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Abstract

We define quantum equivariant K-theory of Nakajima quiver varieties. We discuss type
A in detail as well as its connections with quantum XXZ spin chains and trigonometric
Ruijsenaars-Schneider models. Finally we study a limit which produces a K-theoretic
version of results of Givental and Kim, connecting quantum geometry of flag varieties
and Toda lattice.
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1 Introduction
1.1 Some prehistory and earlier results

The seminal papers of Nekrasov and Shatashvili [40,41] paved the road for close inter-
actions between quantum geometry of certain class of algebraic varieties and quantum
integrable systems. Early signs of such a fruitful collaboration between quantum coho-
mology/quantum K-theory and integrability were noted in mathematics literature in
the works of Givental et al [20,23].

Theideas outlined in these articles gave rise to new developments [7,11,35] followed
by other important results, see e.g. [21,22,39,42,43,49].

Recently the basic example, considered in [40,41] in the physical context of 3d
gauge theories, was described from mathematical point of view [44].

In particular, the relation between quantum equivariant K-theory of cotangent bun-
dles to Grassmannians and the so-called XXZ model (see e.g. [8,45]) was fully
examined. The Hilbert space of the XXZ spin chain is identified with the space of
equivariant localized K-theory of disjoint union of T7*Gr(k, n) for all k and fixed
n, considered in the basis of fixed points. Using a different method than in standard
Gromov—Witten-inspired approach to quantum products, the quantum K-theory ring
was defined, as well as the generators using the theory of quasimaps to GIT quotients
[13,42]. Such generators of the quantum K-theory ring, which in [44] were called
quantum tautological bundles are the deformations (via Kihler parameter) of the exte-
rior powers of these tautological bundles. It was shown that their eigenvalues are
the symmetric functions of roots of Bethe Ansatz equations. The generating function
for such quantum tautological bundles is known in the theory of integrable systems as
Baxter Q-operator which contains information about the spectrum of genuine physical
Hamiltonians.

1.2 Main results and the structure of the paper

The construction of [44] can certainly be extended beyond Grassmannians to a large
class of Nakajima quiver varieties and this is what the first part of the current work is
about.

In Sect. 2 we review and generalize main concepts of [44] to a general situation.
In Sect. 2.1 we remind basic notions of Nakajima quiver varieties as GIT quotients
and their equivariant K-theory. Section 2.2 is devoted to a brief review of theory
of nonsingular and relative quasimaps to quiver varieties. Unlike stable maps, the
quasimap is a combination of a certain vector bundle on a base curve, together with
its section, which uses the presentation of Nakajima quiver variety is a GIT quotient.
That allows us to define in Sects. 2.3 and 2.4 two important notions. The first one is the
notion of a quantum tautological class, defined using pushforwards via evaluation map
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with a relative condition, as a deformation of the corresponding equivariant K-theory
tautological class. The second one is the deformed product on equivariant K-theory. In
this paper we will refer to the latter as the quantum product and the resulting unital ring
will be referred to as quantum K-theory ring. This is different from a standard notion
of quantum products defined using stable map theory in the K-theoretic analogue of
Gromov—Witten theory. In the end of Sect. 2.4 we note, that the quantum tautological
classes generate the entire quantum K-theory ring.

We would like to emphasize that in the standard K-theoretic version of Gromov—
Witten approach to flag varieties (see e.g. recent results [1,2]), the analogue of our
deformed product, known as a small quantum product, is determined by the deforma-
tion of the structure constants.

Then it is a formidable task in describing the quantum K-ring using generators
and relations to verify whether the structure constants are polynomials in Kiahler
parameters—the property which is given for granted in the quantum cohomology.
Here we are free of these issue and our quantum classes are generators a priori.

In Sect. 2.5 the most important tools for the computations in our quantum K-
theoretic framework are introduced, known as vertex functions. They can be of two
types, bare and capped. These are objects, very close to quantum tautological classes,
namely they are equivariant K-theory classes (localized K-theory classes for bare ver-
tices) defined as equivariant pushforwards with nonsingular and relative conditions
correspondingly, so that extra equivariant parameter is introduced on a base curve.
This equivariant parameter plays a major role in our approach. Namely, the capping
operator which relates these two types of vertex functions, satisfies a difference equa-
tion, which is a central topic of [43] as a part of a bigger system of difference equations
involving quantum Knizhnik—Zamolodchikov equations [17].

In Sect. 2.6 we restrict ourselves to the subclass of Nakajima varieties, such that
the set of fixed points under the action of equivariant torus is finite, which includes
(partial) flag varieties. Using that in the end of Sect. 2 we derive, by generalizing the
results of [44], the explicit formula for the eigenvalues of multiplication operators on
quantum tautological classes via the asymptotics of vertex functions, when equivariant
parameter on a base curve is close to identity.

From Sect. 3 onwards we restrict ourselves to our main example the cotangent
bundles to (partial) flag varieties, which form a subclass of Nakajima varieties for
quivers of type A,. In this case one can identify the localized K-theory of all possible
cotangent bundles to partial flag varieties for given n with the Hilbert space of XXZ
sl(n) model. We explicitly compute the vertex functions in Sect. 3.1, so thatin Sect. 3.2
we arrive to our first important theorem, which in short can be restated as follows (for
explicit formulas, see Theorem 3.4):

Theorem 1a The eigenvalues of the operators of multiplication by quantum tautolog-
ical classes are the symmetric functions of Bethe roots, the solutions of Bethe ansatz
equations for sl(n) XXZ spin chain.

This statement is a generalization of similar statement for Grassmannians and s/(2)
XXZ spin chain in [44].

It makes sense to think about the generating functions for quantum tautological
bundles, corresponding to exterior powers of every given tautological bundle. The
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eigenvalues of the resulting operators give generating functions for Bethe roots. In the
theory of quantum integrable systems those are known as the Baxter operators.

We also make the following “compact reduction” of our constructions. In Sect. 3.3
we discuss the vertex functions and therefore quantum tautological classes in the case
when we count only quasimaps to the compact space of partial flags, suppressing
contributions of the fiber. It turns out that the corresponding vertex functions are easy
to compute, by sending the equivariant parameter, corresponding to the rescaling of
symplectic form to infinity. This leads to the following Theorem (see (3.4) for explicit
formulae):

Theorem 1b The eigenvalues of the operators of multiplication by quantum tautolog-
ical classes on G/ P are the symmetric functions of Bethe roots, the solutions of Bethe
ansatz equations, generalizations of the ones for 5-vertex model.

In Sect. 4, we restrict ourselves to the case of cotangent bundle of complete flag vari-
ety, and we describe these K-theory rings using generators and relations by employing
the duality between XXZ spin chains and trigonometric Ruijsenaars-Schneider (tRS)
models [46-48].

This brings us back to fundamental papers [20,23], where connection of quantum
geometry and integrability is done through multi-particle systems. Givental and Kim
[20] using their approach described the quantum equivariant cohomology ring of
complete flag varieties as an algebra of functions on the phase space of Toda lattice, so
that the Hamiltonians are taking fixed values, determined by equivariant parameters,
namely the space of regular functions on invariant Lagrangian subvariety of Toda
lattice. It was suggested in [23] and then in [7] that the K-theoretic version of these
results should involve finite difference (relativistic) Toda system.

Our main result of Sect. 4 is the following Theorem, which allows to describe
the quantum K-theory ring using different generators and relations, via trigonometric
Ruijsenaars-Schneider (tRS) models: (for explicit formulae see Theorem 4.9):

Theorem 2a The quantum K-theory ring of the cotangent bundle of a complete flag
variety is an algebra of functions on a certain Lagrangian subvariety of the phase
space of tRS model.

In a limiting procedure for G/ P, which we consider in Sect. 5, we obtain the result
suggested by [20,23] (see Theorem 5.4 for explicit formulas):

Theorem 2b The quantum K-theory ring of a complete flag variety is an algebra of
functions on a certain Lagrangian subvariety of the phase space of relativistic Toda
lattice.

Such limiting procedure between two integrable systems was discussed by many
representation theorists, see e.g. [11,14,24], which by the results of this paper has a
pure geometric flavor.

1.3 Connections to physics literature and beyond

In physics literature [9,19] our main statements were conjectured, based on connec-
tions of Nakajima quiver varieties and 3d supersymmetric gauge theories. In particular,
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the quantum equivariant K-theory of the cotangent bundle to complete flag variety
was described in [9] via trigonometric Ruijsenaars-Schneider system. In addition, as
expected, with cotangent fiber being removed in a certain limit, that model reduces to
finite difference Toda system. In the current work we prove these physics conjectures
thereby bringing together ideas of Givental-Kim-Lee and Nekrasov-Shatashvili.

It was recently shown [3,4] that capping operators of quantum K-theory of Naka-
jima quiver varieties, which satisfy quantum Knizhnik—Zamolodchikov equations, can
be represented using vertex functions for certain K-theory classes which correspond
to the K-theoretic version of stable basis [42]. In [9] it was proposed that vertex
functions, constructed from supersymmetric gauge theories, are the eigenfunctions of
quantum trigonometric Ruijsenaars-Schneider Hamiltonians (Macdonald operators).
In this paper we work with classical Hamiltonians and find the connection, via the XXZ
spin chain, between these operators and quantum K-theory of Nakajima quiver vari-
eties. Thus there exists a correspondence between quantum Knizhnik—Zamolodchikov
equations and equations of motion of trigonometric Ruijsenaars-Schneider model,
which was further studied in [30].

