
TRUST XAI: A Novel Model for Explainable AI
with An Example Using IIoT Security

Maede Zolanvari∗, Zebo Yang∗, Khaled Khan†, Raj Jain∗, and Nader Meskin†
∗Department of Computer Science and Engineering, Washington University, St. Louis, MO USA

†Department of Computer Science and Engineering, Qatar University, Doha, Qatar

Abstract—Despite AI’s significant growth, its “black box”
nature creates challenges in generating adequate trust. Thus, it
is seldom utilized as a standalone unit in high-risk applications.
Explainable AI (XAI) has emerged to help with this problem.
Designing effectively fast and accurate XAI is still challenging,
especially in numerical applications. We propose a novel XAI
model named Transparency Relying Upon Statistical Theory
(TRUST) for XAI. TRUST XAI models the statistical behavior of
the underlying AI’s outputs. Factor analysis is used to transform
the input features into a new set of latent variables. We use
mutual information to rank these parameters and pick only the
most influential ones on the AI’s outputs and call them “repre-
sentatives” of the classes. Then we use multi-model Gaussian
distributions to determine the likelihood of any new sample
belonging to each class. The proposed technique is a surrogate
model that is not dependent on the type of the underlying AI.
TRUST is suitable for any numerical application. Here, we use
cybersecurity of the industrial internet of things (IIoT) as an
example application. We analyze the performance of the model
using three different cybersecurity datasets, including “WUSTL-
IIoT”, “NSL-KDD”, and “UNSW”. We also show how TRUST
is explained to the user. The TRUST XAI provides explanations
for new random samples with an average success rate of 98%.
Also, the advantages of our model over another popular XAI
model, LIME, including performance, speed, and the method of
explainability are evaluated.

Index Terms—Explainable AI (XAI), Artificial Intelligence,
Transparency, Statistical Modeling, Gaussian Distributions

I. INTRODUCTION

THE impact of artificial intelligence (AI) on today’s
technological advancements is undeniable. Despite the

popularity of AI, it is limited by its current inability to build
trust. Researchers and industrial leaders have a hard time
explaining the decisions that sophisticated AI algorithms come
up with because they cannot fully understand why and how
these “black boxes” make their decisions.

Trusting AI blindly impacts its applicability and legitimacy.
Based on Gartner’s predictions, 85% of the AI projects until
2020 will produce inaccurate outcomes resulting from the
organization’s limited knowledge of the deployed AI and its
behavior [1]. Also, the increasing growth in implementing
AI has raised concerns of 91% of cybersecurity professionals
about cyberattacks using AI [2]. In the medical field, dedicated
AI algorithms are able to precisely (sometimes even more ac-
curately than a medical doctor) detect rare diseases. However,
due to the lack of AI’s decision transparency and explainabil-
ity, the results are not considered trustworthy enough to be
utilized in practice [3]. A 2018 global survey shows that more

than 67% of the business leaders do not trust AI, and they
believe AI’s ambiguity will have negative impacts on their
business in the next five years [4].

Designing self-explanatory models has gained much atten-
tion recently. Explainable AI (XAI) deals with psychology and
cognitive science to provide transparent reasonings for users
[5]. Based on how the underlying AI is designed and what
the input types (image, text, voice, numerical data) are, the
methods of explainability differ.

XAI can be applied either by using interpretable models as
the underlying AI model or by developing a separate explainer
working in parallel with the underlying model to explain its be-
haviors. However, learning performance and explainability of
the model usually have an inverse relationship. Better learning
performance comes with more sophistication in finding high-
level relationships in the data features, as such it becomes more
challenging for the individuals to grasp its rationality. There-
fore, choosing interpretable models as the primary AI yields a
significantly impeded learning performance. Hence, surrogate
explainers are better suited to successful XAI implementation.
They are independent and do not affect the performance of the
underlying AI model.

It is important to note that, in the XAI domain, it is not
expected that the explanation would be in layman’s terms.
Most of the available research work uses another learning
model (that is more easily understood than the underlying
AI) as the surrogate explainer. Therefore, they have assumed
that the user is an expert in the AI model’s internal working
and knows the mathematics behind it. Here, we argue that
statistics are much more easily verifiable and explainable than
AI. Therefore, we propose using statistical models to simplify
the explaining process.

In this paper, we propose an XAI model that provides trans-
parency, relying upon statistical theory (TRUST). The TRUST
XAI is a surrogate explainer that provides interpretability
without sacrificing the performance of the underlying model
or putting any restrictions on it. The explainer does not depend
on the type of underlying AI in any way; thus, it is completely
model-agnostic1. Our proposed explainer, alongside the under-
lying AI, will be able to contribute in future deployments of
AI as a standalone unit that not only demonstrates high-level
performance, but is also transparent, independent, and reliable.

1This simply means the XAI does not care about the underlying AI
algorithm. All it requires is being able to probe the model with any arbitrary
input and get the output from the “black box”.

1

IEEE Internet of Things Journal, 21 October 2021

Fig. 1: Integrated TRUST explainer in an AI-based system.

While (a) can be very complex and non-interpretable, (b)

should be as easily interpretable as possible for humans.

Most of the research so far in the XAI domain has been

done for image-based applications. However, there are critical

applications such as IoT and network security that primarily

deal with numerical data. One of the distinctions of the TRUST

explainer is that it applies to numerical data.

The TRUST technique works solely with the feature sets

and the outputs from the underlying AI. If the underlying AI

is modeled as shown in Figure 1 on the left side, our proposed

novel explaining technique is represented on the right using

a background with diagonal stripes. The first step builds the

core of the explainer, and it has to be calculated just once, and

only the last two steps (marked with a dashed line square) are

required for explaining new data instances.

