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Abstract

An r‐uniform linear cycle of length ℓ, denoted by Crℓ , is
an r‐graph with edges e e, …,1 ℓ such that for every

i e e e e[ − 1], = 1, = 1i i+1 1∈ ℓ ∣ ∩ ∣ ∣ ∩ ∣ℓ , and ei ∩
e =j ∅ for all other pairs i j i j{ , }, ≠ . For every r 3≥
and 4ℓ ≥ , we show that there exists a constant C

depending on r and ℓ such that the number of linear r‐

graphs of girth ℓ is at most 2Cn
1+1 2∕⌊ℓ∕ ⌋

. Furthermore, we

extend the result for = 4ℓ , proving that there exists a

constant C depending on r such that the number of

linear r‐graphs without Cr
4 is at most 2Cn

3 2∕
. The idea of

the proof is to reduce the hypergraph enumeration

problems to some graph enumeration problems, and

then apply a variant of the graph container method,

which may be of independent interest. We extend a

breakthrough result of Kleitman and Winston on the

number of C4‐free graphs, proving that the number of

graphs containing at most n n C32 log2 6
4∕ ’s is at most

2 n11 3 2∕
, for sufficiently large n. We further show that for

every r 3≥ and 2ℓ ≥ , the number of graphs such that

each of its edges is contained in only O (1) cycles of

length at most 2ℓ, is bounded by 2 n3( +1) 1+1ℓ ∕ℓ
asympto-

tically.
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1 | INTRODUCTION

For an integer r 2≥ , an r‐uniform hypergraph (or r‐graph) H V E= ( , ) consists of a set V of

vertices and a set E of edges, where each edge is an r‐element subset of V . For a family of r‐

graphs , the Turán number (function) of , denoted by nex ( , )r , is the maximum number of

edges among r‐graphs on n vertices which contain no r‐graph from as a subgraph. Write

nForb ( , )r for the set of r‐graphs with vertex set n[ ] which contain no r‐graph from as a

subgraph. When consists of a single graph H , we simply write n Hex ( , )r and n HForb ( , )r

instead. Since every subgraph of an H ‐free graph is also H ‐free, we have a trivial bound

( )n H
i

n2 |Forb ( , )|
( )

2 .n H
r

i n H

n

r r n Hex ( , )

ex ( , )

ex ( , )r

r

r∑≤ ≤ ≤≤
⋅ (1)

The study on determination of n HForb ( , )r∣ ∣ has a very rich history. Recently, the case when

H is a linear cycle received more attention. For integers r 2≥ and 3ℓ ≥ , an r‐uniform linear

cycle of length ℓ, denoted by Crℓ , is an r‐graph with edges e e, …,1 ℓ such that for every

i e e e e[ − 1], = 1, = 1i i+1 1∈ ℓ ∣ ∩ ∣ ∣ ∩ ∣ℓ , and e e =i j∩ ∅ for all other pairs i j i j{ , }, ≠ .

Kostochka, Mubayi, and Verstraëte [17], and independently, Füredi and Jiang [10] proved

that for every r n C n, 3, ex ( , ) = Θ( )r
r r−1ℓ ≥ ℓ . Then by (1), we trivially have

n C n CForb ( , ) = 2 and Forb ( , ) = 2r
r n

r
r O n nΩ( ) ( log )r r−1 −1∣ ∣ ∣ ∣ℓ ℓ (2)

for every r, 3ℓ ≥ . Guided and motivated by this development on the extremal numbers of

linear cycles, recently, Mubayi and Wang [21] showed that n CForb ( , ) = 2O n
3

3 ( )2∣ ∣ℓ for all even ℓ
and improved the trivial upper bound in (2) for r > 3. Inspired by Mubayi and Wang’s [21]

method, Han and Kohayakawa [11] subsequently improved the general upper bound to

2O n n( log log )r−1
. Very recently, Balogh, Narayanan, and Skokan [3] provided a balanced

supersaturation theorem for linear cycles and finally proved n CForb ( , ) = 2r
r O n( )r−1∣ ∣ℓ , for every

r, 3ℓ ≥ , using the hypergraph container method [2,24].

In this paper, we study the enumeration problem of linear hypergraphs containing no linear cycle

of fixed length. An r‐graph H is said to be linear if for every e e E H e e, ′ ( ), ′ 1∈ ∣ ∩ ∣ ≤ . For a family

of linear r‐graphs , the linear Turán number of , denoted by nex ( , )L , is the maximum number

of edges among linear r‐graphs on n vertices which contain no r‐graph from as a subgraph. Write

nForb ( , )L for the set of linear r‐graphs with vertex set n[ ] which contain no r‐graph from as a

subgraph. Again, when consists of a single graph H , we simply write n Hex ( , )L and n HForb ( , )L

instead. Similarly to (1), a trivial bound on the size of n HForb ( , )L is given as follows:

( )
n

i
n2 Forb ( , ) 2 .n

L

i n

n

r r nex ( , )

ex ( , )

ex ( , )L

L

L

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

∑≤ ∣ ∣ ≤ ≤≤
⋅ (3)

It is known from the famous (6, 3)‐problem that n n C o n< ex ( , ) = ( )c n
L

2− log
3
3 2 , where the

lower bound is given by Behrend [4] and the upper bound is given by Ruzsa and Szemerédi [23].

In 1968, Erdős, Frankl, and Rödl [7] showed that for every r n C o n3, ex ( , ) = ( )L
r
3

2≥ , and

n C nex ( , ) = Ω( )L
r c
3 for every c < 2. Using the so‐called 2‐fold Sidon sets, Lazebnik and

Verstraëte [19] constructed linear 3‐graphs with girth 5 and nΩ( )3 2∕ edges. On the other hand, it
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is not hard to show that n C O nex ( , ) = ( )L 4
3 3 2∕ . Hence, n C nex ( , ) = Θ( )L 4

3 3 2∕ . Kostochka,
Mubayi, and Verstraëte [16] proved n C nex ( , ) = Θ( )L 5

3 3 2∕ and conjectured that

n C nex ( , ) = ΘL
r 1+ 1

2
⎛

⎝
⎜

⎞

⎠
⎟ℓ ⌊ℓ∕ ⌋

for every r 3≥ and 4.ℓ ≥ Later, Collier‐Cartaino, Graber, and Jiang [6] proved that

( )n C O nex ( , ) =L
r 1+ 1

2ℓ ⌊ℓ∕ ⌋ for r 3≥ and 4ℓ ≥ . Although the lower bound on the linear Turán

number of linear cycles is still far from what is conjectured, following the same logic with the

usual Turán problem of cycles, it is natural to guess that

n CForb ( , ) = 2L
r nΘ 1+ 1

2
⎛

⎝
⎜

⎞

⎠
⎟∣ ∣ℓ ⌊ℓ∕ ⌋

(4)

for every r 3≥ and 4ℓ ≥ . In this paper, we confirm the above conjecture for = 4ℓ .

Theorem 1.1. For every r 3≥ , there exists C C r= ( ) > 0 such that

n CForb ( , ) 2 .L
r Cn
4

3 2∣ ∣ ≤ ∕

The upper bound for C4
3 is sharp in order of magnitude given by n C nex ( , ) = Θ( )L 4

3 3 2∕ and

(3). In general, since the sharp bound of related linear Turán number remains open, we are not

able to confirm the sharpness now.

For = 3ℓ , the work of Erdős, Frankl, and Rödl [7] could be extended to show that

n CForb ( , ) = 2L
r o n
3

( )2
for every r 3≥ . For > 4ℓ , although we are not ready to prove (4), we

provide a result on the girth version. Recall that the girth of a graph is the length of a shortest

cycle contained in the graph. Kleitman and Wilson [13], and independently Kreuter [18], and
Kohayakawa, Kreuter, and Steger [15] proved that there are 2O n( )1+1∕ℓ

graphs with no even cycles

of length 2ℓ, which made a step towards proving a longstanding conjecture of Erdős, who asked

for determining the number of C2ℓ‐free graphs. Motivated by the above work, we introduce an

analogous girth problem on linear hypergraphs. For a linear r‐graph H , the girth of H is the

smallest integer k such that H contains a Ck
r . We remark that for linear r‐graphs, our girth

definition is equivalent to a more classical girth definition, Berge girth, that is, the smallest

number k such that the r‐graph contains a Berge‐Ck
r , as a linear Berge‐Ck

r must contain a linear

cycle of length i for some i k3 ≤ ≤ . For every r 3≥ and 4ℓ ≥ , let n rForb ( , , )L ℓ denote the set

of all linear r‐graphs on n[ ] with girth larger than ℓ. Our second main result is as follows.

Theorem 1.2. For every r 3≥ and 4ℓ ≥ , there exists a constant C C r= ( , ) > 0ℓ such that

n rForb ( , , ) 2 .L
Cn1+1 2∣ ℓ ∣ ≤ ∕⌊ℓ∕ ⌋

Recently, Palmer et al [22] considered extremal problems for Berge‐hypergraphs and

proved our theorem for the case = 4ℓ . Note that for every 4ℓ ≥ , we have

n r n rForb ( , , + 1) Forb ( , , )L Lℓ ⊆ ℓ . Therefore, it is sufficient to prove Theorem 1.2 for all

even ℓ and we provide the following equivalent theorem instead.

Theorem 1.3. For every r 3≥ and 2ℓ ≥ , there exists a constant C C r= ( , ) > 0ℓ such

that

n rForb ( , , 2 ) 2 .L
Cn1+1∣ ℓ ∣ ≤ ∕ℓ
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Once again, the above upper bounds are possibly sharp, but we are not able to confirm it now.

The proofs of Theorems 1.1 and 1.3 are based on two graph enumeration results related to

even cycles. A classical result of Bondy and Simonovits [5] yields n C O nex ( , ) = ( )2 2
1+1ℓ ∕ℓ for all

2ℓ ≥ . By a series of papers of Kleitman and Winston [14], Kleitman and Wilson [13], Kreuter

[18], Kohayakawa, Kreuter, and Steger [15], and Morris and Saxton [20], we now know that the
number of C2ℓ‐free graphs is at most 2O n( )1+1∕ℓ

. Inspired by these works, we prove that the

number of graphs containing some but not many short cycles is still at most 2O n( )1+1∕ℓ
, which

may be of independent interest. We state our results as follows.

