Received: 13 September 2017

Revised: 17 April 2019

W) Check for updates

Accepted: 27 May 2019

DOT: 10.1002/jgt.22477

ARTICLE

WILEY

On the number of linear hypergraphs of large

girth
Jozsef Balogh | Lina Li

Department of Mathematics, University
of Illinois at Urbana-Champaign, Urbana,
Illinois

Correspondence

Lina Li, Department of Mathematics,
University of Illinois at Urbana-
Champaign, Urbana, Illinois 61801.
Email: linali2@illinois.edu

Funding information

NSF, Grant/Award Number: DMS-
1500121; UIUC Campus Research Board,
Grant/Award Number: 15006

Abstract

An r-uniform linear cycle of length ¢, denoted by Cj, is
an r-graph with edges ey, ....e, such that for every
ie[¢—1], leneys =1, leenel =1, and en
e; = @ for all other pairs {i, j}, i # j. For every r > 3
and ¢ > 4, we show that there exists a constant C
depending on r and ¢ such that the number of linear r-

1+1/1¢/2]
20 VIR By rthermore, we

graphs of girth ¢ is at most
extend the result for ¢ = 4, proving that there exists a
constant C depending on r such that the number of
linear r-graphs without C; is at most 267 The idea of
the proof is to reduce the hypergraph enumeration
problems to some graph enumeration problems, and
then apply a variant of the graph container method,
which may be of independent interest. We extend a
breakthrough result of Kleitman and Winston on the
number of C,-free graphs, proving that the number of
graphs containing at most n?/32logén C,’s is at most
21n2 for sufficiently large n. We further show that for
every r > 3 and ¢ > 2, the number of graphs such that
each of its edges is contained in only O(1) cycles of
length at most 2¢, is bounded by 23¢+Dn'*'/
tically.
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1 | INTRODUCTION

For an integer r > 2, an r-uniform hypergraph (or r-graph) H = (V, E) consists of a set V' of
vertices and a set E of edges, where each edge is an r-element subset of V. For a family of r-
graphs H, the Turdn number (function) of H, denoted by ex,(n, H), is the maximum number of
edges among r-graphs on n vertices which contain no r-graph from H as a subgraph. Write
Forb, (n, H) for the set of r-graphs with vertex set [n] which contain no r-graph from H as a
subgraph. When H consists of a single graph H, we simply write ex,.(n, H) and Forb,(n, H)
instead. Since every subgraph of an H-free graph is also H-free, we have a trivial bound

)
204t < |Forb, (n, H)l < Y. (f < onrex ), )

i<ex,(nH) \

The study on determination of |[Forb,(n, H)| has a very rich history. Recently, the case when
H is a linear cycle received more attention. For integers r > 2 and ¢ > 3, an r-uniform linear
cycle of length ¢, denoted by Cj, is an r-graph with edges ej, ....e, such that for every
ie[¢—-1], lenes|l =1, leenel =1, and egne =g for all other pairs {i,j}, i #j.
Kostochka, Mubayi, and Verstraéte [17], and independently, Fiiredi and Jiang [10] proved
that for every r, € > 3, ex.(n, C}) = ©(n"~!). Then by (1), we trivially have

|Forb,(n, Cy)| = 22" and |Forb,(n, Cy)| = 20" logn) ()

for every r, € > 3. Guided and motivated by this development on the extremal numbers of
linear cycles, recently, Mubayi and Wang [21] showed that [Forbs(n, C3)| = 20 for all even ¢
and improved the trivial upper bound in (2) for r > 3. Inspired by Mubayi and Wang’s [21]
method, Han and Kohayakawa [11] subsequently improved the general upper bound to
20 oglogn) - Very recently, Balogh, Narayanan, and Skokan [3] provided a balanced
supersaturation theorem for linear cycles and finally proved |Forb,(n, Cy)| = 2°¢™), for every
r, € > 3, using the hypergraph container method [2,24].

In this paper, we study the enumeration problem of linear hypergraphs containing no linear cycle
of fixed length. An r-graph H is said to be linear if for everye, ¢’ € E(H), |e n e’| < 1. For a family
of linear r-graphs H, the linear Turdn number of H, denoted by ex; (n, H), is the maximum number
of edges among linear r-graphs on n vertices which contain no r-graph from ¥ as a subgraph. Write
Forby (n, H) for the set of linear r-graphs with vertex set [n] which contain no r-graph from H as a
subgraph. Again, when H consists of a single graph H, we simply write ex;(n, H) and Forb,(n, H)
instead. Similarly to (1), a trivial bound on the size of Forb,(n, H) is given as follows:

()
2970 < |Forby(n, H)| < ) " < 2nrean ), (3)
i<exp(n,H) l

It is known from the famous (6, 3)-problem that n2-clogn < ex,(n, C3) = o(n?), where the
lower bound is given by Behrend [4] and the upper bound is given by Ruzsa and Szemerédi [23].
In 1968, Erdds, Frankl, and Rédl [7] showed that for every r > 3, ex;(n, CJ) = o(n?), and
ex;(n, Cy) = Q(n°) for every c < 2. Using the so-called 2-fold Sidon sets, Lazebnik and
Verstraéte [19] constructed linear 3-graphs with girth 5 and Q(n3/2) edges. On the other hand, it
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is not hard to show that ex;(n, C;) = O(n®/?). Hence, ex;(n, C;) = ©(n*/?). Kostochka,
Mubayi, and Verstraéte [16] proved ex;(n, C3) = ©(n*/2) and conjectured that

- 1+
ex;(n, Cy) = O|n " 1¢/2]

for every r >3 and ¢ > 4. Later, Collier-Cartaino, Graber, and Jiang [6] proved that
exy(n, Cp) = O(n”ﬁ for r > 3 and ¢ > 4. Although the lower bound on the linear Turdn
number of linear cycles is still far from what is conjectured, following the same logic with the
usual Turdn problem of cycles, it is natural to guess that

”%/zj]
Forby (n, ¢l = 22" @)
for every r > 3 and ¢ > 4. In this paper, we confirm the above conjecture for ¢ = 4.

Theorem 1.1. For every r > 3, there exists C = C(r) > 0 such that

|Forb, (n, CJ)| < 267”2,

The upper bound for C; is sharp in order of magnitude given by ex;(n, C;) = ©(n/?) and
(3). In general, since the sharp bound of related linear Turdn number remains open, we are not
able to confirm the sharpness now.

For ¢ = 3, the work of Erdés, Frankl, and Rodl [7] could be extended to show that
Forby (n, C§) = 2°) for every r > 3. For ¢ > 4, although we are not ready to prove (4), we
provide a result on the girth version. Recall that the girth of a graph is the length of a shortest
cycle contained in the graph. Kleitman and Wilson [13], and independently Kreuter [18], and
Kohayakawa, Kreuter, and Steger [15] proved that there are 201/ graphs with no even cycles
of length 2¢, which made a step towards proving a longstanding conjecture of Erdés, who asked
for determining the number of C,,-free graphs. Motivated by the above work, we introduce an
analogous girth problem on linear hypergraphs. For a linear r-graph H, the girth of H is the
smallest integer k such that H contains a C;. We remark that for linear r-graphs, our girth
definition is equivalent to a more classical girth definition, Berge girth, that is, the smallest
number k such that the r-graph contains a Berge-Cy, as a linear Berge-C; must contain a linear
cycle of length i for some 3 < i < k. For everyr > 3 and ¢ > 4, let Forb,(n, r, ¢) denote the set
of all linear r-graphs on [n] with girth larger than €. Our second main result is as follows.

Theorem 1.2. Foreveryr > 3 and € > 4, there exists a constant C = C(r, €) > 0 such that

|Forby (n, r, €)| < 2601,

Recently, Palmer et al [22] considered extremal problems for Berge-hypergraphs and
proved our theorem for the case ¢ =4. Note that for every ¢ >4, we have
Forby(n, r, ¢ + 1) C Forby(n, r, €). Therefore, it is sufficient to prove Theorem 1.2 for all
even ¢ and we provide the following equivalent theorem instead.