To provide a practical instance, we use our dataset,

“WUSTL-IIoT,” generated from our industrial IoT (IIoT)

testbed. We have also tested the performance of the model on

two other datasets,“NSL-KDD” and “UNSW”. We empirically

prove that our proposed XAI model is successful at explaining

the labels predicted by the underlying AI in the matter of few

milliseconds. Moreover, for the sake of comparison, we have

implemented and applied local interpretable model-agnostic

explanations (LIME) on the three mentioned datasets. Our

results show LIME is much slower than our model and is

not practical for real-time applications or dealing with a large

number of samples.

The contributions of this work are as follows:

• We propose a novel, highly accurate technique that re-

quires no compromise in the selection or performance of

the underlying AI, while it provides transparency in the

model’s results.

• Our TRUST technique is very fast at reasoning the AI

model’s behavior, and therefore, it can be counted as one

of the first XAI models suitable for real-time numerical

applications.

• We plan to release our IIoT security dataset for use by

other researchers in the emerging field of XAI. We have

confirmed the integration of the underlying AI with our

TRUST XAI on the dataset and will release both the

codes and the dataset to support the research community.

II. RELATED WORK

Feature importance is the most commonly utilized method

of explainability [6]. It is one of the basic techniques to find

the key features impacting the AI’s outcome. Feature selection

is useful for data preprocessing [7]. However, when used as an

XAI technique, there is no way of evaluating the performance

of the explainer.

In [8], the SHAP (SHapley Additive exPlanations) values,

originally developed by [9], are used to explain the predictions

made by the underlying model in network security. The results

of the XAI model are presented as which features are more

indicative of the class of data. In [10], a feature importance

technique, layer-wise relevance propagation (LRP), is used

for explainability. The method applies only to deep neural

network (DNN) models, hence, it is not model agnostic. In

[11], a feature recalibration technique, AdaCare, is developed.

As a part of AdaCare, important features are utilized to include

interpretability for decompensation and mortality predictions.

In [12], a survey on available approached utilized for XAI

is provided. Related challenges and future directions are also

discussed throughly. One of the main focuses of this paper is

dedicated to XAI in the medical domain and how the black-

box nature of learning models impacts the legitimacy of their

outputs. It shows the urgency of having clarity on how the

utilized AI makes it decisions to prevent exploitions with

malicious intent.

In [13], an adversarial technique is utilized as a means of in-

terpretability. The method calculates the minimal adjustments

to the important features’ values of a misclassified sample

until the underlying AI changes its prediction. However, the

proposed method is semi-agnostic, where it only works for

the AI models that have a defined gradient cross-entropy loss

function. Additionally, no performance assessment is provided.

Finally, LIME, which is used as a benchmark XAI in this

paper, is introduced in [14]. It generates local surrogate models

for each instance to explain its label. For each instance, a new

dataset is synthesized which consists of samples with feature

values drawn from a normal distribution with a mean and stan-

dard deviation corresponding to that instance. The underlying

AI then labels the synthesized samples. Also, they are assigned

weights based on their distance from the instance of interest.

Next, a simple interpretable learning model (usually a linear

regression model) is trained with the new synthetic dataset

to explain the outcome of the underlying AI for that specific

instance. Later in this paper, we compare the performance of

LIME with our TRUST model and show how our model is

superior in terms of both speed and performance.

2

TABLE I: Symbol Table

Symbol Description
N Number of observations in the training dataset
C Total number of classes
c Index indicating class number, c ∈ {1, ..., C}
Nc Number of observations classified by the underlying

AI as being in class c,
∑C

c=1Nc = N

K Total number of features used in the AI model
k Number of representatives in the XAI model, k � K

i Index indicating the feature number, i ∈ {1, ...,K}
for the AI model and the representative number i ∈
{1, ..., k} for the XAI model

fi ith feature
F c
i Random variable of ith factor for class c, F c

i ∈ RNc×1

Fi Vertical concatenation of {F 1
i , · · · , FC

i }
Rc

i Random variable of ith representative for class c, Rc
i ∈

RNc×1

Ri Vertical concatenation of {R1
i , · · · , RC

i }
rcj,i Rc

i value in the jth observation, j ∈ {1, ..., Nc}
rc
i Vector of observations belonging to random variable

Rc
i

Rc Nc × k observation matrix consisting of rcj,i values
arranged so that the column i consists of rc

i ’s values
Mc

i Number of modes of Rc
i in its MMG distribution

wi Importance coefficient of Ri

λc
i Eigenvalue of F c

i

III. PROPOSED TRUST EXPLAINER

Our goal is to explain the rationale behind the data labeling
of the main AI model. Statistical techniques are applied to the
AI’s outputs. Table I presents the symbols used in this paper.

A. Problem Formalization

Our XAI model produces a set of vectors called “repre-
sentatives” from the training set. We make three assumptions
about the dataset and the representatives as follows.

Assumption 1: The statistical inferences made by the XAI
model must represent the data’s characteristics. Therefore, the
data used to train the underlying AI is also used to build the
TRUST model. If the AI model has to be retrained due to a
significant change in the data’s characteristics, the core of the
explainer must be rebuilt as well.

Assumption 2: The representatives must be mutually in-
dependent. This allows their joint probability function to be
the multiplication of individual probability functions. This
assumption simplifies our XAI technique and makes it easier
for human users to understand.