2 Quantum K-theory
2.1 Classical equivariant K-theory

In this section we give a brief reminder of the classical equivariant K-theory of Naka-
jima quiver varieties. For a more detailed introduction to quiver varieties, one can
consult [18] and for their study in K-theoretic setting one can look in [37] or [38].

A quiver is a collection of vertices and oriented edges connecting them (I denotes
the set of vertices). A framed quiver is a quiver, where the set of vertices is doubled,
and each of the vertices in the added set has an edge going from it to the vertex, whose
copy it is. It is common to depict the original vertices by circles, and their copies by
squares above them. Here is an example of a framed quiver:

A representation of a framed quiver is a set of vector spaces V;, W;, where V;
correspond to original vertices, and W; correspond to their copies, together with a set
of morphisms between these vertices, corresponding to edges of the quiver.

For a given framed quiver, let R = Rep(v, w) denote the linear space of quiver
representation with dimension vectors v and w, where v; = dim V;, w; = dim W;.
Then the group G = [[; GL(V;) acts on this space in an obvious way. As any cotangent
bundle, T* R has a symplectic structure. This action of G on this space is Hamiltonian
with moment map i : T*R — Lie(G)*. Let L(v, w) = u~'(0) be the zero locus of
the moment map.
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The Nakajima variety X corresponding to the quiver is an algebraic symplectic
reduction

X =LV, W)[eG = L(V,W)y/G,

depending on a choice of stability parameter 0 € Z/ (see [18] for a detailed definition).
The group

[]cLoip x[J6Lwy x c;

acts as automorphisms of X, coming form its action on Rep(v, w). Here Q;; stands for
the vector space of dimension coming from the incidence matrix of the quiver, i.e. the
number of edges between vertices i and j, Cj scales cotangent directions with weight
% and therefore symplectic form with weight 7~ Let us denote by T a maximal torus
of this group.

The main object of study in this paper will be a certain deformation of the classical
equivariant K-theory ring K7(X). For a Nakajima quiver variety X one can define
a set of tautological bundles on it V;, W;,i € [ as bundles constructed by applying
the associated bundle construction to the G- representations V and W. It follows from
this construction, that all bundles W; are topologically trivial. Tensorial polynomials
of these bundles and their duals generate K1(X) according to Kirwan’s surjectivity
theorem, which is recently proven in [34]. Let (-, -) be a bilinear form on Kt(X)
defined by the following formula

(F.G) = x(FRGQ K™%, (1

where K is the canonical class and yx is the equivariant Euler characteristic. Naka-
jima quiver varieties are a special class of varieties, for which there always exists a
square root of the canonical bundle, and it can be chosen canonically from the con-
struction (see Section 6.1 in [42]). The variety X is almost never compact, apart from
the cases when it is a point. The locus of fixed points of T, on the other hand, is com-
pact. This allows us to talk about the equivariant Euler characteristic via localization.
The necessary extra shift of the bilinear form described above will be explained below.

2.2 Quasimaps

In this section we give a definition of quasimaps and discuss the properties and types
of quasimaps we will use.

Definition 2.1 A stable quasimap to a Nakajima quiver variety from a genus 0 curve
D to X relative to points p1, ..., pm € D is given by the following data

€, PYseees Doy P, foTT),

where
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e Cis aconnected, at most nodal genus zero projective curve and p/ are nonsingular
points of C,

e P isa principal G - bundle over C,

e fis a section of the fiber bundle

p:Pxg(R®R*) = C 2)

over C satisfying u = 0, where R = Rep(v, w) - is a representation of G defined
in Sect. 2.1 (the moment map condition is satisfied pointwise, so for every point
we can consider the moment map and the image of the section f restricted to every
point should be 0),

e 1 : C — Dis aregular map,

satisfying the following conditions:

(1) There is a distinguished component Cy of C such that 7 restricts to an isomorphism
7w :Cy = Dand 7 (C )\ Cp) is zero-dimensional (possibly empty).

() n(p)) = pi.

(3) f(p) isstable for all p € C\ B where B is a finite (possibly empty) subset of C.

(4) The set B is disjoint from the nodes and points p{, ..., p,,.

(5) wp(X; pi+2"; qi) ® L is ample for every rational € > 0, where Ly = P x Cy
(] =~det is the character of G), C is the closure of C \ Co and g; are the nodes
CoNC.

We call D the base curve of the quasimap (although for some quasimaps the actual
domain might be bigger). Note that it can have one or multiple components.

Let (C, p’l, el p;,l, P, f,m) be a quasimap and let V1, V;, ... be representations
of G as in Sect. 2.1. Let us denote by

Vi=PxgVi—>C 3)

the associated rank v; vector bundle over C and bundles %#; and &% defined in an
analogous way.

Definition 2.2 The degree of a quasimap (C, p}, ..., p,,, P, f,m) is the vector of
degrees of vector bundles ¥; associated to it.

Definition 2.3 Let QMﬂ:lative, p1.- . py denote the stack parameterizing stable genus zero
quasimaps relative to pyp, ..., pm, (i.e. the data of Definition 2.1) of fixed degree d.

Two quasimaps are considered isomorphic if there is an isomorphism between the
bundles which intertwines the sections.

For any point on the curve p € C we have an evaluation map to the quotient stack

evp ! QM — L(v, w)/G defined by ev,(f) = f(p). Note that the quotient stack
contains X as an open subset corresponding to locus of semistable points:

X = u; 1 (0)/G c L(v,w)/G.
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A quasimap f is called nonsingular at p if f(p) C X and the quasimap is not relative
to p. In short, we conclude that the open subset QMdnonsingp c QM4 of quasimaps
nonsingular at the given point p is endowed with a natural evaluation map:

d ev,
QM%honsing p — X 4)

that sends a quasimap to its value at p. The moduli space of relative quasimaps
QMdre]aﬁve p 1s a resolution of ev, (or compactification), meaning we have a com-
mutative diagram:

d
QM%etative p

/ EVp
(A%

d p
QM nonsing p X

with a proper evaluation map €v p from QMdrelative p to X. Definition 2.1 constructs all
the spaces mentioned above, as well as possible combinations with multiple relative
points.

These moduli spaces have a natural action of maximal torus T, lifting its action from
X. When there are at most two special (relative or nonsingular or marked) points and
the base curve is P! we extend T by additional torus C*, which scales P! such that the

tangent space ToP! has character denoted by g. We call the full torus by G = T x (C;‘.

2.3 Picture notations, virtual structure and gluing operator

In this section we introduce some notations and discuss some structures and and
properties of quasimap spaces. There are no new results presented in this section, it is
more a collection of things we will use to construct the further studied objects. Most
definitions and properties presented here are presented in full generality in [13] or in
[42].

2.3.1 Picture notation

In the previous section, several different types of quasimap invariants and conditions
were introduced. For the quasimaps considered, the base curve is fixed and it is impor-
tant, which conditions we impose at different points. All this information is hard to
read off a formula. This makes it is convenient to use picture notation, introduced by
Okounkov in [42]. The picture notation will almost always be accompanied by a for-
mula presentation, as it is not always obvious what exactly is considered (generating
function for enumerative invariants/quantum operator or a single invariant). Yet, one
can argue that this notation makes it clearer what kind of invariants are considered.
Here are picture notations, which will be used in this manuscript:
denotes the base curve ]P’l,
—@ denotes a marked point (any chosen point on the curve),
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) denotes a relative point,
——O denotes a nonsingular point.

.)Q denotes a node on the base curve.
Here is an example of this notation in use:

—)

The picture above stands for the following generating function of invariants:

00
d d 0 .
Z T CVpox (QMre]ative p2’ ®v1r) .

~
d=0
2.3.2 Virtual structure

The moduli spaces of quasimaps constructed in the previous section have perfect
deformation-obstruction theory [13]. This allows one to construct a tangent virtual
bundle TV, a virtual structure sheaf Oyir and a virtual canonical bundle. For Naka-
jima quiver varieties the virtual canonical bundle has a natural choice of a square root.
Adjusting the virtual structure sheaf by this square root makes it into the symmetrized
virtual structure sheaf @Vir. It is this sheaf that we choose for our enumerative invari-
ants. The motivation of such a choice is given in Section 3.2 of [42]. In this section
we do not intent to give the full construction of the virtual structure sheaf, but we try
to describe some of it properties and provide a way for computing it.

First of all, we state a formula for the reduced virtual tangent bundle. Let
{7}, {W;}) be the data defining a quasimap. Then the virtual tangent bundle is an
equivariant K-theory class, which when restricted to a fixed point in the space of
quasimaps is:

oy QU = HY R @ h ™) — (1 + h) €D Ext* (%, %), ®)

1

where the bundle % is defined as in 2.1. Let us address the different terms in this
formula:

e The term H*(Z @ hZ*) keeps track of deformations and obstructions of the
section f.

e The term —(1 + k) €B; Ext* (¥, ¥;) accounts for the moment map equations, and
for automorphisms and deformations of %;.

