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ABSTRACT
We study the communication complexity of incentive compatible

auction-protocols between a monopolist seller and a single buyer

with a combinatorial valuation function over 𝑛 items. Motivated by

the fact that revenue-optimal auctions are randomized (as well as by

an open problem of Babaioff, Gonczarowski, and Nisan), we focus

on the randomized communication complexity of this problem (in

contrast to most prior work on deterministic communication).

We design simple, incentive compatible, and revenue-optimal

auction-protocols whose expected communication complexity is

much (in fact infinitely) more efficient than their deterministic

counterparts.

We also give nearly matching lower bounds on the expected

communication complexity of approximately-revenue-optimal auc-

tions. These results follow from a simple characterization of incen-

tive compatible auction-protocols that allows us to prove lower

bounds against randomized auction-protocols. In particular, our

lower bounds give the first approximation-resistant, exponential

separation between communication complexity of incentivizing vs
implementing a Bayesian incentive compatible social choice rule,

settling an open question of Fadel and Segal.

CCS CONCEPTS
• Theory of computation→ Algorithmic game theory; Com-
munication complexity.
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1 INTRODUCTION
The central goal of Algorithmic Mechanism Design is to design

mechanisms that guarantee good outcomes while taking into ac-

count both the selfish agents’ incentives and the ever-increasing

complexity of modern applications. A fundamental question to

this field is whether simultaneously satisfying both the incentive

and simplicity constraints is harder than satisfying each of them

separately.

In this paper we focus on one of the simplest and most studied

settings in the field: a monopolist, Bayesian, revenue-maximizing

seller auctioning 𝑛 items to a single risk-neutral buyer. An active

line of work over the past two decades argues that even in this

strategically-simple setting, and even for buyers with additive or

unit-demand valuations
1
, optimal mechanisms are inherently com-

plex, e.g. they involve randomized lotteries [16, 50, 62, 66, 80] and

are often computationally intractable [25, 26, 31].

One particularly influential measure of complexity of mecha-

nisms is the menu-size complexity of [49]: by the taxation principle,

a general incentive compatible mechanism can be canonically rep-

resented as a menu, where each line or option in the menu corre-

sponds to a (possibly randomized) allocation and a payment. The

menu-size complexity of a mechanism is then the number of lines

in the corresponding menu. Perhaps the single most convincing

evidence for the complexity of optimal mechanisms is an example

due to [32], where the optimal mechanism for an additive buyer

with two i.i.d. item valuations from a seemingly benign distribution

(Beta(1, 2)) requires an infinite and even uncountable menu-size

complexity. We henceforth refer to this powerful example as the

DDT example.

[32] and related complexity results for revenue-maximizing auc-

tions have inspired fruitful lines of work that circumvent these

barriers, e.g. by designing sub-optimal but simple mechanisms that

approximate the optimal revenue (see discussion in Related work).

It is not a-priori clear, however, that the menu-size complexity

by itself is an obstacle to using optimal mechanisms. For instance,

the seller in the DDT example could in principle succinctly describe

her
2
mechanism as “the-optimal-auction-for-Beta(1, 2)×Beta(1, 2)”

and even point the buyer to an explicit description in [32]. However,

[5] recently observed that, once the mechanism is announced, the

deterministic communication complexity to implement it is equal

1
To circumvent some worst-case pathological examples, it is common in Algorithmic

Mechanism Design to restrict the buyer’s value distribution to independent (vs corre-
lated) items, and/or restrict the combinatorial nature of buyer’s value for bundles to

one of the following classes:

additive, unit-demand ⊂ gross-substitutes ⊂ submodular ⊂ XOS ⊂ subadditive.

(See Section 2.1 for definitions.)

2
Throughout the paper, we use feminine pronouns for the seller and masculine for the

buyer.
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(up to rounding) to the logarithm of the menu-size complexity. In

the DDT example, for the buyer to deterministically specify his

favorite line in the uncountable menu, he would need to send an

infinite stream of bits. [5] left open the question of randomized

communication complexity of optimal mechanisms. Indeed ran-

domized communication is a natural complexity measure in this

case since we already consider randomized allocations
3
.

In this paper, inspired by [5]’s open question, we formulate a

notion
4
of an incentive compatible (IC) auction protocol, which is a

two-party (possibly randomized) interactive communication proto-

col between a seller and a buyer with an allocation and payment

associated with every transcript of the protocol. Before presenting

our results in this model, below we briefly discuss our modeling

assumptions; a full definition appears in Section 2.

1.1 Brief Discussion of Modeling Assumptions
Per the discussion above, we assume that the protocol and auction

format are public information. The buyer privately knows his true

type (or valuations of items/bundles).

We mostly focus on the total expected communication com-

plexity of the protocol. For our protocols, we bound the interim

expectation, i.e. for every buyer’s type, the communication complex-

ity of the protocol is bounded, in expectation
5
over the protocol’s

randomness
6
. Our lower bounds hold even for ex ante expectation,

i.e. even if we allowed that some buyers may know in advance that

they are expected to participate in a prohibitively long protocol.

The seller in our model has no private information and is not
strategic. At the end of the communication protocol she must know

the allocation and payment.

We model the buyer’s strategic aspect as a complete information

single-player extensive-form game with buyer’s nodes and nodes of

Chance; each leaf is associated with an allocation and a payment. In

practice, nodes of Chance could be implemented by a trusted seller

(e.g. when the seller is an auditable firm), a trusted intermediary, a

cryptographic protocol for coin tossing
7
, or a publicly observable,

renewable
8
external source of randomness.