Assumption 3: Suppose for the ith representative Ri,
we have a sample rci with Nc observations belonging to
the class c. The distribution of these observations can be
approximated with good accuracy by a one-dimensional
multi-modal Gaussian (MMG) distribution with M c

i sub-
populations, which are called modes, with {µci,1, ..., µci,Mc

i
}

means and {σci,1, ..., σci,Mc
i
} standard deviations. In case of a

unimodal distribution, M c
i is equal to one.

B. Determining Representatives

We utilize factor analysis [15] to determine the representa-
tives. Factor analysis satisfies the requirements mentioned in
Assumption 2 and more. It provides a linear combination of the
dataset’s features. It also reduces the redundancy in the feature
space, and hence, our model is less likely to overfit. Further,
since these new independent latent variables are combinations
of the features, we still preserve the most valuable parts of
all the features. Factor analysis projects the feature values
onto directions that maximize the percentage of explained
variance in the data. Another advantage of this technique is
that the resulting factors are orthogonal. Therefore, they are
independent with zero covariations.

Suppose we have a feature set F = {f1, ..., fK}, where
K is the total number of the features. By running the factor
analysis for observations belonging to each class separately,
these factors are determined per class. For example, for class
c, factors {F c1 , ..., F cK} are produced. The pseudo-code of the
factor analysis function, FA, is presented as Algorithm 1. In
this algorithm, each data instance belongs to one of the C
classes.

In Algorithm 1, ρfi,fj is the Pearson correlation coefficient,
χ2
fi,fj

is the chi-square, and η2fi,fj is one-way ANOVA (one-
way analysis of variance) score between feature i and feature
j from the standardized matrix of Xc [16] and [17]. Lastly,
singular value decomposition (SVD) is applied to the relation
matrix RM c for factorization, removing the interdependen-
cies among the features, and projecting them in orthogonal
dimensions.

Algorithm 1 Factor Analysis
Function: FA
Input: Training Set: X 6= ∅ ∈ RN×K ;

AI Model: AI; Features Set: F
1: y ← AI(X)

2: Set labels of each row in X ← y
3: Divide X into Xc ∈ RNc×K sets per class
4: for each Xc do
5: Xc′ ← standardized (Xc) . So it has zero mean and unit variance
6: Build the relationship matrix (RMc) such that:
7: for each pair (i, j) in F(Xc) do
8: if fi & fj are both quantitative then
9: RMc

i,j = ρ2fi,fj
10: else if fi & fj are both qualitative then
11: RMc

i,j = χ2
fi,fj

12: else
13: RMc

i,j = η2fi,fj
14: end if
15: end for
16: {F c

1
′, ..., F c

K
′} & {λc1, ..., λcK} ← SVD(RMc)

17: {F c
1 , ..., F

c
K} ← unstandardized ({F c

1
′, ..., F c

K
′})

18: return {F c
1 , ..., F

c
K}

19: end for

We use the factors resulting from Algorithm 1 to pick the
“representatives” later in Algorithm 2. There is no need to
represent each class by its all factors. Based on the applications
and constraints, we can utilize only a few of them.

3

Fig. 2: Two-dimensional data with features highly correlated
with the labels

The effectiveness of a factor in distinguishing the class
label is not related to the percentage of explained variation of
the data λci by that factor. Suppose we have two-dimensional
data with their class labels on the third axis. An example is
demonstrated in Fig. 2. The attack class is shown by the red
points and class normal by the blue points. As seen in this
figure, since the variation in the y-axis values per class is not
large, the y-axis feature would not be considered important.
Therefore, in case of a dimension reduction or factor analysis,
separately for each class, the x-axis values would be the
primary axis representing each class’s samples. This is because
x-axis explains almost all the variation in the data points for
each class. Meanwhile, it is trivial to see that the class labels
could easily be distinguished by their y-axis values. Hence,
removing them or treating them as not important will cause a
great loss in the accuracy of the proposed model.

Therefore, we devised a method using correlation between
each factor and the class label to rank the factors and pick the
ones with the highest correlation. We use mutual information
(MI), which quantifies the amount of information one can get
about one variable by knowing the other. MI between the
factors and the class labels is calculated as

MI(y, Fi) = H(y)− H(y|Fi) (1)

where, Fi = [F 1
i
T
. . . FCi

T
]
T

is the vertical concatenation of
the ith factors of all the classes. The T superscript denotes
a transpose of the vector/matrix. MI(y, Fi) is the mutual
information between the class label vectors y and Fi. H(.)
is the entropy function, which is defined as follows.

H(y) = −
∑
c P (y = c) log(P (y = c)) (2)

For the sake of simplicity and not having to use differential
entropy (since Fi is not discrete), we bin the values in Fi
and ζi’s are the possible outcomes of the binned random
variable Fi. Suppose P (ζi) is the probability of Fi = ζi. The
conditional entropy, H(y|Fi), is calculated as follows.

H(y|Fi) =∑
ζi

P (Fi = ζi)H(y|Fi = ζi) =

−
∑
ζi

P (Fi = ζi)
∑
c

P (y = c|Fi = ζi) logP (y = c|Fi = ζi)

= −
∑
ζi

∑
c

P (c, ζi) log
P (c, ζi)

P (ζi)

(3)

We use the MI values as the importance coefficients for the
factors. Therefore, the importance coefficient for Fi, wi, is
equal to MI(y, Fi).

Then, we pick the first k factors with the highest wi values
as the“representatives”. Thus, they represent each class’s fea-
ture values and behavior. The choice of k provides a tradeoff
between the speed and the performance of the explainer. Large
k may result in a better performance and a lower speed
and vice-versa. The algorithm to select the representatives is
summarized in Algorithm 2.