As stated above, this virtual tangent bundle comes from a perfect deformation-
obstruction theory. This allows one to construct a virtual structure sheaf Oy [6].
The virtual structure sheaf is a K-theoretic analog of the virtual fundamental class in
cohomology. It was first proposed by Kontsevich in [28] and then identified in [6]. The
virtual structure sheaf was used in Y.P. Lee’s original approach to quantum K-theory
via moduli spaces of stable maps [32]. Later its construction was extended to greater
generality in [12].
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Having said this, we want to stress that we will only be doing computations with
the virtual structure sheaf by using virtual localization formulas, meaning that the
provided formula for the virtual tangent bundle is enough for all the computations of
this paper.

The symmetrized virtual structure sheaf is defined by:

@Vir — Ovir ® %llr/zqdeg(W)/z’ (6)

where iy = det”!TV'QMY is the virtual canonical bundle and & = %2 —
P, Ext*(¥;, ¥;) is the polarization bundle. We do not go into details behind the
construction of the square root of the canonical bundle, but yet again address the
reader to section 3.2 in [42] for the motivation and section 6.1 for its construction for
the space of quasimaps.

Since we will be using the symmetrized virtual structure sheaf we will need to
adjust the standard bilinear form on K -theory. That is the reason to for the shift of the
bilinear form in (1).

Finally, all the constructions mentioned above can be generalized to quasimaps
nonsingular at a point (by simply restricting sheaves to an open subset), quasimaps
relative at a point (see section 6.4 in [42]), as well as any combination of the above
conditions to different points. We do not give any formulas for computing virtual
structure sheaves for relative conditions, as we will not be explicitly computing any
such invariants.

2.3.3 Gluing operator

In order to construct the quantum product we need an important element in the theory
of relative quasimaps, namely the gluing operator. As for all operators or enumerative
invariants in this paper we will use the following notation for Kahler variables: for a
vector d = (d;),

d.
4= Hzi’.
iel

This is the operator! G € End(K7(X))[[z]] defined by:

G:
d

so that the corresponding picture is: ( )

It plays an important role in the degeneration formula, see e.g. [42]. Namely, let a
smooth curve C, degenerate to a nodal curve:

24evp, e QMG ey py Ovir) € KEX(X)L2], %)

oo
=0

Co=Co,1 Up Co 2.

I In fact, the gluing operator is a rational function of the quantum parameters G € End(K7(X))(z) and
G lisalsoan endomorphism of non-localized K theory (See Section 6.5 in [42])
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Here Cp.1 and Cp 2 are two different components that are glued to each other at point
p- The degeneration formula counts quasimaps from C, in terms of relative quasimaps
from Cp,1 and Cp 2, where the relative conditions are imposed at the gluing point p.
The family of spaces QM(C, — X) is flat, which means that we can replace curve
counts for any C, by Cp. In particular, we can replace counts of quasimaps from P! by
a degeneration of it, for example by two copies of P! glued at a point.

The gluing operator G € EndK7(X)[[z]] is the tool that allows us to replace
quasimap counts on C by counts on Cp,1 and Cp 2, so that the following degener-
ation formula holds:

X(QM(CO — X), évirzd) = (G_leVI,*(@vier)7 eVZ,*(@vier)) .

The corresponding picture interpretation is as follows:

_:-X: )Gfl(

2.4 Quantum K-theory ring

In this section we define multiplication and important objects of the quantum K -theory
ring of X.

As a vector space quantum K -theory ring Q K1(X) is isomorphic to K1(X) ®
Cllzpy]l, i € 1.

Definition 2.4 The element of the quantum K -theory

2@ = Y eV Miiie s Buirt (il ) € OKT(X) ®)

=
d=0

is called quantum tautological class corresponding to tensorial polynomial 7 in tauto-
logical bundles V. In picture notation it will be represented by

—e:

These classes evaluated at O are equal to the classical tautological classes on X
(7(0) = 7). Note that the definition depends on the tensorial polynomial 7 rather than
aclass in K theory of X.

For any element F € K7(X) the following element

> eV (QMS, Ve, (671 ABr) € KTCOP(Z )
d=0

can be made into an operator from the second copy of K1(X) to the first copy by the
bilinear form (-, -) defined above. We define the operator of quantum multiplication
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by F to be this operator shifted by G™!, i.e

o0
Fo=3 devy pe (QME, 0o ev5, (G PBY) G (10)

—

d=0

Definition 2.5 We call Q K7(X) = K71(X)[[z]] endowed with multiplication (10), the
quantum K-theory ring of X.

This product enjoys properties similar to the product in quantum cohomology. The
proof of the following statement repeats to the proof of the analogous fact for the
cotangent bundle to Grassmannian [44].

Theorem 2.6 The quantum K -theory ring Q K1(X) is a commutative, associative and
unital algebra.

Important Assumptions: From now on we assume that the fixed points set X " is finite.
The classes of fixed points are eigenvectors of classical multiplication in K1(X). We
assume, in addition, that for any two fixed points there exists a line bundle £ for which
the corresponding two eigenvalues are distinct. This is indeed the case for our main
example in this paper, namely cotangent bundles for partial flag varieties.

After quantum deformation, the eigenvalues of quantum multiplication by £
become power series in the Kihler parameters z, with the first term given by the
classical eigenvalue, see Lemma 2.14 below. Thus, the eigenvalues remain distinct in
a small neighborhood of zero |z| < 1. Therefore, our assumptions guarantee that the
quantum K-theory ring remains diagonalizable in a perhaps deformed basis.

Remark 1In general, the situation of degenerate eigenvalues is unavoidable, with Hilbert
scheme of k points the complex plane X = Hilb*(C?) as an example. Its Picard group
is generated by a single element &'(1) and the corresponding eigenvalues appear with
multiplicities.

The operators of quantum multiplication by the quantum tautological bundles obey
the most natural properties. First, given Kirwan’s K-theoretic surjectivity theorem, we
have the following result.

Proposition 2.7 Quantum tautological classes generate the quantum equivariant K -
theory over the quantum equivariant K -theory of a point QK7(-) = (C[a,,fl][[zi]]
where ay, form = 1---dim T are the equivariant parameters of T.

Proof Since, by Kirwan’s K -theoretic surjectivity theorem, classical K-theory is gen-
erated by tautological classes, the quantum K -theory will be generated by quantum
tautological classes according to Nakayama’s Lemma. O

Second, in contrast with quantum cohomology, the multiplicative identity of the
quantum K -theory ring does not always coincide with the multiplicative identity of
classical K-theory (i.e. the structure sheaf Oy):

Proposition 2.8 The multiplicative identity of Q K7(X) is given by 1(z) (i.e. the quan-
tum tautological class for insertion T = 1).
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Proof The diagrammatic proof given in [44] can be applied to any Nakajima quiver
variety. O

2.5 Vertex functions

d d . . X .
The spaces QMg ping p, a1d QMigj,ive p, @dmit an action of an extra torus Cg' which
scales the original P! keeping points p; and ps fixed. Set T, =Tx C;‘ be the torus

acting on these spaces.

Definition 2.9 The element
OO -
VO@) = 3 2%V o (QMEnsing pr Bt (il ) € K, (Xtocll21]
d=0

is called bare vertex with descendent t. In picture notation it will be denoted by
O—————or

The space QMgonsing - is not proper (the condition of non-singularity at a point is
an open condition), but the set of T, -fixed points is, hence the bare vertex is singular

atg = 1.
Definition 2.10 The element

o0

V0@ =7 2% (QMsaie o Buiet (Vi) ) € K7, COLLE]
d=0

is called capped vertex with descendent 7. In picture notation it will be represented
by:

— o

Note here, that the definition of the capped vertex and the definition of quantum
tautological classes are very similar with the main difference being the spaces they live
in. By definition, the quantum tautological classes can be obtained by taking a limit
of the capped vertex: lim, | y@© (z) = 7(z). The last limit exists as the coefficients
of V() (z) are Laurent polynomials in g, due to the properness of the evaluation map
in the relative case.

In fact, the following strong statement is known about capped vertex functions.

Theorem 2.11 Power series ‘A/(T)(z) is a Taylor expansion of a rational function in
quantum parameters z.

Proof There are two different proofs of this theorem: the first is based on large framing
vanishing [50], the second originates from integral representations of solutions of
quantum difference equations [4]. O

As a corollary, quantum tautological classes T (z) are rational functions of z.
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2.6 Capping operator and difference equation

The operator which relates capped and bare vertices, is known as capping operator
and is defined as the following class in the localized K-theory:

o0
V@ =3 ey oo Mgy Boir) € KEXellzll. (1D
d=0 nonsing p

Bilinear form makes it an operator acting from the second to the first copy of
K7, (X)iocl[z]]. This operator satisfies the quantum difference equations. We sum-
marize that in the Theorem below [42].