Theorem 1.4. Let n be a sufficiently large integer and a n= 32 log6 . The number of

n‐vertex graphs with at most n a2∕ 4‐cycles is at most 2 .n11 3 2∕

Given a graph G on n[ ], for every integer k 3≥ and every edge uv E G( )∈ , denote by

c u v G( , ; )k , the number of k‐cycles inG containing edge uv. When the underlying graph is clear,

we simply write c u v( , )k . For an integer 3ℓ ≥ and a constant L > 0, write L( , )n ℓ for the

family of graphs G on n[ ] such that for every k3 ≤ ≤ ℓ and uv E G c u v G L( ), ( , ; )k∈ ≤ .

Theorem 1.5. For an integer 3ℓ ≥ and a constant L > 0, let n be a sufficiently large

integer and then we have

L(2 , ) 2 .n
n3( +1) 1+1∣ ℓ ∣ ≤ ℓ ∕ℓ

Like many of these advances, our approach to proving Theorems 1.4 and 1.5 relies on the

graph container method developed in [14], in which one assigns a certificate for each target

graph. The certificate should be able to uniquely determine the target graph, and then we can

estimate the number of certificates instead of graphs. However, the previous applications of the

graph container method address the problems for graphs forbidding short cycles, while we

concern with the graphs with sparse short cycles. Therefore, the means by which we apply this

technique is quite nonstandard, and requires some new ideas.

It is not hard to extend Theorem 1.4 to a n= Θ(log )5 by proving a similar statement for

n n(4, log )n
4∕ as in Theorem 1.5. We choose to display the proof of Theorem 1.4 since it

contains some ideas which may bring more insights of this method to readers. Let

p ω n n= ( log )∕ . Note that the number of graphs on n[ ] with ( )p
n

2
edges is about 2ωn

3 2∕
and they typically contain n p ω n nΘ( ) = Θ( log )4 4 4 2 4∕ 4‐cycles. Therefore, a n= Θ(log )4 would

be the best possible in Theorem 1.4 and we believe that it should be the truth. Given by the

connection between Sidon sets and graphs without 4‐cycles, this problem is closely related with

an enumeration problem on generalized Sidon set which was recently studied in the authors’

another paper [1].

Throughout this paper, we let n[ ] denote the set n{1, 2,…, }. For a graphG and a set S V G( )⊆ ,

the induced subgraph G S[ ] is the subgraph of G whose vertex set is S and whose edge set

consists of all of the edges with both endpoints in S. Let δ G( ) denote the minimum degree of

graphG and GΔ( ) denote the maximum degree ofG. For a multigraphG and a vertex v V G( )∈ ,

the neighborhood N v( )G of v is the set of all vertices adjacent to v in G and the degree d v( )G of v

is the number of edges incident to v inG. For a set S V G( )⊆ , the neighborhood of v restricted to

S is N v S N v S( , ) = ( )G G ∩ ; the degree of v restricted to S, denoted by d v S( , )G , is the number of

edges incident to v with another endpoint in S. When the underlying graph is clear, we simply

write N v S( , ) and d v S( , ) instead. All logarithms have base 2.
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2 | GRAPHS CONTAINING A FEW 4 ‐CYCLES

2.1 | Preliminary results

Definition 2.1 (Min‐degree ordering, Min‐degree sequence). For a graphG on n[ ], amin‐

degree ordering is an ordering v v v< < <n n−1 1⋯ , such that vi is a vertex of minimum

degree in the graph G G v v= [ ,…, ]i i 1 , for every i n[ ]∈ (if there are more than one vertices

of the minimum degree, choose the one with the largest label). Let d d v= ( )i G ii
, then

d d d, ,…,n n−1 1 is called the min‐degree sequence.

Lemma 2.2. Let G be an n‐vertex graph with average degree d. If d n2≥ , then G

contains at least d 364∕ copies of 4‐cycles.

Proof. Let v v v, , …, n1 2 be the vertices in G and b d v= ( )i G i for every i n[ ]∈ . Let S be the

set of paths of length 2 (or 3‐paths) in G. We will count 3‐paths in two ways.

First, for a vertex vi, the number of 3‐paths containing vi as the middle point is exactly

( )b

2
i . Therefore, we have

S
b

n
b n

n
d

d n=
2

( )

2
=

2

1

3
.

i

n
i i

n
i

=1

=1 2⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎞

⎠
∑∣ ∣ ≥ ∑ ∕ ≥

On the other hand, for i j n1 <≤ ≤ , let cij be the number of common neighbors of vi and
vj. Then S c=

i j n ij1 <
∣ ∣ ∑ ≤ ≤ . Therefore, the number of 4‐cycles in G is equal to

( ) ( )c n c n S S

n

d1

2 2

1

2 2

( )

2
=

1

2 2 2 4 36
.

i j n

ij i j ij
n n

1 <

< 2 2
2

2

4
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛
⎝

⎞
⎠

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

∑ ≥ ∑ ∕ ∣ ∣∕ ≥ ∣ ∣ ≥≤ ≤ □
From Lemma 2.2, we immediately obtain the following corollary.

Corollary 2.3. Let G be a n‐vertex graph which contains at most n4 92∕ 4‐cycles, and

d d, …,n 1 be the min‐degree sequence of G. Then for every i n[ ]∈ ,

d n2 .i ≤
Proof. Suppose that there exists k n[ ]∈ , such that d n> 2 .k Then by Lemma 2.2, the

number of 4‐cycles in Gk is at least d n36 > ,k
4 4

9
2∕ which contradicts our assumption. □

We also provide an estimation for the following binomial coefficients, which will be used

repeatedly later.

Lemma 2.4. For integers n k, , ℓ and a constant c satisfying cn k k∕ ≥ℓ ,

cn k

k
2 ,

cen+1
2 ln 2

( )
1 ln 2

1
+1

⎛

⎝
⎜

⎞

⎠
⎟

∕ ≤ℓ ℓ∕ ℓ

where 2 ln 2 1.88.1 ln 2 ≈∕
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Proof. Let f x cen x x( ) = (log − ( + 1)log )ℓ on (0, + )∞ . Since f x( ) is a concave

function, it is maximized at the point x*, where

f x cen x′( ) = log − + 1

ln 2
− ( + 1)log = 0,* *

ℓ ℓ
that is,

x
cen

log =
log

+ 1
− 1

ln 2
.* ℓ

Therefore, we have

f k f x cen
cen

cen( ) ( ) = log − ( + 1)
log

+ 1
− 1

ln 2
2 =

+ 1

2 ln 2
( ) .*

cenlog
+1

− 1
ln 2

1 ln 2

1
+1

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟≤ ℓ ℓ ℓℓ ∕ ℓ

Since ( ) ( )n

k

ne

k

k≤ for every k n1 ≤ ≤ , we obtain that

cn k

k

cen

k
= 2 2 .

k
f k cen

+1
( )

+1
2 ln 2

( )
1 ln 2

1
+1

⎜ ⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

∕ ≤ ≤ℓ ℓ ℓ∕ ℓ □
2.2 | Certificate lemma

This section is devoted to prove our main lemma, which is a key step to build the certificates for

graphs with sparse 4‐cycles. This lemma can be viewed as a generalization of the Kleitman‐

Winston algorithm [14], which builds certificates for graphs without 4‐cycles. Before we

proceed, we first need a counting lemma, which will be used later in the proof.

For a graph F , denote by F 2 the multigraph defined on V F( ) such that for every distinct

u v V F, ( )2∈ , the multiplicity of uv in F 2 is the number of u v( , )‐paths of length 2 in F .

Lemma 2.5. For integers n m d> 8≥ ≥ , let F be anm‐vertex graph with δ F d( ) − 1≥
and H F= 2. Then for every J V H( )⊆ of size at least n d4 ∕ , we have

e H J
d J

n
( [ ])

4
.

2 2≥ ∣ ∣
Proof. Write V F v v( ) = { ,…, }m1 . For every j m[ ]∈ , let b d v J= ( , )j F j . Then we have

b d v J d d d n n m= ( ) ( − 1) (4( − 1)/ ) > 3 > 3
j

m
j v J F=1∑ ∑ ≥ ∣ ∣ ≥∈ . Therefore, we obtain that

e H J
b

m m
J d

m

d J

n
( [ ]) =

2 2 2

( − 1)

3 4
.

j

m
j

b

m

J d

m

=1

( − 1)
2 2 2 2

j
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∑ ≥ ≥ ≥ ∣ ∣ ≥ ∣ ∣∑ ∣ ∣ □

Lemma 2.6 (Certificate lemma). For a sufficiently large integer n, define b n= 16 log4 and

g n= 32 log5 . Letm and d be the integers satisfyingm n − 1≤ and n n d n( /log ) 2≤ ≤ .

Suppose that F is anm‐vertex graph with δ F d( ) − 1≥ and H F= 2. Additionally, assume

that for every u v V F N u N v n b, ( ), ( ) ( )F F∈ ∣ ∩ ∣ ≤ ∕ . Then for every set I V F( )⊆ of size d

which satisfies e H I n g( [ ]) ≤ ∕ , there exist a set T and a set C T( ) depending only on T , not

on I , such that
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(i) T I C T( )⊆ ⊆ ,

(ii) T n n2 log∣ ∣ ≤ ∕ ,

(iii) C T n d( ) 5∣ ∣ ≤ ∕ .

Proof. Let I be a subset of V F( ) of size d which satisfies e H I n g( [ ]) ≤ ∕ . Following the

ideas of Kleitman and Winston [14], we describe a deterministic algorithm that associates

to the set I a pair of sets T and C T( ), which shall be treated as the “fingerprint” and the

“container,” respectively.

Let I v I d v I n b= { : ( , ) > }h H∈ ∕ and I v I d v I n b= { : ( , ) }l H∈ ≤ ∕ . Since

e H I n g( [ ]) ≤ ∕ , the size of Ih is at most

e H I

n b

n b

g

n

n

2 ( [ ]) 2
=

log
,∕ ≤ ⋅

which is sufficiently small. Therefore, we only need to concern the vertices in Il.