Algorithm 2 Picking Representatives
Function: PR
Input: Training Set: X 6= ∅ ∈ RN×K ;

AI Model: AI; Features Set: F
1: {F c

1 , ..., F
c
K} ← FA(X,AI,F)

2: y ← AI(X)

3: for each i do
4: Fi = [F 1

i
T
, · · · , FC

i
T
]
T

5: MIi ← MI(y, Fi)

6: MIi
′ ← sort MIi in descending order

7: {Rc
1, ..., R

c
k} ← Pick top k factors with highest MIi

′

8: return {Rc
1, ..., R

c
k}

9: end for

C. Density Estimation

To study the statistical attributes of the representatives’
values, we approximate their density functions with one-
dimensional MMG distributions.

Suppose for all the data instances belonging to the training
set labeled as class c, Xc, by the black-box AI model,
representative Rci , i = 1, .., k, has M c

i modes. For now, assume
we know the value of M c

i ; we will discuss how to calculate
it later in the next section. Its one-dimensional multi-modal
probability density functions (PDF) can be modeled as follows.

pi(R
c
i) =

Mc
i∑

m=1

γci,mN (Rci |µci,m, σci,m) (4)

γci,m is the component weight of sub-population m for Rci
observations in class c. The

∑
m γ

c
i,m = 1, ∀c ∨ ∀i should be

satisfied, so the total area under the PDF normalizes to one for
every representative per class. Here we use the expectation-
maximization (EM) algorithm [18] to fit the representatives’
values to a proper distribution in form of Eq. 4.

4

Fig. 3: Approximating representatives to unique MMG distri-
butions for class c

Afterward, we end up with k×C distributions. These distri-
butions build the backbone of the explainer. Figure 3 shows the
approximation process for the values of class c representatives
as an example. The Rc = [rc1, r

c
2, ..., r

c
k] ∈ RNc×k equates to

the matrix of observations of the representatives of the class
c, where Rci is the random variable for the set of observations
rci .

Now, it is time to show how our XAI technique explains the
data instances labeled as a specific class by the AI model. First,
the likelihood of the new instance’s representatives belonging
to each class’s representatives is calculated. This likelihood
can be estimated by the density function value. The total
likelihood is the product of the likelihoods of all represen-
tatives. We apply a logarithm transformation to decrease the
computational complexity and compute the log-likelihoods.
By turning the multiplication to addition, we simplify the
computation and avoid any underflow or overflow. Suppose the
new instance is z = [z1, ..., zK] ∈ R1×K . The inputs to the
proposed XAI are only the representatives’ values. Therefore,
z is projected on the factors’ space and cropped to its cor-
responding representatives’ values z′ = [z′1, ..., z

′
k] ∈ R1×k.

The conditional likelihood of z′i, i = 1, .., k belonging to class
c can be written as:

pi(z
′
i|c) =

Mc
i∑

m=1

exp

(
log(γci,m)+log(N (z′i|µci,m, σci,m))

) (5)

After taking a logarithm from Eq. 5, the conditional log-
likelihood of z′i belonging to Rci is calculated by Eq. 6.

log(p(z′i|c)) =

log

(Mc
i∑

m=1

exp
(
log(γci,m)+log(N (z′i|µci,m, σci,m))

))
=

log

(Mc
i∑

m=1

exp
(
αci,m −

1

2
(
z′i − µci,m
σci,m

)2
)) (6)

where,

αci,m = log(γci,m)− log(σci,m)− 1

2
log(2π) (7)

αci,m,∀c ∨ ∀i ∨ ∀m is a fixed constant.
Subsequently, we calculate the weighted sum of these log-

likelihoods using the representatives’ importance coefficients.
The wi’s are normalized first. For the importance coefficient
of the representative Ri, we have:

ŵi =
wi∑k
i=1 wi

(8)

Therefore,
∑k
i=1 ŵi = 1. The log-likelihood of classifying

z′ as class c is computed as:

log(p(z′|c)) =
k∑
i=1

ŵi × log(pi(z
′
i|c)) (9)

Then, the predicted class for z, represented as `z , is ex-
plained as the class with the maximum total log-likelihoods:

`z = max
c

log(p(z′|c)) (10)

It is essential to notice that we are “not” modeling the
whole training set as a multi-dimensional (with features as
the dimensions) multi-cluster distribution, and then calculating
the likelihood of the new data belonging to each cluster (i.e.,
class), which is the basis of every clustering technique. Here,
we take a completely different approach. We approximate the
one-dimensional distribution of each representative and then
calculate the likelihood of the new instance’s representative
values belonging to the corresponding representative distribu-
tions for each class. Afterward, by the weighted sum of these
likelihoods for each class, we will have C likelihoods, each
resulting from k distributions. Then, the class with the highest
likelihood is picked as the explained class.

D. Selecting the Number of Modes

One important parameter in the TRUST explainer is the
number of modes for MMG distribution for each representa-
tive. In general, this number is different for each representa-
tive, and it can be optimized to increase speed and perfor-
mance. We use the grid search technique, which is a standard
method in determining hyperparameters in machine learning
techniques. Through grid search, for each representative, we
define the number of modes that maximizes the probability of
correctly distinguishing different classes’ samples. The choice
of M c

i for each representative is important since it has a critical

5

Algorithm 3 Grid Mode Selection
Function: GMS
Input: Representatives of all the classes:
{R1

1, ..., R
1
k} ∈ RN1×k, · · · , {RC

1 , ..., R
C
k } ∈ RNC×k;

Zone Z ∈ RC×C

1: y ← [ones(N1)
T , . . . , C × ones(NC)T]

T

2: for each set of (R1
i · · ·RC

i) do
3: Max ← 0

4: for m1 in Z do
5: MMG1

i ← fit R1
i to a Gaussian with m1 modes

6:
...

