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ABSTRACT

We study the communication complexity of incentive compatible
auction-protocols between a monopolist seller and a single buyer
with a combinatorial valuation function over n items. Motivated by
the fact that revenue-optimal auctions are randomized (as well as by
an open problem of Babaioff, Gonczarowski, and Nisan), we focus
on the randomized communication complexity of this problem (in
contrast to most prior work on deterministic communication).

We design simple, incentive compatible, and revenue-optimal
auction-protocols whose expected communication complexity is
much (in fact infinitely) more efficient than their deterministic
counterparts.

We also give nearly matching lower bounds on the expected
communication complexity of approximately-revenue-optimal auc-
tions. These results follow from a simple characterization of incen-
tive compatible auction-protocols that allows us to prove lower
bounds against randomized auction-protocols. In particular, our
lower bounds give the first approximation-resistant, exponential
separation between communication complexity of incentivizing vs
implementing a Bayesian incentive compatible social choice rule,
settling an open question of Fadel and Segal.
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1 INTRODUCTION

The central goal of Algorithmic Mechanism Design is to design
mechanisms that guarantee good outcomes while taking into ac-
count both the selfish agents’ incentives and the ever-increasing
complexity of modern applications. A fundamental question to
this field is whether simultaneously satisfying both the incentive
and simplicity constraints is harder than satisfying each of them
separately.

In this paper we focus on one of the simplest and most studied
settings in the field: a monopolist, Bayesian, revenue-maximizing
seller auctioning n items to a single risk-neutral buyer. An active
line of work over the past two decades argues that even in this
strategically-simple setting, and even for buyers with additive or
unit-demand valuations!, optimal mechanisms are inherently com-
plex, e.g. they involve randomized lotteries [16, 50, 62, 66, 80] and
are often computationally intractable [25, 26, 31].

One particularly influential measure of complexity of mecha-
nisms is the menu-size complexity of [49]: by the taxation principle,
a general incentive compatible mechanism can be canonically rep-
resented as a menu, where each line or option in the menu corre-
sponds to a (possibly randomized) allocation and a payment. The
menu-size complexity of a mechanism is then the number of lines
in the corresponding menu. Perhaps the single most convincing
evidence for the complexity of optimal mechanisms is an example
due to [32], where the optimal mechanism for an additive buyer
with two i.i.d. item valuations from a seemingly benign distribution
(Beta(1, 2)) requires an infinite and even uncountable menu-size
complexity. We henceforth refer to this powerful example as the
DDT example.

[32] and related complexity results for revenue-maximizing auc-
tions have inspired fruitful lines of work that circumvent these
barriers, e.g. by designing sub-optimal but simple mechanisms that
approximate the optimal revenue (see discussion in Related work).

It is not a-priori clear, however, that the menu-size complexity
by itself is an obstacle to using optimal mechanisms. For instance,
the seller in the DDT example could in principle succinctly describe
her? mechanism as “the-optimal-auction-for-Beta(1, 2) x Beta(1, 2)”
and even point the buyer to an explicit description in [32]. However,
[5] recently observed that, once the mechanism is announced, the
deterministic communication complexity to implement it is equal

1To circumvent some worst-case pathological examples, it is common in Algorithmic
Mechanism Design to restrict the buyer’s value distribution to independent (vs corre-
lated) items, and/or restrict the combinatorial nature of buyer’s value for bundles to
one of the following classes:

additive, unit-demand C gross-substitutes C submodular C XOS C subadditive.

(See Section 2.1 for definitions.)
2Throughout the paper, we use feminine pronouns for the seller and masculine for the
buyer.
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(up to rounding) to the logarithm of the menu-size complexity. In
the DDT example, for the buyer to deterministically specify his
favorite line in the uncountable menu, he would need to send an
infinite stream of bits. [5] left open the question of randomized
communication complexity of optimal mechanisms. Indeed ran-
domized communication is a natural complexity measure in this
case since we already consider randomized allocations®.

In this paper, inspired by [5]’s open question, we formulate a
notion? of an incentive compatible (IC) auction protocol, which is a
two-party (possibly randomized) interactive communication proto-
col between a seller and a buyer with an allocation and payment
associated with every transcript of the protocol. Before presenting
our results in this model, below we briefly discuss our modeling
assumptions; a full definition appears in Section 2.

1.1 Brief Discussion of Modeling Assumptions

Per the discussion above, we assume that the protocol and auction
format are public information. The buyer privately knows his true
type (or valuations of items/bundles).

We mostly focus on the total expected communication com-
plexity of the protocol. For our protocols, we bound the interim
expectation, i.e. for every buyer’s type, the communication complex-
ity of the protocol is bounded, in expectation® over the protocol’s
randomness®. Our lower bounds hold even for ex ante expectation,
i.e. even if we allowed that some buyers may know in advance that
they are expected to participate in a prohibitively long protocol.

The seller in our model has no private information and is not
strategic. At the end of the communication protocol she must know
the allocation and payment.

We model the buyer’s strategic aspect as a complete information
single-player extensive-form game with buyer’s nodes and nodes of
Chance; each leaf is associated with an allocation and a payment. In
practice, nodes of Chance could be implemented by a trusted seller
(e.g. when the seller is an auditable firm), a trusted intermediary, a
cryptographic protocol for coin tossing’, or a publicly observable,
renewable® external source of randomness.

3Different applications have different simplicity desiderata. (E.g. highly regulated
FCC auctions vs very fast ad auctions with automated bidders vs smart contracts that
require costly documentation of transaction details on a blockchain.) Ultimately, there
is no universal “right” measures of complexity, and studying a variety gives us a more
complete understanding.

“4Technically, our definition of IC auction protocol is a special case of Bayesian incentive
compatibility (BIC)-incentivizable binary dynamic mechanism (BDM) [40]. We discuss
this connection further in Related work.

5In expectation vs high probability: We remark that by Markov’s inequality in expec-
tation upper bounds on the communication complexity imply similar upper bounds
w.h.p; e.g. if the expected complexity is at most C, then it is at most C/a w.p. > 1—a.
%In fact, all our protocols happen to satisfy a slightly stronger desideratum where all
the communication complexity bounds that we prove also (approximately) hold for
the communication complexity of the future of any prefix of the protocol. Le. for any
setting where we bound the expected communication complexity by C, it is also true
that, conditioning on any history of the protocol (possibly much longer than C), the
remaining expected communication complexity is O(C). This means that the buyer
and seller always expect -for every run of the protocol, and at any point during the
execution- that the protocol will end soon.

"We’re mostly interested in mechanisms that are exactly revenue-optimal, while the
security of cryptographic protocols always has a negligible but non-zero chance of
being broken even by naive brute-force algorithms. In theory, this small chance of
cheating on the coin tosses would violate the buyer’s exact incentive constraints.
8By “renewable” we mean that at each step of the protocol the parties have access to
fresh random bits not predictable in previous iterations; for example, they could look
at the weather each day.
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As is common in the aforementioned literature on randomized
mechanisms, we assume that the buyer is risk-neutral. In particular,
we require that the protocol is interim individually rational. In
direct revelation mechanisms, it is possible to transform interim to
ex-post individual rationality by correlating the payment with the
randomized allocation. Similarly, at the cost of a bounded increase
in the communication complexity, it is possible to transform our
protocols to become ex-post approximately individually rational
(see the full version for details).

While we make little restrictions on buyer valuations, we do
generally assume that the buyer’s valuation is capped at some
arbitrarily large value U. The complexity of our protocols * does not
depend on U, e.g. U can be all the money in the universe (typically
much smaller).

1.2 Our IC Auction Protocols

We design IC auction protocols that are simple, surprisingly effi-
cient, and are exactly revenue-optimal. For instance, in Theorem
3.2 we give a revenue-optimal IC auction protocol for the DDT
example where the buyer sends less than two bits in expectation. (In
contrast, for a deterministic auction selling two items separately,
merely specifying the allocation requires the buyer to send two
bits!)

Main positive result. Our main positive result is a generic trans-
formation of an arbitrary (revenue-optimal or otherwise) IC and IR
mechanism for additive, unit-demand, or general combinatorial val-
uations to an IC auction protocol that uses O(nlog(n)), O(nlog(n)),
O(2"n) bits in expectation respectively. We note that our protocols
work for correlated prior distributions, and even for non-monotone
and negative valuations!°.