Theorem 2.12 (1) The capped vertex with descendent T is a result of applying of the
capping operator to the bare vertex

V() = vV (2). (12)
his equation can be represented by the following picture notation:
(—e7 = (—OO—er

(2) The capping operator \V (z) is the fundamental solution of the quantum difference
equation:

W(g5z) = Mg, V()L (13)

where L; = det(V;), L is the operator of classical multiplication by the corre-
sponding line bundle and (qﬁz)d = qw’d)zd, whered € Hy(X, Z), L € Pic(X).
The matrix Mg, (2) is

o
M»Ci (2) = Z zdev* <QM?elative p1,p2° Dyir det H* (7/1 ® ”*(OPI))) G_l’
d=0
(14)

where 7t is a projection from C — P' as in Definition 2.1 and Op, is a class of
point p € P'.

Remark The explicit form of operator My, is known for arbitrary Nakajima variety.
It is constructed in terms of representation theory terms of quantum loop algebra
associated with a quiver [43].

Operators M, (z) turn out to be closely related to quantum tautological line bundles
as the following Theorem suggests, which is a direct generalization of Theorem 10 of
[44].
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Theorem 2.13 In the limit ¢ — 1 operators Mg, (z) coincide with the operators of
quantum multiplication on the corresponding quantum tautological bundles:

lim M, (z) = Li(2). (15)
q—)

We will use this fact to compute the formula for the eigenvalues of the operators
(2).

Let us introduce the following notation. The eigenvalues of £;(z) are Ay ;(z), so
that A, ; (0) = Ag’i, the eigenvalue of the classical multiplication on £;, corresponding
to a fixed point p € X'. Using standard arguments of perturbation theory [26], the
above assumption gives:

Lemma 2.14 The eigenvalues Ufzi (2) are power series in Kiihler parameters Ap ; (z) €
Cllz1, 22, ---11-

Proof We assume that there is only one Kihler parameter which we denote z. The
general case then follow from the same argument applied for each z;.

The eigenvalues of Li (z) belong to the algebraic closure of the field of Laurant
series, i.e., they are elements of the field of Puiseux series in z. Assume that for some
Z,- (2), there is an eigenvalue which is a non-trivial Puiseux series. In other words it is
of the form

Ap,i(Z) = ?\g,i + ?\ll),l' Zl/m + }\12)’1' 22/m +..., meg N

with m > 1. There are no negative powers of z because Zi (0) are regular by our

assumption.
Then, there is a set of m eigenvectors, say, labeled by subset of fixed points
{p1, ..., Pm} which undergo a cyclic permutation once we go around z = 0 along

a circle of sufficiently small radius, i.e., when the Kiahler parameter transforms
z — ze*™!. This is only possible when the leading coefficient of the eigenvalues
Ap1,j(0) = -+ = Ay, ;(0) for all j. In other words, there is no £; for which the
corresponding eigenvalues are distinct. We arrive at a contradiction, thusm = 1. O

p.i

be the normalized eigenvalue.

Lemma 2.15 The following function

= ! dgtInt
fo=ew (o= [ dur o).
where f dgtf(t) =(—¢q) Y22 o f(tq") is the standard Jackson q-integral, satisfies
flgt) =1@) f().

We denote

Fop(2) = exp (q%l 3 / dyzi I Api(2)) (16)

iel
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Let us formulate an omnibus theorem concerning the solutions of the system of dif-
ference equations and eigenvalues of quantum multiplication operators.

Theorem 2.16 (1) The operator ¥ (0) is the identity operator.
(2) Let Wy(2) be the p-th column of the matrix Y (z). In the limit g > 1 the capping
operator has the following asymptotic expansion

U@ = BE(p@ +--), a7

where Y, (z) are the column eigenvectors of the operators of quantum multipli-
cation corresponding to the fixed point p and dots stand for the terms vanishing
in the limit g — 1.

(3) The identity element in the quantum K-theory decomposes in the following man-
ner

1) =) 5@, (18)
p

where vp(z2) are the eigenvalues of quantum multiplication .
(4) The coefficients of the bare vertex function have the following g — 1 asymptotic
in the fixed points basis

VP (@) = Fp@) (5 (@)p () + ), (19)

where 1,(2) denotes the eigenvalue of the operator of quantum multiplication by
quantum tautological bundle T (z) for the eigenvector Y, (z), dots stand for the
terms vanishing in the limit g — 1.

For the proof of this theorem we will refer the reader to [44], where it is proven in
the case of a single variable z, when X is T*Gr(k, n). Current theorem is a direct
generalization.

Part (4) of the Theorem above immediately implies that the eigenvalues of the
operator of quantum multiplication by 7 (z) can be computed from the asymptotics of
the bare vertex functions.

Corollary 2.17 The following expression:

()
V,
qg—1 Vp (Z)

(20)

gives the eigenvalues of the operator of quantum multiplication by T (z) corresponding
to a fixed pointp € X'.

3 Computations for partial flags

In this section we will study in detail and apply the formalism which we have developed
in the previous section to the case when Nakajima quiver variety X is the cotangent
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bundle to the space of partial flags. In other words, we are interested in studying
quantum K-theory of the following quiver of type A,>

Win—1

@ L 4 L 4
Vi1 V2 cee Vp—l

The stability condition is chosen so that maps W,,_; — V,_; and V; — V;_
are surjective. For the variety to be non-empty the sequence vy, ..., v,_1, W,_1 must
be non-decreasing. The fixed points of this Nakajima quiver variety and the stability
condition are classified by chains of subspaces spanned by coordinate vectors V| C
... C V1 C Wy_y, where |V;| =v;,W,_| = {ay,...,aw,_,}. The special case
when v; = i, w,_1 = n is known as complete flag variety, which we denote as
F1,. It will be convenient to introduce the following notation: vlf = Vj41 — Vi—1, for
i=2,...,n =2,V _| =Wy | —V,—2,V] = V2.

Remark In principle, in the computations below one could add extra framings to
vertices to study the most generic situation in the setting of A, quiver, but we shall
refrain from doing it in this work to make calculations more transparent and simple.

3.1 Bare vertex for partial flags

The key for computing the bare vertex is the localization theorem in K-theory, which
gives the following formula for the equivariant pushforward, which constitutes bare

vertex Vp(r) (2):

V@ = > SO0 g HE (7).
O AL CLT—

Here the sum runs over the T-fixed quasimaps which take value p at the nonsingular
point p>. We use notation § for the Okounkov’s roof function defined by

A 1 A P
s(x) = Ry L s(x+y) =5(x)5(y).
and it is applied to the virtual tangent bundle:
x(d) = charT< s %71)01\/1"). Q1)

The condition d € Z’;O is determined by stability conditions, which characterize
all allowed degrees for quasimaps.

2 We are using standard quaternionic notations.
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It will be convenient to adopt the following notations:

p) =[]0 -¢'x). {x}dz(h/x—’q)d(_qlﬂh—lﬂ)d’ where (x, q)q = ¢(x)

b (@/x.9)a 9qix)

The following statement is true (for the proof see section 3.4 of [44]).

Lemma 3.1 The contribution of equivariant line bundle xq=¢O(d) C P to x(d) is
{x}a.

To compute the vertex function we will also need to classify fixed points of
QMﬂonsmg - Such a point is described by the data ({¥;}, {#,-1}), where deg¥; =
di,deg#;,_1 = 0. Each bundle ¥; can be decomposed into a sum of line bundles
Vi =00di1)®... 0 0y,) (hered; = d; 1 + ...+ d,y,). For a stable quasimap

with such data to exist the collection of d; ; must satisfy the following conditions

® di >0,
e foreachi = 1,...,n — 2 there should exist a subsetin {d; 1,1, ...dit1,v;,} of
cardinality v; {di+l,j1 e -di—&-l,jv[. }, such that d,"k > di+l,jk~

To summarize, we will denote collections satisfying such conditions as lying in a
chamber d; ; € C.
Now we are ready to sum up contributions for the entire vertex function.

Proposition3.2 Letp =V C--- C V,—1 Cla1,...,aw, ;} (Vi ={xi1,...Xiy;})

be a chain of subspaces defining a torus fixed pointp € X'. Then the coefficient of the
vertex function for this point is given by:

V0@= ) NP EHG v g7,
d,'.jGC

where d = (dy. ....dy_1).d; = Y, d; j. N(@) = Vid;,

n—1 v;

E = 1_[ {)Cj"//x, k}d, i—di
i=1 j,k:l
Vi

= ]‘[{xn Lilad, ;s

j=1 k=1
n—2 Vi Vil
1_[ l—[{xl J/xl-H k}dz j—dit1k*
i=1 j=1k=1

Proof For the proof we need to gather all contributions &2, which separate into 3 types:
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P = W,1®w_1+2 Vi ® ¥ — Z%*@%

i=l1 i=1
so that their input in the localization formula is as follows.

Vn—1 Wn—1

Vi ® Vs — [ [[onri/anda, s
j=1 k=1

Vi Vitl

’7/*1 ®Y — l_[ l_[{xl //-xl-’rl k}d,j—dl+1k7
j=1k=1

n—1 v;
et — [ [1 {xi,j/xi,k}gz}j_

i=1j,k=1

Note, that deg(%?) = N(d). That gives the polarization term ¢V @/2 in the vertex. O

The same formula for the vertex can an be obtained using the following integral rep-
resentation [3,4]. It is very useful for a lot of applications, in particular for computing
the eigenvalues 7p(2).