7: for mC in Z do
8: MMGC

i ← fit RC
i to a Gaussian with mC modes

9: Pm1 ← p1(Ri|MMG1
i)

10:
... . Ri = [R1

i
T
, . . . , RC

i
T
]
T

11: PmC ← pC(Ri|MMGC
i)

12: P ← [Pm1 · · ·PmC]

13: yMMG ← index(P.max(1))

14: scorem1,··· ,mC ← MCC(yMMG, y)
15: if scorem1,··· ,mC > Max then
16: Max ← scorem1,··· ,mC

17: M1
i ← m1

18:
...

19: MC
i ← mC

20: end if
21: end for

22:
...

23: end for
24: end for
25: return {M1

1 , ...,M
1
k} · · · {M

C
1 , ...,M

C
k }

role in how well the fitted MMG distribution works as a
density estimator. The pseudo-code of the method is shown
in Algorithm 3. This algorithm searches over a zone called
Z, which is simply a grid of integers starting from 1 to any
potential number of modes.

As seen in this algorithm, dimension of the search space
grows exponentially with the number of classes. Also, if
the number of modes or classes is large, the search zone
would be too large. Hence, the search could be very slow
and time-consuming. We have developed a faster algorithm
that divides the search zone into smaller sub-zones, Algorithm
4. At first, the probabilities of the centers of each sub-zone
as the number of modes are calculated. Then the sub-zone
with the highest score is chosen to search thoroughly. Even
though this algorithm might not give us the exact number
of modes, it provides a good accuracy (in the order of 99%
in our experiments). With decreasing the size of sub-zones,
the accuracy goes higher. Matthew’s correlation coefficient
(MCC), Eq. 12, is preferable to accuracy, Eq. 11, since
MCC has been shown to be a better metric in learning using
imbalanced datasets, which are common in the cybersecurity
and other numerical applications [19].

Accuracy = TP+TN
TP+TN+FP+FN (11)

Algorithm 4 Fast Grid Search
Function: FGS
Input: Representatives of all the classes:
{R1

1, ..., R
1
k} ∈ RN1×k, · · · , {RC

1 , ..., R
C
k } ∈ RNC×k;

Zone Z ∈ RC×C

1: y ← [ones(N1)
T , . . . , C × ones(NC)T]

T

2: for each set of (R1
i · · ·RC

i) do
3: Divide zone Z into z1, ..., zd
4: Max ← 0
5: for each zj do
6: (m1, · · · ,mC)← zj ’s center
7: MMG1

i ← fit R1
i to a Gaussian with m1 modes

8:
...

9: MMGC
i ← fit RC

i to a Gaussian with mC modes
10: Pm1 ← p1(Ri|MMG1

i)

11:
... . Ri = [R1

i
T
, . . . , RC

i
T
]
T

12: PmC ← pC(Ri|MMGC
i)

13: P ← [Pm1 · · ·PmC]

14: yMMG ← index(P.max(1))
15: scorem1,··· ,mC ← MCC(yMMG, y)

16: if scorem1,··· ,mC > Max then
17: Max ← scorem1,··· ,mC

18: Zi ← zj
19: end if
20: end for
21: GMS({R1

i }, · · · , {RC
i }, Zi)

22: end for
23: return {M1

1 , ...,M
1
k} · · · {M

C
1 , ...,M

C
k }

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(12)

where, TN is the number of normal data labeled as normal,
TP is the number of attack data classified as attack, FP is the
number of normal labeled as attack, and FN is the number
of attacks labeled as normal by the model.

IV. AN EXAMPLE USING IIOT SECURITY

Sophisticated AI models have been vastly applied in intru-
sion detection systems (IDS). XAI would add interpretability
and trust to these systems. We have built a lab-scaled industrial
Internet of Things (IIoT) system to collect realistic and up-
to-date datasets. We have chosen a popular IIoT system that
supervises the water level and turbidity of a water storage tank.
This type of system is employed in industrial reservoirs and
water distribution systems as a part of the water treatment and
distribution. For more information regarding our testbed, we
refer the readers to our previous papers [20] and [21].

A. Utilized Datasets

The first tested dataset is the one collected from our testbed,
which we refer to is as “WUSTL-IIoT”. To collect the proper
dataset, we (as a white-hat attacker) attacked our testbed using
manipulated commands, such as backdoor, command injection,
denial of service, and reconnaissance [20].

Further, we have tested our TRUST XAI on two other
cybersecurity datasets to add an empirical proof of concept,

6

TABLE II: Specifics of the three datasets

Dataset WUSTL-IIoT NSL-KDD UNSW
of observations 1,194,464 125,973 65,535

of features 41 40 41
of attacks 87,016 58,630 45,015
of normals 1,107,448 67,343 20,520

“NSL-KDD” [22] and “UNSW” [23]. Specifications of these
datasets are shown in Table II.

B. Underlying AI Model

Since TRUST is model-agnostic, any complex AI can be
used as the underlying classifier. Here, we use an artificial
neural network (ANN) with two hidden layers with 20 and
10 neurons respectively, and ten epochs as a binary clas-
sifier. The scikit-learn library [24] was used to implement
the ANN model. ANN is generally considered complex and
unexplainable to human users. The inputs to the IDS are the
flow instances as mentioned in the previous subsection. The
output of the IDS can be a multi-class or binary classification.
However, for the sake of simplicity, we have used the outputs
of the IDS as binary classes with normal as 0 and attack as 1 to
develop the proposed explainer. Even though the performance
of the underlying AI is not of our interest, Tables III, IV, and V
show how it performed on the three datasets. The performance
on the training set is presented in the (a) tables, while the (b)
tables show the testing results.