The core algorithm. We start the algorithm with sets A V H I T= ( ) − , =h0 0 ∅ and the

function t v( ) = 00 for every v V H I( ) − h∈ . As the algorithm proceeds, one should view

Ai as the set of “candidate” vertices, Ti as the set of “representive” vertices, and t v( )i as a

“state” function which is used to control the process. In the ith iteration step, we pick a

vertex u Ai i∈ of maximum degree in H A[ ]i . In case there are multiple choices, we give

preference to vertices that come earlier in some arbitrary predefined ordering of V H( ) as

we always do, even if it is not pointed out at each time. If u Ii l∈ , we define

t v
t v d v u v A

t v v A
( ) =

( ) + ( , ) if ,

( ) if ,
i

i H i i

i i
+1

⎧
⎨
⎩

∈∉
and Q v t v n b= { ( ) > }i+1∣ ∕ , and let T T u A A u Q= + , = − −i i i i i i+1 +1 . Otherwise, let
T T A A u= , = −i i i i i+1 +1 , and t v t v( ) = ( )i i+1 , for every v V H I( ) − h∈ . The algorithm
terminates at step K once we get a set AK of size at most n d4 ∕ . We also assume that
u TK K−1 ∈ as otherwise we can continue the algorithm until it is satisfied.

The algorithm outputs a vertex sequence u u u{ , ,…, }K1 2 −1 , a set of ‘representive’ vertices

TK and a strictly decreasing set sequence A A A A A{ , , , ,…, }K0 1 2 3 . Let

T T I C T A T= , and ( ) = .K h K∪ ∪
From the algorithm, we have T IK l⊆ and therefore T I⊆ . Furthermore, if a vertex v

satisfies t v n b( ) >i ∕ for some i, then we have d v I t v n b( , ) ( ) >H i≥ ∕ , which implies

v Il∉ . Therefore, we maintain I A Tl i i⊆ ∪ for every i K≤ and in particular we have

I A T I A T C T= = ( )K K h K⊆ ∪ ∪ ∪ . Hence, Condition (i) is satisfied. Another crucial

fact is that C T( ) depends only on T , not on I . The reason is that for a given underlying

graph, its max degree sequence is fixed once we break the tie by some predefined ordering

on vertices. Therefore, for two sets I I,1 2 with the same “fingerprint” T , the algorithm

outputs the same vertex sequence u u u{ , ,…, }K1 2 −1 , which uniquely determines the set

C T( ) by the mechanics of the algorithm.

To verify Conditions (ii) and (iii), it is sufficient to show that T n nlogK∣ ∣ ≤ ∕ . Once

we prove it, we immediately obtain

T T I
n

n

n

n

n

n
= +

log
+

log
=

2

log
,K h∣ ∣ ∣ ∣ ∣ ∣ ≤

and
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C T A T
n

d

n

n

n

d
( ) = +

4
+

2

log

5
,K∣ ∣ ∣ ∣ ∣ ∣ ≤ ≤

completing the proof.

Denote q the integer such that n A n2 < 2q
K

q−1∕ ≤ ∣ ∣ ∕ . By the choice of AK , we have

q n< log . For every integer l q1 ≤ ≤ , define Al to be the first A‐set satisfying

n
A

n

2
<

2l
l

l−1
≤ ∣ ∣

if it exists, and let T l be the correspondingT ‐set and t v( )l be the corresponding t‐function

of Al. Note that Al may not exist for every l, but Aq always exists and it could be that

A A= .q
K Suppose that

A A Al l lp1 2⊃ ⊃ ⋯ ⊃
are all the well‐defined Al, where p q≤ . By the above definition, we have
A A T T= , =l l

0 01 1 , and l q=p . Define A A T T= , =l
K

l
Kp p+1 +1 . Now, we have

T T T= ( − ).K
j

p
l l

=2

+1
j j−1⋃ (5)

To achieve our goal, we are going to estimate the size of T T−l lj j−1 for every

j p2 + 1≤ ≤ .

From the algorithm, we have t v n b( )lj ≤ ∕ , for every v A Tl lj j∈ ∪ . Moreover, for

v A A T− −l l lj j j−1∈ , suppose that v is removed in step i, then we have

t v t v d v u
n

b
N u N v

n

b
( ) ( ) + ( , ) + ( ) ( )

2
,l

i H i F i F−1j ≤ ≤ ∣ ∩ ∣ ≤
where ui is the selected vertex in step i. Therefore, we obtain

t v
n

b
A

n

b
( )

2 2

2
.

v A

l l
l

3 2

−1
l j

j j

j
−1

−1

−1
∑ ≤ ∣ ∣ ≤∈

∕
(6)

Let j p2 ≤ ≤ . For every u T T u− ,i
l l

ij j−1∈ is chosen of maximum degree in H A[ ]i ,

where Ai is a set between Alj−1 and Alj. By the choice of Alj, we have A n 2i
lj−1∣ ∣ ≥ ∕ . By

Lemma 2.5, we have

d u A
d A

n

d
( , )

4 2
.H i i

i

l

2 2

+2j−1
≥ ∣ ∣ ≥

Note that d u A( , )H i i only contributes to t v( )lj for v A Ai
lj−1∈ ⊆ . Then we obtain

T T
d

d u A t v−
2

( , ) ( ).l l
l

u T T

H i i

v A

l
2

+2
−

j j

j

i
lj l j l j

j−1

−1
−1 −1

∑ ∑∣ ∣ ≤ ≤∈ ∈ (7)

Combining (6) and (7), we have
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T T
d n

b
−

2

2

2
,l l

l l

2

+2

3 2

−1
j j

j j

−1

−1 −1
∣ ∣ ≤ ∕

which implies

T T
n

bd

n n

b

n

n
− 16 16 log

=
log

l l
3 2

2

2

2
j j−1∣ ∣ ≤ ≤∕

for j p2 ≤ ≤ . For j p= + 1, since we have

n
A A

n

2 2q
l l

q−1
p p+1≤ ∣ ∣ ≤ ∣ ∣ ≤

by a similar argument, we obtain that

T T
d A

n
d u A t v

n

b
A−

4
( , ) ( )

2
,l l

l

u T T

i i

v A

l l
2

−

p p
p

i
lp lp lp

p p+1

+1

+1

+1∑ ∑∣ ∣ ∣ ∣ ≤ ≤ ≤ ∣ ∣∈ ∈
which gives

T T
n

bd

n n

b

n

n
− 16 16 log

=
log

.l l
3 2

2

2

2
p p+1∣ ∣ ≤ ≤∕

Finally, by (5), we get

T T T p
n

n
q

n

n

n

n
= −

log log log
.K

j

p
l l

=2

+1

2 2
j j−1∣ ∣ ⋃ ∣ ∣ ≤ ⋅ ≤ ⋅ ≤ □

2.3 | Proof of Theorem 1.4

In this section, we give an upper bound on the number of graphs containing only “few” 4‐

cycles. Before we proceed to prove Theorem 1.4, we need to do a cleaning process for the target

graphs in order to apply Lemma 2.6.

Let a n g n= 32 log , = 32 log6 5 , and b n= 16 log .4 Given a graph G on n[ ], for every

i j n1 <≤ ≤ , define N i j( , )G to be the set of common neighbors of i and j in G. Let

m i j

N i j N i j
n

b

N i j
n

b

( , ) =

( , ) when ( , ) > ,

0 when ( , ) .
G

G G

G

⎧

⎨
⎪⎪

⎩
⎪
⎪

∣ ∣ ∣ ∣
∣ ∣ ≤

We delete all edges from i to N i j( , )G , for all i j n1 <≤ ≤ withm i j( , ) 0G ≠ . Then the resulting

subgraph, denoted byG, satisfies N i j n b( , )G∣ ∣ ≤ ∕ for every i j n1 <≤ ≤ . Let n be the family

of graphs on n[ ] with at most n a2∕ 4‐cycles and G G= { : }.n n
 ∈
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Lemma 2.7. Let n be a sufficiently large integer. Then for every G n∈ , we have

E G E G
n

n
( ) − ( )

4

log
.

3 2

2
∣ ∣ ≤ ∕

Proof. By counting 4‐cycles in G, we obtain that

m i j n

a

1

2

( , )

2
,

i j

G

<

2⎛

⎝
⎜

⎞

⎠
⎟∑ ≤

which gives

m i j
n

a
( , ) 8 .

i j

G

<

2
2∑ ≤ (8)

Let B i j i j n m i j= {( , ): 1 < and ( , ) 0}G≤ ≤ ≠ . By the definition of m i j( , )G and (8),

we have

B
n

a

n

b
b n a8 = 8 .

2 2
2⎜ ⎟

⎛

⎝

⎞

⎠
∣ ∣ ≤ ∕ ∕

Therefore, by the convexity, we get

m i j
m i j

B

m i j

B

m i j

b n a
( , )

( ( , ))
=

( ( , )) ( ( , ))

8
.

i j B

G
i j B G i j G i j G

( , )

2 ( , )
2

<
2

<
2

2∑ ≥ ∑ ∣ ∣ ∑ ∣ ∣ ≥ ∑ ∕∈
∈

(9)

Combining (8) and (9), we obtain

m i j
n b

a

n

n
( , )

8
=

4

log
.

i j

G

<

3 2 3 2

2∑ ≤ ∕ ∕

Finally, by the definition of G, we have ∣E G E G m i j( ) − ( ) = ( , )
i j G<

 ∣ ∑ ≤
n n(4 /log ).3 2 2∕ □

Lemma 2.8. Let n be a sufficiently large integer. Then

2 .n n
n

n
4 3 2

log∣ ∣ ≤ ∣ ∣⋅ ∕

Proof. For every F n
∈ , let G G F= { = }F n

∈ ∣ . By Lemma 2.7, for everyG F∈ , we

have E G E F n n( ) − ( ) (4 /log )3 2 2∣ ∣ ≤ ∕ . Therefore, the size of F is bounded by

( )

0
+

( )

1
+ +

( )
2

( )
2 .F

n n n

n

n

n

n

n

2 2 2

4

log

2

4

log

n
n

3 2

2

3 2

2

4 3 2

log

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

∣ ∣ ≤ ⋯ ⌊ ⌋ ≤ ⌊ ⌋ ≤∕ ∕
∕
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Finally, we obtain that

2 .n

F

F n

n

n
n

4 3 2

log

∑∣ ∣ ≤ ∣ ∣ ≤ ∣ ∣⋅∈

∕ □
Theorem 2.9. Let n be a sufficiently large integer. Then 2n

n10 3 2∣ ∣ ≤ ∕
.

Proof. We construct the certificate of a graph G in the following way. Let

Y v v v< < <G n n−1 1≔ ⋯ be the min‐degree ordering of G and D d d d{ , ,…, }G n n−1 1≔ be

the min‐degree sequence of G. Let G G v v= [ ,…, ]i i 1 , for every i n[ ]∈ . Define the set

sequence S S S S{ , ,…, }G n n−1 2≔ , where S N v G= ( , )i G i i−1 . Then S v v{ ,…, }i i−1 1⊆ , and

S d=i i∣ ∣ . By the construction, Y D S[ , , ]G G G uniquely determines the graph G and so we

build a certificate Y D S[ , , ]G G G forG. Therefore, instead of counting graphs, it is equivalent

to estimate the number of their certificates.