Theorem (See Theorems 3.1 and 4.1).

For any prior D of buyer’s (additive/unit-demand/combinatorial)
valuations over n items bounded by maximum valuation U, and any
IC mechanism M, there is an IC auction protocol with the same
expected payment and allocation, using (O(nlogn)/O(nlogn)/
O(2™n)) bits of communication in expectation.

Trading off revenue for even better communication efficiency. We
obtain an exponentially more efficient protocol for the special case
of unit-demand with independent items. Specifically, at the cost of
an e-fraction loss in revenue, we obtain an IC auction protocol that
uses only polylog(n) communication.

Theorem (See Theorem 5.1). Let D be a distribution of indepen-
dent unit-demand valuations over n items bounded by maximum

valuation U. Then, for any constant ¢ > 0, there is a (1 — ¢)-
approximately revenue-optimal IC auction protocol using polylog(n)
bits of communication in expectation.

Exhibiting the richness of our IC auction protocol model, this
protocol is substantially different from the generic transformation
in our main result, and builds on the recent symmetric menu-size
complexity of [57].

Remark 1.1. For simplicity of presentation we focus on the ex-
pected communication complexity. Here we briefly remark that

9Except the ex-post approximately individually rational protocols in the full version.
10We assume for simplicity that all payments are non-negative.
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our protocols also have desirable properties in terms of round- and
random-coin-complexities. For round complexity, our protocols use
O(log(n)) rounds in expectation (O(n) for general combinatorial
valuations). For the protocols in Theorems 3.1 and 4.1, it will be
easy to see how (using trivial batching) one can further compress
the number of rounds: at the cost of a constant factor increase in the
communication complexity, these protocols can be compressed to
1+ ¢ rounds in expectation. In terms of random coins, our protocols
can be implemented with O(log(n)) coins in expectation (O(n) for
general combinatorial valuations).

1.3 Communication Complexity Lower Bounds

We show that beyond the (important) special case covered by The-
orem 5.1, the communication complexity of our protocols is almost
the best possible, in the following strong sense:

Theorem (See Theorems 6.3, 6.7, and 7.1). For revenue maximiza-
tion with n items, any incentive compatible auction protocol that
achieves any constant factor approximation of the optimal revenue
must use at least:

e Q(n) communication for unit-demand valuations;

1/3 . . . .
. ZQ(" ) communication for gross substitutes valuations;
o 22" for XOS valuations.

Furthermore, any incentive compatible auction protocol obtaining
more than 80% of the optimal revenue must use at least:

e 22" communication for XOS valuations over independent
items.

To place the result for independent items in the greater con-
text of Algorithmic Mechanism Design, contrast it with simple-
but-approximately-optimal mechanism independent subadditive
valuations: [74] showed that a constant fraction of revenue can be
guaranteed by simple mechanisms; this constant has been improved
in followup works [17, 18, 23], but no non-trivial upper bound on
the best approximation factor were known!!. Assuming that effi-
cient randomized communication is a necessary desideratum for
“simple mechanism”, our result for independent items implies that
the optimal approximation factor is bounded away from 1 - even
for the special case of XOS valuations.

Note also that our upper and lower bounds for correlated valua-
tions are nearly tight in the following ways:

e For unit-demand and combinatorial valuations, our upper
and lower bounds nearly match (up to logarithmic factors),
even though the lower bounds hold for arbitrary (constant)
approximation factor vs exactly revenue-optimal in upper
bounds. Furthermore the combinatorial upper bound holds
for arbitrary combinatorial valuations, which are much more
general than XOS valuations used in the lower bound.

o The correlation in our unit-demand lower bound is necessary
by Theorem 5.1.

We remark that for one interesting case an exponential gap
remains:

Note that this is a maximization problem, so upper bound on the approximation
factor refers to an impossibility result.
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Open Question 1.2. What is the randomized communication com-
plexity of exactly revenue optimal IC auction protocols for unit
demand valuations over independent items?

Our lower bound for unit-demand requires correlated items (and
this is an inherent limitation of our technique). On the other hand,
our protocol for unit-demand with independent items (Theorem 5.1)
does not guarantee exact revenue optimality.

1.4 Separating the Complexity of
Implementing and Incentivizing

Our results also have implications for a question of Fadel and Se-
gal [40]. They study, for any fixed social choice rule, the commu-
nication cost of selfishness, i.e. the difference in communication
complexity between (i) implementing it, and (ii) implementing it
in a Bayesian incentive compatible protocol. They give examples
where the communication cost of selfishness is exponential, but
those examples are very brittle in the sense that they rely on agents’
utilities to have unbounded (or at least exponential) precision. They
ask whether the communication cost of selfishness on any (pos-
sibly contrived) social choice rule can be reduced substantially if
agents’ utilities have a bounded precision [40, Open Question 3].
Our source of hardness is inherently different from the instances
in [40]: we harness the combinatorial structure of the valuations
rather than exploiting the long representation of high-precision
numbers.

In more detail, in our constructions the buyer’s utility only re-
quires constant precision'? for any outcome (and the seller is not
strategic, i.e. she has constant utility zero). Furthermore, for our
hard instances of unit-demand valuations, we show (Remark 6.6)
that the exactly revenue-optimal IC mechanism can be implemented
by a randomized (non-IC) protocol using O(log(n)) communication
even in the worst case, hence resolving [40]’s open question on the
negative'®. We remark that by [40, Corollary 3], this exponential
separation is tight.

COROLLARY 1.3 (SEE REMARK 6.6). There exists a randomized
protocol for a revenue maximization instance, in which the buyer’s
valuation has constant precision, such that there is an exponential sep-
aration between the communication complexity of its approximately
Bayesian IC implementation and that of its non-IC implementation.

Remark 1.4 (Separations for deterministic vs randomized proto-
cols).

Formally, [40] phrase their open question for deterministic pro-
tocols. To view Corollary 1.3 in this context, note that in our model
the seller is not strategic; hence one can consider an equivalent
deterministic social choice rule in a slightly different setting where
the random seed (only O(log(n) bits are necessary) to the revenue-
optimal auction is replaced by a seller’s type. The requirements
from the protocol in this setting is only stricter, so the communica-
tion lower bound on IC auction protocols trivially extends. On the
other hand, for the non-IC auction protocol the seller can just send
the buyer her type (aka the random seed).
12We require constant precision marginal contribution per item. For unit-demand,
this translates to constant precision for any outcome. For gross substitutes, etc. this
translates to O (log(n)) bits to represent outcome utilities, which is still negligible.

3Note that it was an open question to obtain such a separation for any social choice
rule, let alone a natural and important one like revenue-maximizing auctions.
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Interestingly, this separation between the communication com-
plexity of implementing and incentivizing optimal auctions holds
in a more general sense (albeit for expected communication in ran-
domized protocols): In the full version we show a non-IC auction
protocol '* that for any buyer with unit-demand (resp. combinato-
rial) valuations, the exactly optimal IC mechanism can be imple-
mented by a randomized (non-IC) protocol using O(log(n)) (resp.
O(n)) communication.

1.5 Technical Highlights: Infinitely More
Efficient Auction Protocols

Abstracting away the game theory and other detail, we explain
the simple idea which is at the core of our main positive result
(Theorems 3.1 and 4.1). Simplifying further, consider a randomized
auction of just a single item: our goal is to compress the infinite
deterministic communication complexity of a protocol where the
buyer tells the seller exactly with what probability he expects to
receive the item. Denote this probability of allocation by p. Given p,
one way to allocate with probability p using unbiased coin tosses
is to generate a uniformly random number z € [0, 1] (whose bi-
nary representation is a uniformly random stream of bits after the
decimal point), and to allocate the item iff p > 71°.

The key insight: for any fixed p, we don’t actually need to know
7 to infinite precision - we only need to know the prefix of 7’s
binary representation until the first bit on which it differs from
p. Similarly, for a fixed 7, we only need to know p to the same
precision. So here is our core protocol: draw'® 7 € [0, 1] uniformly
at random, and ask the buyer to stream the binary representation of
p - only with enough precision to determine whether p > 7. Each
time the buyer sends a bit from the binary representation of p it
differs from the corresponding bit of 7 with probability 1/2; i.e. the
protocol terminates with probability 1/2 after each round. Hence
we reduced the infinite deterministic protocol to one where the
buyer only sends 2 bits in expectation.