3
Different applications have different simplicity desiderata. (E.g. highly regulated

FCC auctions vs very fast ad auctions with automated bidders vs smart contracts that

require costly documentation of transaction details on a blockchain.) Ultimately, there

is no universal “right” measures of complexity, and studying a variety gives us a more

complete understanding.

4
Technically, our definition of IC auction protocol is a special case of Bayesian incentive
compatibility (BIC)-incentivizable binary dynamic mechanism (BDM) [40]. We discuss

this connection further in Related work.

5
In expectation vs high probability: We remark that by Markov’s inequality in expec-

tation upper bounds on the communication complexity imply similar upper bounds

w.h.p.; e.g. if the expected complexity is at most𝐶 , then it is at most𝐶/𝛼 w.p. ≥ 1−𝛼 .
6
In fact, all our protocols happen to satisfy a slightly stronger desideratum where all

the communication complexity bounds that we prove also (approximately) hold for

the communication complexity of the future of any prefix of the protocol. I.e. for any

setting where we bound the expected communication complexity by𝐶 , it is also true

that, conditioning on any history of the protocol (possibly much longer than𝐶), the

remaining expected communication complexity is𝑂 (𝐶) . This means that the buyer

and seller always expect -for every run of the protocol, and at any point during the

execution- that the protocol will end soon.

7
We’re mostly interested in mechanisms that are exactly revenue-optimal, while the

security of cryptographic protocols always has a negligible but non-zero chance of

being broken even by naive brute-force algorithms. In theory, this small chance of

cheating on the coin tosses would violate the buyer’s exact incentive constraints.

8
By “renewable” we mean that at each step of the protocol the parties have access to

fresh random bits not predictable in previous iterations; for example, they could look

at the weather each day.

As is common in the aforementioned literature on randomized

mechanisms, we assume that the buyer is risk-neutral. In particular,

we require that the protocol is interim individually rational. In

direct revelation mechanisms, it is possible to transform interim to

ex-post individual rationality by correlating the payment with the

randomized allocation. Similarly, at the cost of a bounded increase

in the communication complexity, it is possible to transform our

protocols to become ex-post approximately individually rational

(see the full version for details).

While we make little restrictions on buyer valuations, we do

generally assume that the buyer’s valuation is capped at some

arbitrarily large value𝑈 . The complexity of our protocols
9
does not

depend on 𝑈 , e.g. 𝑈 can be all the money in the universe (typically

much smaller).

1.2 Our IC Auction Protocols
We design IC auction protocols that are simple, surprisingly effi-

cient, and are exactly revenue-optimal. For instance, in Theorem

3.2 we give a revenue-optimal IC auction protocol for the DDT

example where the buyer sends less than two bits in expectation. (In
contrast, for a deterministic auction selling two items separately,

merely specifying the allocation requires the buyer to send two

bits!)

Main positive result. Our main positive result is a generic trans-

formation of an arbitrary (revenue-optimal or otherwise) IC and IR

mechanism for additive, unit-demand, or general combinatorial val-

uations to an IC auction protocol that uses𝑂 (𝑛 log(𝑛)),𝑂 (𝑛 log(𝑛)),
𝑂 (2𝑛𝑛) bits in expectation respectively. We note that our protocols

work for correlated prior distributions, and even for non-monotone

and negative valuations
10
.

Theorem (See Theorems 3.1 and 4.1).
For any priorD of buyer’s (additive/unit-demand/combinatorial)

valuations over 𝑛 items bounded by maximum valuation𝑈 , and any

IC mechanism M, there is an IC auction protocol with the same

expected payment and allocation, using (𝑂 (𝑛 log𝑛)/𝑂 (𝑛 log𝑛)/
𝑂 (2𝑛𝑛)) bits of communication in expectation.

Trading off revenue for even better communication efficiency. We

obtain an exponentially more efficient protocol for the special case

of unit-demand with independent items. Specifically, at the cost of
an 𝜀-fraction loss in revenue, we obtain an IC auction protocol that

uses only polylog(𝑛) communication.

Theorem (See Theorem 5.1). Let D be a distribution of indepen-

dent unit-demand valuations over 𝑛 items bounded by maximum

valuation 𝑈 . Then, for any constant 𝜀 > 0, there is a (1 − 𝜀)-
approximately revenue-optimal IC auction protocol using polylog(𝑛)
bits of communication in expectation.

Exhibiting the richness of our IC auction protocol model, this

protocol is substantially different from the generic transformation

in our main result, and builds on the recent symmetric menu-size
complexity of [57].

Remark 1.1. For simplicity of presentation we focus on the ex-

pected communication complexity. Here we briefly remark that

9
Except the ex-post approximately individually rational protocols in the full version.

10
We assume for simplicity that all payments are non-negative.
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our protocols also have desirable properties in terms of round- and

random-coin-complexities. For round complexity, our protocols use

𝑂 (log(𝑛)) rounds in expectation (𝑂 (𝑛) for general combinatorial

valuations). For the protocols in Theorems 3.1 and 4.1, it will be

easy to see how (using trivial batching) one can further compress

the number of rounds: at the cost of a constant factor increase in the

communication complexity, these protocols can be compressed to

1+ 𝜀 rounds in expectation. In terms of random coins, our protocols

can be implemented with 𝑂 (log(𝑛)) coins in expectation (𝑂 (𝑛) for
general combinatorial valuations).