Theorem 1.3. For every r > 3 and € > 2, there exists a constant C = C(r, €) > 0 such
that

|Forby (n, r, 2¢)| < 260",
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Once again, the above upper bounds are possibly sharp, but we are not able to confirm it now.

The proofs of Theorems 1.1 and 1.3 are based on two graph enumeration results related to
even cycles. A classical result of Bondy and Simonovits [5] yields ex,(n, Cy,) = O (n!*1/¢) for all
€ > 2. By a series of papers of Kleitman and Winston [14], Kleitman and Wilson [13], Kreuter
[18], Kohayakawa, Kreuter, and Steger [15], and Morris and Saxton [20], we now know that the
number of Cy,-free graphs is at most 20"/ Inspired by these works, we prove that the
number of graphs containing some but not many short cycles is still at most 2009 which
may be of independent interest. We state our results as follows.

Theorem 1.4. Let n be a sufficiently large integer and a = 32log®n. The number of
n-vertex graphs with at most n2/a 4-cycles is at most 21",

Given a graph G on [n], for every integer k > 3 and every edge uv € E(G), denote by
ck(u, v; G), the number of k-cycles in G containing edge uv. When the underlying graph is clear,
we simply write ¢ (u, v). For an integer ¢ > 3 and a constant L > 0, write G,(¢, L) for the
family of graphs G on [n] such that for every 3 < k < ¢ and uv € E(G), cx(u, v; G) < L.

Theorem 1.5. For an integer € > 3 and a constant L > 0, let n be a sufficiently large
integer and then we have

|G, (2¢, L)| < 23(e+ 1R+

Like many of these advances, our approach to proving Theorems 1.4 and 1.5 relies on the
graph container method developed in [14], in which one assigns a certificate for each target
graph. The certificate should be able to uniquely determine the target graph, and then we can
estimate the number of certificates instead of graphs. However, the previous applications of the
graph container method address the problems for graphs forbidding short cycles, while we
concern with the graphs with sparse short cycles. Therefore, the means by which we apply this
technique is quite nonstandard, and requires some new ideas.

It is not hard to extend Theorem 1.4 to a = ®@(log>n) by proving a similar statement for
G.(4, ¥yn /log*n) as in Theorem 1.5. We choose to display the proof of Theorem 1.4 since it
contains some ideas which may bring more insights of this method to readers. Let
p = w/(~/n logn). Note that the number of graphs on [n] with p(';) edges is about 2¢7"*
and they typically contain ©(n*p*) = @(w*n?/log*n) 4-cycles. Therefore, a = ®(log*n) would
be the best possible in Theorem 1.4 and we believe that it should be the truth. Given by the
connection between Sidon sets and graphs without 4-cycles, this problem is closely related with
an enumeration problem on generalized Sidon set which was recently studied in the authors’
another paper [1].

Throughout this paper, we let[n] denote the set {1, 2,...,n}. For a graph G and aset S C V (G),
the induced subgraph G[S] is the subgraph of G whose vertex set is S and whose edge set
consists of all of the edges with both endpoints in S. Let § (G) denote the minimum degree of
graph G and A(G) denote the maximum degree of G. For a multigraph G and a vertexv € V (G),
the neighborhood Ng (v) of v is the set of all vertices adjacent to v in G and the degree dg(v) of v
is the number of edges incident to v in G. For a set S C V (G), the neighborhood of v restricted to
S is Ng(v, S) = Nz (v) N S; the degree of v restricted to S, denoted by dg (v, S), is the number of
edges incident to v with another endpoint in S. When the underlying graph is clear, we simply
write N (v, S) and d (v, S) instead. All logarithms have base 2.
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2 | GRAPHS CONTAINING A FEW 4-CYCLES

2.1 | Preliminary results

Definition 2.1 (Min-degree ordering, Min-degree sequence). For a graph G on [n], a min-
degree ordering is an ordering v, < v,_; < --- < vy, such that v; is a vertex of minimum
degree in the graph G; = G[v;,...,1], for every i € [n] (if there are more than one vertices
of the minimum degree, choose the one with the largest label). Let d; = dg,(v;), then
dp, dy_1,...,d; is called the min-degree sequence.

Lemma 2.2. Let G be an n-vertex graph with average degree d. If d > 2/n, then G
contains at least d*/36 copies of 4-cycles.

Proof. Let vy, vy, ...,V be the vertices in G and b; = dg(v;) for every i € [n]. Let S be the
set of paths of length 2 (or 3-paths) in G. We will count 3-paths in two ways.

First, for a vertex v;, the number of 3-paths containing v; as the middle point is exactly
(b"). Therefore, we have

=3 (1;) S n[@:;lzbg/n] _ (‘j) L

i=1

On the other hand, for1 < i < j < n, let ¢; be the number of common neighbors of v; and

V. Then |S| = 3, <i<j<n Cii Therefore, the number of 4-cycles in G is equal to

2 4n? T 36

Cyj 1(n (Ziqcij)/;l 1(n ||/Z 2 4
I R el BT A

2) = 2\2 “2\2

1
2 2 2

1<i<j<n

From Lemma 2.2, we immediately obtain the following corollary.

Corollary 2.3. Let G be a n-vertex graph which contains at most 4n?/9 4-cycles, and
dy, ...,d; be the min-degree sequence of G. Then for every i € [n],

d; <2Jnm.

Proof. Suppose that there exists k € [n], such that d; > 2</n. Then by Lemma 2.2, the
number of 4-cycles in Gy is at least d;’ /36 > gnz, which contradicts our assumption. []

We also provide an estimation for the following binomial coefficients, which will be used
repeatedly later.

Lemma 2.4. For integers n, k, ¢ and a constant c satisfying cn/k¢ > k,

< 221/In2jp s

Cn/kg _ o+l (cen)ﬁ
k

where 21/112]n 2 ~ 1.88.
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Proof. Let f(x) = (logcen — (¢ + 1)logx)x on (0, +o0). Since f(x) is a concave
function, it is maximized at the point x*, where

f'(x*) = log cen — e+l (¢ + Dlogx* =0,
In2
that is,
_ logcen 1

logx* = - —.
€+1 In2

Therefore, we have

log cen 1 logeen 1 £+1 1
k) <f(x*) =|logcen — (¢ + 1 — ——|[|27¢+1 "TThz = ———(cen)e+i.
£ < f(%) ( geen — ( )(“1 ln2)) ST = S (cen):

k
. n ne N
Since (k) < (?) for every 1 < k < n, we obtain that

4 k 1
(cn/k ) < ( cen ) — o) < 2721/‘f:;}n2(cen)4+1_ O
k - k€+1 -
2.2 | Certificate lemma

This section is devoted to prove our main lemma, which is a key step to build the certificates for
graphs with sparse 4-cycles. This lemma can be viewed as a generalization of the Kleitman-
Winston algorithm [14], which builds certificates for graphs without 4-cycles. Before we
proceed, we first need a counting lemma, which will be used later in the proof.

For a graph F, denote by F? the multigraph defined on V (F) such that for every distinct
u, v € V(F?), the multiplicity of uv in F? is the number of (i, v)-paths of length 2 in F.

Lemma 2.5. For integersn > m > d > 8, let F be an m-vertex graph with § (F) > d — 1
and H = F2. Then for every J C V (H) of size at least 4n/d, we have

e = E
4n

Proof. Write V (F) = {v,....v,n}. For every j & [m], let bj = dr(v;, J). Then we have
> by =2 ,c;dr() > J|(d — 1) > (4(d — 1)/d)n > 3n > 3m. Therefore, we obtain that

j=1
b [Jd-1)
< (b “m “m VP -1 _ d*JP
e(H|J|) = E >m >m > > .
HLD) (2)_ - 2 - 3m T 4n

Lemma 2.6 (Certificate lemma). For a sufficiently large integer n, define b = 16log*n and
g = 32log’n. Let m and d be the integers satisfyingm < n — 1 and (vn/logn) < d < 2Jn.
Suppose that F is an m-vertex graph with § (F) > d — 1 and H = F?. Additionally, assume
that for everyu, v € V(F), |Np(u) N Nr(v)| < <n /b. Then for every set I C V (F) of sized
which satisfies e(H [I]) < n/g, there exist a set T and a set C(T) depending only on T, not
on I, such that
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(i) TCIcC(T)
(ii) |T| < 2v/n/logn,
(iii) |C(T)| < 5n/d.