Proposition 3.3 The bare vertex function is given by

n—1 v; In(Z" )ln(vl]) n—1 v; ds: :

- i,j

V(T)( ) = 1_[ TH@  EinGintHimT(s1, -+, 5%) 1_[ l_[ ,
2ma Si i

=1 j=1 i=1j=1 "/

where

Eine = —,

—2Vit1 Vi (;]7 Sik )
Si+1,j
o = TTTTTT !

Sik
i=1 j=1k=1 @(Y[i,,)

n—1v; I Ings; ;)
ap = 1_[ l_[ e In() EintGint Hint
i=1j=1

9
Sij=XiLj
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and the contour Cy runs around points corresponding to chamber C, which we have
defined after Lemma 3.1, and the shifted variable z* = z(—hl/z)dﬂ(‘y) 3,

3.2 Bethe equations and baxter operators

We are now ready to compute the eigenvalues of the operators corresponding to the
tautological bundles.

Theorem 3.4 The eigenvalues of T(z)® is given by t(s; k), where s; i satify Bethe
equations:

V2 } Vi L
1—[ Stk = S2j _ Z](—hl/z) 4 l—[ S1,j Sl,kh7

S1x — hso s1.ih—s
i1 SLk 2,j i1 SL 1.k
J#k
Vigl Vil Vi
l_[ Sik = Siyl,j si—1,j — hsik — 2 hl/z)—v; l—'[ Sij— Sikh
- 1 - - < 9
G Sik = hSiqn 5 Sic1j = Sidk Gy Siil = sik
ik
Wn—1 Vn—-2 h , Vn—1 h
1—[ Sp—1,k — dj Sp—2,j — NSn—1,k i hl/Q)—VH 1—[ Sn—1,j — Sn—1,k
=Zp-1(— —_—
joi Sn—lk = haj S Sn-2. = Sn-1k j=1 Sn—1,j = Sn—1,k
J#k
(23)
wherek = 1,...,vifori =1,...,v,_1.

Proof There are several ways of obtaining these equations. One way corresponds to
the study of asymptotics of (20) as it was done in section 3.5 of [44]. However, there
is a shortcut recently provided by [4]. One chooses a preimage of the class 7X in
K11, 6Ly xGLW,_p)(pt) under the Kirwan map, so that a; are coordinates of the
torus acting on W,_; and s; x are coordinates of the torus acting on V;. In this case we
have

TX = T(T*Rep(v.w)) — » (I + I)End(V;)

iel
n—2 vi Viyi Vn—1 Wn—1
ST YN (S ) 5T (et )
l+lj Sik i Sn—1,k

i=1 k=1 j=1 k=1 j=1

. . 1 .
3 Note that here we are using the notation defined for z for (—h /2), ie.

n—1
T+
i=l1

1 ’
=z (=n N



Quantum K-theory of quiver... Page 21 0f40 87

vi

s
SR IO Dl
iel jk=1 "tk

(24)

To get Bethe equations we use the following formula from the Appendix to [4]:

0
5<Si.k—TX> =z,
' asl‘,k

nj
where @ (}_nix;) =[] (xil/z _ xi—l/z) ' .

The equations (23) are Bethe ansatz equations for the periodic anisotropic gl(n)
XXZ spin chain on w,,_ sites with twist parameters 21, .. ., 2,1, impurities (shifts
of spectral parameters) ay, .. ., dw,_,, and quantum parameter A, see e.g. [8], [45].

Let us consider the quantum tautological bundles A¥V;(z), k = 1,...,v;. Itis
useful to construct a generating function for those, namely

Qi) = S (=D ¥ hT ARV (2). (25)
k=0

The seemingly strange & weights will be necessary in Section 4. In the integrable
system literature these operators are known as Baxter operators [5,45]. The following
Theorem is a consequence of (20).

Proposition 3.5 The eigenvalues of the operator Q; (u) are the following polynomials
inu:

Qi) = [T — hisip, (26)
k=1

so that the coefficients are elementary symmetric functions in s; i for fixed i.

Remark To obtain the full Hilbert space of a gl(rn) X X Z model one has to consider a
disjoint union of all partial flag varieties with framing W,,_; fixed, so that in the basis
of fixed points the classical equivariant K-theory can be expressed as a tensor product
C"(a1®C"(a2)®. ..C"(aw,_, ), where each of C" (;) is an evaluation representation
of Uy, (E[(n)), see e.g. [37]. There is a special interesting question regarding universal
formulas for operators Q; (#) which we used in [44] for gl(2) mo/c\lel, corresponding
to prefundamental representations of the Borel subalgebra of U (gl(n)) [15].

3.3 Compact limit

In this section we study the limit of 7 — oo of the vertex functions and the Bethe
equations. We recall that A is the equivariant parameter of the torus which scales the
cotangent directions in T* Fi,. Later in Sect. 5 we also show that the limit 4 — oo
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of the ring QK7 (T*F1,) coincides with the quantum K-theory ring of complete flag
varieties computed by Givental and Lie in [23]. It is thus natural to call A — oo - the
compact limit.

In order to make the limit 7 — oo of vertex functions and Bethe equations well
defined, we also need to rescale the equivariant parameters z; by powers of . Here is
the exact procedure:

Theorem 3.6 In the limit i — oo with Kihler parameters {z} scaled so that {z*}
remains fixed

(1) the vertex functions (22) have well defined limits.
(2) The limits of Bethe ansatz equations exist and take the form

j= j:l =1,k Tl

sk = Sid Sik Y —sik

1_[ 11_[ =Zul' l_[ —=, k=1,...,v;,
j=1 Si+1,j j= Si—1,j — Sik J=1,j#k Sij

i=2,....,.n—2,

Sk =S, o =Stk

||7’ ’]=Zﬁ1 || —, k=1,...,v].
N =1, j £k sl,j

= J=5]

27

Proof When applying the localization theorem to compute the bare vertex for the
cotangent bundle to partial flags we can break up the terms in pairs of the form
(w, @~ 'h). The latter corresponds to the cotangent fiber. The contribution of such a
pair to the vertex will be equal to:

1 1 1 _p'
w'r — =" (ho)'2 = (hw=1)~'/)2 T 1wl -k le!

Therefore after rescaling by (—hl/ 2), which corresponds to expressing z in terms of

% will be equal to ]7610 — in the A — oo limit, that is exactly the contribution of @
in the case of the partial flag variety. One can check that the resulting sum is indeed
finite by looking at the integral formula for the vertex (22). Namely, the integrand in
the expression for the vertex after fiber removal is as follows:

f = T1 1 o(22),

i=1 jk=1

Wn—1 Vn—1

Gint — l—[ l_[ (vn lk)

j=1 k=19
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n—=2Vigl Vi
Hu = [T 75
Si k
i=1 j=1k= 1(p(51+1/>

In order to obtain the corresponding Bethe equations, one can again compute g — 1
asymptotics or just simply evaluating the limit 74 — oo of (23) while expressing z in
terms of z;. |

4 The XXZ/tRS duality
In this section we discuss the duality between XXZ spin chain and trigonometric
Ruijsenaars-Schneider (tRS) model which first appeared in physics literature [9,19]. It

was there referred to as quantum/classical duality. Here we will prove main statements
of [9].

4.1 The XXZ spin chain

To start let us change the Kéhler parameters in Bethe equations (23) according to

!
1=,
[¢)
Z,'zi, i=2,...,n—2
Gitl
Zaor = 221 28)
n
In what follows we shall treat Kéhler variables ¢; as formal.
Additionally after rescaling Bethe roots and equivariant parameters
Gik=hisig, i=1...n—1, a=hiq, (29)

we arrive at the following set of equations which is equivalent to (23)

1
€1 1—[ hota —o1p 4 9La —hPoog _ 1)
ﬂ;éah 1, — Ol,a p=1 Uzﬁ—hl/zo‘lﬂ 7
G Vil w—h /201 g Vi hoi o — 0 s Vitl o —ﬁ1/201+1 8

= (D%,

§t+1 /310‘11/3 FL/ZJ,a Bta hazﬂ Oi,« ﬂlgl"‘lﬂ h/ZUla

Wn—1

- .an On—l,a—N /20,1_2,,3 1—[ hoy—1,a0 — on—1,8 1_[ On—1l.o— B /2 ag 1y
&n p=1 Uan,ﬂ—ﬁ]/ztfnfl,a Fwn—l,ﬁ—(fn La L ag— n'l20,_ Lo ’

(30)
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where in the middle equationi = 2, ...,n—2and§; = v;_1+V;+V;4+1 — 1. Thereader
may notice that we use slightly non-standard notation for Bethe equations, in particular,
parameters ag appear in the last equation i = n — 1 (instead of the first equation).
Sign factors (—1)% in the right hand sides are artifacts of this choice. However, as we
saw in the previous section this way of writing the equations is more convenient from
geometric point of view. Later we shall see that this framework will be convenient in
the derivation of the Lax matrix of the trigonometric Ruijsenaars-Schneider model.

Meanwhile, if we denote vo = 0,v, = w1, 05,8 = agfor g =1,...,w,_
then (30) can be written more uniformly as follows

Vi—1 1 Vi Vit1 1
Si 0ia —h P0i1p hoi,« — oi p Oia —h 0it1p

i1 B=1 0i—1,8 — hl/zai,a Ba hUi,ﬂ — Oia B=1 Oit1,8 — ﬁl/ZO'i,a
(3D

Following (26) let us write eigenvalues Q;(u) of Baxter operators in terms of
the new variables and complement it with Q, (u), being the generating function for
elementary symmetric functions of equivariant parameters.