What happens when we bring back incentives? It’s not too hard
to show that the protocol remains incentive-compatible as long
as the buyer doesn’t learn anything about 7 until the end of the
protocol. This is actually too good to be true, since the protocol
length must depend on 7 (otherwise it would be deterministic - and
hence infinite), and the buyer must know whether the protocol is
continuing in order to participate. Fortunately we can argue that
if the only thing the buyer learns about 7 is that the protocol is
continuing, this information cannot help him cheat. Intuitively,
he has already committed to the prefix of the protocol, and the
extension of his strategy for the rest of the protocol is optimal
conditioned on actually being asked to use it.

4The non-IC auction protocol is closer to [40]’s notion of implementing (as opposed
to incentivizing) a mechanism, or to [5]’s definition of randomized communication
complexity of auctions.

5For historical context, we remark that the setup up to this point is similar to the
1-bit public-coin protocol for single-item auctions in [5].

1®Here and in all our protocols, 7 can be drawn on the fly so the expected number of
random bits is also bounded.
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1.6 Technical Highlights: A Characterization of
Randomized IC Auction Protocols

It is natural to try to prove communication lower bounds of IC
auction protocols via a modular approach of: (i) use Game Theory
to define a restricted communication problem that we have to solve
in order to obtain near-optimal revenue; and then (ii) use stan-
dard techniques from Communication Complexity (e.g. a reduction
from Set Disjointness). This approach has worked successfully in
other applications of communication complexity to game theory
(e.g. [34, 46, 55, 65]). However, our non-IC auction protocol in the
full version formally precludes such a modular approach because
there is an efficient communication protocol that exactly solves the
game theoretic problem we are after. (In other words, the modular
approach cannot separate the communication complexity of incen-
tivizing and implementing a social choice rule.) Instead we need to
simultaneously consider the complexity and incentives constraints,
in particular we need to consider the joint evolution of the buyer’s
prior and incentives in an arbitrary randomized protocol.

Our main novel insight is the following simple characterization
of incentive compatible communication protocols: In a general com-
munication protocol, each buyer’s node can partition the buyer’s
types in an arbitrary way. But for IC protocols, the buyer’s next bit
is fully determined by his respective value for the expected alloca-
tions conditioned on sending “0” or “1”; this means that it can only
partition the buyer’s types into halfspaces in valuation space (see
Figure 2). Thus IC mechanisms are much less expressive.

The second part of the proof combines tools from Auction Theory
and Error Correction Codes to construct, for each class of valuations,
a family of priors whose (approximately) optimal mechanisms are
all different. Finally, a simple counting argument shows that the
total number of short IC protocols that satisfy our characterization
is too small to cover all the different mechanisms.

1.7 Related Work

For general social choice settings, [40] define binary dynamic mech-
anism (BDM), which formalizes the notion of communication pro-
tocol between multiple agents with outcomes and payments asso-
ciated with the protocol-tree leaves. They contrast the communi-
cation complexity of incentivizable vs implementable BDMs. Our
notion of IC auction protocols is equivalent to requiring that the
protocol is incentivizable.

One subtle difference between our model and [40] is that the
latter define BDMs as deterministic, while we focus on random-
ized protocols. In our context we can encode the seller’s random
number source as her type!”. In this sense, our IC auction protocol
is a special case of their Bayesian incentive compatibility (BIC)-
incentivizable BDM. But this view misses the distinction between
trusting a Bayesian prior about other agents valuations and behav-
ior and merely trusting the source of randomness.

Our paper resolves an open question from [40] of separating
the communication complexity of incentivizing and implementing
Bayesian incentive compatible social choice rules. Very recently, [37,
73] resolved a different open question from the same paper about
separating the communication complexity of incentivizing and

YFormally they only define finite BDMs, but they also discuss the natural infinite
variant [40, Appendix B.1].
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implementing ex-post incentive compatible social choice rules. [73]
also separate the communication complexity of ex-post vs dominant
strategy incentive compatibility.

Our paper exhibits a strong separation between the communi-
cation complexity associated with direct revelation and general
mechanisms. Related separations have been shown before by [29]
and [34] for social-welfare maximization with two or more strate-
gic buyers. Specifically, [29] show an exponential gap between
the communication complexity of direct revelation versus inter-
active mechanisms. [34] shows that in several important settings,
the “taxation complexity” of deterministic mechanisms is approxi-
mately equivalent to the communication complexity, but exhibits
an exponential gap between the two for truthful-in-expectation
mechanisms. In contrast, we consider revenue maximization with
a single strategic buyer and as few as two items. Arguably, the
separation for a single strategic buyer in our settings is more sur-
prising since he communicates with a seller who doesn’t receive
exogenous private information. More generally, communication
complexity of (approximate) social welfare maximization in auc-
tions with multiple strategic buyers has been extensively studied
for combinatorial auctions [2, 3, 14, 15, 33, 34, 36, 39, 64, 77] and
related settings [4, 11, 12, 35, 65].

Our paper is inspired by a discussion in [5] about the communi-
cation complexity of revenue-maximizing auctions. They prove that
in general the deterministic communication complexity is equiva-
lent (up to rounding) to the logarithm of the menu-size complexity.
They also define a measure of randomized communication com-
plexity of an auction, which is most closely related to [40]’s weaker
notion of implementable protocols. They give a randomized proto-
col for implementing any'® incentive-compatible auction for selling
a single item using 1 bit of communication and (possibly infinitely
many) public random coins.

Our protocols circumvent the intractability of exactly commu-
nicating payments (to infinite precision) by replacing them with
random payments while preserving expectation. Related ideas have
been used before in algorithmic mechanism design, e.g. by [1, 7].

The study of communication complexity in economics has its
roots in classic works of [9] and [53]. Early mathematical formula-
tions of the question were given by [54, 63, 69]. Outside of auctions,
communication complexity has also been considered in AGT in
the context of voting rules [19, 30, 68, 79] equilibrium computa-
tion [8, 28, 42, 43, 46, 47, 71] fair division [13, 67, 78], interdomain
routing [59], and stable matching [45].

Since the seminal [49], menu-size complexity has been further
studied by [5, 32, 44, 57, 75]. For a buyer with additive valuations
over independent items, [5] prove'® an logo(") (n) upper bound
on the menu-size complexity of approximately-optimal mecha-
nisms. In this special case, this translates to an upper bound of
O(nloglog(n)) on the deterministic communication complexity -
slightly more efficient than our O(nlog(n)) upper bound on ran-
domized communication complexity?’. Our proof is arguably much

8Note that the (revenue-)optimal auction for a single item is already deterministic
and uses only 1 bit of communication.

®Theorem 1.2 of [5] states a slightly weaker bound of n©(; the stronger bound is
suggested in Footnote 3 of their paper.

20The results are incomparable: [5] uses deterministic communication, whereas our
protocol gives exact-revenue-optimality and allows for correlated valuations. In par-
ticular, note that in our setting O(nlog(n)) is tight up to O(log n) factor, whereas
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simpler?!. [44] explores the dependence on ¢ in the menu complex-
ity of mechanisms with additive-e-suboptimality in revenue; his
main result, combined with [49], implies a ®(log(1/¢)) bound on
the deterministic communication complexity with two items.

For a buyer with unit-demand valuations over independent items
[57] define a related notion of symmetric menu-size complexity
which counts the number of lines up to symmetries, and prove an
nPoY10g(1) ypper bound on the symmetric menu-size complexity.
We use a slightly stronger notion of partition-symmetric menu-size
complexity (see Definition 5.2); the bound of [57] also holds for
this stronger definition. We use this result for our nearly-revenue-
optimal IC auction protocol. This provides further evidence that the
relatively new notion of (partition)-symmetric menu complexity is
a natural complexity measure for auctions.

Over the past decade, computational and menu-size complex-
ity results of optimal auctions have motivated the design of sub-
optimal but simple mechanisms that approximate the optimal rev-
enue [6, 18, 20-24, 27, 48, 51, 52, 56, 60, 72, 74, 74] or require re-
source augmentation [10, 38, 41, 61, 70]. Our results suggest that,
in some cases, even strong menu-size complexity lower bounds do
not preclude efficient optimal mechanisms.