Proof. Let I be a subset of V (F) of size d which satisfies e(H [I]) < n/g. Following the
ideas of Kleitman and Winston [14], we describe a deterministic algorithm that associates
to the set I a pair of sets T and C(T), which shall be treated as the “fingerprint” and the
“container,” respectively.

Let Ly={vel dgy(w,I)>yn/b} and L={ el dy(w I)<J/n/b}. Since
e(H[I]) < n/g, the size of I, is at most

2e(H [I]) < 2yn-b _ Jn
Jya/b ~ g logn’

which is sufficiently small. Therefore, we only need to concern the vertices in I;.

The core algorithm. We start the algorithm with sets Ay = V(H) — I, Ty = @ and the
function ¢, (v) = 0 for every v € V(H) — I,. As the algorithm proceeds, one should view
A; as the set of “candidate” vertices, T; as the set of “representive” vertices, and ¢;(v) as a
“state” function which is used to control the process. In the ith iteration step, we pick a
vertex u; € A; of maximum degree in H [A;]. In case there are multiple choices, we give
preference to vertices that come earlier in some arbitrary predefined ordering of V (H) as
we always do, even if it is not pointed out at each time. If u; € I, we define

t (V) _ ti (V) + dH (V, ui) if v (S Ai’
AR PO ifve A,

and Q = v|t;11(v) > Vnu/b}, and let T,y = T, + w;, Ajr1 = A; — u; — Q. Otherwise, let
Tiv1=T, Aiy1 = A — w;, and £ (v) = t;(v), for every v € V(H) — I,. The algorithm
terminates at step K once we get a set Ax of size at most 4n/d. We also assume that
ug_1 € Tx as otherwise we can continue the algorithm until it is satisfied.

The algorithm outputs a vertex sequence {uy, U,....Ug_1}, a set of ‘representive’ vertices
Tx and a strictly decreasing set sequence {Ag, A;, Az, A4;,...,Ax}. Let

T=T¢gVUl, and C(T) =Ag UT.

From the algorithm, we have Ty C I; and therefore T C I. Furthermore, if a vertex v
satisfies t;(v) > </n /b for some i, then we have dy (v, I) > t;(v) > /n /b, which implies
v & I;. Therefore, we maintain I; C A; U T; for every i < K and in particular we have
ICAx UTxUI, = Ax U T = C(T). Hence, Condition (i) is satisfied. Another crucial
fact is that C(T) depends only on T, not on I. The reason is that for a given underlying
graph, its max degree sequence is fixed once we break the tie by some predefined ordering
on vertices. Therefore, for two sets L, , with the same “fingerprint” T, the algorithm
outputs the same vertex sequence {u, Up,...,Uux_1}, Which uniquely determines the set
C(T) by the mechanics of the algorithm.

To verify Conditions (ii) and (iii), it is sufficient to show that |Tx| < +/n/logn. Once
we prove it, we immediately obtain

VA Jm_2Jm

1Tl = 1Tkl + Il < = ,
logn logn logn

and
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IC(T)] = |Ag| + |7 < 2 4 20 5
d logn d

completing the proof.
Denote g the integer such that n/29 < |Ax| < n/2971. By the choice of Ak, we have
q < logn. For every integer 1 < [ < g, define A to be the first A-set satisfying

n ] n
o< A7 < Py
if it exists, and let T! be the corresponding T-set and ¢! (v) be the corresponding t-function

of Al Note that A' may not exist for every [, but A9 always exists and it could be that
A1 = Ag. Suppose that

A DA D oD Al

are all the well-defined A, where p <g. By the above definition, we have
A = Ay, Th =T, and [, = q. Define A»+1 = Ay, Th+ = Tx. Now, we have

p+1
Tk = U (Th = Th). )

j=2

To achieve our goal, we are going to estimate the size of T% — Tl-1 for every
2<j<p+ 1L

From the algorithm, we have t%i(v) < ¥n /b, for every v € Al U T4. Moreover, for
v € Ali-t — Al — T, suppose that v is removed in step i, then we have

50) <ty ) + di 0, 1) < % + INe(u) 0 Ne )] < Zf,

where u; is the selected vertex in step i. Therefore, we obtain

2Jn 2n3/2
z th(v) < TIA’J‘-II < = (6)

veAl-1
Let 2 < j < p. For every u; € T4 — Tl-1, u; is chosen of maximum degree in H [4;],
where A; is a set between Ab-1 and Al. By the choice of Al, we have |4;| > n/24-1. By
Lemma 2.5, we have
d?|A| d?

2

dH(ui, Ai) > an 2lj—1+2'

Note that dy; (u;, A;) only contributes to t%(v) for v € A; € Ab-1. Then we obtain

2
|Th — T

Y, du(u, A) < Y ). (7)

<
le_1+2 -
w;eTli—Th-1 veAl-1

Combining (6) and (7), we have
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d? 2n3/?
zlj,1+2 - 2lj,1—1b’

|Th — Th1
which implies

16n°/? < l6vn log?n _ ym

Th — Th| < =
B e bd? b log?n

for 2 <j < p. For j = p + 1, since we have

T <Al < jAb] < 2
24 2q-1

by a similar argument, we obtain that

2| Ay
mhn = 1] LA S Ay < T ) < 21,
4n w€Th+1-Th veAlP b
which gives
3/2 2
\Ther — Th) < 16n < 16Jnlog’n _ Jn ‘
bd? b log?n
Finally, by (5), we get
p+1
|Tx| = U |T% — Th-| < p- R g m O

= logn ~ thogzn ~ logn’

2.3 | Proof of Theorem 1.4

In this section, we give an upper bound on the number of graphs containing only “few” 4-
cycles. Before we proceed to prove Theorem 1.4, we need to do a cleaning process for the target
graphs in order to apply Lemma 2.6.

Let a = 32logén, g = 32log>n, and b = 16log*n. Given a graph G on [n], for every
1 <i<j < n,define N5(i, j) to be the set of common neighbors of i and j in G. Let

IN¢ (i, )]~ when [Ng(i, j)| > -
mg (i, j) =
0 when |Ng (i, j)| < %

We delete all edges from i to N; (i, j), for all1 < i < j < n with mg(i, j) # 0. Then the resulting
subgraph, denoted by G, satisfies [Nz (i, j)| < v/n /b foreveryl <i < j < n. Let G, be the family
of graphs on [n] with at most n/a 4-cycles and G, = {G: G € Gy}
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Lemma 2.7. Let n be a sufficiently large integer. Then for every G € G,, we have

4n3/?

E(G) — E@)| < 1
og-n

Proof. By counting 4-cycles in G, we obtain that

. 2
lz ma (i, J)) n
2 o 2 a

which gives

2
> m (i, j)? < 8%. ®)

i<j

Let B={(i,j): 1 <i<j<n and mg(i, j) # 0}. By the definition of ms(i, j) and (8),
we have

—~\2
|B| < 8n_2/(_n) = 8b’n/a.
a b

Therefore, by the convexity, we get

(Z(i,j)EB mG(i’j))2 _ (Zi<j mG(i’j))z > (Zi<j mG(isj))z
5] =T B % s

D, me(i, j)* >

(i,j)eB

©)

Combining (8) and (9), we obtain

8n3/%b _ 4n’/?
a  log*n’

Z mc;(l,]) S

i<j

Finally, by the definition of G, we have |E(G)— E(G)| =2 mali, ) <
(4n3/?/log? n). U

Lemma 2.8. Let n be a sufficiently large integer. Then
~ B
1Gal < 1Gal-2en.