1.3 Communication Complexity Lower Bounds
We show that beyond the (important) special case covered by The-

orem 5.1, the communication complexity of our protocols is almost

the best possible, in the following strong sense:

Theorem (See Theorems 6.3, 6.7, and 7.1). For revenue maximiza-

tion with 𝑛 items, any incentive compatible auction protocol that

achieves any constant factor approximation of the optimal revenue

must use at least:

• Ω(𝑛) communication for unit-demand valuations;

• 2
Ω (𝑛1/3)

communication for gross substitutes valuations;

• 2
Ω (𝑛)

for XOS valuations.

Furthermore, any incentive compatible auction protocol obtaining

more than 80% of the optimal revenue must use at least:

• 2
Ω (𝑛)

communication for XOS valuations over independent
items.

To place the result for independent items in the greater con-

text of Algorithmic Mechanism Design, contrast it with simple-

but-approximately-optimal mechanism independent subadditive

valuations: [74] showed that a constant fraction of revenue can be

guaranteed by simple mechanisms; this constant has been improved

in followup works [17, 18, 23], but no non-trivial upper bound on

the best approximation factor were known
11
. Assuming that effi-

cient randomized communication is a necessary desideratum for

“simple mechanism”, our result for independent items implies that

the optimal approximation factor is bounded away from 1 – even

for the special case of XOS valuations.

Note also that our upper and lower bounds for correlated valua-

tions are nearly tight in the following ways:

• For unit-demand and combinatorial valuations, our upper

and lower bounds nearly match (up to logarithmic factors),

even though the lower bounds hold for arbitrary (constant)
approximation factor vs exactly revenue-optimal in upper

bounds. Furthermore the combinatorial upper bound holds

for arbitrary combinatorial valuations, which are much more

general than XOS valuations used in the lower bound.

• The correlation in our unit-demand lower bound is necessary

by Theorem 5.1.

We remark that for one interesting case an exponential gap

remains:

11
Note that this is a maximization problem, so upper bound on the approximation

factor refers to an impossibility result.

OpenQuestion 1.2. What is the randomized communication com-

plexity of exactly revenue optimal IC auction protocols for unit

demand valuations over independent items?

Our lower bound for unit-demand requires correlated items (and

this is an inherent limitation of our technique). On the other hand,

our protocol for unit-demand with independent items (Theorem 5.1)

does not guarantee exact revenue optimality.

1.4 Separating the Complexity of
Implementing and Incentivizing

Our results also have implications for a question of Fadel and Se-

gal [40]. They study, for any fixed social choice rule, the commu-
nication cost of selfishness, i.e. the difference in communication

complexity between (i) implementing it, and (ii) implementing it

in a Bayesian incentive compatible protocol. They give examples

where the communication cost of selfishness is exponential, but

those examples are very brittle in the sense that they rely on agents’

utilities to have unbounded (or at least exponential) precision. They

ask whether the communication cost of selfishness on any (pos-

sibly contrived) social choice rule can be reduced substantially if

agents’ utilities have a bounded precision [40, Open Question 3].

Our source of hardness is inherently different from the instances

in [40]: we harness the combinatorial structure of the valuations

rather than exploiting the long representation of high-precision

numbers.

In more detail, in our constructions the buyer’s utility only re-

quires constant precision
12

for any outcome (and the seller is not

strategic, i.e. she has constant utility zero). Furthermore, for our

hard instances of unit-demand valuations, we show (Remark 6.6)

that the exactly revenue-optimal ICmechanism can be implemented

by a randomized (non-IC) protocol using𝑂 (log(𝑛)) communication

even in the worst case, hence resolving [40]’s open question on the

negative
13
. We remark that by [40, Corollary 3], this exponential

separation is tight.

Corollary 1.3 (See Remark 6.6). There exists a randomized
protocol for a revenue maximization instance, in which the buyer’s
valuation has constant precision, such that there is an exponential sep-
aration between the communication complexity of its approximately
Bayesian IC implementation and that of its non-IC implementation.

Remark 1.4 (Separations for deterministic vs randomized proto-

cols).
Formally, [40] phrase their open question for deterministic pro-

tocols. To view Corollary 1.3 in this context, note that in our model

the seller is not strategic; hence one can consider an equivalent

deterministic social choice rule in a slightly different setting where

the random seed (only 𝑂 (log(𝑛) bits are necessary) to the revenue-

optimal auction is replaced by a seller’s type. The requirements

from the protocol in this setting is only stricter, so the communica-

tion lower bound on IC auction protocols trivially extends. On the

other hand, for the non-IC auction protocol the seller can just send

the buyer her type (aka the random seed).

12
We require constant precision marginal contribution per item. For unit-demand,

this translates to constant precision for any outcome. For gross substitutes, etc. this

translates to𝑂 (log(𝑛)) bits to represent outcome utilities, which is still negligible.

13
Note that it was an open question to obtain such a separation for any social choice

rule, let alone a natural and important one like revenue-maximizing auctions.

884



STOC ’21, June 21–25, 2021, Virtual, Italy Aviad Rubinstein and Junyao Zhao

Interestingly, this separation between the communication com-

plexity of implementing and incentivizing optimal auctions holds

in a more general sense (albeit for expected communication in ran-

domized protocols): In the full version we show a non-IC auction

protocol
14

that for any buyer with unit-demand (resp. combinato-

rial) valuations, the exactly optimal IC mechanism can be imple-

mented by a randomized (non-IC) protocol using 𝑂 (log(𝑛)) (resp.
𝑂 (𝑛)) communication.