TABLE III: Performance of the underlying AI on WUSTL-
IIoT

Normal Attack
Normal 885980 12
Attack 131 69448

(a) On the training set

Normal Attack
Normal 221452 4
Attack 40 17397

(b) On the testing set

TABLE IV: Performance of the underlying AI on NSL-KDD

Normal Attack
Normal 53664 173
Attack 529 46412

(a) On the training set

Normal Attack
Normal 13452 54
Attack 138 11551

(b) On the testing set

TABLE V: Performance of the underlying AI on UNSW

Normal Attack
Normal 15791 657
Attack 473 35507

(a) On the training set

Normal Attack
Normal 3895 177
Attack 115 8920

(b) On the testing set

These tables have been brought up to emphasize once again
that to develop the explainer, all XAI models use the labels
outputted by the AI algorithm while ignoring the true labels.
This is because, in the XAI domain, we care about explaining

the model’s behavior, not whether or not it has behaved very
accurately.

The results of these tables based on the metrics including
accuracy, MCC, and undetected rate (UR) using Eq. 11, Eq.
12, and Eq. 13 are summarized in Table VI.

UR = FN
FN+TP (13)

TABLE VI: Summary of the underlying AI’s performance

Accuracy MCC UR
WUSTL-IIoT, Training 99.98% 99.88% 0.19%
WUSTL-IIoT, Testing 99.98% 99.86% 0.23%
NSL-KDD, Training 99.30% 98.60% 1.13%
NSL-KDD, Testing 99.24% 98.47% 1.18%
UNSW, Training 97.84% 94.98% 1.3%
UNSW, Testing 97.77% 94.78% 1.27%

C. Picking Representatives and Mode Selection

After running the PR function from Algorithm 2, we will
end up with k representatives. This algorithm and the utilized
factor analysis produces the eigenvalue of each factor that is
equivalent to the amount of variation in the data that each
factor explains.

However, as mentioned before, the percentage of explained
variation cannot be used as the importance coefficient. The
effectiveness of a factor in distinguishing the class label can
be completely independent of the eigenvalues. Therefore, the
MI scores between each representative and the class labels
have been calculated to determine the top k representatives.

As previously discussed, the next step is to estimate the
number of modes per representative. The general case with
the C number of classes has been demonstrated in Algorithm
3. However, in our case, we have only two classes in our data,
C = 2, therefore we have only two sets of representatives,
{R1

1, ..., R
1
k} and {R2

1, ..., R
2
k}. This modified algorithm only

for two classes is shown in Algorithm 5. Also, the faster grid
search algorithm for two classes is shown in Algorithm 6.

V. EXPLAINING THE TRUST EXPLAINER

In this section, we discuss how the TRUST explainer can
explain the labels to a human user simply and interpretably on
the NSL-KDD dataset as an example. As mentioned before, it
is safe to assume that the user of the AI-based security system
has a basic knowledge of AI, mathematics, and statistics.
Each traffic packet is a 40-dimensional vector. However, the
explainer calculates the representatives and reduces each sam-
ple to a four-dimensional vector. This process of dimension
reduction can be simply explained as follows.

TRUST modifies the feature values to remove redundancy in
the data for more transparent statistical analysis. By factorizing
and removing their interdependencies and projecting them
onto orthogonal dimensions, TRUST removes any correlation
in the data. The transformed feature values are called factors.
Then, utilizing a correlation tool (here, mutual information),

7

Algorithm 5 Grid Mode Selection with C = 2

Function: GMS 2
Input: Representatives of class ”1”: {R1

1, ..., R
1
k} ∈ RN1×k;

Representatives of class ”2”: {R2
1, ..., R

2
k} ∈ RN2×k;

Zone Z ∈ R2×2

1: for each (R1
i , R

2
i) do

2: Max ← 0
3: for m1 in Z do
4: MMG1

i ← fit R1
i to a guassian with m1 modes

5: for m2 in Z do
6: MMG2

i ← fit R2
i to a guassian with m2 modes

7: Pm1 ← p1(Ri|MMG1
i) . Ri =

[R1
i

R2
i

]
8: Pm2 ← p2(Ri|MMG2

i)
9: yMMG ← Pm2 > Pm1

10: scorem1,m2 ← MCC(yMMG,
[zeros(N)

ones(N)

]
)

11: if scorem1,m2 > Max then
12: Max ← scorem1,m2

13: M1
i ← m1

14: M2
i ← m2

15: end if
16: end for
17: end for
18: end for
19: return {M1

1 , ...,M
1
k} & {M2

1 , ...,M
2
k}

Algorithm 6 Fast Grid Search with C = 2

Function: FGS 2
Input: Representatives of class ”1”: {R1

1, ..., R
1
k} ∈ RN1×k;

Representatives of class ”2”: {R2
1, ..., R

2
k} ∈ RN2×k;

Zone Z ∈ R2×2

1: for each (R1
i , R

2
i) do

2: Divide zone Z into z1, ..., zd
3: Max ← 0
4: for each zj do
5: (m1,m2)← zj’s center
6: MMG1

i ← fit R1
i to a guassian with m1 modes

7: MMG2
i ← fit R2

i to a guassian with m2 modes
8: Pm1 ← p1(Ri|MMG1

i) . Ri =
[R1

i

R2
i

]
9: Pm2 ← p2(Ri|MMG2

i)
10: yMMG ← Pm2 > Pm1

11: scorem1,m2 ← MCC(yMMG,
[zeros(N)

ones(N)

]
)

12: if scorem1,m2 > Max then
13: Max ← scorem1,m2

14: Zi ← zj
15: end if
16: end for
17: GMS 2({R1

i }, {R2
i }, Zi)

18: end for
19: return {M1

1 , ...,M
1
k} & {M2

1 , ...,M
2
k}

Fig. 4: Probability density functions

factors that are the most revealing in determining the class la-
bels are chosen and called Representatives. Afterward, TRUST
models the statistical behavior of the Representatives and
estimates their density functions with unique multi-modal
distributions.