Proof. For every F € Gy, let Sp = {G € G,|G = F}. By Lemma 2.7, for every G € Sk, we
have |[E(G) — E(F)| < (4n*/?/log?n). Therefore, the size of Sy is bounded by

15l < Rl I ) R [ DO I PP
0 1 | and/2 | [4n3/2J

log?n log?n
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Finally, we obtain that

~ 4n3/2
1Gal < ) IS¢l < 1Gul-2er . 0

Fegy

n3/2

Theorem 2.9. Let n be a sufficiently large integer. Then |G,| < 2'°

Proof. We construct the certificate of a graph G in the following way. Let
Y5 :=v, <v,_1 < --- <v; be the min-degree ordering of G and Dg := {d,, d,_1,....d1} be
the min-degree sequence of G. Let G; = G[v...,1], for every i € [n]. Define the set
sequence Sg = {Sy, Sp—1,---»52}, where S; = Ng(v;, Gi_1). Then S; C {v;_y,...,b1}, and
|S;| = d;. By the construction, [¥5, Dg, Sg] uniquely determines the graph G and so we
build a certificate [Ys, Dg, Sg] for G. Therefore, instead of counting graphs, it is equivalent
to estimate the number of their certificates.

For a graph G € G, its certificate has some important properties which would help us
to achieve the desired bound. First, by Corollary 2.3, its min-degree ordering
Dg = {dp, dp—1,..., di} satisfying d; < 2v/n. Let f, be the number of 4-cycles in G;
containing vertex v;. Since each 4-cycle contributes exactly to one of f’s, we have
2?21 f; < n?/a. We call v; a heavy vertex if f; > n/g; otherwise, v; is a light vertex. Another
crucial fact about graphs in G, is that the number of heavy vertices is at most

Zenfi < nfla _ n
n/fg ~ njg  logn’

(10)

Now we start to estimate the number of certificates which would generate graphs in
G, By the above discussion, we first observe that the number of ways to choose the min-
degree orderings and the min-degree sequences is at most

n!Jmn)". (11)

Then we fix a min-degree ordering Y* = v, < v,_; < --- < v;, and a min-degree sequence
D* = {d,,...,d;}. Next, we fix the positions of heavy vertices and by (10) the number of

ways is at most
EI, (n) (12)
i

i<
logn

A major part of the proof is to count set sequences S ={S,, Sy_1,....52}, Where
S; C {vi—1,...,v1} and |S;| = d;, such that the graph reconstructed by [Y*, D*, S], denoted
by Gg, are in @ For every 2 < i < n, let M; be the number of choices for S; with fixed sets
Si—ls veey Sz. Define

I, = {i: v;is a heavy vertex}, I, = {i: d; < vn },
logn
and
I = {i: v; is a light vertex and d; > vn }
logn

123
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For every i € I3, since |S;| = d; < 2</n, we have a trivial upper bound

M; < i—1 < n )Snzﬁzzkmlogn. (13)
d; 2n

Similarly, for every i € I, we have

M<|P < " < p/i/logn — R, (14)
d; Jn/logn

It remains to estimate M; for i€ 7;. With fixed sets S;_j, ...,S;, the graph
G;_1 = Gs[V;_1,...,v1] is uniquely determined. Since G;_; C Gs and Gs € G, for every
u, v € V(Gi-1), we have [Ng,_, (u) N Ng,_,(v)| < ¥n /b. Applying Lemma 2.6 on G;_;, we
obtain that every eligible S; contains a subset T of size at most 2+/n /logn, which
determines a set C(T) 2 S; of size at most 5n/d;. Since the number of choices for T is at

most
j 2Jn /logn 2Jn /logn

0<j<2vn /logn

we then have

M < ) (cg)
T

1

5n/d; 2
< < ) 23/m2ygy < ) oMM < o6V 15
J<Z (7)) s Zain sy (s

for every i € I;, where the third inequality is given by Lemma 2.4.
Combining (13), (14), and (15), we obtain that the number of choices for S is

n
[T < TTa TT 0 [T M < @V oeme @iy @iy < 20
i=2 ie, ieL  ieL
Finally, together with (11) and (12), the total number of certificates is at most

n
n!2vn)" Z (n) HMl < nl(2Jm)n2non < glon?
i

i< M i=2
logn

which leads to |G,| < 217"
Proof of Theorem 1.4. Lemma 2.8 and Theorem 2.9 imply Theorem 1.4. O

3 | THE NUMBER OF GRAPHS WITH SPARSE SHORT
CYCLES

In the previous section, we estimated the number of graphs containing a few 4-cycles.
Unfortunately, we are not ready to provide a similar result for longer cycles due to the failure of
getting an appropriate counting lemma, like Lemma 2.5. However, this method still works



BALOGH anp LI WI LEY 125

when the target graph has a sparse structure on short cycles. More specifically, for ¢ > 4, we are
going to consider the family of graphs such that each of its edges is contained in only O(1)
cycles of length at most 2¢. Following the idea from [15], we construct a proper auxiliary graph
and provide a suitable counting lemma on it.

3.1 | Expansion properties of graphs with sparse short cycles

Given a graph G, a vertex v € V (G), and an integer k > 1, let I;(v) be the set of vertices of G at
distance exactly k from v. Recall that for an edge uv € E(G), c,(u, v; G) is the number of k-
cycles in G containing edge uv.

Lemma 3.1. For integers ¢ < m and a constant L > 0, let F be an m-vertex graph such
that for everyuv € E(F) and 3 <i <2€, ¢;(u,v) < L. Then foreveryl <k < ¢ — 1 and
v € V(F), we have

d(u, Ii(v)) < Lk
for allu € T(v).

Proof. Suppose there exists a vertex u € I (v) such that d(u, I (v)) > Lk + 1. Since
u € I (v), there exists a (u, v)-path B, of length k. Let u’ be the neighbor of u in E,.
Similarly, for every vertex w € N (u, I (v)), there is a (w, v)-path B, of length k. Note that
every B, + B, + {uw} forms a closed walk of length 2k + 1, which contains an odd cycle of
length at most 2k + 1 containing edges uu’ and uw. Since d (u, I;(v)) > Lk + 1, we have
at least Lk + 1 distinct odd cycles of length at most 2k + 1 containing uu’. However, since
cp(u, u”) < L for every odd h < 2k + 1, there are at most Lk odd cycles of length at most
2k + 1 containing uu’, which is a contradiction. ]

Lemma 3.2. For integers ¢ < m and a constant L > 0, let F be an m-vertex graph such
that for every uv € E(F) and 3 <i<2¢, c¢;(u,v) < L. Then for every 2 <k < ¢ and
v € V(F), we have

d, i) <Lk-1+1
for all u € T (v).

Proof. Suppose there exists a vertex u € I;(v) such that d(u, I;_1(v)) > L(k — 1) + 2.
Let u’ be a vertex in N (u, I;_1(v)). Since u’ € I}_;(v), there exists a (u’, v)-path B, of
length k — 1. Similarly, for every vertex w € N (u, I;_1(v))\ {u'}, there is a (w, v)-path B,
of length k — 1. Note that every B, + B, + {uu’} + {uw} forms a closed walk of length 2k,
which contains an even cycle of length at most 2k containing edges uu’ and uw. Since
IN (u, Ti—1(v)\{u'}| > L(k — 1) + 1, we have at least L(k — 1) + 1 distinct even cycles
of length at most 2k containing uu’. However, since c,(u, u’) < L for every even
4 < h < 2k, there are at most L(k — 1) even cycles of length at most 2k containing uu’,
which is a contradiction. O
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Now, we give a lemma on the expansion of graphs with sparse short cycles. This lemma can
be viewed as a generalization of Lemma 11 in [15].

Lemma 3.3. For integers £, d < m and a constant L < d, let F be an m-vertex graph
with minimum degree at least d — 1, such that for every uv € E(F) and
3<i<2¢, ci(u,v) <L. Suppose v is a vertex in F with degree d(v). Then for every
1 <k <€ we have

d()dk1!