2 MODEL AND DEFINITIONS

Our main notion in this paper is that of IC auction protocols:

Definition 2.1 ((IC) auction protocols). An auction protocol con-
sists of:

o A (possibly infinite) binary tree whose internal nodes are
labeled either B (for Buyer) or C (for Chance).

e Each node of Chance has an associated probability distribu-
tion over its children.

e Each leaf node has an associated (non-negative) payment
and (feasible) allocation.

o A suggested mapping from Buyer’s types to Buyer’s strate-
gies, where a Buyer’s strategy corresponds to a choice of
child for each Buyer’s node.

We say that an auction protocol is finite if it is guaranteed to ter-
minate after a finite number of rounds with probability 1 for every
Buyer’s strategy. We say that an auction protocol is individually
rational (IR) if the Buyer has a strategy that guarantees expected
payment 0 and empty allocation. We say that an auction protocol
is IC (in-expectation) if it is finite and IR, and if the Buyer weakly
prefers the suggested Buyer’s strategy corresponding to his type
over any other strategy in the protocol.

The expected communication complexity, of an auction protocol
is the expected depth of the leaf reached by a worst-case Buyer’s
strategy (and in expectation over nodes of Chance). Theorem 3.2
refers to the expected Buyer’s communication, which only counts
the number of Buyer’s nodes on the path to the leaf.

for approximate revenue with independent valuations, the true answer (even for
deterministic communication) is conjectured to be O(log(n)) [5, Footnote 4].

2 The main technical hurdle for [5] is a reduction to the case where the valuations
are (almost) bounded by some large number H = poly(n, €) with only a negligible
loss in revenue; we simply assume that the valuations are bounded by U, but it can be
arbitrarily large. We remark that if we assume that the optimal mechanism obtains
finite revenue (as is assumed in [5]; see Footnote 6 of their arXiv version), then it is
easy to argue that for any € > 0, capping the valuations by a sufficiently large U (¢)
preserves a (1 — ¢)-fraction of the revenue (see the full version for details).



STOC ’21, June 21-25, 2021, Virtual, Italy

Note that the buyer’s strategy can be assumed wlog to be deter-
ministic.

2.1 Valuation Classes

As is standard in the Algorithmic Mechanism Design literature, we
consider buyers whose value for a bundle can be restricted to one
of the following classes:

Definition 2.2 (Valuation classes).
A valuation function v : 2" — R may be restricted to one
of the following classes:

Additive If it can be written as v(S) = };c5v; for some item
values v;’s.

Unit-demand If it can be written as v(S) = max;cs v; for some
item values v;’s.

Matroid-rank If, for some matroid M and item values v;, it can

be written as
S

esnT

v(S) =

max
T is independent in M ;
XOS 22 If item value-vectors v; of dimension d, it can be written

as
2%

ieS

max

S) =
o(S) je{l.ad}

The aforementioned classes are related to other well-studied
classes like gross-substitutes, submodular, and subadditive in the
following hierarchy:

additive, unit-demand C matroid rank C gross substitutes

C submodular ¢ XOS c subadditive.

The formal definition of gross substitutes, submodular, and sub-
additive is not important for our purposes; they are economically
significant because they capture different natural notions of substi-
tutability between items (see e.g. [58]).

In general, we are interested in any prior distribution over val-
uations of any of above-mentioned types. In particular, we also
consider the notion of combinatorial valuations over independent
items, which has been recently used by e.g. [17, 18, 23, 74].

Definition 2.3 (independent items [76]). A prior distribution D
of valuations has a latent structure of independent items if there
is a latent product distribution D1 X Dy - - - X Dy, with arbitrary
support such that, a sample valuation v from D can be generated
by first sampling a; from D; for all i € [n], and then for every
S € [n], the value of v(S) is uniquely determined by {a; | i € S}.

2.2 Menu-Size Complexity

Definition 2.4 (Menu-size complexity). By the taxation principle,
any mechanism can be canonically described by the expected allo-
cation and payment for each type. This description induces a menu,
or collection of menu lines, where each menu line is the expected
allocation and payment for some type. The menu-size complexity
of a mechanism is the number of distinct menu lines.

22X0S valuations are sometimes also called fractionally subadditive.
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3 IC AUCTION PROTOCOLS FOR AN
ADDITIVE BUYER

THEOREM 3.1. For any prior D of Buyer’s additive valuations
over n items bounded by maximum valuation U, and any truthful
mechanism M, there is an IC auction protocol with the same expected
payment and allocation, using O(nlogn) bits of communication.

Proor. First, we convert M to a strategically-equivalent mech-
anism M’ where the payment is always either zero or U. Note that
by IR, the expected payment P in M for every type is always at
most U; therefore for each type we can implement expected pay-
ment P by charging a payment of U with probability P/U (and zero
otherwise). We henceforth identify each type of Buyer with the
corresponding vector in [0, 1]**!, which describes the probability
that M’ allocates each item to the Buyer, and the probability (n+ 1-
th coordinate) that the Buyer pays U. We can further identify the
mechanism M’ with the set of allowed types/vectors in [0, 1]"*1,

Buyer’s nodes and suggested strategy. Each Buyer’s node®? cor-
responds to a choice of n + 1 bits. Given the Buyer’s type and
mechanism M, let P1, - .., pn denote the probability that Buyer is
allocated items 1, . . ., n, respectively, and let p,+1 = P/U denote the
probability that the Buyer pays U. The Buyer’s suggested strategy
is to send, for each round r and i € [n+ 1], the r-th bit in the binary
representation® of p;.

Correcting infeasible bits. We enforce that at any point in the
protocol, the Buyer’s messages are consistent with some type, i.e.
with the prefix of probabilities corresponding to some feasible menu
line in M. If only possible value for the Buyer’s next bit would
possibly be consistent with the protocol’s history, the protocol
continues assuming that the Buyer indeed sent this bit (formally we
remove the Buyer’s node from the protocol since it is redundant).

Nodes of Chance. The distribution over nodes of Chance is de-
termined by an implicit parameter 7 drawn uniformly at random
from [0, 1]. Before each node of Chance, we will already know that
7 belongs to a particular measurable subset S C [0, 1]. For a par-
tition Sy U Sg = S (to be specified below), each child of this node
of Chance will correspond to 7 falling in each of Sy or Sg, which
induces the probability distribution on the children. While 7 plays
a crucial role in defining and analyzing the protocol, we stress that
it is only implicit: in the actual protocol it is drawn on the fly, with
increasing precision at each node of Chance along the path of the
protocol.

To define the r-th node of Chance along a given path, consider,
for each i € [n + 1], the concatenation of the i-th bits across the
Buyer’s r messages, and compare it to the first r bits in the binary
representation of 7. If for every i, at least one of the bits is different,
the protocol is terminated at a leaf as follows (see Payment and
Allocation). Otherwise, the protocol continues in a Buyer’s node.
Note that for each node of Chance, only one of its children is an
internal (Buyer’s) node.

23Here we slightly abuse notation: we defined the auction protocols for binary trees,
so this technically corresponds to a sub-tree of depth n + 1 with all Buyer’s nodes.
241f p; has two binary representations, using either one throughout the protocol will
work.



The Randomized Communication Complexity of Randomized Auctions

Payment and Allocation. At the end of the protocol, for each
i€ [n+1],let p? € [0, 1) denote the number whose binary repre-
sentation is the concatenation of the i-th bit in each of the r rounds
of the protocol (after correcting infeasible bits). For i € [n], the
i-th item is allocated iff ;;:r > 7; the Buyer pays U iff p:rl:l > 7, and
otherwise he pays zero.

IC. The key observation for incentive compatibility is that a
Buyer’s strategy is completely determined by the infinite stream
of messages that it would send in the (zero-probability) event that
the protocol never terminates. To see this, recall that each node
of Chance has only one internal node child. Hence for any fixed
Buyer’s strategy there is a unique infinite path in the tree, and every
finite run of the protocol corresponds to a prefix of this path, up to
some node of Chance that deviates from the path to a leaf.