For a graphG n
∈ , its certificate has some important properties which would help us

to achieve the desired bound. First, by Corollary 2.3, its min‐degree ordering

D d d d= { , ,…, }G n n−1 1 satisfying d n2i ≤ . Let fi be the number of 4‐cycles in Gi
containing vertex vi. Since each 4‐cycle contributes exactly to one of fi’s, we have

f n a.
i

n
i=1

2∑ ≤ ∕ We call vi a heavy vertex if f n g>i ∕ ; otherwise, vi is a light vertex. Another

crucial fact about graphs in n
 is that the number of heavy vertices is at most

f

n g

n a

n g

n

n
=

log
.

v V i
2

i h
∑ ∕ ≤ ∕∕∈

(10)

Now we start to estimate the number of certificates which would generate graphs in

n
 . By the above discussion, we first observe that the number of ways to choose the min‐

degree orderings and the min‐degree sequences is at most

n n! (2 ) .n (11)

Then we fix a min‐degree orderingY v v v= < < <* n n−1 1⋯ , and a min‐degree sequence

D d d= { ,…, }* n 1 . Next, we fix the positions of heavy vertices and by (10) the number of

ways is at most

n

i
.

i n
nlog

⎜ ⎟
⎛
⎝

⎞
⎠∑≤ (12)

A major part of the proof is to count set sequences S S S S= { , ,…, }n n−1 2 , where
S v v{ ,…, }i i−1 1⊆ and S d=i i∣ ∣ , such that the graph reconstructed by Y D S[ , , ]* * , denoted
byGS, are in . For every i n2 ≤ ≤ , let Mi be the number of choices for Si with fixed sets
S S, …,i−1 2. Define

{ }i v i d
n

n
= { : is a heavy vertex}, = : <

log
,i i1 2

and

{ }i v d
n

n
= : is a light vertex and

log
.i i3 ≥
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For every i 1∈ , since S d n= 2i i∣ ∣ ≤ , we have a trivial upper bound

M
i

d

n

n
n

− 1

2
= 2 .i

i

n n n2 2 log
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟≤ ≤ ≤ (13)

Similarly, for every i 2∈ , we have

M
i

d

n

n n
n

− 1

log
= 2 .i

i

n n nlog
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟≤ ≤ ∕ ≤ ∕ (14)

It remains to estimate Mi for i 3∈ . With fixed sets S S, …,i−1 2, the graph

G G v v= [ ,…, ]i S i−1 −1 1 is uniquely determined. Since G Gi S−1 ⊆ and GS ∈ , for every

u v V G, ( )i−1∈ , we have N u N v n b( ) ( )G Gi i−1 −1
∣ ∩ ∣ ≤ ∕ . Applying Lemma 2.6 on Gi−1, we

obtain that every eligible Si contains a subset T of size at most n n2 log∕ , which

determines a set C T S( ) i⊇ of size at most n d5 i∕ . Since the number of choices for T is at

most

i

j

i

n n

n

n n

− 1
2

− 1

2 log
2

2 log
2 ,

j n n

n

0 2 log

2
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟∑ ≤ ∕ ≤ ∕ ≤≤ ≤ ∕

we then have

M
C T

d

n d

d

( ) 5
2 2 2i

T i T

i

i T

en

T

n n
2

2 ln 2
5 4 61 ln 2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑ ∑ ∑≤ ≤ ∕ ≤ ≤ ≤∕ (15)

for every i 3∈ , where the third inequality is given by Lemma 2.4.

Combining (13), (14), and (15), we obtain that the number of choices for S is

M M M M (2 ) (2 ) (2 ) 2 .
i

n

i

i

i

i

i

i

i
n n n n n n n

=2

2 log 6 9n
n

1 2 3

log
3 2∏ ∏ ∏ ∏≤ ≤ ≤∈ ∈ ∈
∕

Finally, together with (11) and (12), the total number of certificates is at most

n n
n

i
M n n! (2 ) ! (2 ) 2 2 2 ,n

i n
n

i

n

i
n n n n

log
=2

9 103 2 3 2
⎜ ⎟
⎛
⎝

⎞
⎠∑ ∏ ≤ ≤≤

∕ ∕

which leads to 2 .n
n10 3 2∣ ∣ ≤ ∕

Proof of Theorem 1.4. Lemma 2.8 and Theorem 2.9 imply Theorem 1.4. □
3 | THE NUMBER OF GRAPHS WITH SPARSE SHORT
CYCLES

In the previous section, we estimated the number of graphs containing a few 4‐cycles.

Unfortunately, we are not ready to provide a similar result for longer cycles due to the failure of

getting an appropriate counting lemma, like Lemma 2.5. However, this method still works

124 | BALOGH AND LI



when the target graph has a sparse structure on short cycles. More specifically, for 4ℓ ≥ , we are

going to consider the family of graphs such that each of its edges is contained in only O (1)

cycles of length at most 2ℓ. Following the idea from [15], we construct a proper auxiliary graph

and provide a suitable counting lemma on it.

3.1 | Expansion properties of graphs with sparse short cycles

Given a graph G, a vertex v V G( )∈ , and an integer k 1≥ , let vΓ ( )k be the set of vertices of G at

distance exactly k from v. Recall that for an edge uv E G c u v G( ), ( , ; )k∈ is the number of k‐

cycles in G containing edge uv.

Lemma 3.1. For integers mℓ ≤ and a constant L > 0, let F be an m‐vertex graph such

that for every uv E F( )∈ and i c u v L3 2 , ( , )i≤ ≤ ℓ ≤ . Then for every k1 − 1≤ ≤ ℓ and

v V F( )∈ , we have

d u v Lk( , Γ ( ))k ≤
for all u vΓ ( )k∈ .

Proof. Suppose there exists a vertex u vΓ ( )k∈ such that d u v Lk( , Γ ( )) + 1k ≥ . Since

u vΓ ( )k∈ , there exists a u v( , )‐path Pu of length k. Let u′ be the neighbor of u in Pu.

Similarly, for every vertex w N u v( , Γ ( ))k∈ , there is a w v( , )‐path Pw of length k. Note that

every P P uw+ + { }u w forms a closed walk of length k2 + 1, which contains an odd cycle of

length at most k2 + 1 containing edges uu′ and uw. Since d u v Lk( , Γ ( )) + 1k ≥ , we have

at least Lk + 1 distinct odd cycles of length at most k2 + 1 containing uu′. However, since

c u u L( , ′)h ≤ for every odd h k2 + 1≤ , there are at most Lk odd cycles of length at most

k2 + 1 containing uu′, which is a contradiction. □
Lemma 3.2. For integers mℓ ≤ and a constant L > 0, let F be an m‐vertex graph such

that for every uv E F( )∈ and i c u v L3 2 , ( , )i≤ ≤ ℓ ≤ . Then for every k2 ≤ ≤ ℓ and

v V F( )∈ , we have

d u v L k( , Γ ( )) ( − 1) + 1k−1 ≤
for all u vΓ ( )k∈ .

Proof. Suppose there exists a vertex u vΓ ( )k∈ such that d u v L k( , Γ ( )) ( − 1) + 2k−1 ≥ .

Let u′ be a vertex in N u v( , Γ ( ))k−1 . Since u v′ Γ ( )k−1∈ , there exists a u v( ′, )‐path Pu′ of

length k − 1. Similarly, for every vertex w N u v u( , Γ ( )) { ′}k−1∈ ⧹ , there is a w v( , )‐path Pw
of length k − 1. Note that every P P uu uw+ + { ′} + { }u w′ forms a closed walk of length k2 ,

which contains an even cycle of length at most k2 containing edges uu′ and uw. Since
N u v u L k( , Γ ( )) { ′} ( − 1) + 1k−1∣ ⧹ ∣ ≥ , we have at least L k( − 1) + 1 distinct even cycles

of length at most k2 containing uu′. However, since c u u L( , ′)h ≤ for every even

h k4 2≤ ≤ , there are at most L k( − 1) even cycles of length at most k2 containing uu′,
which is a contradiction. □
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Now, we give a lemma on the expansion of graphs with sparse short cycles. This lemma can

be viewed as a generalization of Lemma 11 in [15].

Lemma 3.3. For integers d m,ℓ ≤ and a constant L d≪ , let F be an m‐vertex graph

with minimum degree at least d − 1, such that for every uv E F( )∈ and

i c u v L3 2 , ( , )i≤ ≤ ℓ ≤ . Suppose v is a vertex in F with degree d v( ). Then for every

k1 ≤ ≤ ℓ, we have
v

d v d

g L
Γ ( )

( )

( )
k

k

k

−1∣ ∣ ≥
for some constants g L( )k which only depend on k and L.

Proof. The case k = 1 is trivially true with g L( ) = 11 . Suppose that the lemma is true for

k < ℓ, that is, L d v d g LΓ ( ) ( ) ( )k
k

k
−1∣ ∣ ≥ ∕ for some constant g L( )k .

For every vertex u vΓ ( )k∈ , neighbors of u only appear in v vΓ ( ), Γ ( )k k−1 and vΓ ( )k+1 . By

Lemmas 3.1 and 3.2, we have

d u v d d u v d u v d Lk L
d

( , Γ ( )) ( − 1) − ( , Γ ( )) − ( , Γ ( )) − 2( + 1) +
2

k k k+1 −1≥ ≥ ≥
(16)

for all u vΓ ( )k∈ and this gives

e v v
d v

(Γ ( ), Γ ( ))
Γ ( )

2
.k k

k
+1 ≥ ∣ ∣

Again by Lemma 3.2, we know that for every u v d u v LkΓ ( ), ( , Γ ( )) + 1k k+1∈ ≤ .

Therefore, we have

v
e v v

Lk

d v

Lk

d v d

Lk g L

d v d

g L
Γ ( )

(Γ ( ), Γ ( ))

+ 1

Γ ( )

2( + 1)

( )

2( + 1) ( )
=

( )

( )
k

k k k
k

k

k

k

+1
+1

+1

∣ ∣ ≥ ≥ ∣ ∣ ≥
for g L Lk g L( ) = 2( + 1) ( )k k+1 and the lemma follows by induction. □
Lemma 3.3 gives an upper bound on the maximum degree of the graph with sparse short

cycles.