1.5 Technical Highlights: Infinitely More
Efficient Auction Protocols

Abstracting away the game theory and other detail, we explain

the simple idea which is at the core of our main positive result

(Theorems 3.1 and 4.1). Simplifying further, consider a randomized

auction of just a single item: our goal is to compress the infinite

deterministic communication complexity of a protocol where the

buyer tells the seller exactly with what probability he expects to

receive the item. Denote this probability of allocation by 𝑝 . Given 𝑝 ,

one way to allocate with probability 𝑝 using unbiased coin tosses

is to generate a uniformly random number 𝜏 ∈ [0, 1] (whose bi-
nary representation is a uniformly random stream of bits after the

decimal point), and to allocate the item iff 𝑝 > 𝜏15.

The key insight: for any fixed 𝑝 , we don’t actually need to know

𝜏 to infinite precision - we only need to know the prefix of 𝜏 ’s

binary representation until the first bit on which it differs from

𝑝 . Similarly, for a fixed 𝜏 , we only need to know 𝑝 to the same

precision. So here is our core protocol: draw
16 𝜏 ∈ [0, 1] uniformly

at random, and ask the buyer to stream the binary representation of

𝑝 - only with enough precision to determine whether 𝑝 > 𝜏 . Each

time the buyer sends a bit from the binary representation of 𝑝 it

differs from the corresponding bit of 𝜏 with probability 1/2; i.e. the
protocol terminates with probability 1/2 after each round. Hence

we reduced the infinite deterministic protocol to one where the

buyer only sends 2 bits in expectation.

What happens when we bring back incentives? It’s not too hard

to show that the protocol remains incentive-compatible as long

as the buyer doesn’t learn anything about 𝜏 until the end of the

protocol. This is actually too good to be true, since the protocol

length must depend on 𝜏 (otherwise it would be deterministic - and

hence infinite), and the buyer must know whether the protocol is

continuing in order to participate. Fortunately we can argue that

if the only thing the buyer learns about 𝜏 is that the protocol is

continuing, this information cannot help him cheat. Intuitively,

he has already committed to the prefix of the protocol, and the

extension of his strategy for the rest of the protocol is optimal

conditioned on actually being asked to use it.

14
The non-IC auction protocol is closer to [40]’s notion of implementing (as opposed

to incentivizing) a mechanism, or to [5]’s definition of randomized communication

complexity of auctions.

15
For historical context, we remark that the setup up to this point is similar to the

1-bit public-coin protocol for single-item auctions in [5].

16
Here and in all our protocols, 𝜏 can be drawn on the fly so the expected number of

random bits is also bounded.

1.6 Technical Highlights: A Characterization of
Randomized IC Auction Protocols

It is natural to try to prove communication lower bounds of IC

auction protocols via a modular approach of: (i) use Game Theory

to define a restricted communication problem that we have to solve

in order to obtain near-optimal revenue; and then (ii) use stan-

dard techniques from Communication Complexity (e.g. a reduction

from Set Disjointness). This approach has worked successfully in

other applications of communication complexity to game theory

(e.g. [34, 46, 55, 65]). However, our non-IC auction protocol in the

full version formally precludes such a modular approach because

there is an efficient communication protocol that exactly solves the

game theoretic problem we are after. (In other words, the modular

approach cannot separate the communication complexity of incen-

tivizing and implementing a social choice rule.) Instead we need to

simultaneously consider the complexity and incentives constraints,

in particular we need to consider the joint evolution of the buyer’s

prior and incentives in an arbitrary randomized protocol.

Our main novel insight is the following simple characterization

of incentive compatible communication protocols: In a general com-

munication protocol, each buyer’s node can partition the buyer’s

types in an arbitrary way. But for IC protocols, the buyer’s next bit

is fully determined by his respective value for the expected alloca-

tions conditioned on sending “0” or “1”; this means that it can only

partition the buyer’s types into halfspaces in valuation space (see

Figure 2). Thus IC mechanisms are much less expressive.

The second part of the proof combines tools fromAuction Theory

and Error Correction Codes to construct, for each class of valuations,

a family of priors whose (approximately) optimal mechanisms are

all different. Finally, a simple counting argument shows that the

total number of short IC protocols that satisfy our characterization

is too small to cover all the different mechanisms.

1.7 Related Work
For general social choice settings, [40] define binary dynamic mech-
anism (BDM), which formalizes the notion of communication pro-

tocol between multiple agents with outcomes and payments asso-

ciated with the protocol-tree leaves. They contrast the communi-

cation complexity of incentivizable vs implementable BDMs. Our

notion of IC auction protocols is equivalent to requiring that the

protocol is incentivizable.

One subtle difference between our model and [40] is that the

latter define BDMs as deterministic, while we focus on random-

ized protocols. In our context we can encode the seller’s random

number source as her type
17
. In this sense, our IC auction protocol

is a special case of their Bayesian incentive compatibility (BIC)-
incentivizable BDM. But this view misses the distinction between

trusting a Bayesian prior about other agents valuations and behav-

ior and merely trusting the source of randomness.

Our paper resolves an open question from [40] of separating

the communication complexity of incentivizing and implementing

Bayesian incentive compatible social choice rules. Very recently, [37,

73] resolved a different open question from the same paper about

separating the communication complexity of incentivizing and

17
Formally they only define finite BDMs, but they also discuss the natural infinite

variant [40, Appendix B.1].
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implementing ex-post incentive compatible social choice rules. [73]

also separate the communication complexity of ex-post vs dominant

strategy incentive compatibility.