I
T ()| = o)

for some constants g, (L) which only depend on k and L.
Proof. The case k = 1 is trivially true with g (L) = 1. Suppose that the lemma is true for
k < ¢, that is, |T,(L)| > d(v)d*~1/g, (L) for some constant g, (L).

For every vertex u € I (v), neighbors of u only appear in I;_;(v), Ix(v) and I;41(v). By
Lemmas 3.1 and 3.2, we have

d(, () 2 (d - 1) —d@, i (v) — du, L(v) >2d - 2Lk + 1) + L >

(SR EH

(16)

for all u € I(v) and this gives

e (), Tip1()) 2 @

Again by Lemma 3.2, we know that for every u € I}41(v), d(u, I;(v)) < Lk + 1.
Therefore, we have

k k
Lo )] > e(Ty(v), Tiy1(v)) > d|Tc )| 5 d(v)d _ dwd
Lk +1 2(Lk +1) ~ 2(Lk + g (L)~ g, (L)
for g, (L) = 2(Lk 4+ 1)g, (L) and the lemma follows by induction. 0

Lemma 3.3 gives an upper bound on the maximum degree of the graph with sparse short
cycles.

Corollary 3.4. For integers ¢, d < m and a constant L < d, let F be an m-vertex graph
with minimum degree d — 1, such that for everyuv € E(F) and 3 <i <28, ¢;(u,v) < L.
Then

AF) < g, L),

where g,(L) is the constant defined in Lemma 3.3.



BALOGH anp LI 127

Proof. By Lemma 3.3, for every v € V (F), we have

d(v)d?-1

T
()| = o)

L]

which gives

L (v)| m

dv) < ~55re, (W) <

g€ (L)s

This implies the corollary. ]

3.2 | Construction of the auxiliary graph

In this section, we aim to give a generalization of Lemma 2.5 for longer cycles. We use a
definition of composed walk from [15]. For every integer k > 1, call a 2k-walk XxX;.. %, a
composed walk if xy..x; and xi..x, are two shortest paths and they are different but not
necessarily vertex-disjoint or edge-disjoint. A composed walk is said to be closed if its endpoints
are the same.

Lemma 3.5. For integers €, A < m and a constant L << A, let F be an m-vertex graph
with maximum degree A, such that for every uv € E(F) and 3 <k <2, c,(u,v) <L.
Then for every vertex u € V(F) and every integer 2 < s < € — 1, the number of closed
composed walks of length 2s with endpoints u is at most

N (L)
for some constants cts(L) which only depends on s and L.

Proof. For every vertex u € V (F) and every integer 2 < s < ¢ — 1, let ‘W;(u) be the set
of closed composed walks of length 2s with endpoints u. For the case s = 2, the lemma is
true with (L) = L. This is because that a closed composed walk of length 4 with
endpoint u is exactly a 4-cycle containing u and then we have
W] < 2y €U, v) < AL.

Suppose for s — 1 < ¢ — 1, the lemma is true for all integers k < s — 1, that is, for
everyv € V(F), |Wi(v)| < A*1q; (L) with some constants o (L). Fix an arbitrary vertex
u € V(F), and let

W) = {uxg%..%6,_1u € W,(u)li is the first integer such that x; = x,_;}
for every 1 < i <s. Then we have W;(u) = [ Ji_; Wi(w).

First, every composed walk W € ‘W(u) consists of an edge ux; and a closed composed
walk of length 2s — 2 with endpoints x;. Therefore, we have

TWiw)] < D) [Wmi(a)] < Aoy (L).
x;€N (u)
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Let 2 <i < s — 1. For every composed walk

W = ux%.. %1 U € Wi(u),

{uxq..x; %5—(i—1)--Xs—1u} forms a cycle C of length 2i containing u. Since for every
X1 € N(u), cy(u, x) < L, then the number of choices for C is at most AL. For a fixed C
and x; € C, W — C forms a path of length (s — i) with endpoints x; or a closed composed
walks of length 2(s — i) with endpoints x;. In the first case there are at most A*~! choices,
while in the later case there are at most |'W,_;(x;)| choices. Therefore, we have
Wiw)| < AL-(AF + [ Wisi(x)])

< AL-(A7F 4+ ATl (L)
< 2N < 2ASTIL,

Finally, every composed walk W € ‘Wi(u) is a cycle of length 2s containing u, and then
we have

Wil < ), exlu, v) < AL
VEN (u)
Hence, we have

N
Wew)| = UIWiw)| < 8 a1 (L) + 2(s — AL + AL < A a(L)
i=1

for og(L) = ag_1(L) + 2(s — 2)L + 1, and the lemma follows by induction. O

For an integer £ > 3 and a graph F, denote by F? the multigraph defined on V (F) such that
for every distinct u, v € V (F?), the multiplicity of uv in F? is the number of composed (u, v)-
walks of length 2(¢ — 1) in F.

Lemma 3.6. For an integer ¢ > 3 and a constant L > 0, let n be a sufficiently large
integer. Let m and d be the integers satisfying m < n and d > n'/¢/log n. Suppose F is an
m-vertex graph with minimum degree d — 1, such that for every uv € E(F) and
3 <k <26, c(u,v) < L. Then for every set J C V (F) of size at least 2°n/d’~!, we have

d2€—2|J|2

e(Fe[I]) > ST,

Proof. Let ‘W be the set of composed walks of length 2(¢ — 1) with endpoints in J, and
“W. be the set of closed composed walks of length 2(¢ — 1) with endpoint in J. By the
definition of F¢, we have

e(F/[J]D) = W] — |Wi.

By Lemma 3.5, we know that

|Wel < & %ap 1 (L)1,
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where A is the maximum degree of F, which, by Corollary 3.4, satisfies

d?logfn

A< g (1) <€ g, (D) < =B g, (1) = dlog ng, (L), 17)

dt-

Now, it remains to estimate the lower bound of ‘W. For every v € J, let a, be the
number of shortest paths of length ¢ — 1 such that v is one of the endpoints. For every
u € V(F), let #, be the set of shortest paths of length ¢ — 1 such that one endpoint is u
and another endpoint is in J. Let b, = |#| and then we have ) GV(F) Zve ; ay. By
(16), we have

Y =Y azy @yt=

ueV (F) veJ veJ

Note that for every vertex u € V(F) and P, P, € ,, P; + P, forms a composed walk in
W and vice versa. Therefore, we have

b Zubu ] d2€—2|J|2 d2€—2|J|2
_ u m 20-1.m
wi= 2, ( 2 ) =Moo 2™ 2 | T2 T 2

uevV (F)
for |J| > 2¢n/d¢~1 > 2°m/d?~1. Note that

o2 . -2 £(6-2)
W, < AN2q, (L) /1 < d log n N e_Z(L)ae—l(L)zze

W — | Ip a d*-2 |71
2%y
dé’ 210 e(6— 2)n d€ 1
< dz% 5 Y g 2 (L)ay 1 (L)2%*
log?“=2n

d L2 (L)1 (D)2f < 1,

when n is sufficiently large. Hence, we have

. B 1 d2=2|Jp
e(F [J])—|(W|—|W|ZE|W|Zw~ O

Now, we start to define the auxiliary graph, which will be used in Lemma 3.10 in the next
section. For every integer k > 1, call a path x¢x..3; a composed path if x...x; and xi.. X%y are
both shortest paths of length k. For an integer ¢ > 3 and a graph F, denote by F¢ the simple
graph defined on V (F) such that for every distinct u, v € V (FY), uv € E(F{) if there is a
composed (u, v)-path of length at most 2(¢ — 1) in F. To estimate the number of edges in F,
we need the following lemma.

Lemma 3.7. For integers £, A < m and a constant L < A, let F be an m-vertex graph
with maximum degree A, such that for everyuv € E(F) and 3 < k < 2¢, c,(u,v) < L. For
everyl < s < ¢ — 1 and every distinctu, v € V (F), the number of composed paths of length
2s with endpoints u, v is at most
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AST(SL + 1)S + 1).