Corollary 3.4. For integers d m,ℓ ≤ and a constant L d≪ , let F be an m‐vertex graph

with minimum degree d − 1, such that for every uv E F( )∈ and i c u v L3 2 , ( , )i≤ ≤ ℓ ≤ .

Then

F
m

d
g LΔ( ) ( ),−1

≤ ⋅ℓ ℓ
where g L( )ℓ is the constant defined in Lemma 3.3.
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Proof. By Lemma 3.3, for every v V F( )∈ , we have

v
d v d

g L
Γ ( )

( )

( )
,

−1∣ ∣ ≥ℓ ℓ
ℓ

which gives

d v
v

d
g L

m

d
g L( )

Γ ( )
( ) ( ),−1 −1

≤ ∣ ∣ ≤ℓℓ ℓ ℓ ℓ
This implies the corollary. □

3.2 | Construction of the auxiliary graph

In this section, we aim to give a generalization of Lemma 2.5 for longer cycles. We use a

definition of composed walk from [15]. For every integer k 1≥ , call a k2 ‐walk x x x… k0 1 2 a

composed walk if x x… k0 and x x…k k2 are two shortest paths and they are different but not

necessarily vertex‐disjoint or edge‐disjoint. A composed walk is said to be closed if its endpoints

are the same.

Lemma 3.5. For integers m, Δℓ ≤ and a constant L Δ≪ , let F be an m‐vertex graph

with maximum degree Δ, such that for every uv E F( )∈ and k c u v L3 2 , ( , )k≤ ≤ ℓ ≤ .

Then for every vertex u V F( )∈ and every integer s2 − 1≤ ≤ ℓ , the number of closed

composed walks of length s2 with endpoints u is at most

α LΔ ( )s
s

−1

for some constants α L( )s which only depends on s and L.

Proof. For every vertex u V F( )∈ and every integer s2 − 1≤ ≤ ℓ , let u( )s be the set

of closed composed walks of length s2 with endpoints u. For the case s = 2, the lemma is

true with α L L( ) =2 . This is because that a closed composed walk of length 4 with

endpoint u is exactly a 4‐cycle containing u and then we have

u c u v L( ) ( , ) Δ
v N u2 ( ) 4∣ ∣ ≤ ∑ ≤∈ .

Suppose for s − 1 < − 1ℓ , the lemma is true for all integers k s − 1≤ , that is, for

every v V F v α L( ), ( ) Δ ( )k
k

k
−1∈ ∣ ∣ ≤ with some constants α L( )k . Fix an arbitrary vertex

u V F( )∈ , and let

u ux x x u u i x x( ) = { … ( ) is the first integer such that = }s
i

s s i s i1 2 2 −1 2 −∈ ∣
for every i s1 ≤ ≤ . Then we have u u( ) = ( ).s i

s
s
i

=1⋃
First, every composed walkW u( )s

1∈ consists of an edge ux1 and a closed composed

walk of length s2 − 2 with endpoints x1. Therefore, we have

u x α L( ) ( ) Δ ( ).s

x N u

s
s

s
1

( )

−1 1
−1

−1

i

∑∣ ∣ ≤ ∣ ∣ ≤∈
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Let i s2 − 1≤ ≤ . For every composed walk

W ux x x u u= … ( ),s s
i

1 2 2 −1 ∈
ux x x x u{ … … }i s i s1 2 −( −1) 2 −1 forms a cycle C of length i2 containing u. Since for every

x N u c u x L( ), ( , )i1 2 1∈ ≤ , then the number of choices for C is at most LΔ . For a fixed C

and x C W C, −i ∈ forms a path of length s i( − ) with endpoints xi or a closed composed

walks of length s i2( − ) with endpoints xi. In the first case there are at most Δs i− choices,

while in the later case there are at most x( )s i i−∣ ∣ choices. Therefore, we have

u L x

L α L

L L

( ) Δ (Δ + ( ) )

Δ (Δ + Δ ( ))

2Δ 2Δ .

s
i s i

s i i

s i s i
s i

s i s

−
−

− − −1
−

− +1 −1

∣ ∣ ≤ ⋅ ∣ ∣≤ ⋅≤ ≤
Finally, every composed walkW u( )s

s∈ is a cycle of length s2 containing u, and then

we have

u c u v L( ) ( , ) Δ .s
s

v N u

s

( )

2∑∣ ∣ ≤ ≤∈
Hence, we have

u u α L s L L α L( ) = ( ) Δ ( ) + 2( − 2)Δ + Δ Δ ( )s
i

s

s
i s

s
s s

s
=1

−1
−1

−1 −1∣ ∣ ⋃ ∣ ∣ ≤ ≤
for α L α L s L( ) = ( ) + 2( − 2) + 1,s s−1 and the lemma follows by induction. □
For an integer 3ℓ ≥ and a graph F , denote by Fℓ the multigraph defined on V F( ) such that

for every distinct u v V F, ( )∈ ℓ , the multiplicity of uv in Fℓ is the number of composed u v( , )‐

walks of length 2( − 1)ℓ in F .

Lemma 3.6. For an integer 3ℓ ≥ and a constant L > 0, let n be a sufficiently large

integer. Let m and d be the integers satisfying m n≤ and d n n/log1≥ ∕ℓ . Suppose F is an

m‐vertex graph with minimum degree d − 1, such that for every uv E F( )∈ and

k c u v L3 2 , ( , )k≤ ≤ ℓ ≤ . Then for every set J V F( )⊆ of size at least n d2 −1∕ℓ ℓ , we have

e F J
d J

n
( [ ])

2
.

2 −2 2

2 +1
≥ ∣ ∣ℓ ℓℓ

Proof. Let be the set of composed walks of length 2( − 1)ℓ with endpoints in J , and

c be the set of closed composed walks of length 2( − 1)ℓ with endpoint in J . By the

definition of Fℓ, we have

e F J( [ ]) = − .c∣ ∣ ∣ ∣ℓ
By Lemma 3.5, we know that

α L JΔ ( ) ,c
−2

−1∣ ∣ ≤ ⋅∣ ∣ℓ ℓ
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where Δ is the maximum degree of F , which, by Corollary 3.4, satisfies

m

d
g L

n

d
g L

d n

d
g L d n g LΔ ( ) ( )

log
( ) = log ( ).−1 −1 −1

≤ ⋅ ≤ ⋅ ≤ ⋅ ⋅ℓ ℓ ℓ ℓ ℓ ℓℓ ℓ ℓ ℓ (17)

Now, it remains to estimate the lower bound of . For every v J∈ , let av be the

number of shortest paths of length − 1ℓ such that v is one of the endpoints. For every

u V F( )∈ , let u be the set of shortest paths of length − 1ℓ such that one endpoint is u

and another endpoint is in J . Let b =u u∣ ∣ and then we have b a= .
u V F u v J v( )∑ ∑∈ ∈ By

(16), we have

b a d
d J

= ( 2) =
2

.
u V F

u

v J

v

v J( )

−1
−1

−1∑ ∑ ∑≥ ∕ ∣ ∣
∈ ∈ ∈

ℓ ℓℓ
Note that for every vertex u V F( )∈ and P P P P, , +u1 2 1 2∈ forms a composed walk in

and vice versa. Therefore, we have

b
m m

d J

m

d J

n
=

2 2 2 2 2
u V F

u

b

m

d J

m

( )

2
2 −2 2

2

2 −2 2

2

u u −1

−1
⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∑∣ ∣ ≥ ≥ ≥ ∣ ∣ ≥ ∣ ∣

∈
∑ ∣ ∣⋅ ℓ ℓ ℓ ℓ

ℓℓ

for J n d m d2 2 .−1 −1∣ ∣ ≥ ∕ ≥ ∕ℓ ℓ ℓ ℓ Note that

α L J d n

d

n

J
g L α L

d n

d

d
g L α L

n

d
g L α L

Δ ( ) log
( ) ( )2

log

2
( ) ( )2

log
( ) ( )2 1,

c

d J

n

−2
−1

2

−2 ( −2)

2 −2
−2

−1
2

−2 ( −2)

2 −2

−1
−2

−1
2

( −2)
−2

−1

2 −2 2

2

∣ ∣∣ ∣ ≤ ⋅∣ ∣ ≤ ⋅ ∣ ∣ ⋅
≤ ⋅ ⋅
≤ ⋅ ≪

ℓ ℓ ∣ ∣
ℓ ℓ ℓℓ ℓℓ ℓ ℓ

ℓ ℓ ℓℓ ℓℓ ℓℓ ℓ ℓ
ℓ ℓ ℓℓ ℓ ℓ

ℓ ℓ

when n is sufficiently large. Hence, we have

e F J
d J

n
( [ ]) = − 1

2 2
.c

2 −2 2

2 +1
∣ ∣ ∣ ∣ ≥ ∣ ∣ ≥ ∣ ∣ℓ ℓℓ □

Now, we start to define the auxiliary graph, which will be used in Lemma 3.10 in the next

section. For every integer k 1≥ , call a path x x x… k0 1 2 a composed path if x x… k0 and x x…k k2 are

both shortest paths of length k. For an integer 3ℓ ≥ and a graph F , denote by F
*
ℓ the simple

graph defined on V F( ) such that for every distinct u v V F uv E F, ( ), ( )
* *

∈ ∈ℓ ℓ if there is a

composed u v( , )‐path of length at most 2( − 1)ℓ in F . To estimate the number of edges in F
*
ℓ,

we need the following lemma.

Lemma 3.7. For integers m, Δℓ ≤ and a constant L Δ≪ , let F be an m‐vertex graph

with maximum degree Δ, such that for every uv E F( )∈ and k c u v L3 2 , ( , )k≤ ≤ ℓ ≤ . For

every s1 − 1≤ ≤ ℓ and every distinct u v V F, ( )∈ , the number of composed paths of length

s2 with endpoints u v, is at most
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sLΔ (( + 1) + 1).s s−1

Proof. Let be the set of composed paths of length s2 with endpoints u v, . For given

vertices a a, …, s1 −1, let

a a ux x v x a x a( ,…, ) = { … = ,…, = }.s s s s1 −1 1 2 −1 1 1 −1 −1∈ ∣
Note that the number of nonempty a a( ,…, )s1 −1 is at most Δs−1, since ua a… s1 −1 is a path.