Our paper exhibits a strong separation between the communi-

cation complexity associated with direct revelation and general

mechanisms. Related separations have been shown before by [29]

and [34] for social-welfare maximization with two or more strate-

gic buyers. Specifically, [29] show an exponential gap between

the communication complexity of direct revelation versus inter-

active mechanisms. [34] shows that in several important settings,

the “taxation complexity” of deterministic mechanisms is approxi-

mately equivalent to the communication complexity, but exhibits

an exponential gap between the two for truthful-in-expectation

mechanisms. In contrast, we consider revenue maximization with

a single strategic buyer and as few as two items. Arguably, the

separation for a single strategic buyer in our settings is more sur-

prising since he communicates with a seller who doesn’t receive

exogenous private information. More generally, communication

complexity of (approximate) social welfare maximization in auc-

tions with multiple strategic buyers has been extensively studied

for combinatorial auctions [2, 3, 14, 15, 33, 34, 36, 39, 64, 77] and

related settings [4, 11, 12, 35, 65].

Our paper is inspired by a discussion in [5] about the communi-

cation complexity of revenue-maximizing auctions. They prove that

in general the deterministic communication complexity is equiva-

lent (up to rounding) to the logarithm of the menu-size complexity.

They also define a measure of randomized communication com-

plexity of an auction, which is most closely related to [40]’s weaker

notion of implementable protocols. They give a randomized proto-

col for implementing any18 incentive-compatible auction for selling

a single item using 1 bit of communication and (possibly infinitely

many) public random coins.

Our protocols circumvent the intractability of exactly commu-

nicating payments (to infinite precision) by replacing them with

random payments while preserving expectation. Related ideas have

been used before in algorithmic mechanism design, e.g. by [1, 7].

The study of communication complexity in economics has its

roots in classic works of [9] and [53]. Early mathematical formula-

tions of the question were given by [54, 63, 69]. Outside of auctions,

communication complexity has also been considered in AGT in

the context of voting rules [19, 30, 68, 79] equilibrium computa-

tion [8, 28, 42, 43, 46, 47, 71] fair division [13, 67, 78], interdomain

routing [59], and stable matching [45].

Since the seminal [49], menu-size complexity has been further

studied by [5, 32, 44, 57, 75]. For a buyer with additive valuations

over independent items, [5] prove
19

an log
𝑂 (𝑛) (𝑛) upper bound

on the menu-size complexity of approximately-optimal mecha-

nisms. In this special case, this translates to an upper bound of

𝑂 (𝑛 log log(𝑛)) on the deterministic communication complexity -

slightly more efficient than our 𝑂 (𝑛 log(𝑛)) upper bound on ran-

domized communication complexity
20
. Our proof is arguably much

18
Note that the (revenue-)optimal auction for a single item is already deterministic

and uses only 1 bit of communication.

19
Theorem 1.2 of [5] states a slightly weaker bound of 𝑛𝑂 (𝑛)

; the stronger bound is

suggested in Footnote 3 of their paper.

20
The results are incomparable: [5] uses deterministic communication, whereas our

protocol gives exact-revenue-optimality and allows for correlated valuations. In par-

ticular, note that in our setting𝑂 (𝑛 log(𝑛)) is tight up to𝑂 (log𝑛) factor, whereas

simpler
21
. [44] explores the dependence on 𝜀 in the menu complex-

ity of mechanisms with additive-𝜀-suboptimality in revenue; his

main result, combined with [49], implies a Θ(log(1/𝜀)) bound on

the deterministic communication complexity with two items.

For a buyer with unit-demand valuations over independent items

[57] define a related notion of symmetric menu-size complexity

which counts the number of lines up to symmetries, and prove an

𝑛polylog(𝑛) upper bound on the symmetric menu-size complexity.

We use a slightly stronger notion of partition-symmetric menu-size

complexity (see Definition 5.2); the bound of [57] also holds for

this stronger definition. We use this result for our nearly-revenue-

optimal IC auction protocol. This provides further evidence that the

relatively new notion of (partition)-symmetric menu complexity is

a natural complexity measure for auctions.

Over the past decade, computational and menu-size complex-

ity results of optimal auctions have motivated the design of sub-

optimal but simple mechanisms that approximate the optimal rev-

enue [6, 18, 20–24, 27, 48, 51, 52, 56, 60, 72, 74, 74] or require re-

source augmentation [10, 38, 41, 61, 70]. Our results suggest that,

in some cases, even strong menu-size complexity lower bounds do

not preclude efficient optimal mechanisms.

2 MODEL AND DEFINITIONS
Our main notion in this paper is that of IC auction protocols:

Definition 2.1 ((IC) auction protocols). An auction protocol con-
sists of:

• A (possibly infinite) binary tree whose internal nodes are

labeled either B (for Buyer) or C (for Chance).

• Each node of Chance has an associated probability distribu-

tion over its children.

• Each leaf node has an associated (non-negative) payment

and (feasible) allocation.

• A suggested mapping from Buyer’s types to Buyer’s strate-

gies, where a Buyer’s strategy corresponds to a choice of

child for each Buyer’s node.

We say that an auction protocol is finite if it is guaranteed to ter-

minate after a finite number of rounds with probability 1 for every

Buyer’s strategy. We say that an auction protocol is individually
rational (IR) if the Buyer has a strategy that guarantees expected

payment 0 and empty allocation. We say that an auction protocol

is IC (in-expectation) if it is finite and IR, and if the Buyer weakly

prefers the suggested Buyer’s strategy corresponding to his type

over any other strategy in the protocol.