Proof. Let P be the set of composed paths of length 2s with endpoints u, v. For given
vertices ai, ...,a;_1, let

P(ay,...,a5_1) = {Ux1..%5_1V € Plx1 = AypeeeXg_1 = Ag_1}.
Note that the number of nonempty P(ay,...,as_1) is at most AS~L, since ua,...as_ is a path.
Suppose that Py = ua;...ay;_1v is a composed path in P(ay,...,a;_1). For every composed
path P = ua;...as_1Xs.. 305 1V € P(a1,...,a5-1) \ {Po}, @5-1...025_1V and ay_1X,... 00,1V form a
closed walk W of length 2(s + 1). For every s <i < 2s — 1, if x; = a;, the number of
choices for x; is 1. Otherwise, W contains an even cycle of length at most 2(s + 1), which

contains the edge a;_;a; and vertex x;. Since ¢y (a;—1, a;) < L forevery2 < k < s + 1, the
number of choices for x; # a; is at most sL. Therefore, we have

[P(ai,...,as_1)| < (SL + 1)S + 1.
Finally, we obtain

Pl= D P@s1)| < AL+ 1) + 1), O

ay,...,0s_1

Now, we give an upper bound on the multiplicity of F¢.

Lemma 3.8. For integers £, A < m and a constant L < A, let F be an m-vertex graph
with maximum degree A, such that for everyuv € E(F) and 3 < k < 2¢, c,(u,v) < L. For

every distinctu, v € V (F), the number of composed walks of length 2(¢ — 1) with endpoints
u, v is at most

N72B,(L)
for a constant B,(L) which only depends on ¢ and L.

Proof. Let ‘W be the number of composed walks of length 2(¢ — 1) in F with endpoints
u,v. Forevery1 <i<¢ —1,let

W = {uxg..%-1)-1v € WIi is the first integer such that x; = %—1)_i},

and then we have W = [ J/' ‘W,
Let1 <i < ¢ — 2. For every composed walk

W= ux..Xp—1---%-1)-1vV € W,

{uxg.. X X%—1)=(i=1)--X2(,—1)-1V} forms a composed path P of length 2i. By Lemma 3.7,
there are at most A~1[(iL + 1)} + 1] choices for P. For a fixed P, W — P forms a path of
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length ¢ — i — 1 with endpoint x; or a close composed walk of length 2(¢ — i — 1) with
endpoint x;. In the first case, there are at most A’~~! choices, while in the later case, by
Lemma 3.5, there are at most A°~i=2q,_;_; (L) choices. Therefore, we have

Wi < A7NGEL + 1) + 1A + A2, (L)) < 28°72((L + 1) + 1).

Moreover, every walk W € ‘W,_; is a composed path of length 2(¢ — 1) with endpoints u
and v. By Lemma 3.7, we have

I'Wy_1] < A=2((6L — L + 1)’~! + 1).

Hence, we have

€—1 €2
W=D 1W< D) 282(GL + 1) + 1) + A-2((6L — L + 1)~ + 1) = A-26,(L)

i=1 i=1
for B,(L) = Zigz—f 2(GL + 1!+ 1) 4+ (L — L + 1)1 + 1). 0

We have all the ingredients to give a lower bound on the number of edges in auxiliary graph
FL. This lemma will play the same role as Lemma 2.5 in the case of 4-cycles.

Lemma 3.9. For an integer £ > 3 and a constant L > 0, let n be a sufficiently large
integer. Let m and d be the integers satisfying m < n and d > n'/¢/log n. Suppose F is an
m-vertex graph with minimum degree d — 1, such that for every uv € E(F) and
3 <k <26, c(u,v) < L. Then for every set J C V (F) of size at least 2°n/d’~!, we have

| 712
d‘|J| £,(L)

4
e(F* [J1) > 7'1 log"“‘z)n

for a constant f,(L) which only depends on ¢ and L.

Proof. Note that every composed walk of length 2(¢ — 1) with endpoints in J contains a
composed path of length at most 2(¢ — 1) with endpoints in J. Therefore, by Lemma 3.8,
we have

¢ e(F°lJ])
e(F;[J]) > m,

where A is the maximum degree of F, which by (17), satisfies

A < dlogfn-g,(L).
Hence, we have

e(F*[7]) L _ P

e(FL[T]) >
ED 2 50 log/“2n-g/>(L)B,(L) ~ nlog’“?n

fo (),

where f,(L) = mﬁg (@). .
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3.3 | Certificate lemma

In this section, we give our second main lemma, which will be used to build certificates for graphs
with sparse short cycles. This lemma is a generalization of Lemma 2.6 for longer cycle, although
the condition is slightly different. The idea of proof is also similar to Lemma 2.6, which originally
comes from Kleitman and Winston [14] and Kohayakawa, Kreuter, and Steger [15].

Lemma 3.10. For an integer € > 3 and constants L, o > 0, let n be a sufficiently large
integer. Let m and d be the integers satisfying m < n and (n'/¢/log n) < d < an'/?. Suppose
F is an m-vertex graph with minimum degree d — 1, such that for every uv € E(F) and
3<k<2¢, c(u,v)<L. Let H=F{. Then for every set I C V (F) of size d, such that
dy(v, I) £ (¢ — 1)L for all v € I, there exist a set T and a set C(T) depending only on T,
not on I, such that

G) TcIcc(m,
(ii) |T| < n'/¢/logn,
(iii) |C(T)| < 2¢ + D)n/d’~ L.

Proof. This proof is similar to the proof of Lemma 2.6. We will describe a deterministic
algorithm that associates to the set I a pair of sets T and C(T).

We start the algorithm with sets Ag = V(H), To = @ and a function 4(v) = 0, for
every v € V (H). In the ith iteration step, we pick a vertex u; € A; of maximum degree in
H[A;]. If u; € I, we define

{ti(v) +dy(, u;) ifveA;,
iy (v) = .
t(v) ifvéeA,
and Q = (|t;;1(v) > (€ — 1)L}, and let T, = T + u;, Ajpx1 = A; — u; — Q. Otherwise,
let T.1=T, A1 =A4; —uw; and t,.1(v) = t;(v), for every v € V(H). The algorithm
terminates at step K when we get a set Ay of size at most 2¢n/d?~!. We also assume that
ug_, € Tx as otherwise we can continue the algorithm until it is satisfied.

The algorithm outputs a vertex sequence {u, Up,....ug_1}, a set of ‘representative’
vertices Ty and a strictly decreasing set sequence {Ay, A, Ay, As, ...Ax}. Let T = T and
C(T) = Ax U T. From the algorithm, we have T C I. Furthermore, if a vertex v satisfies
t;(v) > (¢ — 1)L for some i, then we have dy(v, I) > t;(v) > (¢ — 1)L, which implies
v & I. Therefore, we maintain I CA; UT, for every i <K and especially get
I C Ax U Ty = C(T). Hence, Condition (i) is satisfied. Similarly as in Lemma 2.6, the
set C(T) only depends on T, not on I.

To finish the proof, it is sufficient to show that |Tx| < n'/¢/logn. Once we prove it, we
immediately obtain

1/¢
IT| = | Tl < —
logn

E}

and

2%n nt’t 2+ Dn
IC(T)| = |Ak| + |T] 7V logn 761
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which completes the proof.