Suppose that P ua a v= … s0 1 2 −1 is a composed path in a a( ,…, )s1 −1 . For every composed

path P ua a x x v a a P a a v= … … ( ,…, ) { }, …s s s s s s1 −1 2 −1 1 −1 0 −1 2 −1∈ ⧹ and a x x v…s s s−1 2 −1 form a

closed walk W of length s2( + 1). For every s i s2 − 1≤ ≤ , if x a=i i, the number of

choices for xi is 1. Otherwise,W contains an even cycle of length at most s2( + 1), which

contains the edge a ai i−1 and vertex xi. Since c a a L( , )k i i2 −1 ≤ for every k s2 + 1≤ ≤ , the

number of choices for x ai i≠ is at most sL. Therefore, we have

a a sL( ,…, ) ( + 1) + 1.s
s

1 −1∣ ∣ ≤
Finally, we obtain

a a sL= ( ,…, ) Δ (( + 1) + 1).
a a

s
s s

,…,

1 −1
−1

s1 −1

∑∣ ∣ ∣ ∣ ≤ □
Now, we give an upper bound on the multiplicity of Fℓ.
Lemma 3.8. For integers m, Δℓ ≤ and a constant L Δ≪ , let F be an m‐vertex graph

with maximum degree Δ, such that for every uv E F( )∈ and k c u v L3 2 , ( , )k≤ ≤ ℓ ≤ . For

every distinct u v V F, ( )∈ , the number of composed walks of length 2( − 1)ℓ with endpoints

u v, is at most

β LΔ ( )−2ℓ ℓ
for a constant β L( )ℓ which only depends on ℓ and L.

Proof. Let be the number of composed walks of length 2( − 1)ℓ in F with endpoints

u v, . For every i1 − 1≤ ≤ ℓ , let

ux x v i x x= { … is the first integer such that = },i i i1 2( −1)−1 2( −1)−∈ ∣ℓ ℓ
and then we have = i i=1

−1⋃ℓ .

Let i1 − 2≤ ≤ ℓ . For every composed walk

W ux x x v= … … ,i1 −1 2( −1)−1 ∈ℓ ℓ
ux x x x v{ … … }i i1 2( −1)−( −1) 2( −1)−1ℓ ℓ forms a composed path P of length i2 . By Lemma 3.7,

there are at most iLΔ [( + 1) + 1]i i−1 choices for P. For a fixed P W P, − forms a path of
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length i− − 1ℓ with endpoint xi or a close composed walk of length i2( − − 1)ℓ with

endpoint xi. In the first case, there are at most Δ i− −1ℓ choices, while in the later case, by

Lemma 3.5, there are at most α LΔ ( )i
i

− −2
− −1

ℓ ℓ choices. Therefore, we have

iL α L iLΔ (( + 1) + 1) (Δ + Δ ( )) 2Δ (( + 1) + 1).i
i i i i

i
i−1 − −1 − −2

− −1
−2∣ ∣ ≤ ⋅ ≤ℓ ℓ ℓ ℓ

Moreover, every walkW −1∈ ℓ is a composed path of length 2( − 1)ℓ with endpoints u

and v. By Lemma 3.7, we have

L LΔ (( − + 1) + 1).−1
−2 −1∣ ∣ ≤ ℓℓ ℓ ℓ

Hence, we have

iL L L β L= 2Δ (( + 1) + 1) + Δ (( − + 1) + 1) = Δ ( )
i

i

i

i

=1

−1

=1

−2
−2 −2 −1 −2∑ ∑∣ ∣ ∣ ∣ ≤ ℓℓ ℓ ℓ ℓ ℓ ℓ ℓ

for β L iL L L( ) = 2(( + 1) + 1) + (( − + 1) + 1).
i

i
=1

−2 −1∑ ℓℓ ℓ ℓ □
We have all the ingredients to give a lower bound on the number of edges in auxiliary graph

F
*
l . This lemma will play the same role as Lemma 2.5 in the case of 4‐cycles.

Lemma 3.9. For an integer 3ℓ ≥ and a constant L > 0, let n be a sufficiently large

integer. Let m and d be the integers satisfying m n≤ and d n n/log1≥ ∕ℓ . Suppose F is an

m‐vertex graph with minimum degree d − 1, such that for every uv E F( )∈ and

k c u v L3 2 , ( , )k≤ ≤ ℓ ≤ . Then for every set J V F( )⊆ of size at least n d2 −1∕ℓ ℓ , we have

e F J
d J

n n
f L( [ ])

log
( )

*

2

( −2)
≥ ∣ ∣ℓ ℓℓ ℓ ℓ

for a constant f L( )ℓ which only depends on ℓ and L.

Proof. Note that every composed walk of length 2( − 1)ℓ with endpoints in J contains a

composed path of length at most 2( − 1)ℓ with endpoints in J . Therefore, by Lemma 3.8,

we have

e F J
e F J

β L
( [ ])

( [ ])

Δ ( )
,

* −2
≥ℓ ℓℓ ℓ

where Δ is the maximum degree of F , which by (17), satisfies

d n g LΔ log ( ).≤ ⋅ℓ ℓ
Hence, we have

e F J
e F J

d n g L β L

d J

n n
f L( [ ])

( [ ])

log ( ) ( ) log
( ),

* −2 ( −2) −2

2

( −2)
≥ ⋅ ≥ ∣ ∣ℓ ℓℓ ℓ ℓ ℓℓ ℓ

ℓℓ ℓ ℓ
where f L β L( ) = ( ).

g L

1

2 ( )2 +1 −2ℓ ℓℓ ℓℓ □
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3.3 | Certificate lemma

In this section, we give our second main lemma, which will be used to build certificates for graphs

with sparse short cycles. This lemma is a generalization of Lemma 2.6 for longer cycle, although

the condition is slightly different. The idea of proof is also similar to Lemma 2.6, which originally

comes from Kleitman and Winston [14] and Kohayakawa, Kreuter, and Steger [15].

Lemma 3.10. For an integer 3ℓ ≥ and constants L α, > 0, let n be a sufficiently large

integer. Letm and d be the integers satisfyingm n≤ and n n d αn( /log )1 1≤ ≤∕ℓ ∕ℓ. Suppose
F is an m‐vertex graph with minimum degree d − 1, such that for every uv E F( )∈ and

k c u v L3 2 , ( , )k≤ ≤ ℓ ≤ . Let H F=
*
ℓ. Then for every set I V F( )⊆ of size d, such that

d v I L( , ) ( − 1)H ≤ ℓ for all v I∈ , there exist a set T and a set C T( ) depending only on T ,

not on I , such that

(i) T I C T( )⊆ ⊆ ,

(ii) T n nlog1∣ ∣ ≤ ∕∕ℓ ,

(iii) C T n d( ) (2 + 1) −1∣ ∣ ≤ ∕ℓ ℓ .

Proof. This proof is similar to the proof of Lemma 2.6. We will describe a deterministic

algorithm that associates to the set I a pair of sets T and C T( ).

We start the algorithm with sets A V H T= ( ), =0 0 ∅ and a function t v( ) = 00 , for

every v V H( )∈ . In the ith iteration step, we pick a vertex u Ai i∈ of maximum degree in

H A[ ]i . If u Ii ∈ , we define

t v
t v d v u v A

t v v A
( ) =

( ) + ( , ) if ,

( ) if ,
i

i H i i

i i
+1

⎧
⎨
⎩

∈∉
and Q v t v L= { ( ) > ( − 1) }i+1∣ ℓ , and let T T u A A u Q= + , = − −i i i i i i+1 +1 . Otherwise,

let T T A A u= , = −i i i i i+1 +1 and t v t v( ) = ( )i i+1 , for every v V H( )∈ . The algorithm

terminates at step K when we get a set AK of size at most n d2 −1∕ℓ ℓ . We also assume that

u TK K−1 ∈ as otherwise we can continue the algorithm until it is satisfied.

The algorithm outputs a vertex sequence u u u{ , ,…, }K1 2 −1 , a set of ‘representative’

vertices TK and a strictly decreasing set sequence A A A A A{ , , , , … }K0 1 2 3 . Let T T= K and

C T A T( ) = .K ∪ From the algorithm, we have T I⊆ . Furthermore, if a vertex v satisfies

t v L( ) > ( − 1)i ℓ for some i, then we have d v I t v L( , ) ( ) > ( − 1)H i≥ ℓ , which implies

v I∉ . Therefore, we maintain I A Ti i⊆ ∪ for every i K≤ and especially get

I A T C T= ( )K K⊆ ∪ . Hence, Condition (i) is satisfied. Similarly as in Lemma 2.6, the

set C T( ) only depends on T , not on I .

To finish the proof, it is sufficient to show that T n nlogK
1∣ ∣ ≤ ∕∕ℓ . Once we prove it, we

immediately obtain

T T
n

n
=

log
,K

1∣ ∣ ∣ ∣ ≤ ∕ℓ
and

C T A T
n

d

n

n

n

d
( ) = +

2
+

log

(2 + 1)
,K −1

1

−1
∣ ∣ ∣ ∣ ∣ ∣ ≤ ≤ℓℓ ∕ℓ ℓ ℓ
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which completes the proof.

In the rest of proof, we apply the same technique used in the proof of Lemma 2.6. We

repeat the process as follows. Denote q the integer such that n A n2 < 2q
K

q−1∕ ≤ ∣ ∣ ∕ . By the

choice of AK , we have q nlog≤ . For every integer l q1 ≤ ≤ , define Al to be the first A‐set

satisfying

n
A

n

2
<

2l
l

l−1
≤ ∣ ∣

if it exists, and let T l be the correspondingT ‐set and t v( )l be the corresponding t‐function

of Al. Note that Al may not exist for every l, but Aq always exists and it could be that

A A= .q
K Suppose

A A Al l lp1 2⊃ ⊃ ⋯ ⊃
are all the defined Al, where p q≤ . By the above definition, we have A A T T= , =l l

0 01 1 ,

and l q=p . Define A A T T= , =l
K

l
Kp p+1 +1 . Now, we have

T T T= ( − ).K
j

p
l l

=2

+1
j j−1⋃ (18)

To achieve our goal, we are going to estimate the size of T T−l lj j−1, for every
j p2 + 1≤ ≤ .