The expected communication complexity, of an auction protocol

is the expected depth of the leaf reached by a worst-case Buyer’s

strategy (and in expectation over nodes of Chance). Theorem 3.2

refers to the expected Buyer’s communication, which only counts

the number of Buyer’s nodes on the path to the leaf.

for approximate revenue with independent valuations, the true answer (even for

deterministic communication) is conjectured to be𝑂 (log(𝑛)) [5, Footnote 4].
21
The main technical hurdle for [5] is a reduction to the case where the valuations

are (almost) bounded by some large number 𝐻 = poly(𝑛, 𝜀) with only a negligible

loss in revenue; we simply assume that the valuations are bounded by𝑈 , but it can be

arbitrarily large. We remark that if we assume that the optimal mechanism obtains

finite revenue (as is assumed in [5]; see Footnote 6 of their arXiv version), then it is

easy to argue that for any 𝜀 > 0, capping the valuations by a sufficiently large𝑈 (𝜀)
preserves a (1 − 𝜀)-fraction of the revenue (see the full version for details).
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Note that the buyer’s strategy can be assumed wlog to be deter-

ministic.

2.1 Valuation Classes
As is standard in the Algorithmic Mechanism Design literature, we

consider buyers whose value for a bundle can be restricted to one

of the following classes:

Definition 2.2 (Valuation classes).
A valuation function 𝑣 : 2

[𝑛] → R≥0 may be restricted to one

of the following classes:

Additive If it can be written as 𝑣 (𝑆) =
∑
𝑖∈𝑆 𝑣𝑖 for some item

values 𝑣𝑖 ’s.

Unit-demand If it can be written as 𝑣 (𝑆) = max𝑖∈𝑆 𝑣𝑖 for some

item values 𝑣𝑖 ’s.

Matroid-rank If, for some matroid 𝑀 and item values 𝑣𝑖 , it can

be written as

𝑣 (𝑆) = max

𝑇 is independent in𝑀

∑
𝑖∈𝑆∩𝑇

𝑣𝑖 .

XOS 22
If item value-vectors v𝑖 of dimension 𝑑 , it can be written

as

𝑣 (𝑆) = max

𝑗 ∈{1,...,𝑑 }

∑
𝑖∈𝑆

𝑣𝑖, 𝑗 .

The aforementioned classes are related to other well-studied

classes like gross-substitutes, submodular, and subadditive in the

following hierarchy:

additive, unit-demand ⊂ matroid rank ⊂ gross substitutes

⊂ submodular ⊂ XOS ⊂ subadditive.

The formal definition of gross substitutes, submodular, and sub-

additive is not important for our purposes; they are economically

significant because they capture different natural notions of substi-

tutability between items (see e.g. [58]).

In general, we are interested in any prior distribution over val-

uations of any of above-mentioned types. In particular, we also

consider the notion of combinatorial valuations over independent

items, which has been recently used by e.g. [17, 18, 23, 74].

Definition 2.3 (independent items [76]). A prior distribution D
of valuations has a latent structure of independent items if there

is a latent product distribution D1 × D2 · · · × D𝑛 with arbitrary

support such that, a sample valuation 𝑣 from D can be generated

by first sampling 𝑎𝑖 from D𝑖 for all 𝑖 ∈ [𝑛], and then for every

𝑆 ∈ [𝑛], the value of 𝑣 (𝑆) is uniquely determined by {𝑎𝑖 | 𝑖 ∈ 𝑆}.

2.2 Menu-Size Complexity
Definition 2.4 (Menu-size complexity). By the taxation principle,

any mechanism can be canonically described by the expected allo-

cation and payment for each type. This description induces a menu,
or collection of menu lines, where each menu line is the expected

allocation and payment for some type. The menu-size complexity
of a mechanism is the number of distinct menu lines.

22
XOS valuations are sometimes also called fractionally subadditive.

3 IC AUCTION PROTOCOLS FOR AN
ADDITIVE BUYER

Theorem 3.1. For any prior D of Buyer’s additive valuations
over 𝑛 items bounded by maximum valuation 𝑈 , and any truthful
mechanismM, there is an IC auction protocol with the same expected
payment and allocation, using 𝑂 (𝑛 log𝑛) bits of communication.

Proof. First, we convert M to a strategically-equivalent mech-

anismM′
where the payment is always either zero or𝑈 . Note that

by IR, the expected payment 𝑃 in M for every type is always at

most𝑈 ; therefore for each type we can implement expected pay-

ment 𝑃 by charging a payment of𝑈 with probability 𝑃/𝑈 (and zero

otherwise). We henceforth identify each type of Buyer with the

corresponding vector in [0, 1]𝑛+1, which describes the probability

thatM ′
allocates each item to the Buyer, and the probability (𝑛 + 1-

th coordinate) that the Buyer pays𝑈 . We can further identify the

mechanismM ′
with the set of allowed types/vectors in [0, 1]𝑛+1.

Buyer’s nodes and suggested strategy. Each Buyer’s node
23

cor-

responds to a choice of 𝑛 + 1 bits. Given the Buyer’s type and

mechanismM′
, let 𝑝1, . . . , 𝑝𝑛 denote the probability that Buyer is

allocated items 1, . . . , 𝑛, respectively, and let 𝑝𝑛+1 = 𝑃/𝑈 denote the

probability that the Buyer pays 𝑈 . The Buyer’s suggested strategy

is to send, for each round 𝑟 and 𝑖 ∈ [𝑛 + 1], the 𝑟 -th bit in the binary

representation
24

of 𝑝𝑖 .