Let p; denote the number whose binary representation is the infi-
nite sequence of Buyer’s i-th bits in the (zero-probability) event that
the protocol never terminates. Recall from the previous paragraph
that a Buyer’s strategy is completely determined by the vector of
pi’s. Note further that the i-th item is allocated at the end of the
protocol iff p; > 7; similarly, the Buyer pays U iff pp+1 > 7. There-
fore, since 7 is drawn uniformly from [0, 1], the probability that the
Buyer is allocated item i (resp. pays U) is exactly p;. Hence, by IC
of M, the suggested strategy p = p is optimal for the Buyer.

Communication complexity. At each round of communication,
the Buyer sends n + 1 bits. Also, at each round r of communication,
there is probability exactly 1/2 that the i-th bit in the Buyer’s
message (for each i € [n+1]) disagrees with the r-th bit of 7.
(This probability is independent across rounds, but correlated for
different i’s.) After 2log(n) rounds, each i has probability 1/n? of
agreeing with all of 7’s bits. We can take a union bound over all i’s
to obtain that except with probability 1/n, the protocol has already
terminated. In the unlikely event that the protocol continues, we
can re-apply the same analysis from scratch.

Let ryp, denote an upper bound on the expected number of rounds
in the protocol, corresponding to the worst case where the above
union bound is tight. Then we have that

rup < 2log(n) + ryp/n.

ey

Solving the recurrence relation for ryp,, we have that r, = O(log(n)).

Since the Buyer sends n + 1 bits in each round, the total communi-
cation complexity is O(nlog(n)). O

Special case: a protocol for the [32] example. We can also prove a
concrete (non-asymptotic) bound on the expected number of bits
that the buyer sends in the DDT example. Beyond the historical im-
portance of this specific example, our result demonstrates that our
protocols are communication-efficient not only in the asymptotic
sense, especially if we take advantage of the particular features of
a specific distribution. We in particular highlight the fact that the
Buyer in this protocol sends strictly less bits>® than he would with
a simple deterministic auction selling each item separately.

THEOREM 3.2. Consider the case of n = 2 items and the Buyer
drawing his valuations i.i.d. from Beta(1, 2) (i.e. the distribution on

% Here we only count communication from the Buyer and not the random coin tosses.
In many scenarios random bits are cheap but informative communication is costly.
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Allocate item

Don’t allocate item

Figure 1: Example protocol
This figure depicts the first two iterations in an example protocol
with one item, where the Buyer’s favorite menu line has payment
probability 2/3 (.10 in binary) and item allocated with probability
1/3 (.01 in binary). Nodes marked with B (resp. C) correspond to
Buyer (resp. Chance). Triangles correspond to sub-trees never
visited for this particular Buyer’s valuation. In the first iteration,
the Buyer sends 1, 0, corresponding to the first bit in the
probability of payment,allocation. Notice that 0, 1 is an infeasible
prefix for the Buyer since it would violate IC constraints (lower
probability of payment and higher probability of allocation). At the
first node of Chance, 7 cannot disagree with both bits, hence the
protocol proceeds to the next Buyer’s node with probability 1. In
the next iteration the Buyer sends the second bit from each
probability. Finally, in the second node of Chance:
e The Buyer pays U and receives the item w.p. 1/4 (r < 1/4 <
1/3,2/3).
e The Buyer pays nothing and receives nothing w.p. 1/4 (r >
3/4 > 1/3.2/3).
e W.p. 1/2 the protocol continues.

[0, 1] with density function f(x) = 2(1 — x)). Then there is an IC
auction protocol obtaining the maximum possible revenue where the
Buyer sends less than two bits in expectation.

The proof is deferred to the full paper.
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4 AN EXTENSION FOR GENERAL
VALUATIONS

The following theorem is an analogue of Theorem 3.1 for general
combinatorial valuations (not necessarily subadditive or monotone).
The communication complexity upper bound is parameterized by
B, the number of bundles ever assigned by the direct revelation
mechanism. For example, for unit demand valuations, B < n + 1;
for general valuations, B < 2".

THEOREM 4.1. Let D be any prior over Buyer’s combinatorial
valuations over n items bounded by maximum valuation U, and any
truthful mechanism M. Suppose that for any type and realization of
randomness, M only ever allocates one of B bundles. Then there is an
IC auction protocol with the same expected payment and allocation
using O(Blog(B)) bits of communication.

Proor skeTCH. For any type, consider a partition of [0, 1] into
B intervals, where the b-th interval is of length identical to the
probability that M allocates Bundle b to the Buyer. The rest of
the proof proceeds analogously to the proof of Theorem 3.1. First,
we transform M into a mechanism M with payment 0 or U. We
henceforth identify between a type and the B — 1 probabilities that
define the partition, and the probability that the Buyer pays U. The
nodes of Chance are parameterized by a threshold 7 drawn uni-
formly at random from [0, 1]. At each round of communication the
Buyer (allegedly) sends the next bit in the binary representation
of each of the B probabilities that define his type. The protocol
terminates when it has received enough information to determine
in which of the B intervals 7 lies and whether 7 is smaller than the
probability of payment. The allocation is the bundle correspond-
ing to this interval, and the payment is U if 7 is smaller than the
probability of payment (and zero otherwise). O

5 UNIT-DEMAND, INDEPENDENT ITEMS:
TRADING OFF REVENUE AND
COMMUNICATION

THEOREM 5.1. Let D be a distribution of independent unit-demand
valuations over n items bounded by maximum valuation U. Then, for
any constant € > 0, there is a (1 — €)-approximately revenue-optimal
IC auction protocol using polylog(n) bits of communication.

Our proof uses a result of [57] for Partition-symmetric menus
which we introduce in Section 5.1. The proof of Theorem 5.1 is
given in Section 5.2.

5.1 Partition-Symmetric Menu-Size
Complexity

Symmetries. The following is a slight strengthening of the symmet-
ric menu-size complexity measure recently introduced by [57].

Definition 5.2 (Partition-symmetric menu-size complexity). A
partition-symmetric menu line consists of a payment, (randomized)
allocation, and a partitioning of items into subsets Sy, ..., Ss. We
say that a direct revelation mechanism M supports this partition-
symmetric menu line if its menu contains a line with the same
payment for any permutation of the allocation that respects the
partition (i.e. permutation 7 such that 7(S;) = S; for all i). The
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partition-symmetric menu-size complexity of M is the smallest ¢
such that M can be written as the union of ¢ partition-symmetric
menu lines.

The following theorem follows from [57]; the statement here
is slightly stronger than the formulation of Theorem IV.5 in their
paper in the sense that (i) we consider the specific symmetry group
induced by a partition of the items; and (ii) we require that the allo-
cation probabilities are rounded to a discrete set Ls. Both desiderata
follow from their proof [81].

THEOREM 5.3 ([57]). Let D be a distribution of independent unit-
demand valuations over n items. Then, for any constant ¢ > 0,
there exists a unit-demand mechanism®® with partition-symmetric
menu-size complexity at most nPoy108(n) \yhich recovers at least
(1 — &)-fraction of the optimal revenue. Furthermore, for some con-
stant § > 0 that depends on ¢, the probabilities that the mecha-
nism allocates each item always belong to the discrete set Ls :

{l, 1-6,(1-68)?3...,(1- 5)%1“"} U {0}; in particular there are
only O (log n) possible probabilities.

5.2 Proof of Theorem 5.1

ProoF. We begin with the partition-symmetric mechanism of
[57] (see Theorem 5.3). Denote its partition-symmetric menu-size
complexity by C. In the first stage of the protocol, the Buyer chooses
a partition-symmetric menu line among C options, and then a sub-
set S; is drawn by Chance from the ¢ < n subsets in the partition.
(Each subset S; is drawn with probability equal to the sum of proba-
bilities of items in that subset.) This first stage uses O(log n+log C)
communication. We henceforth focus on implementing the mech-
anism restricted to S;. L.e. a mechanism whose menu has a fixed
payment P and the set of feasible allocations is symmetric with
respect to any permutation of S;.

Since the set of feasible allocations is symmetric, it suffices to
consider the histogram of allocation probabilities. The Buyer may
assign each probability from the histogram to any item in S;. Recall
also that by Theorem 5.3, all the probabilities in the histogram
belong wlog to a discrete set Ls of O(log(n)) feasible probabilities.
In particular, the histogram can be described by O(log?(n)) bits
(since the count for each probability is an integer between 0 and
|Si| < n).