From the algorithm, we have t v L( ) ( − 1)lj ≤ ℓ , for every v A Tl lj j∈ ∪ . Moreover, for

v A A T− −l l lj j j−1∈ , suppose v is removed in step i, then we have

t v t v d v u L( ) = ( ) + ( , ) ( − 1) + 1,l
i H i−1 −1j ≤ ℓ

where ui is the selected vertex in step i. Therefore, we obtain

t v L A L
n

( ) (( − 1) + 1) (( − 1) + 1)
2

.
v A

l l
l −1

l j

j j

j
−1

−1

−1
∑ ≤ ℓ ∣ ∣ ≤ ℓ∈ (19)

Let j p2 ≤ ≤ . For every u T T u− ,i
l l

ij j−1∈ is chosen of maximum degree in H A[ ]i ,

where Ai is a set between Alj−1 and Alj. By the choice of Alj, we have A n 2i
lj−1∣ ∣ ≥ ∕ . From

Lemma 3.9, we obtain that

d u A
d A

n n
f L

d

n
f L( , )

log
( )

2 log
( ).H i i

i

l( −2) ( −2)j−1
≥ ∣ ∣ ≥ℓℓ ℓ ℓ ℓℓ ℓ ℓ

Note that d u A( , )H i i only contributes to t v( )lj , for v A Ai
lj−1∈ ⊆ . Then we obtain

T T
d

n
f L d u A t v−

2 log
( ) ( , ) ( ).l l

l
u T T

H i i

v A

l
( −2)

−

j j

j

i
lj l j l j

j−1

−1
−1 −1

∑ ∑∣ ∣ ≤ ≤ℓℓ ℓ ℓ ∈ ∈ (20)

Combining (19) and (20), we have

T T
d

n
f L L

n−
2 log

( ) (( − 1) + 1)
2

,l l
l l( −2) −1

j j

j j

−1

−1 −1
∣ ∣ ≤ ℓℓℓ ℓ ℓ

which implies
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T T
L

f L

n n

d

L

f L
n

n

n
− 2( − 1) + 1)

( )

log 2(( − 1) + 1)

( )
log

log
l l

( −2)
( −1)

1

2
j j−1∣ ∣ ≤ ℓ ⋅ ≤ ℓ ≤ℓ

ℓ ℓℓ ℓ ℓ ℓ ∕ℓ

for j p2 .≤ ≤ For j p= + 1, since we have n A A n( /2 ) ( /2 )q l l q−1p p+1≤ ∣ ∣ ≤ ∣ ∣ ≤ , by a

similar argument, we obtain that

T T
d A

n n
f L d u A t v

L A

−
log

( ) ( , ) ( )

(( − 1) + 1) ,

l l l

u T T

i i

v A

l

l

( −2)
−

p p
p

i
lp lp lp

p

p

+1
+1

+1

+1∑ ∑∣ ∣ ∣ ∣ ≤ ≤
≤ ℓ ∣ ∣

ℓ
ℓ ℓ ℓ ∈ ∈

which gives

T T
L

f L

n n

d

n

n
− 2(( − 1) + 1)

( )

log

log
.l l

( −2) 1

2
p p+1∣ ∣ ≤ ℓ ⋅ ≤ℓ

ℓ ℓℓ ∕ℓ

Finally, by (18), we have

T T T p
n

n
q

n

n

n

n
= −

log log log
.K

j

p
l l

=2

+1 1

2

1

2

1
j j−1∣ ∣ ⋃ ∣ ∣ ≤ ⋅ ≤ ⋅ ≤∕ℓ ∕ℓ ∕ℓ □

3.4 | Proof of Theorem 1.5

This section is entirely devoted to the proof of Theorem 1.5. The idea is the same as the proof of

Theorem 2.9: we will build a certificate for each graph in L(2 , )n ℓ and estimate the number of

such certificates. Before we proceed, we first need the supersaturation result for C2ℓ to give a

bound on the min‐degree sequence of graphs in L(2 , )n ℓ . It was mentioned in [8] that

Simonovits first proved the supersaturation for the even cycles, but the proof has not been

published yet and it might appear in an upcoming paper of Faudree and Simonovits [9]. Morris

and Saxton [20] recently provided a stronger version of supersaturation for even cycles. Very

recently, Jiang and Yepremyan [12] give a supersaturation result of even linear cycles in linear

hypergraphs, which includes the graph case. We use the graph version of their result and

rephrase it in terms of the average degree.

Theorem 3.11 (Jiang and Yepremyan [12]). For an integer 2ℓ ≥ , there exist constants

C c, such that ifG is an n‐vertex graph with the average degree d Cn2 1≥ ∕ℓ, thenG contains

at least c d( /2)2ℓ copies of C2ℓ.
Corollary 3.12. Let G be a n‐vertex graph in L(2 , )n ℓ , and d d, …,n 1 be the min‐degree

sequence of G. Then for every i n[ ]∈ , we have

d αni
1≤ ∕ℓ

for some constant α C L c= max{2 , 2( /2 ) }1 2∕ ℓ , where C c, are constants given in Theorem

3.11.
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Proof. Suppose that there exists k n[ ]∈ , such that d αn> .k
1∕ℓ Then by Theorem 3.11,

the number of C2ℓ’s in Gk is at least

c
d

c
αn

c
L

c
n L

k

2
>

2 2 2
,k

2 1 2
2⎜ ⎟ ⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎞

⎠
≥ ≥ℓ ∕ℓ ℓ

which contradicts the fact that G L(2 , )n∈ ℓ . □
Proof of Theorem 1.5. The way to construct the certificate is exactly same with in the proof of

Theorem 2.9. Here we restate the process. For a graph G L(2 , )n∈ ℓ , let

Y v v v< < <G n n−1 1≔ ⋯ be the min‐degree ordering of G and D d d d{ , ,…, }G n n−1 1≔ be the

min‐degree sequence of G. Note that by Corollary 3.12, there exists a constant α such that

d αni
1≤ ∕ℓ, for every i n[ ]∈ . For every i n[ ]∈ , let G G v v= [ ,…, ]i i 1 . Define the set sequence

S S S S{ , ,…, }G n n−1 2≔ , where S N v G= ( , )i G i i−1 . Note that S v v{ ,…, }i i−1 1⊆ and S d=i i∣ ∣ . By the

construction, Y D S[ , , ]G G G uniquely determines the graph G and so we build a certificate

Y D S[ , , ]G G G forG. To complete the proof, it is sufficient to estimate the number of such certificates.

We first choose a min‐degree ordering Y v v v= < < <* n n−1 1⋯ , and a min‐degree

sequence D d d= { ,…, }* n 1 ; the number of options is at most

n αn! ( ) .n1∕ℓ (21)

Next, we count set sequences S S S S= { , ,…, }n n−1 2 , where S v v{ ,…, }i i−1 1⊆ and S d=i i∣ ∣ , such that

the graph reconstructed by Y D S[ , , ]* * , denoted byGS, are in L(2 , )n ℓ . For every i n2 ≤ ≤ , let

Mi be the number of choices for Si with fixed sets S S, …,i−1 2. Define

i d n n i d n n= { : < log }, = { : log }.i i1
1

2
1∕ ≥ ∕∕ℓ ∕ℓ

For every i 1∈ , since S d n n= < logi i
1∣ ∣ ∕∕ℓ , we have a trivial bound

M
i

d

n

n n
n

− 1

log
= 2 .i

i

n n n
1

log1 1⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟≤ ≤ ∕ ≤∕ℓ ∕∕ℓ ∕ℓ

(22)

It remains to consider the upper bound on Mi for i 2∈ . With fixed sets S S, …,i−1 2, the graph

G G v v= [ ,…, ]i S i−1 −1 1 is uniquely determined. Since G Gi S−1 ⊆ and G L(2 , )S n∈ ℓ , for every

uv E G( )i−1∈ and every k3 2≤ ≤ ℓ, we know that c u v G L( , ; )k i−1 ≤ . Note that every eligible Si
should satisfy d u S l L( , ) ( − 1)H i ≤ for all u Si∈ , where H G= ( ) .

*i
l

−1 Otherwise, there exists a

vertex u Si∈ , such that c v u G d u S l L( , ; ) ( , ) > ( − 1)
k k i i H i=2 2∑ ≥ℓ

, which is a contradiction.

Applying Lemma 3.10 onGi−1, we obtain that every eligible Si contains a subsetT of size at most

n nlog1 ∕∕ℓ , which uniquely determines a set C T S( ) i⊇ of size at most n d(2 + 1) i
−1∕ℓ ℓ . Since

the number of choices for T is at most

i

j

i

n n

n

n n

− 1
2

− 1

log
2

log
2 ,

j n n

n

0 log
1 1

1

1
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟∑ ≤ ∕ ≤ ∕ ≤≤ ≤ ∕ ∕ℓ ∕ℓ∕ℓ

∕ℓ

we then have
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d
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T

n n

(2 + 1)

1.88
((2 +1) ) 3 (3 +1)i

−1 1 1 1
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

∑ ∑ ∑ ∑≤ ≤ ≤ ≤ ≤ℓ ℓ ℓ
ℓ ℓ ℓ ∕ℓ ∕ℓ ∕ℓ

(23)

for every i 2∈ , where the third inequality is given by Lemma 2.4.

Combining (22) and (23), we obtain that the number of choices for S is

M M M 2 2 2 .
i

n

i

i

i

i

i
n n n

=2

(3 +1) (3 +2)

1 2

1+1 1+1 1+1∏ ∏ ∏≤ ≤ ≤∈ ∈
ℓ ℓ∕ℓ ∕ℓ ∕ℓ

Hence, together with (21), the total number of certificates is at most

n αn M! ( ) 2 2 2n

i

n

i
n n n1

=2

(3 +2) 3( +1)1+1 1+1 1+1∏ ≤ ≤∕ℓ ℓ ℓ∕ℓ ∕ℓ ∕ℓ

for n sufficiently large, which leads to L(2 , ) 2 .n
n3( +1) 1+1∣ ℓ ∣ ≤ ℓ ∕ℓ □

4 | HYPERGRAPH ENUMERATION

In this section, we study the enumeration problems of r‐graphs with given girth and r‐graphs

withoutCr
4 ’s. To prove them, we need a result on the linear Turán number of linear cycles given

by Collier‐Cartaino, Graber, and Jiang [6].

Theorem 4.1 (Collier‐Cartaino et al [6]). For every r, 3ℓ ≥ , there exists a constant

α > 0r,ℓ , depending on r and ℓ, such that

n C α nex ( , ) .L
r

r,
1+ 1

2≤ℓ ℓ ⌊ℓ∕ ⌋
4.1 | Proof of Theorem 1.3

Once we have Theorems 1.4 and 1.5, it is natural to think about reducing the hypergraph

problems to problems on graphs and then apply our graph counting theorems.