Vi Wn—1
Qiw)=[](u—-0ia), P =0uw)=]]w—ad). (32)

a=1 a=1
In addition, we define shifted polynomials when their arguments are multiplied by

h’% to the corresponding power: QE”)(u) = Q; (h’%u), etc.
Then Bethe equations (31) can be expressed in terms of these polynomials as follows

Lemma 4.1 The equation for Bethe root o;  in (31) arises by setting u = o0; o in the
equation below

D =2 51
Bt G Qa9 Qi 1 33
G 0@ o T (33)
tiv1 0P 0% 0

i—1 i+1
where Aj = vi11 +vi_1 —2v;.

Note that sign §; disappeared.
In order to proceed further we need to rewrite (33) in a slightly different way.

Proposition 4.2 Suppose that ¢i.1 ¢ hN¢i for all i. Then the system of equations

~ i—1 A
(33) upon change of parameters ¢; = ¢ h- )Y

—_I
i=1"2" is equivalent to the existence of
auxiliary polynomials Q; of degrees vi_y — v; + v;1| satisfying the following system
of equations

~

5100 — 500N = (G — ) Qi1 Qi (34)

The polynomials éi (u) are unique.
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Proof Let g(z) = 0:(2)/Qi(2) and f(2) = (G141 — ) 0\, 0 s0 that (34) can be
written as

~ ~ ()
Cingi(@ —LigP () = f—@) (35)
Qi(2)Q;” (2)
Then we have the following partial fraction decompositions
f(@ a
= = h(2) - +
0207 (2) ZZ“" “ Z - o (36)

8i(2) = &) + Z

Z—0jaq

where %(z) and g;(z) are polynomials. In order for the residues at each o; , to match
on both sides of (35), one needs

dy = = = =2 (37)

The second equality is merely the Bethe equations (33) in the alternate form

(=2)
Resg, , |:_~ _f@ @) :| + Res,, , |:~—({2) @ :| =0, (38)
¢i+10i(2) 0,7 (2) 60, T (@0i(2)

or, equivalently,

IPNE) bl D)
(Q o o Qz+1> o (39)

= 2 2
§i+1Q§) zo?

Oi.a

Next, to solve for the polynomial g;(z), set g;(z) = Y_r;jz/ and h(z) = Y_s;z/. We
then obtain the equations r ({l +1h™ J— {,) = 5. Our assumptions on the ¢’simply that
these equations are always solvable. Thus, there exist polynomials Q, (z) satisfying
(34) if and only if the Bethe equations hold. The uniqueness of é,- (z) follows from
the uniqueness of the coefficients of g; (z). O

Remark 1t is worth noting, that the operators, whose eigenvalues are 0O, are not just
auxiliary, but have a geometric meaning. Namely, they correspond to the generating
functions of quantum tautological classes of exterior powers of the flop flag variety,
i.e. Viv, so that the sequence 0 — V; - W,_| — Vl.v — 0 is exact.

From now on let us study solutions of Bethe equations corresponding to complete flag,
namely for v; =i in (31) and w,,_| = n.
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Proposition 4.3 The system of equations (33) for v; = i is equivalent to the following
system of equations

100N — 00N = (41 — ) Qi1 Qg - (40)

Indeed, in this case A; = 0andZ; = ¢;.

4.2 Construction of the tRS Lax matrix

Here we shall find a general solution for Q; (the so-called Baxter polynomials) which
solves (40). First we need to prove the following (variables y1, ..., yx—1 are assumed
to be formal variables)

Lemma4.4 Let f1, ..., fxr—1 be polynomials that do not vanish at 0, and let g be an
arbitrary polynomial. Then there exists unique polynomial fy satisfying

2 02k
fi Vlf( ). 1( )

g=det| : 1 - . @1)
fi J/kf( . fk( 220

where the numbers in the parentheses in the superscripts denote multiplicative shifts
of the argument of the corresponding polynomials, i.e. fl.(_2) (u) = fi(hu). Moreover,

if g(0) # 0, then fi(0) # 0.

Proof Let V(y1, ..., yx) denote the k x k Vandermonde matrix.
1
1 Vi yljl
1
1 Vi_,' ylj,

We recall that this determinant is nonzero if and only if the y;’s are distinct.
Set fj(z) =) aj;z' and g(z) = ) _b;z', and let F denote the matrix in (41). We
show that we can find ay;’s recursively. Expanding by minors along the bottom row,

we get g = Zl;zl(—l)k“'j det Fy ; fk(j_l). First we equate the constant terms. This
gives

m=w)ﬂw)2(wﬂ Ydet Vyr. . vk

k—1

= aro Haj() det V(yi, ..., v&) .
j=1
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Since the y;’s are distinct, the Vandermonde determinant is nonzero. Moreover, a jo #
Ofor j =1,...,k — 1. Thus, we can solve uniquely for ayg. In particular, if by = 0,
then aio = 0.

Now we need to make an inductive step. Assume that we have found unique ay,
for r < s such that the polynomial equation (41) has equal coefficients up through
degree s — 1. We now look at the coefficient of z°. The only way that ay, appears in
this coefficient is through the constant terms of the minors Fy_ ;. To be more explicit,
equating the coefficient in front of z* in (41) expresses ¢ aks as a polynomial in known
quantities, where

k—1 k

c=]]ajo | D DBy det Vin, -1 B ok
j=1 j=1
k—1

= l_[ajo det V(yi, ... Vi1, B w).
j=1

The condition on the y;’s implies that the Vandermonde determinant is nonzero, so
there is a unique solution for ay. O

Proposition 4.5 Given polynomials Qj, Pij for j = 1,...,n satisfying (40), there

exist unique monic degree one polynomials q1, . .. q, such that
det(Ml,__”]) - det<M1 ,,,,, j_1,j+1>
Qju)=—7—"—, Q)= , (43)
det(V1 ,,,,, j> det(Vl ,,,,, j—1 ]_H)
where
(=D (j=3) j=1 (1=}
q;, gilqil §i1 i
Mil ..... ij = s Vil ..... ij:V(gilan-’{ij)’
(=D (=3 j=1_(1=))
G Siudiy S 4
(44)

where the Vandermonde matrix in the last equation is given by (42).

Proof Let us observe that since P and Qy (32) do not vanish at O since Bethe roots
and equivariant parameters are formal variables: Qx(0) # O for all k. This implies that
01 (0) # 0 for all k as well; otherwise, by (40), either Q_1 or Q41 would vanish at
0.

One can then see that the desired structure of Baxter polynomials Q4 and @k
emerges if we solve the equations iteratively. From the first equation from (40) we get

I T
=& ’

(05 (45)
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In what follows we relabel Q1 = ¢ and él = ¢». From the formula it is obvious that
both polynomials ¢g; and g, are monic of degree one:

q1 =u — pi, qQ=u—p2,

where due to the above reasoning their roots p; and p, are nonzero complex numbers.

Next, suppose that for 2 < k < n — 1, we have shown that there exist unique
polynomials g1, . . ., gx such the formulae for Q ; (resp. é j)in(43)holdforl < j <k
(resp. 1 < j <k — 1). Furthermore, assume that none of these polynomials vanish at
0. We will show that there exists a unique g4 such that the formulae for Q1 and
é x hold and that g (0) # 0. This will prove the lemma.

We use Lemma 4.4 to define gx41. In the notation of that lemma, set f; = qj(.k) and
yi=¢jforl < j <k, andset g = (detVy k)ék. By the inductive assumption
fi(0) # Ofor 1 < j < k, so there exists a unique f; satisfying (41). Moreover,
g(0) # 0,50 fr # 0. It is now clear that gx41 = fk(fl_l) is the unique polynomial
satisfying the formula in (43) for ék. Clearly gx+1(0) # 0.

To complete the inductive step, it remains to show that the formula for Qx4 is
satisfied. Recall that

dett/ = [] @-¢p. ij=1....k, (46)
I<i<j<k
which will be also the value for det(V;,, . ;) and
k—1
detViy i) =[] G=¢p[]@—=asd. iji=1,.. k.
I<i<j<k-—1 =1

(47)

Now we can plug in Q-polynomials from (43) into (40), which we want to verify. Using
the above formulae for the Vandermonde determinants we see that (40) is reduced to

(1 (=1 (=1 (1)
Ceyrdet My -detMy gy — Gdet My - det My " 4y

=det M x—1-det My i41, (48)

where we recall that the numbers in the parentheses denote multiplicative shifts of the

argument of g-polynomials by h=2. We will now prove that (48) is equivalent to the
Desnanot-Jacobi* determinant identity for matrix M 41, which can be written as
follows

.....

det M} | - det M¥ — det M} - det M* | = det M¥ 1 . det M . (49)
k—1 k k k—1 1,k

Here we denoted M = M x+1, (k+1) x (k+ 1) matrix of the form (44), and M} is
a submatrix which is obtained from M by removing a-th row and b-th column. Note

4 Desnanot-Jacobi-Dodgson/Lewis Caroll identity.
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that (48) has shifts of the g-polynomials, whereas (49) does not. However, due to the
periodic structure in the columns we can relate shifted £ x k matrices from (48) with
submatrices of M. Moreover, one can see that

I _ gk (D
My =M, M,

k
..... k—1k+1 = My (50)
but other matrices do not match directly, albeit they look similar. Let us multiply both

sides of (48) by ]—[f:_f ;. Then we can absorb this product on the left into matrices

Mf:j,)k—l,kﬂ and Ml(fl)k by multiplying each of its first k — 1 rows by ¢, i =

1,...,k — 1; while on the right we absorb it into matrix M ;. Additionally in
-1

.....