In the rest of proof, we apply the same technique used in the proof of Lemma 2.6. We
repeat the process as follows. Denote g the integer such thatn/29 < |Ag| < n/24-1. By the
choice of A, we have g < logn. For every integer 1 < | < g, define A’ to be the first A-set
satisfying

n ; n
?S|A|<F

if it exists, and let T' be the corresponding T-set and t(v) be the corresponding ¢-function
of A. Note that A may not exist for every I, but A7 always exists and it could be that
Al = Ag. Suppose

A oAb 5D Ab

are all the defined A', where p < q. By the above definition, we have Ah = A;, Th =T,
and I, = q. Define Ab+ = Ag, T+ = Tg. Now, we have
p+1

Tx = J (Th = Th). (18)

j=2

To achieve our goal, we are going to estimate the size of T% — Th-1, for every
2<j<p+1

From the algorithm, we have t%i(v) < (¢ — 1)L, for every v € A5 U T4. Moreover, for
v € Al — Al — T, suppose v is removed in step i, then we have

W) = i) + dg (v, i) < (€ — DL + 1,

where u; is the selected vertex in step i. Therefore, we obtain

> ) < (¢ = DL + D]A| < (¢ - DL + 1)#. (19)

veAl-1

Let 2 < j < p. For every u; € T4 — Tl-1, u; is chosen of maximum degree in H [A;],
where A; is a set between A1 and AY. By the choice of AY, we have |A;| > n/2l-1. From
Lemma 3.9, we obtain that

dIA| d*
dir (Wi, Ay) 2 mﬁa( )2 er@)-

Note that dy (u;, A;) only contributes to % (v), for v € A; C Ab-1. Then we obtain

-t =Y py< Y dewea)< Y B0). (o)

I 1 1ngl(@—2)
2i-1log n wETI—Th-1 veAal-1

Combining (19) and (20), we have

d€

L il
|T5% — Th| 211—110g€(€_2)nf€

@L)y<{¢-1L + 1)—” ,
2kt
which implies
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£(6-2) 1/¢
2(¢ = DL +1) nlog"Pn _ 2((¢ - DL + 1) logf@Dp < !

[T — Th| < . < <
f, (D) d A log*n

for 2<j<p. For j=p+ 1, since we have (n/29) < |Ab+| < |Ab| < (n/297Y), by a
similar argument, we obtain that

d‘lA
o= Al ey oS Ay < D o)

n 10g€(€—2) n w;€Tlp+1—Tlp veAl
<((¢ = DL + 1)|Ab|,

which gives

2((¢ — 1L + 1) nlogf“-2n < nt/¢

|Tlp+1 - Tlp| < < .
f,(@L) d¢ log?n
Finally, by (18), we have
p+1 1/¢ 1/¢ 1/¢
ITxl= JITV - Th| <p—o <qg <t 0O
i log?n log2n ~ logn

3.4 | Proof of Theorem 1.5

This section is entirely devoted to the proof of Theorem 1.5. The idea is the same as the proof of
Theorem 2.9: we will build a certificate for each graph in G,(2¢, L) and estimate the number of
such certificates. Before we proceed, we first need the supersaturation result for C,, to give a
bound on the min-degree sequence of graphs in G,(2¢, L). It was mentioned in [8] that
Simonovits first proved the supersaturation for the even cycles, but the proof has not been
published yet and it might appear in an upcoming paper of Faudree and Simonovits [9]. Morris
and Saxton [20] recently provided a stronger version of supersaturation for even cycles. Very
recently, Jiang and Yepremyan [12] give a supersaturation result of even linear cycles in linear
hypergraphs, which includes the graph case. We use the graph version of their result and
rephrase it in terms of the average degree.

Theorem 3.11 (Jiang and Yepremyan [12]). For an integer € > 2, there exist constants
C, c such that if G is an n-vertex graph with the average degree d > 2Cn'/?, then G contains

at least ¢(d/2)* copies of Cye.

Corollary 3.12. Let G be a n-vertex graph in G,(2¢, L), and d,,, ...,d; be the min-degree
sequence of G. Then for every i € [n], we have

d; < ant/?

for some constant & = max{2C, 2(L/2c)'/??}, where C, c are constants given in Theorem
3.11.



BALOGH anp LI WI LEY 135

Proof. Suppose that there exists k € [n], such that d; > an'/¢. Then by Theorem 3.11,
the number of C,,’s in Gy is at least

20 1/¢ 2¢
c(%) >c & ZcinzzL(k)’
2 2 2c 2

which contradicts the fact that G € G,(2¢, L). O

Proof of Theorem 1.5. The way to construct the certificate is exactly same with in the proof of
Theorem 29. Here we restate the process. For a graph G e G,(2¢,L), let
Y5 :=v, <V,_; < -+ <V be the min-degree ordering of G and Dg := {d,, dy—1,....d;} be the
min-degree sequence of G. Note that by Corollary 3.12, there exists a constant a such that
d; < an'/?, for every i € [n]. For every i € [n], let G; = G[v;,...,v;]. Define the set sequence
S = {Sn, Su_1,-.-.S2}, where S; = Ng(v;, G;_1). Note that S; C {v;_1,...,»1} and |Sj| = d;. By the
construction, [Ys, Dg, Sg] uniquely determines the graph G and so we build a certificate
[Ys, Dg, Sg] for G. To complete the proof, it is sufficient to estimate the number of such certificates.

We first choose a min-degree ordering Y*=v,<v,; <:-<v;, and a min-degree
sequence D* = {d,,,...,d;}; the number of options is at most

n!(ant/é)n, (1)

Next, we count set sequences S = {S,, Sy_1,...,S2}, where S; C {v;_1,...,v1} and |Sj| = d;, such that
the graph reconstructed by [Y*, D*, S], denoted by Gs, are in G,(2¢, L). Forevery2 <i < n, let
M; be the number of choices for S; with fixed sets S;_j, ...,S,. Define

I ={i:d; < n'¢/logn}, I, ={i:d; > n'?/logn}.

For every i € I, since |S;| = d; < n'/¢/logn, we have a trivial bound

i—1 n 1/ 1/
M < < < pn/f/logn — pn¥*, 22
l ( d; ) [n”"/logn) =

It remains to consider the upper bound on M; fori € 1,. With fixed sets S;_1, ...,S,, the graph
G;_1 = Gs[Vi_1,...,v1] is uniquely determined. Since G;_; C Gs and Gs € G,(2¢, L), for every
uv € E(Gj_1) and every 3 < k < 2¢, we know that ¢ (u, v; Gi—1) < L. Note that every eligible S;
should satisfy dy (u, S;) < (I — 1)L for all u € S;, where H = (Gi—1)£k- Otherwise, there exists a
vertex u € S;, such that Z,i:z e (v, u; Gy) > dir(u, S;) > (I — 1)L, which is a contradiction.
Applying Lemma 3.10 on G;_;, we obtain that every eligible S; contains a subset T' of size at most
n'/¢/logn, which uniquely determines a set C(T) D S; of size at most (2¢ + 1)n/d/~". Since
the number of choices for T is at most

Z (l_.l)ﬁz( 1/le_1 )32( 1/en )SZ"W,
0<j<n /logn Jj n'/?/logn n'/¢/logn

we then have
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WILEY
¢+ 1)n
T -1 e
M <Y, (C( )) =D B EDIET DI
T i T i T T

for every i € I,, where the third inequality is given by Lemma 2.4.
Combining (22) and (23), we obtain that the number of choices for S is

n
H M, < HMi H M, < 2n1+1/”2(3€+1)n1+1/” < 2(3€+2)n1“/"_
i=2 iel iel

Hence, together with (21), the total number of certificates is at most

n
n!(ant/f)n H M, < 2 QGer e o 3ttt/
i=2

for n sufficiently large, which leads to |G,(2¢, L)| < 23(¢+Dn"/*, O

4 | HYPERGRAPH ENUMERATION

In this section, we study the enumeration problems of r-graphs with given girth and r-graphs
without C}’s. To prove them, we need a result on the linear Turan number of linear cycles given
by Collier-Cartaino, Graber, and Jiang [6].

Theorem 4.1 (Collier-Cartaino et al [6]). For every r, € > 3, there exists a constant
are > 0, depending on r and ¢, such that

. 1+ 1
ex,(n, Cp) < appon 1472,

4.1 | Proof of Theorem 1.3

Once we have Theorems 1.4 and 1.5, it is natural to think about reducing the hypergraph
problems to problems on graphs and then apply our graph counting theorems.