Correcting infeasible bits. We enforce that at any point in the

protocol, the Buyer’s messages are consistent with some type, i.e.

with the prefix of probabilities corresponding to some feasible menu

line in M′
. If only possible value for the Buyer’s next bit would

possibly be consistent with the protocol’s history, the protocol

continues assuming that the Buyer indeed sent this bit (formally we

remove the Buyer’s node from the protocol since it is redundant).

Nodes of Chance. The distribution over nodes of Chance is de-

termined by an implicit parameter 𝜏 drawn uniformly at random

from [0, 1]. Before each node of Chance, we will already know that

𝜏 belongs to a particular measurable subset 𝑆 ⊆ [0, 1]. For a par-
tition 𝑆𝐿 ∪ 𝑆𝑅 = 𝑆 (to be specified below), each child of this node

of Chance will correspond to 𝜏 falling in each of 𝑆𝐿 or 𝑆𝑅 , which

induces the probability distribution on the children. While 𝜏 plays

a crucial role in defining and analyzing the protocol, we stress that

it is only implicit: in the actual protocol it is drawn on the fly, with

increasing precision at each node of Chance along the path of the

protocol.

To define the 𝑟 -th node of Chance along a given path, consider,

for each 𝑖 ∈ [𝑛 + 1], the concatenation of the 𝑖-th bits across the

Buyer’s 𝑟 messages, and compare it to the first 𝑟 bits in the binary

representation of 𝜏 . If for every 𝑖 , at least one of the bits is different,

the protocol is terminated at a leaf as follows (see Payment and

Allocation). Otherwise, the protocol continues in a Buyer’s node.

Note that for each node of Chance, only one of its children is an

internal (Buyer’s) node.

23
Here we slightly abuse notation: we defined the auction protocols for binary trees,

so this technically corresponds to a sub-tree of depth 𝑛 + 1 with all Buyer’s nodes.

24
If 𝑝𝑖 has two binary representations, using either one throughout the protocol will

work.
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Payment and Allocation. At the end of the protocol, for each

𝑖 ∈ [𝑛 + 1], let 𝑝𝑟
𝑖
∈ [0, 1) denote the number whose binary repre-

sentation is the concatenation of the 𝑖-th bit in each of the 𝑟 rounds

of the protocol (after correcting infeasible bits). For 𝑖 ∈ [𝑛], the
𝑖-th item is allocated iff 𝑝𝑟

𝑖
> 𝜏 ; the Buyer pays𝑈 iff 𝑝𝑟

𝑛+1 > 𝜏 , and

otherwise he pays zero.

IC. The key observation for incentive compatibility is that a

Buyer’s strategy is completely determined by the infinite stream

of messages that it would send in the (zero-probability) event that

the protocol never terminates. To see this, recall that each node

of Chance has only one internal node child. Hence for any fixed

Buyer’s strategy there is a unique infinite path in the tree, and every

finite run of the protocol corresponds to a prefix of this path, up to

some node of Chance that deviates from the path to a leaf.

Let 𝑝𝑖 denote the number whose binary representation is the infi-

nite sequence of Buyer’s 𝑖-th bits in the (zero-probability) event that

the protocol never terminates. Recall from the previous paragraph

that a Buyer’s strategy is completely determined by the vector of

𝑝𝑖 ’s. Note further that the 𝑖-th item is allocated at the end of the

protocol iff 𝑝𝑖 > 𝜏 ; similarly, the Buyer pays𝑈 iff 𝑝𝑛+1 > 𝜏 . There-

fore, since 𝜏 is drawn uniformly from [0, 1], the probability that the
Buyer is allocated item 𝑖 (resp. pays𝑈 ) is exactly 𝑝𝑖 . Hence, by IC

ofM′
, the suggested strategy 𝑝 = 𝑝 is optimal for the Buyer.

Communication complexity. At each round of communication,

the Buyer sends 𝑛 + 1 bits. Also, at each round 𝑟 of communication,

there is probability exactly 1/2 that the 𝑖-th bit in the Buyer’s

message (for each 𝑖 ∈ [𝑛 + 1]) disagrees with the 𝑟 -th bit of 𝜏 .

(This probability is independent across rounds, but correlated for

different 𝑖’s.) After 2 log(𝑛) rounds, each 𝑖 has probability 1/𝑛2 of
agreeing with all of 𝜏 ’s bits. We can take a union bound over all 𝑖’s

to obtain that except with probability 1/𝑛, the protocol has already
terminated. In the unlikely event that the protocol continues, we

can re-apply the same analysis from scratch.

Let 𝑟
ub

denote an upper bound on the expected number of rounds

in the protocol, corresponding to the worst case where the above

union bound is tight. Then we have that

𝑟
ub

≤ 2 log(𝑛) + 𝑟
ub
/𝑛. (1)

Solving the recurrence relation for 𝑟
ub
, we have that 𝑟

ub
= 𝑂 (log(𝑛)).

Since the Buyer sends 𝑛 + 1 bits in each round, the total communi-

cation complexity is 𝑂 (𝑛 log(𝑛)). □

Special case: a protocol for the [32] example. We can also prove a

concrete (non-asymptotic) bound on the expected number of bits

that the buyer sends in the DDT example. Beyond the historical im-

portance of this specific example, our result demonstrates that our

protocols are communication-efficient not only in the asymptotic

sense, especially if we take advantage of the particular features of

a specific distribution. We in particular highlight the fact that the

Buyer in this protocol sends strictly less bits25 than he would with

a simple deterministic auction selling each item separately.