As mentioned before, most XAI models are content with
using a separate AI model for explainability, which means
it is always assumed that the user knows how these AI
models work internally. We will show later how models like
LIME also take advantage of this assumption when it comes
to explainability. However, we argue that statistics are more
easily understood than AI. As an elaboration, shown Figure 4,
comparing the likelihood of a new sample belonging to each
class’s probability density functions is easily understandable
for the user. For instance, in this example, the likelihood of
belonging to class attack is higher.

To show the explanation process of TRUST, we randomly
chose six samples (three attacks, three normals) from the
test set. The log-likelihoods of belonging to each class using
individual representatives based on Eq. 6 are computed. The
results of each instance belonging to class Attack, Table VIIa,
and then belonging to class Normal, are shown in Table
VIIb. After an element-wise comparison of the values in
these two matrices, the class that has a higher likelihood is
marked in Table VIIc. Notice that not all the representatives
give us the right class all the time. For example, the 1st

representative makes a mistake about the 4th sample. Similarly,
the 3rd representative makes a mistake about the 2nd sample.
However, when all four representatives are used to calculate
the overall log-likelihood, Table VIId, the labeled class is
correctly explained for all these instances.

A. Results

The number of representatives to use is based on the
complexity constraints. Here, we start at 8. As shown later,
we get high MCC scores even with 4 or 5.

Each dataset is split into training and testing sets with an
80:20 ratio. The TRUST XAI is built using the training set.
Afterward, the testing samples’ representatives are projected
in the factor space computed using the training set. Then like-

8

TABLE VII: Log Likelihood

Fig. 5: MCC scores of TRUST XAI on the training sets and

the testing sets

lihoods are calculated using the same representatives chosen

from the training set.

Figure 5 shows the MCC results vs. the number of repre-

sentatives for the training and testing sets. Note that MCC

values are generally less than accuracy values. The results

show TRUST is highly successful in explaining the AI’s output

on unseen data with an average of 90.89% MCC or 98%

accuracy.

We have analyzed the performance in terms of time con-

sumption, using the NSL-KDD dataset as an example. These

tests were run on a standard laptop with an Intel Core i7

CPU, 16 GB RAM, and Windows OS (no GPU). The steps

to build the TRUST model have to be done only once, and

after that, the model can be easily used to explain the labels

of future observations. Figure 6a shows the compute time to

build the MMG model, including the factor analysis, picking

the representatives, and estimating their density functions. The

time to search for the number of modes is not included in

this graph. Algorithm 3 and Algorithm 4 to determine the

number of modes per representative is compared in Figure

7b. In this figure, the time to search for the number of modes

of one representative is plotted. The search zone is a 20 by

20 grid, and when using our faster algorithm, it was divided

into sixteen 5×5 sub-zones. As seen in this figure, Algorithm

4 speeds up the mode search by more than ten times. Next, the

time for labeling test samples as a function of the number of

representatives is plotted in Figure 6c. As seen in this figure,

the compute time is pretty insignificant. Figure 6d shows the

time as a function of the number of samples.

As mentioned before, our model has a significant advantage

over other XAI models, such as LIME, that require repeating

the whole process for every single sample. This makes their

model very time-consuming and not efficient when dealing

with a large number of samples. Our technique consists of a

core model that, once it is built, it is done and ready to explain

the labels of new samples quickly. Figure 7a demonstrates

this claim. Note that the TRUST’s time of 212.65 s (3.5

minutes) includes the time to build the model from the 100,778

training samples. The time includes factor analysis, picking

eight representatives, running the mode grid search Algorithm

4 for them, estimating their density functions, and labeling

the 8000 testing samples. Our model is almost 25 times faster

than LIME, which makes a significant difference in real-time

applications. Next, we have compared the performance of our

model with LIME using the accuracy metric, Eq. 11. Here,

we used only five representatives in our TRUST model and

calculated the accuracy of the testing labels. As seen from

Figure 7, our model has performed better even with only five

representatives, except for UNSW, where LIME has a slightly

higher accuracy (94.86% vs. 93.76%). If we had increased the

9

(a) (b) (c) (d)

Fig. 6: TRUST’s Time consumption of (a) building the core model based on the number of representatives, (b) comparing
Algorithm 3 and Algorithm 4, (c) labeling 100,778 samples vs. the number of representatives (d) labeling time vs. the number
of samples. In the last two figures, the training set was used because it has a larger number of samples.

number of representatives, our model would be significantly
superior to LIME in all cases. To compare the method of
explainability in TRUST with LIME, we argue that our model
is simpler to understand. As LIME is content with modeling
the AI model with another model as a way of explainability, we
model the statistical behavior of the AI’s output. As we deal
with probability theory frequently, statistics are much easier to
understand compared to grasping the ideas behind AI models.