The second stage of the protocol proceeds by recursively consid-
ering smaller subsets of S;. The nodes of Chance are parameterized
by a number 7 draws uniformly at random from [0, 1]. At the first
iteration, the Buyer’s suggested strategy is to send the histogram of
probabilities for the lexicographically first half of items in S;. (This
is equivalent to sending the histogram for the second half of the
items since the total histogram is known.) If the sum of probabili-
ties in the first half is greater than 7, the protocol recurses on the
first half; otherwise it recurses on the second half. After O(log |S;|)
iterations, only one item is left. The Buyer is allocated that item
and pays P.

26We say that a mechanism is unit-demand if it never allocates more than one item to
the Buyer. (This is wlog for direct revelation mechanisms with unit-demand buyers.
But in general, for mechanisms where the Seller does not fully learn the Buyer’s
valuation, it is not obvious how to convert a mechanism where she allocates a bundle
of items to a unit-demand mechanism without increasing the partition-symmetric
menu-size complexity.)
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IC. We prove that the second stage of the protocol is IC and also
has the same expected allocation and payment as in the original
mechanism; IC of the first stage then follows from IC of the original
mechanism. To show second-stage IC, let pAJ denote the probabil-
ity that the Buyer assigns item j in the last iteration when it is
not the only remaining item. Observe that any Buyer’s strategy
for the second stage is fully determined by the vector of p;’s. By
reverse induction over the iterations of the protocol, observe that
the histogram of all p;’s is exactly equal to the histogram of feasi-
ble probabilities. Finally note that at the end of the protocol, the
Buyer is allocated item j with probability p;. Therefore, by IC of
the original protocol, the Buyer’s suggested strategy is optimal.

Communication complexity. The first stage of the protocol re-
quires O(log n+log C) communication. Each iteration of the second
stage requires O(log?(n)) bits to describe the histogram, and there
are at most O(log(n)) iterations. Hence the total communication
complexity is O(log® n + log C) = polylog(n). ]

6 COMMUNICATION LOWER BOUND FOR
UNIT-DEMAND VALUATIONS

We consider revenue maximization with unit-demand valuations
as an example to demonstrate our proof technique. Our framework
for constructing hard instances will rely on the design properties
of a set system and a vector family, which are presented in the two
lemmata in the following subsection.

6.1 Combinatorial Designs

LEMMA 6.1. For any constant ,§ > 0, there exists a family of
size-en subsets X, . s C {0,1}" such that | X, . s| = 29" and the
intersection between any two distinct subsets x1, x2 € X, . 5 has size
at most (1 + 8)e%n.

Proor. The probabilistic proof is folklore and provided in the
full paper. O

LeEMmMA 6.2. For any constant € > 0 and large integer constant £,
let Re ¢ be the discrete distribution supported on {5[_1, g2 1}
such thatp(i) o 71, where we denotep(i) = Pr[e'™1] (this is ap-
proximately the “equal-revenue distribution”). Then, for any constant
n > 0, there exists a family of vectors C]\[,g,&,7 C {51_1, g2 l}N
such that

° |CN,{’,£,77| = ZQ(N):

e and moreover, for any m = w(1) distinct vectors in Cn ¢y
for all but n fraction of j € [N], for any i € [¢], there are
(1+ r])p(i) fraction of these m vectors whose j-th coordinates

are 1,

Proor. We construct Cn¢,¢,, simply by independently sampling
29N vectors from product distribution Rt{\[e
constant § > 0, and we show that the desired properties hold with
high probability. First, the probability that two random vectors have
the same value at j-th coordinate is p := ;¢ p(i) -p(i) for any
Jj, and therefore, the probability that the two random vectors are
exactly the same is p™V. For § < log(1/p)/2, by a union bound over
all the pairs of random vectors, every vector is distinct with high
probability. Second, for any m random vectors, for any i € [£],j €

for arbitrarily small
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[N],
P among the m random vectors, then by Chernoff bound,

let m; j be the number of vectors whose j-th coordinates are

Pr[|m; ; —p(i)m| > 7 -p(i)m] < e‘”z'P(”M/S.

By a union bound, the probability that there exists i € [¢] such that
m;,j is not within (1 £ n)pDm is at most £ - e P m/3 1t follows
that for any fixed # fraction of j € [N], the probability that there
exists i € [£] such that m; j is not within (1+ q)p(i) for all j among
the n fraction is at most (¢ - e_”Z'P(l)m/3)'7N (notice thatp(l) is the
smallest among all p(9’s). By another union bound over all possible
n fraction of j € [N], the probability that the second property in
the statement is violated for m random vectors is at most

(NN) (- e PImBYIN < (orIN (g g7 p U m/3)nN
n
= ((e/n) - £- e PV m/3yIN

which is e"?N for some constant  that does not depend on 6.

Since there are (anN) < (e-29N /m)m < N (istinct subsets of m
random vectors of Cy¢,¢ 5, by union bound, for § < 0, for any fixed
m, the second property in the statement is violated with probability
at most e~ (9=9mN _Finally, the proof finishes by taking a union
bound over all m = (1), namely, 3. - (1) e~ (0-9mN — (1), 1o

6.2 The Main Lower Bound Result

Now we prove the following lower bound result for communica-
tion complexity of approximate revenue maximization with unit-
demand valuations. Specifically, we construct a family of priors
and show that most priors are hard for all low-communication
(almost) truthful-in-expectation randomized protocols to approxi-
mately maximize revenue.

THEOREM 6.3. For every constant T > 0, any t-approximate (al-
most) truthful-in-expectation protocol for revenue maximization, where
the seller has n items, and the buyers have unit-demand valuations,
requires Q(n) bits of communication in expectation.

Proor. We first construct a family of prior distributions of the
buyers’ valuations and then argue that in order to achieve any
constant approximation, a protocol tree (which we will elaborate
shortly) can not be shared by many prior distributions, which im-
plies the communication complexity lower bound by a counting
argument.

Construction. For arbitrarily tiny constants &1, €2, 81,7 > 0 and
large integer constant ¢ such that n,e1(1 + 61) < 55, we take the
set family X, ., 5, from Lemma 6.1 and let N := | X, ., 5,] = 2Q(n)
and then, we take the vector family Cy,¢¢, ; from Lemma 6.2 with

ICN,eenn| = 22(N) = 22° e let each x € X,.¢,,5, Tepresent
a subset of items. Notice that we can fix a one-to-one mapping
between the coordinates of a vector in Cy¢,e, , and all the sets in
X,.¢,,6,> and therefore, for any vector ¢ € Cn ge,.p X € Xpp g, 5,5 WE
can denote c(x) as c’s value at the coordinate that corresponds to
X.

For each vector ¢ € Cn ¢, , We construct a prior distribution
D, of the buyers’ valuations as follows — First, for each x € X,, ., 5,
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(Y1,91)

(Y2, g2)

(Y3, q3) (Y4, q4)

Figure 2: A depth-2 protocol tree.

we define a unit-demand valuation v} : 2lnl — R4 as follows:

5 0 xNS=10
v (S) ::{

otherwise.

c(x)

Then, we let D, be the uniform distribution over v7’s for all x €
Xp,.¢,,5,- Finally, the family of prior distributions is ¥ = {D. | ¢ €
CN e, }

Interpretation. The following interpretations might be helpful
for reading the proof. Each x € X, ,, 5 corresponds to a set of
items which are (equally) valuable to the buyer with valuation
oy Each vector ¢ € Cn ¢,y specifies for each x € X, s, how
valuable such an item is to the buyer with valuation v}. By the
design property of X, ., s,, every v;', vz with distinct x1, x; are
interested in mostly different items. By the design property of
CN t,e5,> for a large number of valuations v ’s with distinct ¢’s
but the same x, the values of an item in x to these valuations are
distributed roughly according to the “equal revenue distribution”
Re,e, defined in Lemma 6.2.