.....

the left hand side we absorb ¢ into the last row of M f
row of M 1(_1),( To summarize
k—1 k-1

-1 —1
Ck+1 1_[ g - detMl(,...,)kf],k+l = dethlfl , Ck 1_[ 19} -detM]( )k = detM]i ,

I=1 =
(6D

and

k—1
H{[ ~det My, k-1 =detM{c’;1’k, (52)
=1

so (48) is equivalent to (49). Therefore Qé relations (40) are equivalent to the
Desnanot-Jacobi identity provided that (43,44) hold. O

Finally we are ready to prove the main theorem which relates XXZ Bethe equations
with trigonometric RS model.

Theorem 4.6 Let L be the following matrix

B [Ti-; (ffl/zé“i - ﬁl/zé“k)

m Di - (53)
[Tz (65 = &)

ij

Then for each eigenvector of the operator of quantum multiplication by

QO 155 Tor o
_Qi—l(o)_h IAVi(@) ® A VY1), i=1,...,n 54)

the corresponding eigenvalue defines a unique solution of

Pu) = det(u - L) : (55)
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where P(u) is given by (32). This correspondence establishes a bijection between
solutions of (55) and the above eigenvectors.

Proof Using Proposition 4.5 we can put j = n in (43)

Pu)=——2. (56)

2i—n—1 2i—n—1

Let us multiply ith column of My, by i~ 2 .Since [[/_; A~ 2 =1 the deter-
minant of this matrix will remain unchanged, however, each matrix element will now
contain a monic polynomial in # of degree one, while the multiplicative shifts will be
applied to its coefficients p;. Let us call this matrix M| , (u). Notice that

,,,,,

M| ,w)=Vi ,-u+ M 0. (57)

.....

» as follows

Pu)=det(u-1—1L), (58)

where

L= - (Vi) . (59)

Straightforward computation shows that L is provided by (53). Indeed, the inverse of
the Vandermonde matrix reads

_ anfl‘,j(Clv‘-'5§l’l)
""" [T =

(60)

where

Sk, i€ty &) = Sk @1y -5 E—15 §it15 Gn)

and

n

Sk(§1,~~v§n)= Z ;h'"{ik'

I<ij<--<ix=n

Then we have

n+1-2t

(_M{,...,n(o))[,z =h 2




Quantum K-theory of quiver... Page310f40 87

Thus, according to (59)

n _1 1
n (_1)t+jhn+12—zr Sn_;,j(fl, L {n) nm#j (ﬁ /2§i —h /ZCm)
Lij=) 7 pi = T pi-
| J T [T — o

O

Along the way we have discovered a new presentation of the tRS Lax matrix in
terms of products of Vandermonde-type matrices (59).

It remains to prove that momenta p; which appear as roots of first degree poly-
nomials s; are given by formula (61) which provides geometric meaning of the tRS
momenta.

Lemma4.7 Given q;(z) = z — pi, i = 1,...,n in matrix M
following formula

n from (44) the

.....

_ 0O g0
0i-1(0) Ciml1 " Oicli—1

(61)

P =

Proof Let us evaluate matrix M
immediately follows

x(z) at z = 0 for k = 1,...,n. The following

,,,,,

M, x(0) = —diag(p1, ..., pi) - Vi,..k (62)
since (Ml’___,k(O))l.’j = —{ij_lp,- and (V1. k)i,j = g“l.j_l. Therefore, according to
Proposition 4.5

00 = det [ M1 k) - Vi ] = =1Fpr--pr. (63)
which proves formula (61). O

Matrix L is known as Lax matrix for the trigonometric Ruijsenaars-Schneider
model®. The theorem shows that its characteristic polynomial is equal to Baxter poly-
nomial P(u) whose roots are equivariant parameters ai, ..., a,. By expanding both
sides of (55) in u we find explicitly the tRS Hamiltonians Hi, ..., H,

det (u - 1 = L&, pi, ) = Y (=1 Hr (G, pi, u" ™", (64)
r=0

are equal to the corresponding elementary symmetric functions of the equivariant
parameters

Hr(é’ivpivh)=er(alv"'7al’l)v (65)

5 In the literature slightly different normalizations are sometimes used.
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where
e@,.a)= > Jla. (66)
Zcil,...,n) kel
IZ|=r
The phase space of the tRS model is described as follows. Parameters ¢y, . . ., ¢, and
their conjugate momenta p1, ..., p, serve as canonical coordinates on the cotangent

bundle to (C*)". The symplectic form reads

dpl dCi
Q= E . 67
Pi fi 7

Remark 1t was shown in [9] classical momenta p; can be determined from the (expo-
nentials of) derivatives of the so-called Yang-Yang function® for Bethe equations (30).
These defining relations describe a complex Lagrangian submanifold £ C T* ((Cx )n,
such that the generating function for this submanifold (€2 is identically zero on £) is
given by the Yang-Yang function. It is important to mention that relation of the spec-
trum of XXZ spin chains to Yang-Yang function was previously noted in the study of
quantum Knizhnik—Zamolodchikov equations [51].

Proposition 4.8 The Hamiltonians of the n-body tRS model are given by

—_ ly
H= Y Hi—ffﬂiﬂm, (68)
J

Ic{l,...n}iel keT
|Z|=r J¢Z

wherer =0, 1, ..., n. In particular,
Vo _ e gt n
H=TL= Zn%ﬁi, Hy=detL=[]pc. (69
i=1 j#i Y k=1

Note that Hy, ..., H, coincide with the classical version of the Macdonald differ-
ence operators.

Proof Let us first see how the proposition works in the case of 2 x 2 matrix, i.e. n = 2.
In this case the L-matrix looks like this:

ﬁfl/zé“l—ﬁl/zé“z h’l/zg“l—hl/zfl
S bl e 1 =%

(70)

W gon'hy gy
a-a =0 p2

6 Bethe equations arise as derivatives of the Yang-Yang function with respect to all Bethe roots o; .
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An elementary calculation shows that the statement is true and in particular, the deter-
minant of this matrix is equal to pjp> due to the fact that the second order pole in
(&1 — &) disappear. This will be relevant in the case of higher n.

To prove the statement in the case of general n we use the Fredholm decomposition:

det(u-1—L)=) u""(=1)TrA"(L), (71)
r=0

where A" denotes the exterior power. Clearly, Tr A" (L) is just the sum over all minors
of rank r. Let us look at the terms representing each minor in detail. The explicit
expression for each of them is given by the sum over the products of its matrix elements
accompanied by a sign. It is easy to see that the common divisor for such products is
exactly

. —e Rk
I # I (72)
ieT =& keT
j#1

where 7 is the number of indices representing the minor. Other terms involve products
with poles (§; — ¢;) where both i, j belong to Z. Let us show that all of these poles
disappear as in the 2 x 2 case. Note, that such pole (§; — ¢;) appears twice in each
product. Let us show that there is no such pole in the final expression. To do that let us
expand each minor using the row decomposition till we reach the 2 x 2 minor Ly; ;.
Clearly, this is the only term in this expansion containing such a pole, and by the same
calculation as in 2 x 2 case as above, it cancels out. Therefore, the coefficient of (72)
in the expansion does not depend on ¢; as one can deduce from counting the powers
of ¢; in the numerator and the denominator. To finish the proof one needs to show
that the resulting constant is equal to 1 for any Z. That is clear from the normalization
of “non-difference terms”, in numerator, which are responsible for pole cancellation,

namely g“,-(h_l/2 —hl/z). O

We are now ready to formulate the main theorem of this section. In (28) we can put
= 1 and express the variables ¢; via z; as

=sz, 2=Zi+1"'Zj—ls j>i. (73)
=) i

One can notice that the Hamiltonians { H,-} depend only on the momenta { p;} and the
ratios of the coordinates {¢;} and thus are the functions of the variables {p;}, {z;}.

Theorem 4.9 The quantum equivariant K-theory of the cotangent bundle to complete
n-flag is given by

ClaF',....af pE2 pE L pE [z, ., 2]
(R1,..., Ry)

OK7(T*Fly) =

’

(74)



87 Page 34 o0f40 P. Koroteev et al.

where Ry, ..., R, are the coefficients of the following polynomial:’
n
det(My._n)(u) — P(u) - det(Vi__) = ) _(=D)*u" Ry (75)
k=0

Proof The statement directly follows from Proposition 2.7, the fact that coefficients
of Q;-operators are generators of all tautological bundles, and Theorem 4.6. O

Remark We mention that in [49] (section 13) the authors conjectured the generators
and relations for quantum K-theory of cotangent bundles of flag varieties. In the case at
hand (full flags) we indicate that our formulas do coincide, thus proving the conjecture
of [49].