(a) (b)

Fig. 7: Explaining 8000 test samples; (a) time consumption of
our TRUST model vs. LIME, (the TRUST’s built time is also
included), (b) performance of TRUST vs. LIME.

VI. CONCLUSION

There is a significant lack of research work in the domain
of XAI, specifically for numerical applications. Meanwhile,
several critical applications such as cybersecurity and IoT are
highly dependent on numerical data. The available work in
the literature falls short from several aspects, as discussed in
this paper. Our proposed TRUST technique is a breakthrough
in this domain to integrate transparency, independency, and
comparability into AI-based systems. Here, we used statistical
principles to build an XAI model that can accurately estimate
the distributions of the AI’s outputs and calculate the likeli-
hood of new samples belonging to each class. Moreover, we
have proven the superiority of our model to a currently popular
XAI model, LIME. Our results show that our model is 25 times
faster and more accurate than LIME. This helps our model be
a great candidate for real-time and critical applications.

ACKNOWLEDGEMENT

This work has been supported under the grant ID NPRP10-
0206-170360 funded by the Qatar National Research Fund

(QNRF) and NSF grant CNS-1718929. The statements made
herein are solely the responsibility of the authors.

REFERENCES

[1] Gartner. (2018) Gartner says nearly half of cios are planning to
deploy artificial intelligence. Available at: https://www.gartner.com/en/
newsroom/press-releases/2018-02-13-gartner-says-nearly-half-of-cios-
are-planning-to-deploy-artificial-intelligence. Date accessed: March 16,
2021.

[2] Webroot. (2017) Game changers: Ai and machine learning in cyber-
security. Available at: https://www-cdn.webroot.com/8115/1302/6957/
Webroot\ QTT\ Survey\ Executive. Date accessed: March 16, 2021.

[3] A. Holzinger, C. Biemann, C. S. Pattichis, and D. B. Kell, “What do
we need to build explainable ai systems for the medical domain?” arXiv
preprint arXiv: 1712.09923, 2017.

[4] C. Oxborough and E. Cameron. (2018) Explainable ai: driving business
value through greater understanding. Available at: https://www.pwc.co.
uk/xai. Date accessed: March 16, 2021.

[5] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artificial Intelligence, vol. 267, pp. 1–38, 2019.

[6] C. Molnar, Interpretable machine learning. A guide for making black
box models explainable, 2018, available at: https://christophm.github.io/
interpretable-ml-book/. Date accessed: March 16, 2021.

[7] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang,
and H. Liu, “Feature selection: A data perspective,” ACM Computing
Surveys, vol. 15, pp. 94:1–94:45, 2017.

[8] M. Wang, K. Zheng, Y. Yang, and X. Wang, “An explainable machine
learning framework for intrusion detection systems,” IEEE Access,
vol. 8, pp. 73 127–73 141, 2020.

[9] S. M. Lundberg and S. I. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 4765–4774.

[10] K. Amarasinghe, K. Kenney, and M. Manic, “Toward explainable deep
neural network based anomaly detection,” in 11th IEEE International
Conference Human System Interaction (HSI), Gdansk, 2018, pp. 311–
317.

[11] L. Ma, J. Gao, Y. Wang, C. Zhang, J. Wang, W. Ruan, W. Tang, X. Gao,
and X. Ma, “Adacare: Explainable clinical health status representation
learning via scale-adaptive feature extraction and recalibration,” in AAAI
Conference on Artificial Intelligence, ser. 01, vol. 34, 2020, pp. 825–832.

[12] E. Tjoa and C. Guan, “A survey on explainable artificial intelligence
(xai): Toward medical xai,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–21, 2020.

[13] D. Marino, C. Wikramasinghe, and M. Manic, “An adversarial approach
for explainable ai in intrusion detection systems,” in 44th Annual
Conference of the IEEE Industrial Electronics Society, IECON 2018,
Washington DC, 2018.

[14] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you??
explaining the predictions of any classifier,” in ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD),
San Francisco, CA, 2016, p. 1135–1144.

[15] J. Pages, Multiple Factor Analysis by Example Using R. New York:
Chapman and Hall/CRC, 2015.

10

[16] R. Jain, The Art of Computer Systems Performance Analysis. Wiley
Interscience, 1991.

[17] S. Maxwell, H. Delaney, and K. Kelley, Designing Experiments and
Analyzing Data, 3rd ed. Routledge, 2018.

[18] A. Ng. (2018) The em algorithm. Available at: http://cs229.stanford.edu/
notes/cs229-notes8.pdf. Date accessed: March 16, 2021.

[19] M. Zolanvari, M. A. Teixeira, and R. Jain, “Effect of imbalanced
datasets on security of industrial iot using machine learning,” in IEEE
International Conference on Intelligence and Security Informatics (ISI),
Miami, FL, 2018.

[20] M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan, and R. Jain,
“Machine learning-based network vulnerability analysis of industrial
internet of things,” IEEE Internet of Things Journal, vol. 6, pp. 6822–
6834, 2019.

[21] M. A. Teixeira, T. Salman, M. Zolanvari, R. Jain, N. Meskin, and
M. Samaka, “Scada system testbed for cybersecurity research using
machine learning approach,” Future Internet, vol. 10, pp. 1–15, 2018.

[22] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE Symposium on Com-
putational Intelligence for Security and Defense Applications, Ottawa,
ON, 2009, pp. 1–6.

[23] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),” in
2015 Military Communications and Information Systems Conference
(MilCIS), Canberra, ACT, 2015, pp. 1–6.

[24] Pedregosa et al., “Scikit-learn: Machine learning in python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

11