An optimal truthful-in-expectation protocol for the hard instances.
The first step for proving the lower bound is to show that there is a
truthful-in-expectation protocol that extracts the full welfare using
O(n) bits of communication for the family of Bayesian instances
constructed above. The protocol is as follows: the buyer sends the
set x that corresponds to his valuation v} to the seller, which takes
n bits, and then, if x € X}, ;, 5, (otherwise the seller stops), the seller
samples an item i from set x uniformly at random and gives the item
i to the buyer and charges him c(x), where ¢ corresponds to the
prior De. This protocol is obviously individual rational and revenue
maximizing if the buyer tells the truth. To show truthfulness in
expectation, suppose the buyer’s true set of interest is x; without
loss of generality, we can assume that the buyer sends some x’ €
Xy ¢,,5,» because otherwise, the seller stops, and the buyer gets net
utility 0, which is not better than telling the true x. Moreover, if the
buyer sends x” # x, by the design property of X}, ., s, he receives an
item in x with probability at most &1 (1 + d1). Hence in expectation,
the net utility is at most &1 (1461 )c(x) —c(x”) < e1(1+651) —sg_l <0,
where the first inequality is due to ¢(x) < 1 and ¢(x”) > eg_l, and
the second is due to our choice of parameters. Thus, sending x
instead of x’ is strictly better in expectation.

Representing a protocol as a protocol tree per prior distribution. Ob-
serve that once the prior distribution is fixed, a protocol can be
viewed as a protocol tree. See Figure 2 for example. Without loss
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of generality, the protocol tree starts with the root B representing
the buyer’s round and then alternates between the buyer B and the
seller C (Chance). At each round, represented by a node, the buyer
or the seller can choose to send a bit 0, represented by left edge, or
bit 1, represented by right edge, to the other. At a leaf, both players
agree on a set of items Y allocated to the buyer and a payment ¢
to the seller. The protocol is possibly randomized, and hence, at a
seller’s round, the seller?’ can send bit 0 with probability p and send
bit 1 with probability 1 — p, which are represented by the weights
on the edges. At a buyer’s round, the buyer’s strategy depends on
his valuation, but we can assume without loss of generality that
the buyer always deterministically chooses a bit to send, because
the buyer is strategic and hence sending the bit that has better net
utility in expectation (sending the bit that maximizes the seller’s
revenue if both choices are (almost) equal, and sending bit 0 if it is
still a tie) is a (almost) dominant strategy for the buyer that maxi-
mizes the seller’s revenue among all (almost) dominant strategies.
Therefore, the buyer’s prescribed (almost) dominant strategy can
be deterministically decided by the protocol tree and his valuation.

To make the proof easier, we show that we can without loss of
generality assume some nice properties for the protocol trees, and
we will only consider such protocol trees afterwards.

CrLam 6.4. Any (almost) truthful-in-expectation protocol with
O(k) communication in expectation for our hard instance can be
changed (with arbitrarily small loss of the approximation factor) such
that

e the protocol tree has O(k) depth,

e and moreover, the payment at any leaf of the protocol tree is
O(k)
2 .

Suppose a protocol uses ak bits of communication in expectation
where « is a positive constant. For an arbitrarily large constant f,
by Markov’s inequality, the protocol takes > Sk communication
with probability at most y := a/f. Observe that if we trim all the
nodes at level > fk of the protocol tree 77, the buyer’s expected
utility (before payment) is at least 1 — y fraction of that for 7~ (for
our instance, the loss is at most y). If we further trim every node
that is reached with probability < 4Pk for any buyer, the buyer’s
expected utility loses at most another 277 because there are at
most 28¥ nodes left after the first trimming step. Since we introduce
new leaves after trimming, we need to specify the allocation and
the payment for each of them. For each new leaf, we simply let
its allocation be the empty set, and we let its payment be the least
possible expected payment at this node in 7~ (that is, the minimum
expected payment achieved by the worst possible buyer’s responses
in the subtree rooted at this node in 7).

After the above changes, the first property obviously holds for
the new protocol tree 7/, and the second also holds, because if any
leaf has payment larger than 4% then the probability of reaching
that leaf (or node) in the original 7~ for any buyer is at most 4~k
(otherwise the expected payment is greater than 1 for a buyer
that reaches this node with probability > 47Pk which exceeds
the largest possible buyer’s value and hence violates individual
27We assume that the seller is not strategic in the private-coin model. In the public-coin
model, the seller can not be strategic, because his responses can be inferred from the

public randomness and the pre-specified protocol tree, and thus, he can keep silent
unless he observes that the buyer is cheating.
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rationality), and this leaf should have been trimmed. It remains to
show that the approximation factor is decreased arbitrarily little by
the above changes.

To prove this, consider the buyer’s (almost) dominant strategy
s* in 7, we change the strategy in the way that the buyer makes
the same response as s* at every node that will not be trimmed
by the above steps and makes the worst possible responses (which
minimize the expected payment) in the subtree rooted at every
node that will be trimmed. This results in a new strategy s that
gives the buyer almost the same expected utility as s* (as we have
shown, the loss is at most y + 27Pk) 1t follows that the expected
payment for s can only be y + 2Pk (plus another negligible error if
the original protocol is only almost truthful) less than that for s*,
since otherwise the expected net utility of s is significantly better
than s*. Moreover, the expected payment for s can not be more
than that for s* by definition of s, and hence, the expected net
utility of s is same as that of s* up to negligible error. Furthermore,
observe that s (ignore s’s responses at trimmed nodes) gets the
same expected utility and payment for the buyer in 7. If s is an
almost dominant strategy in 7 (which indeed is as we will show),
then we are done because we have shown the expected payment
for s in 7/ (or 7") is same (up to negligible error) as that for s* in
T.

To see s is an almost dominant strategy in 7, suppose for con-
tradiction there is another strategy s” with an non-negligible im-
provement of expected net utility over s in 7’. We extend s to a
strategy for 7~ by letting it make worst possible response (which
minimize the expected payment) for the nodes that will be trimmed
in 7. Note that the extended s’ has the same expected net utility
in 7 as that in 7/, which is significantly better than s’s expected
net utility in 7 (and hence s or s*’s expected net utility in 7). This
contradicts that s* is a (almost) dominant strategy in 7.

One protocol tree can not be shared by many priors. Now we show
the main claim that leads to the lower bound result.

CrAM 6.5. For any constant t > 0 and any m = w(1), any single
protocol tree can only achieve T approximation on < m priors in F.

Assume for contradiction that there are m = w(1) priors D, ..
in F sharing the same protocol tree. By Lemma 6.2, for all but n
fraction of x € X, ., s,, the empirical distribution of ¢;(x)’s for
i € [m] is close to Ry ¢, defined in Lemma 6.2, namely, the number
of i’s such that ¢;(x) = sé_l is (1« n)p(t)m, where p(t) oc gg_t.
In the rest of the proof of Claim 6.5, we show that for any such x,
the average revenue over valuations v, for all i € [m] achieved

by the protocol tree is at most 0 := w fraction of the
optimum. Notice that 6 is a constant that we can make arbitrarily
small. This will finish the proof of the claim, because for at least
one of D¢, ..., D¢,,, the protocol tree achieves no more than the
average of the expected revenues for De,, ..., D¢, , which is at

ey
1—

most 7 =6 + fraction of the optimal revenue (we generously
assume that it achieves full revenue on the 5 fraction of x € X, ., 5,
that is excluded from the above analysis, and the full revenue for
any x from this 5 fraction is at most 1, which is at most e;_[ times
ney !
1—

the full revenue of any x’ from the other 1 — 7 fraction), and 7

is arbitrarily small by our choice of parameters.