Definition 4.2 (Shadow graph). Given a hypergraph H , the shadow graph of H , denoted

by H( )2∂ , is defined as

H D D e H D e( ) = { : = 2, , }.2∂ ∣ ∣ ∃ ∈ ⊆
Proposition 4.3. Let r 3, 2≥ ℓ ≥ and H n rForb ( , , 2 )L∈ ℓ . For every r‐element subset

S V H S( ),∈ forms an r‐clique in H( )2∂ if and only if S is a hyperedge in H .

Proof. Assume that there exists a r‐clique with vertex set S in H( )2∂ and two edges e e,1 2

such that e e,1 2 lie on two different hyperedges f f,1 2. Without loss of generality, we can

136 | BALOGH AND LI



assume that e1 and e2 share a common vertex, as otherwise, we let e ab=1 and e cd=2

and one of the edge pairs ab ac{ , } or ac cd{ , } is contained in different hyperedges.

Let e ab f=1 1⊂ and e ac f=2 2⊂ . Note that c f1∉ and b f2∉ , as otherwise we have

f f=1 2 by the linearity of H . Let f3 be the hyperedge which includes bc. Then f f f, ,1 2 3 are

distinct, and form a C r
3 by the linearity of H . This contradicts the fact that

H n rForb ( , , 2 )L∈ ℓ . □
We also need the following short lemma on 4‐cycles of the shadow graphs of hypergraphs in

n rForb ( , , 4)L .

Lemma 4.4. For every r 3≥ , there exists a constant β β r= ( ) such that for every

H n rForb ( , , 4)L∈ , the shadow graph H( )2∂ contains at most βn3 2∕ 4‐cycles.

Proof. Let G H= ( )2∂ . Since the girth of H is larger than 4, every 4‐cycle in G must be

contained in a hyperedge of H . By Theorem 4.1, we have e H α n( ) r,4
3 2≤ ∕ . Hence, the

number of 4‐cycles in G is at most

r
e H

r α n βn
4

( )
4

=r,4
3 2 3 2⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

≤ ∕ ∕
for ( )β α=

r
r4 ,4. □

Proof of Theorem 1.3 for = 2ℓ . Define a map φ n r H: Forb ( , , 4) = { ( ):L 2→ ∂
H n rForb ( , , 4)}L∈ given by φ H H( ) = ( )2∂ . By Proposition 4.3, φ is a bijection. Note that by

Lemma 4.4, every graph in has at most βn3 2∕ 4‐cycles, where β is a constant depending on r .

Applying Theorem 1.4, when n is sufficiently large, we have

2 .n11 3 2∣ ∣ ≤ ∕

Hence, we obtain that n rForb ( , , 4) = 2L
n11 3 2∣ ∣ ∣ ∣ ≤ ∕

for n sufficiently large, which completes

the proof.

Proof of Theorem 1.3 for 3ℓ ≥ . Define a map φ n r H: Forb ( , , 2 ) = { ( ):L 2ℓ → ∂
H n rForb ( , , 2 )}L∈ ℓ given by φ H H( ) = ( )2∂ . By Proposition 4.3, φ is a bijection. For a graph

G H= ( )2∂ ∈ and an edge uv E G( )∈ , since the girth of H is larger than 2ℓ, each k‐cycle inG,
which contains edge uv, must be contained in a hyperedge of H , for all k3 2≤ ≤ ℓ. Indeed, this
hyperedge is unique by the linearity of H . Therefore, we have

c u v G
r

k
( , ; )

− 2

− 2
k ⎜ ⎟

⎛
⎝

⎞
⎠

≤
for all k3 2≤ ≤ ℓ. Applying Theorem 1.5, when n is sufficiently large, we have

2 .n3( +1) 1+1∣ ∣ ≤ ℓ ∕ℓ

Hence, we obtain that n rForb ( , , 2 ) = 2L
n3( +1) 1+1∣ ℓ ∣ ∣ ∣ ≤ ℓ ∕ℓ

for n sufficiently large, which

completes the proof.
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4.2 | Proof of Theorem 1.1

We now estimate the number of r‐graphs without Cr
4 . The main idea is the same as in the

previous section: we convert the hypergraph enumeration problem to a graph enumeration

problem and then apply Theorem 1.4. However, because of the existence of C r
3 ’s, some facts we

used before is no longer trivial and even not true. The first difficulty is to give an upper bound

on the number of 4‐cycles in shadow graphs, and we need the following lemma on the number

of C r
3 ’s.

Lemma 4.5. Let r 3≥ . For every H n CForb ( , )L
r
4∈ and every edge e E H( )∈ , the

number of C r
3 ’s in H containing e as an edge is at most

r
r r

2
(4 − 10 + 7).2⎜ ⎟

⎛
⎝

⎞
⎠

Proof. For every distinct u v e, ∈ , let

e f g H e f u e g v f g= {{ , , } : = { }, = { }, = 1}.u v i i i i i i, ⊆ ∩ ∩ ∣ ∩ ∣
Suppose u v, is nonempty, and fix a C e f g= { , , } u v0 0 0 ,∈ . For every

C e f g C= { , , } { }i i u v, 0∈ ⧹ , we know that

f g f g u v( ) ( ) − { , } ,i i0 0∪ ∩ ∪ ≠ ∅
otherwise, f g f g{ , , , }i i0 0 would form aCr

4 . Let w be a vertex in f g f g u v( ) ( ) − { , }i i0 0∪ ∩ ∪ .

Since w f g u v− { , }0 0∈ ∪ , there are at most r2 − 3 choices for w. By linearity of H , the

number of linear 3‐cycles in u v, containing w is at most r2( − 1). Therefore, we get

r r r r1 + 2( − 1)(2 − 3) = 4 − 10 + 7.u v,
2∣ ∣ ≤ (24)

Hence, the number of C r
3 ’s in H containing e as an edge is equal to

r
r r

2
(4 − 10 + 7).

u v e

u v

,

,
2⎜ ⎟

⎛
⎝

⎞
⎠∑ ∣ ∣ ≤∈ □

Lemma 4.6. For every r 3≥ , there exists a constant β β r= ( ) such that for every

H n CForb ( , )L
r
4∈ , the shadow graph H( )2∂ contains at most βn3 2∕ 4‐cycles.

Proof. Since H is linear and contains no Cr
4 , it is easy to check that for every 4‐cycle of

H( )2∂ , its vertex set is contained in either a hyperedge or the vertex set of a C r
3 of H . By

Lemma 4.5, there are at most

r
r r e H

1

3 2
(4 − 10 + 7) ( )2⎜ ⎟

⎛
⎝

⎞
⎠
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C r
3 ’s in H , where e H α n( ) r,4

3 2≤ ∕ given by Theorem 4.1. Hence, the number of 4‐cycles in

H( )2∂ is at most

r
e H

r r
r r e H βn3

4
( ) + 3

3 − 3

4

1

3 2
(4 − 10 + 7) ( )2 3 2⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⋅ ≤ ∕
for

β r r r
r r α= 3

4
+

3 − 3

4 2
(4 − 10 + 7) ,r

2
,4⎜ ⎟ ⎜ ⎟⎜ ⎟

⎡

⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦⎥

where αr,4 is a constant defined in Theorem 4.1. □
Another difficulty is that the map we defined in the proof of Theorem 1.3 might be no longer

injective. To overcome it, we have the following lemma to measure how far the map is from the

injection.

Lemma 4.7. For every r 3≥ , there exists a constant α α r= ( ) such that for every

H n CForb ( , )L
r
4∈ , there are at most αn r3 2∕

‐cliques in H( )2∂ .

Proof. Let be the set of r‐cliques in H( )2∂ . For every e E H( )∈ , let

F F e F f= { : = max }.e
f E H( )

∈ ∣ ∩ ∣ ∣ ∩ ∣∈
Then we have = .e H e⋃ ∈ Fix an arbitrary hyperedge e H∈ . For every q r2 ,≤ ≤ let

F F e q= { : = },q e∈ ∣ ∩ ∣
then we have =e q

r
q=2⋃ .

First, it is trivial to get R = 1r∣ ∣ . Let q r2 − 1≤ ≤ and F be an r‐clique in q. Since

F e q=∣ ∩ ∣ , the number of choices for F e∩ is at most ( )rq . Given F e∩ , let u v, be two

distinct vertices in F e∩ . For every w F e−∈ , by the definition of the shadow graph and

the linearity of H , there exist hyperedges f g, such that e f g{ , , } forms a C r
3 with

e f u e g v= , =∩ ∩ , and f g w=∩ . By (24), the number of such C r
3 ’s is at most

r r4 − 10 + 7.2 Therefore, the choices of w is at most r r4 − 10 + 72 . Hence, we have

r

q
r r(4 − 10 + 7) .q

r q2 −
⎛

⎝
⎜

⎞

⎠
⎟≤

Then, we obtain

r

q
r r r= (4 − 10 + 7) + 1 2 (4 ) .e

q

r

q

r

r

r q r r

=2 =2

−1
2 − 2

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑∣ ∣ ∣ ∣ ≤ ≤

Finally, we get

r e αn= 2 (4 ) ( )
e E H

e
r r

( )

2 3 2∑∣ ∣ ∣ ∣ ≤ ≤∈
∕

for α r α= 2 (4 ) ,r r
r

2
,4 where αr,4 is the constant defined in Theorem 4.1. □
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Proof of Theorem 1.1. Define a map φ n C H H n C: Forb ( , ) = { ( ): Forb ( , )}L
r

L
r

4 2 4→ ∂ ∈ given
by φ H H( ) = ( )2∂ . By Lemma 4.6, every graph G ∈ has at most βn3 2∕ 4‐cycles, where β is a

constant depending on r . By Theorem 1.4, when n is sufficiently large, we have

2 .n11 3 2∣ ∣ ≤ ∕

By Lemma 4.7, for every G ∈ , the number of r‐cliques in G is at most αn3 2∕ , where α is a

constant depending on r . Since every hyperedge corresponds to an r‐clique in its shadow graph,

we have

φ G( ) 2 .αn−1 3 2∣ ∣ ≤ ∕

Finally, we obtain

n C φ GForb ( , ) ( ) 2 2L
r

G

αn α n
4

−1 (11+ )3 2 3 2∑∣ ∣ ≤ ∣ ∣ ≤ ∣ ∣ ≤∈
∕ ∕

for n sufficiently large, which completes the proof.
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