tv Q)ilK:ﬂL'
teK(X)®A 4

(ii) For each fixed ¢, the tangent space of the Lagrangian cone £; for the ordinary big J-function x(q)
J(x(q),t,Q) is Ty := S(x(q),t,Q) K, and tangent to £; exactly along the subspace (1 — ¢)T;. In
particular, £; is also swept by the union of those ruling spaces.

(iii) Let @; be the Kahler parameter with respect to Ei. Each ruling space admits a Dg-module structure
Lo
under the g-difference operators qu Qi ,
The key observation of [41] is that the operator S(w,t,q)~! serves simultaneously as the fundamental
solution to a g¢-difference system with respect to ¢@:%@:, and the fundamental solution to a g-differential
system with respect to the variables 6%. They take the following forms:

(71) (1_q)ais(x7taq)71 = S(I5t7Q)7lo(¢a._)7 Lz_qula_gl OS(.I,t,q)il = S(I5t7Q)7loBtiiaLQi7
e

where the first equation is by the definition of the quantum product e, and the second is obtained from
the g-difference module structure. Here B; € End K (X) ® A[q, ¢!] are uniquely characterized by the above
equation. The two systems above are compatible to each other, in the sense that the quantum connection
and g-difference operators commute. In particular, one can define the operators

Bi,com = Bi’q:l € End K(X) ® A.

Now let X be a hypertoric variety. Using the result on the vertex function and J-functions in the previous
section, together with the ¢-difference equations (5.5), we obtain the following result.
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Theorem 7.5. Let X be a hypertoric variety, and tg € Kp(X) ® A be as in Theorem 7.3. We fix the
insertions x =0 and t = tg.

1) For any circuit S = ST U .S™, and the corresponding curve class 3, the identity class 1 € K1(X) is
annihilated by the following operator

H (1 - Bi,com) H (h - Bi,com) - QB H (h - Bi,com) H (1 - Bi,com)a
€St €S~ €5t €S~
where Q° := HieS+ Qi HieS* Qz_l

2) The Givental quantum K -theory ring of X is generated by the classes Bjcoml, 1 < i < m, up to the
following relations: for any circuit S = ST U S™, and the corresponding curve class f3

H (1 - Bi,com]-) L H (h - Bi,coml) = Q'B H (h - Bi,com]-) L4 H (1 - Bi,coml)u
€5t €S~ €St €S~

where all the products are the quantum product e.

Proof. By Theorem 7.3, the J-function J(to,Q) = S(0,tg,q) *1 satisfies the g-difference equations (5.5),
with Z; replaced by L;q~9i%:. By the 2nd equation in (7.1), for any Laurent polynomial f(X,---,X,),
we have
So f(Ll_qulan7"' 7L;lq(»?rﬁczn) 0S8t = f(B1g¥%, ... B,q@n%n).
Apply operators on both sides to the identity 1, and take ¢ — 1. We obtain 1).
For 2), it suffices to notice that by compatibility, for any «, i, one has Bjcom®a = Bicom(¢a ® 1)

¢a ® (Bicoml). Hence the operator B;com is the same as the quantum multiplication (B; coml) ® (—).
then follows from 1).

oL

APPENDIX A. SOME IDENTITIES OF KAHLER AND EQUIVARIANT PARAMETERS

We list here some computations for Kihler and equivariant parameters. Let p € X T be a fixed point, and

L= (é) be the matrix in the standard p-frame.

Lemma A.1.

Zlnzi Inz;|p — Zlnzi Ina, = — Z In¢;(p)lna; — Z In¢;(p) In(haj)
i=1 i=1

JEAS JEAS

Proof. Recall the variable (;(p), j € p is defined as (;(p) := 2; [[;cp zlc” Then by the restriction formula
(28),
LHS = Z Inz;Inh™ ! +Zlnzi(lnai - Z Cijlna; — Z Cij ln(ﬁaj)) — Zlnzilnai
jEAS 1EP JEAS JEAS =1
= — Z In aj(ln zj + ZCU lnzi> — Z ln(haj)(ln zj + Z CijIn zl)
jEA:; iEp JEAS iEP
= RHS.

O

Let p’ € (X")T be the corresponding fixed point in the mirror, and z., z/ be defined as in Definition 5.5
2) and Section 6.4. More precisely,

20 (gh™H)7h, i€ A;,r o zé)i, i€ A:/ u(p’)~
24,15 ic A, Up ’ o LT (gh™h), i€ AU (p)".