»De

m
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Now consider any such x that the empirical distribution of ¢; (x)’s
for i € [m] is close to Ry,, and let C; be the set of ¢;’s with
ci(x) = 55‘1. Without loss of generality, the buyers with valuation
v, forall cj, € C; use the same dominant strategy. Moreover,
consider any cj, € Cy and any cj,,, € Cr4+1, we denote the expected
utility and payment achieved by the prescribed dominant strategy
for v;fjt by u; and g, respectively, and analogously, we denote
ur+1 and g4 for Ufjm . If the buyer with valuation Ué‘j_t plays the
strategy for vé‘jm instead, he will get expected utility us41/e2 and
payment g¢41, because by definition v?jt =g, " /€2. By definition
of (almost) dominant strategy, we have the following inequality (the
inequality holds approximately when we consider almost truthful-
in-expectation protocols, and the error is negligible to the later
derivations)

mel qr+1 S Up = qr. 2)
Moreover, by individual rationality,
qr+1 < Ups1, ®3)
and it follows that
qr < up — u;—:l +qr1 (Rearranging Eq. (2))
<up— Ugl + U1 (By Eq. (3))
1
=Up — Ups1 (g—l). (4)

Furthermore, because c;(x)’s for i € [m] are distributed like Re,,
the sum of the revenues obtained from the o7,’s for all i € [m] is at
most (up to a (1 + 5) multiplicative error)

¢ -1
1
Zmp(t)qt < Zmp(t) (ut — U1 (g _ 1)) +mp(f)u{,

=1 =1
(By Eq. (4) and Eq. (3))

¢ p(t_l)
= mpWuy+m > e [ p - — +p(tD
t=2

(Rearranging the sum)

J4
= mp(l)ul +m Z utp(t_l)
1=2

(By definition of p(t ))

3
= mp(l)ul + megp Z utp(t)
t=2

4
< mp(l) + mez Zp(t)eé_l,
=2

By us < gé_l)

which is at most &; fraction 0f2£:1 mp(t) sg_l plus mp(l) ,but mp(l)
is only 1/¢ fraction of Zle mp(t)fé’l by its definition. Because
ci(x)’s for i € [m] are distributed like R¢,, the optimal total
revenue we can get from all the o, for i € [m] (which is equal to

their total value) is at least (1 — n) Zle mp(t) é‘é_l, and hence, the
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average revenue achieved by the protocol tree on valuations o, for

(£241/6) (1+n)
1-n

i € [m] is at most fraction of the optimum.

Finishing the proof by a counting argument. For any constant 7 > 0,
suppose that the communication complexity of a r-approximate
truthful-in-expectation protocol is k = o(n), and without loss of
generality we assume that the protocol always uses up k bits. We
count how many protocol trees we can have. Note that a protocol
tree is determined by the (Y, q) pairs on the leaves and the proba-
bilities on the edges. Without loss of generality, we can assume that
the payments and the probabilities have finite precision, namely,
the probabilities are rounded to {i/4" | i = 0,1,...,4"}, and the
payments are rounded to {i/4" | i =0,1,..., 20(M1 To see this,
first observe that rounding can only change the payment at any leaf
by at most 1/4", and similarly, it can only change the probability
of reaching any leaf by O(1/4"), and therefore, it only changes
the expected utility and the expected payment for the buyer by at
most O(2K/4™) = 0(1/2"). As we have noted along the proof, the
analysis works for almost truthful-in-expectation protocols, which
tolerates this extra O(1/2") error.

Therefore, there are at most 2" choices of Y and at most 20(?)
choices of g, which implies at most 2°0(") choices of (Y, g) at each
leaf, and there are at most 4" choices of the probability on each
edge. Since the depth of the protocol tree is no more than k, there
are 2K leaves and 2k+1 edges at most. Altogether, there are at most

k k- k+o(n
(20(m)H2% . (4m)2 o gakretn possible protocol trees. Furthermore,
by Claim 6.5, these protocol trees can only beat 7-approximation

k+o(n)

on at most 22 - m priors in total for any m = (1), but there

Q(n . . . .
are 22" priors in . Hence, most priors in # are hard for all the
o(n)-communication protocols.
]

6.3 Separating the Complexity of
Implementing and Incentivizing

Remark 6.6. There is an O(logn)-communication implementa-
tion of the optimal protocol for our hard instances. Combining
with the lower bound, this shows an exponential separation be-
tween communication complexity of almost truthful-in-expectation
implementation and that of non-truthful implementation for this
protocol, even when the buyer’s valuation has constant precision.

Proor. A more communication-efficient non-truthful implemen-
tation is that the buyer randomly chooses an item i of interest and
sends i and c(x) to the seller, and then the seller gives the item i
to the buyer and charges the buyer c(x), which only uses O(log n)
bits of communication. O

6.4 Extending to Gross-Substitutes Valuations

Our technique for proving lower bound for unit-demand valuations
can be applied to gross-substitutes (and XOS) valuations. We state
the result below, the proof of which can be found in the full paper.

THEOREM 6.7. For every constant t > 0, any t-approximate (al-
most) truthful-in-expectation protocol for revenue maximization, where
the seller has n items, and the buyers have gross substitutes valua-

29(”1/3

tions, requires ) bits of communication in expectation. For XOS
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valuations with n items, the communication complexity lower bound
for any constant approximation can be improved to 2Q(n)

7 COMMUNICATION LOWER BOUND FOR
XOS VALUATIONS WITH INDEPENDENT
ITEMS

In this section, we sketch the construction of hard instances to
show that beating 4/5 approximation for XOS valuations with inde-
pendent items requires exponential communication. The complete
proof can be found in the full paper. Note that constant-factor
approximation is known (e.g., [74]) for more general subadditive
valuations with independent items.

THEOREM 7.1. For every constant T > 0, any (% + 7)-approximate
(almost) truthful-in-expectation protocol for revenue maximization,
where the seller has n items, and the buyers have XOS valuations
with independent items, requires 221 pits of communication in
expectation.

ProoF skETCH. The proof follows the same strategy as the proof
of the previous lower bounds. First, we construct a family of prior
distributions of XOS valuations with independent items. We focus
on the following special case of prior distributions of XOS valua-
tions with independent items — Given any integer b, for each item

i € [n] there is a distribution D; over RY , an XOS valuation v is

>0°
generated by first sampling a vector a') from each D; and then

defined as

In this case, D1 X Dy X - - -
XOS valuations.

x Dy, specifies a prior distribution of

Construction. Let €, 1,1,n,y > 0 be arbitrarily tiny constants
such that £1(1 + 1) + eo(1 + do) < 1 . Given a set family

Y
X145, from Lemma 6.1, we let b = |Xn_1’£0’50| = 29 Wwe
can think of each set in X,,_ ., 5, = (xM x@ . x()} as a bi-
nary vector. For each i € [n — 1], we let D; be the trivial distribu-
tion with singleton support {aD}, where a'?) € RI;() is defined as

() ()

m for all j € [b]. Now we take another set family

4
Xpensi = {y®,y@, ..., y™N)} from Lemma 6.1 and a vector fam-
ily Cy o1 n= {c(l),c(z), . ..,c(M)} from Lemma 6.2, where N :=
2,75

|Xp e, 5,1 = 290) and M = |CN2 1y | = 2QMN) For each ¢!, we let
RO

DC( ” be the uniform distribution over { ’ e .y | j € [N]}. The

family of prior distributions is ¥ = {Z)IXDZ X+ -XZ),CE(I) | ie[M]}.

For each prior, a valuation is sampled according to the procedure

described i 1n the previous paragraph, and specifically, a valuation

function 0? determmed by ¢() and y), is given as follows

c(d)

RO

1 . 0
—-y§1)+ Z ( r

(S)— max 1{n € S}- .
(l) _ _
K rebitny G- Peo(n=1)
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y(j)
@ >

. » When re-

Interpretation. In this instance, any valuation v
stricted to items [n — 1], becomes a single scaled binary XOS valua-
tion in which the clauses correspond to the scaled binary vectors
* D %@ x®) (they represent pairwise nearly disjoint subsets
(of items in [n — 1]) that are equally valuable to every buyer), and

each of these clause has total value 2% Each binary vector y(f )

then decides which of these clauses x(l), x(2>, el x(®) interact with
the item n, i.e., the item n has positive contribution to the clause
) i .
x(®) in the valuation vg(i) iff ygj ) =1, (Distinct y/)’s define almost
completely different interactions.) Each binary vector ¢ then
specifies for each y(] ) how large the contribution of n is for each
clause where, according to y(f ), the item n has positive contribution,
i.e,, the item n contributes value 1 to every clause x@ it interacts
) i
g(i) ifcj(.l) =1land
contributes value 0 if otherwise. For a large number of valuations
(@)
o”
o)
the item n in these valuations (to every clause it interacts with) are
distributed roughly according to the “equal revenue distribution”
Ra,1/2- O

with (i.e., for which yﬁj ) = 1) in the valuation v

’s with distinct ¢(9’s but the same y(j ), the contributions of
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