We also indicate that the relations between various limits of spin chain models and
many body systems were studied extensively in recent years within integrable systems
community, see e.g. [36], [10].

4.3 Dual tRS model from XXZ chain

In (68) tRS Hamiltonians are functions of quantum parameters {1, ..., {, and the
eigenvalues (60) are given by symmetric polynomials of equivariant parameters. It
turns out that there is a dual formulation of the integrable model such that these
parameters switch roles and is know as bispectral duality. We can show that from
starting from Bethe equations (31) we can derive the dual set of tRS Hamiltonians.

Theorem 4.10 Let L' be the following matrix

[Tz (hl/zai - h_|/20k>

!

T M@ a 7
where
P = h”‘én—lel_)f)(aj) ci=1.n. 77)
Q,_(aj)
Then Bethe equations (31) are equivalent to
H :=TrA"(L") = e (C1, ..., Cn) - (78)

In other words, diagonalization of the Lax matrix L' of the dual n-body tRS model
is equivalent to solving the same Bethe equations (31). We can see that bispectral
duality works in the following way on the level of Lax matrices

7 Notice that relations R; = 0 are nothing but tRS energy level equations H; = e; (see (65)) multiplied by
common denominator foreachi =1, ...,r.
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L;j(ala"'7an;g_17"'7§n’h’;p!l""’p’!1)=Lij(é-1’.'.’é-n;
a1,...,an,h71;p1,---,Pn)- (79

Note that in order to prove this theorem it is sufficient to study only one of the Hamil-
tonians, say Hll. Eigenvalues of the other Hamiltonians follow from integrability of
the model.

Proof See Appendix A2 of [19]. O

Remark Theorem 4.9 shows that defining relations for quantum K-theory of T*FI,
are equivalent to integrals of motion of the n-body tRS model. One can therefore ask
what which integrable system describes K-theory of cotangent bundles to partial flags
T*G/P. A procedure which leads to the answer was outlined in [9,19] and states the
following. One can define a restricted tRS model such that positions of some of its
particles are fixed relative to each other. This restriction defines parabolic subgroup
P C G. Thus the unrestricted tRS phase space corresponds arises when parabolic
subgroup P is replaced with a Borel subgroup B. Using a chain of specifications
of equivariant parameters or quantum parameters of Q Ky (T*Fl,) we can arrive to
quantum K-ring of the desired Nakajima variety 7*G/P. Depending on which set
of parameters is chosen, the original tRS Hamiltonians/Macdonald operators (68), or
their dual counterparts (78), will be used to define the corresponding K-rings. In recent
mathematical literature some progress in this direction was made in [49]. We plan to
return to these questions in the near future.

Remark The XXZ/tRS duality, which we have developed in this section, is a top ele-
ment in the hierarchy of spin chain/many-body system dualities, which were outlined
in [19]. A XXZ spin chain can be reduced to either the XXX spin chain or to the Gaudin
model. On the other side, a trigonometric Ruijsenaars-Schneider model can be reduced
to the rational Ruijsenaars-Schneider model or to the trigonometric Calogero-Moser
model. The dualities on this level of hierarchy will provide a description for quan-
tum equivariant cohomology of T7*G/B in terms of integrals of motion of rational
RS or trigonometric Calogero-Moser model, analogously to our quantum K-theory
statement (Theorem 4.6).

5 Compact limit of XXZ Bethe Ansatz and of tRS model

In this final section we shall compare our results, with the work of Givental and Lee [23]
where they give a description of the equivariant quantum K-theory ring of complete
flag varieties. In contrast with the approach of the present paper, the ring constructed
in [23] utilises the moduli spaces of stable maps. We denote the Givental-Lee quantum
K-theory ring by QK 7(_;/L (F1,) (here T’ is the maximal torus of U (n)). We show that
in the limit 4 — oo the quantum K-theory ring Q K1 (T*FI,) which we study in this
paper degenerates to a ring isomorphic to QK ?,L F1,).

In order to understand quantum multiplication in Q K7/ (T*Fl,) at h — oo we must
compute the corresponding limit of Bethe equations (23) which is given in (27). Then
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we will need to follow the steps of section 4 and present the resulting Bethe equations
as conditions for roots of a characteristic polynomial of a certain matrix, which will
appear to be the Lax matrix of difference Toda model [14]. In this way we arrive at
relations in QK (Fl,) from [23].

5.1 Five-vertex model and quantum toda chain

Using Baxter Q-polynomials we can present Bethe equations (27) in a more concise
form.

Lemma5.1 Ler

0w =[] _ =5, Mwi=0w=[]_w-a).

n
i=1

Then we can rewrite (27) as

Vi .
Qi+1(8i,x) [T,y si

#o_1\o —vio1—1
== =z (D% (s )" (81)
Qi—1(si—1.6) T[;Zy si+1,

where §; are given after the formula (30). As in the previous section we shall focus
on complete flag varieties for which v; = i, thus the exponent of s; x in the right hand
side of the above expression vanishes.

Remark Equations (27) generalize the result of [27] and serve as Bethe ansatz equa-
tions for the five-vertex model.

Using auxiliary Baxter polynomials we can rewrite (81) in the Q O form similarly to
(40).

Proposition 5.2 The system of equations (81) for v; = i is equivalent to the following
system

Qi) =300y upryy = Qi Oiw), i=1,....n  (82)

1

where zf = 3%, Qi(u), i =1,...,n—1are monic polynomials of degree one and
0:(0)
pi=— . (83)
0Qi-1(0)
Proof Analogous to the proof of Proposition 4.2. O

We can now formulate a statement which connects the five-vertex models with the
g-Toda chain in the same way as the XXZ spin chain is dual to the tRS model (Theorem
4.6).
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Theorem 5.3 System of equations (82) is equivalent to
M(u) =det A(u), (84)

where A(u) is the Lax matrix of the difference Toda chain. It has the following nonzero
elements

3
Aivri=1, Ai=u—p;, Ajiy= —u’ﬁ—“plﬂ (85)

1

Proof This statement can be readily proven along the lines of Theorem 4.6. O

5.2 Compact limit of tRS model

Note that the q-Toda Lax matrix A(x) cannot be obtained as a scaling limit of the
tRS Lax matrix (53). However, one can directly compute q-Toda Hamiltonians from
tRS Hamiltonians (69). This limit was already discussed in the literature (see e.g. [24]
p-13). In our notations this limit can be implemented as follows. First we rescale tRS
coordinates, momenta (68) and equivariant parameters (66) as follows

i = hg bi= 2 a; = h_%ai =dai. (86)

Recall that tRS Hamiltonians (68) were derived from XXZ Bethe equations (30) after
rescaling of the parameters (29). Therefore, in order to restore the original notations
of earlier sections, we need to take this into account. In particular, the new equivariant
parameters a; coincide with the original a; parameters, whereas the new momenta p;
reproduce (83).

Second, after taking i — oo limit, we obtain q-Toda Hamiltonian functions which
are equal to symmetric polynomials of a;

-Tod
HY Gl 3 Pl P) = € (a1, .., 0) (87)

where the Hamiltonians are

“Tod: Bi—1 || Vit
H;] oda _ Z H( dig—1 ) l_[pk’ (88)
I={i1<--<iy} =1 kel
Ic{l,...,n}
where ig = 0. For instance, the first Hamiltonian reads
¢ 3

-Tod i—
HY Oa:pﬁzpi(l__;l). (89)

1

i=2

Thus we have shown that the gl(n) five-vertex model is dual to the difference
Toda n-body system such that Bethe equations of the former (27) can be rewritten as
equations of motion of the latter.
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Finally we can formulate the main statement of this section. Analogously with
Theorem 4.9 we want to state the following theorem in terms of bona fide Kihler
parameters of the flag variety zf. We can put sz = 1land

3i C
=1l S=dyd ii ©0)
I1>j 3

#

and rewrite g-Toda Hamiltonians (88) via z; .

Theorem 5.4 At h = oo the ring QK1 (T*F1l,) has the following explicit description:
# # +1 +1 ] +1
(C[zl,...,zn_l, ay .0, P by ]

(H:]-T()da({pi}’ {Zf}) =er(ag,..., Cln))

QK7 (T*Fly)|,_., = . 9D

where Hrq_TOda are given in (88). In particular, this ring is isomorphic to the Givental-
Lee quantum K-theory of complete flag varieties from [23]:

QK7 (T*Fly)|,_. = QKFF(FLy).

Proof After comparison with (54) we can see that g-Toda momenta p; geometrically

—

correspond to quantum multiplication by class A/ V;(z) ® AJ=1V*;_;(z) of the flag
variety. Then, (91) follows from Proposition 5.2 and Theorem 5.3. Finally, we observe
that the generators and relations in (91) coincide precisely with those of Q K ?,L (F1,)
described in [23]. O

Remark The relations of quantum K-theory ring of flag varieties to relativistic Toda
chain was previously discussed by A. Kirillov and T. Maeno in an unpublished work,
see also [33], [25].

While this manuscript has been under review the following papers appeared which
further develop the correspondence between quantum K-theory and integrable sys-
tems: [16,29-31].
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