Zé,i =
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Lemma A.2. Under the change of variables Kytx,

Zlnz "YIn 2 |p/—21nz” )Inzi|p = Zlnzmlnaz Z In(gh™* )Inzi|p+ Z Cij In(gh™ ") In k.

i€EpT JEAp ,i€pt

Proof. Compute

Zlnzm ) Inz;i|p

- Z Inzg;Inh+ Zlnzwln (ai H aj_cif ‘B ZJEA; Ci]‘)

jeAy i€p j¢p
= - Z Inzy;Inh+ Zln zyilna; — Z Cijlnzy;Ina; — Z CijInzy;Inh.
jeAy i€p i€EP,j€P i€p,j€Ap

: + + _ _
On the other hand, since A, = pt, (p)* = A, and C; = -Cjj,

Zlnz“ Jnzily = - Z Inz,;Inh+ Zlnzmln( H( 1)~ Cii .;{Ziev“;/ C;”')

€A jep’ i¢p’
7 72» - Cglz

+ > mm(gn i (o) [T @)% n )

JE(P)T iZp’
= - Zlnzéyilnh—l—zmzé’jlna;—i— Z CijInz ;Ina; + Z Cijlnz; ;Inh

iept jé¢p j¢p,iep jgpie(p’)t

+ 3 In(gh Ynd;+ Y Cyln(gh)na;+ Y Cyln(gh~)Ink,
JEAS JEAL iEP JEAp ige(p')T

which under the change of variables kyix is

- Z Ina;In(gh™) — Z Ina;lnzy; — Z Cijlnajlnz,; + Z CijIna;In(gh™)

iept jé¢p JE€Pp,iEp Jjépiept
=Y Ihlz,;— Y  Cjlhlnzg;+ Y  Cijl(gh ')k
JEAL JEAR i€p JEAR iept
The lemma follows by direct comparison. O

APPENDIX B. LIMIT OF BARE VERTEX FUNCTIONS

Let p € X" be a fixed point, and ¢ = (é) be the matrix in the standard p-frame. By the explicit formula
(5.1), we have the bare vertex function
SIS gl o _
V(l)(q, Z, a)|p — Z <(p)dq 2 Z]Qp d; 2 ZzEp,]Q}) Cijd; H {1}dj H {h 1}dj H{lep}zjgp

d;>0,jeAL JEAL jeAy iep
d;<0,jEA,

where ((p)? := ngp ¢(p)4

Now we consider V1) (q, z, a)|p as a meromorphic function in terms of equivariant parameters a;’s, in the
region specified by the following condition:

la®| < 1,
for any positive root c. In particular, we have |a;(p)] < 1 for i € p*, and |o;(p)| > 1 fori € p~.
We denote by the notation «(p) Z5 0 the following process of taking limit:
a;i(p) o0, iep’;  a(p)—=0 iep .

Note that under the change of variables ki, this limit is the as the one as described in Remark 5.8, applied
to X’ and 6.
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Proposition B.1. In the region of a;’s described above, we have
1 0 (RGas()ah™) et ) 6 (0 (p)Hah )T et )
lim V¢ )(q,z,a) = H o H oy
o(p)=0 jeAd (15(Cri,j(p)(qﬁ’l)_Zie"+ ”) jeds ¢>(tszléﬁ,j(p)’l(qﬁ*l)zl'e"+ ”)
In particular, under the change of variables Kyix, it is

I ¢ (¢! (@) ) 11 ¢ (a7lp')

= ®((q — h)Poly (") |p)-

/I\—1 , /_ ,
je(p’)* (b ((Ij) |p ) jE(p/)+ (b (hxjh) )
Proof. 1t is easy to see that, for any a and d € Z,
_g\2p 12y, a— 0;
(ahy (¢ )
(—ql/zh_1/2)_d, a — o0.
Therefore,
h)a,
hn}r V(l)(q,z,a) = Z C(p)dq_% Xigp =3 Liep jep Ciidi H (—ql/zhl/z)dﬂ'%
a(p)—0 d;>0,j€ AL JEAS ’
d;<0,jEA,
1o —a, (M) —a; 1jan— ds _ s
H (—q1/2ﬁ 1/2) d; (q) dj H (—q1/2ﬁ 1/2) > jgp Ciidj H (_q1/2h 1/2)2j€p0”d]
jeAs —45 icpt iEpT
(h)a, .a, (h)=d; , 1 ,—1\—q =Y Cud
— > o1 oF o @ (gh™'¢ )~ T (gh™") = Zaew s
d;>0,j€ AL je A I jeag TV iept
d;<0,jEA,
h)a, d; h)_q, -
= Z H Eq;d] (ij(qh_l)le'eﬁ Cij) H Eqi 4 (qh_lct;jl(qh_l)zz’e;# Cij)
d,20.je AL jear D jedy Y
d;<0,jEA,
The lemma then follows from the g-binomial formula dlr2) =450 %zd. O
¢(z) (9)d
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