Definition 4.2 (Shadow graph). Given a hypergraph H, the shadow graph of H, denoted
by 0,(H), is defined as

0,(H)={D:|D|=2,3e€ H,DCe}.
Proposition 4.3. Letr > 3, ¢ > 2 and H € Forby(n, r, 2¢). For every r-element subset
S e V(H), S forms an r-clique in 0,(H) if and only if S is a hyperedge in H.

Proof. Assume that there exists a r-clique with vertex set S in d,(H) and two edges e;, e,
such that e;, e, lie on two different hyperedges f;, f,. Without loss of generality, we can
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assume that e; and e, share a common vertex, as otherwise, we let e; = ab and e, = cd
and one of the edge pairs {ab, ac} or {ac, cd} is contained in different hyperedges.

Let ey = ab C f; and e, = ac C f,. Note that ¢ € f, and b & f,, as otherwise we have
fi = f, by the linearity of H. Let f; be the hyperedge which includes bc. Then f, f,, f; are
distinct, and form a C; by the linearity of H. This contradicts the fact that
H € Forby(n, r, 2¢6). O

We also need the following short lemma on 4-cycles of the shadow graphs of hypergraphs in
Forb;(n, r, 4).

Lemma 4.4. For every r > 3, there exists a constant 3 = f3(r) such that for every
H € Forby(n, r, 4), the shadow graph 0,(H) contains at most fn3/? 4-cycles.

Proof. Let G = 0,(H). Since the girth of H is larger than 4, every 4-cycle in G must be
contained in a hyperedge of H. By Theorem 4.1, we have e(H) < a, 4n?/2. Hence, the
number of 4-cycles in G is at most

(:)e(H) < (:)amns/z _ g2

for B = (:)cx,A. O

Proof of Theorem 1.3 for ¢ =2. Define a map ¢: Forb,(n,r, 4) > G = {0,(H):
H € Forb,(n, r, 4)} given by ¢(H) = 6,(H). By Proposition 4.3, ¢ is a bijection. Note that by
Lemma 4.4, every graph in G has at most 3n®/2 4-cycles, where  is a constant depending on r.
Applying Theorem 1.4, when n is sufficiently large, we have

G| < 211n3/2‘

Hence, we obtain that [Forb, (n, r, 4)| = |G| < 21" for n sufficiently large, which completes
the proof.

Proof of Theorem 1.3 for ¢ > 3. Define a map ¢: Forby(n,r, 2¢) > G = {0,(H):
H € Forb(n, r, 2¢)} given by ¢ (H) = 8,(H). By Proposition 4.3, ¢ is a bijection. For a graph
G = 0,(H) € G and an edge uv € E(G), since the girth of H is larger than 2¢, each k-cycle in G,
which contains edge uv, must be contained in a hyperedge of H, for all 3 < k < 2¢. Indeed, this
hyperedge is unique by the linearity of H. Therefore, we have

r—2
,0;G) <
c(u, v; G) (k—2)

for all 3 < k < 2¢. Applying Theorem 1.5, when n is sufficiently large, we have
G| < 23(€+1)n1+1/f_

Hence, we obtain that |Forby (n, r, 2¢)| = |G| < 23¢+Dn*"* for n sufficiently large, which
completes the proof.
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4.2 | Proof of Theorem 1.1

We now estimate the number of r-graphs without C;. The main idea is the same as in the
previous section: we convert the hypergraph enumeration problem to a graph enumeration
problem and then apply Theorem 1.4. However, because of the existence of C}’s, some facts we
used before is no longer trivial and even not true. The first difficulty is to give an upper bound
on the number of 4-cycles in shadow graphs, and we need the following lemma on the number
of C§’s.

Lemma 4.5. Let r > 3. For every H € Forby(n, C;) and every edge e € E(H), the
number of C3’s in H containing e as an edge is at most

(;)(4r2 — 107 + 7).

Proof. For every distinct u, v € e, let
Cu,v = {{eaﬁ’ gl} g H ce nfl‘ = {u}’ e ngl = {v}7 lfl‘ N gll = 1}

Suppose C,, is nonempty, and fix a Cy={e, [, g} € Cu». For every
C ={e, f, g} € Cuy\{Co}, we know that

(o Vg N(fiug) —{u vt # 0,
otherwise, {f;), &y, f;» &} would form a C;. Let w be a vertex in (fy U g,) N (f; U g;) — {u, v}.

Since w € f, U g, — {u, v}, there are at most 2r — 3 choices for w. By linearity of H, the
number of linear 3-cycles in C,,, containing w is at most 2(r — 1). Therefore, we get

|Cuvl €1+ 2(r—1)Q2r — 3) =4r> — 10r + 7. (24)

Hence, the number of C;’s in H containing e as an edge is equal to

> 1Cul < (;)(4;’2 — 10r + 7). 0

u,vee

Lemma 4.6. For every r > 3, there exists a constant 3 = f3(r) such that for every
H € Forby(n, C}), the shadow graph 3,(H) contains at most fn>/? 4-cycles.

Proof. Since H is linear and contains no Cj, it is easy to check that for every 4-cycle of
0,(H), its vertex set is contained in either a hyperedge or the vertex set of a C; of H. By
Lemma 4.5, there are at most

1(r
5(2)(4r2 — 10r + 7)e(H)
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C3i’sin H,wheree(H) < a4 n®/2 given by Theorem 4.1. Hence, the number of 4-cycles in
0,(H) is at most

3(2)6(H) + 3(3r4_ 3)%(;)(@2 — 10r + 7)e(H) < pn3/?

for

B= [3(:) T (3;’4— 3)(;)(4r2 — 107 + 7)]0(,,4,

where «, 4 is a constant defined in Theorem 4.1. O

Another difficulty is that the map we defined in the proof of Theorem 1.3 might be no longer
injective. To overcome it, we have the following lemma to measure how far the map is from the
injection.

Lemma 4.7. For every r > 3, there exists a constant a = a(r) such that for every
H € Forby(n, C}), there are at most an®/? r-cliques in d,(H).

Proof. Let ¥ be the set of r-cliques in d,(H). For every e € E(H), let

F,={FeF |Fnel = max [Fn f|}.
fEE(H)

Then we have F = | Joen F.. Fix an arbitrary hyperedge e € H. For every 2 < g < r, let
Ry=1{Fe T |Fne =gl

then we have 7, = (Jj-, R,
First, it is trivial to get [R,| = 1. Let 2 < g < r — 1 and F be an r-clique in R,. Since

|F N e| = g, the number of choices for F N e is at most (;) Given F N e, let u, v be two

distinct vertices in F N e. For every w € F — e, by the definition of the shadow graph and
the linearity of H, there exist hyperedges f, g such that {e, f, g} forms a Cj with
enf=u,eng=v, and fng=w. By (24), the number of such Cj’s is at most
4r2 — 10r + 7. Therefore, the choices of w is at most 4r2 — 10r + 7. Hence, we have

R, < (r )(4r2 — 10r + 7)"9.
q

Then, we obtain

r—1

ZEDHIIEDY (}’)(4r2 —10r + 7)79 4+ 1 < 27 (4r?).
= q
q=2 r=2

Finally, we get
7= > IFd < 27@r2)ye(H) < an’/?

E . .
for a = 2" (4r?)’a, 4, where oc,’: els(ﬁ%e constant defined in Theorem 4.1. O
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Proof of Theorem 1.1. Define a map ¢: Forby(n, C;) - G = {0,(H): H € Forb.(n, C;)} given
by ¢ (H) = 3,(H). By Lemma 4.6, every graph G € G has at most n*/? 4-cycles, where 8 is a
constant depending on r. By Theorem 1.4, when n is sufficiently large, we have

61 < 27",

By Lemma 4.7, for every G € G, the number of r-cliques in G is at most an’/?, where « is a
constant depending on r. Since every hyperedge corresponds to an r-clique in its shadow graph,
we have

o~ (G)] < 22"
Finally, we obtain

|Forby(n, C;)| < Z le~1(G)| < |g|2an3/2 < 21+a)n?
Geg

for n sufficiently large, which completes the proof.
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