Theorem 3.2. Consider the case of 𝑛 = 2 items and the Buyer
drawing his valuations i.i.d. from Beta(1, 2) (i.e. the distribution on

25
Here we only count communication from the Buyer and not the random coin tosses.

In many scenarios random bits are cheap but informative communication is costly.

B

… …
C

B

………
C

Pay 𝟎
Don’t allocate item

B

1,1

1,00,1

0,0

w.p. 1

1,1

1,0
0,0

0,1

w.p. 1/4w.p. 1/4 w.p.
1/2

Pay 𝑼
Allocate item

Figure 1: Example protocol
This figure depicts the first two iterations in an example protocol

with one item, where the Buyer’s favorite menu line has payment

probability 2/3 (.10 in binary) and item allocated with probability

1/3 (.01 in binary). Nodes marked with B (resp. C) correspond to

Buyer (resp. Chance). Triangles correspond to sub-trees never

visited for this particular Buyer’s valuation. In the first iteration,

the Buyer sends 1, 0, corresponding to the first bit in the

probability of payment,allocation. Notice that 0, 1 is an infeasible

prefix for the Buyer since it would violate IC constraints (lower

probability of payment and higher probability of allocation). At the

first node of Chance, 𝜏 cannot disagree with both bits, hence the

protocol proceeds to the next Buyer’s node with probability 1. In

the next iteration the Buyer sends the second bit from each

probability. Finally, in the second node of Chance:

• The Buyer pays𝑈 and receives the item w.p. 1/4 (𝜏 < 1/4 <

1/3, 2/3).
• The Buyer pays nothing and receives nothing w.p. 1/4 (𝜏 >

3/4 > 1/3.2/3).
• W.p. 1/2 the protocol continues.

[0, 1] with density function 𝑓 (𝑥) = 2(1 − 𝑥)). Then there is an IC
auction protocol obtaining the maximum possible revenue where the
Buyer sends less than two bits in expectation.

The proof is deferred to the full paper.
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4 AN EXTENSION FOR GENERAL
VALUATIONS

The following theorem is an analogue of Theorem 3.1 for general

combinatorial valuations (not necessarily subadditive or monotone).

The communication complexity upper bound is parameterized by

𝐵, the number of bundles ever assigned by the direct revelation

mechanism. For example, for unit demand valuations, 𝐵 ≤ 𝑛 + 1;

for general valuations, 𝐵 ≤ 2
𝑛
.

Theorem 4.1. Let D be any prior over Buyer’s combinatorial
valuations over 𝑛 items bounded by maximum valuation𝑈 , and any
truthful mechanism M. Suppose that for any type and realization of
randomness,M only ever allocates one of 𝐵 bundles. Then there is an
IC auction protocol with the same expected payment and allocation
using 𝑂 (𝐵 log(𝐵)) bits of communication.

Proof sketch. For any type, consider a partition of [0, 1] into
𝐵 intervals, where the 𝑏-th interval is of length identical to the

probability that M allocates Bundle 𝑏 to the Buyer. The rest of

the proof proceeds analogously to the proof of Theorem 3.1. First,

we transformM into a mechanismM′
with payment 0 or𝑈 . We

henceforth identify between a type and the 𝐵 − 1 probabilities that

define the partition, and the probability that the Buyer pays𝑈 . The

nodes of Chance are parameterized by a threshold 𝜏 drawn uni-

formly at random from [0, 1]. At each round of communication the

Buyer (allegedly) sends the next bit in the binary representation

of each of the 𝐵 probabilities that define his type. The protocol

terminates when it has received enough information to determine

in which of the 𝐵 intervals 𝜏 lies and whether 𝜏 is smaller than the

probability of payment. The allocation is the bundle correspond-

ing to this interval, and the payment is 𝑈 if 𝜏 is smaller than the

probability of payment (and zero otherwise). □

5 UNIT-DEMAND, INDEPENDENT ITEMS:
TRADING OFF REVENUE AND
COMMUNICATION

Theorem 5.1. LetD be a distribution of independent unit-demand
valuations over 𝑛 items bounded by maximum valuation𝑈 . Then, for
any constant 𝜀 > 0, there is a (1 − 𝜀)-approximately revenue-optimal
IC auction protocol using polylog(𝑛) bits of communication.

Our proof uses a result of [57] for Partition-symmetric menus
which we introduce in Section 5.1. The proof of Theorem 5.1 is

given in Section 5.2.

5.1 Partition-Symmetric Menu-Size
Complexity

Symmetries. The following is a slight strengthening of the symmet-

ric menu-size complexity measure recently introduced by [57].

Definition 5.2 (Partition-symmetric menu-size complexity). A

partition-symmetric menu line consists of a payment, (randomized)

allocation, and a partitioning of items into subsets 𝑆1, . . . , 𝑆𝜎 . We

say that a direct revelation mechanismM supports this partition-

symmetric menu line if its menu contains a line with the same

payment for any permutation of the allocation that respects the

partition (i.e. permutation 𝜋 such that 𝜋 (𝑆𝑖 ) = 𝑆𝑖 for all 𝑖). The

partition-symmetric menu-size complexity of M is the smallest 𝑐

such that M can be written as the union of 𝑐 partition-symmetric

menu lines.

The following theorem follows from [57]; the statement here

is slightly stronger than the formulation of Theorem IV.5 in their

paper in the sense that (i) we consider the specific symmetry group

induced by a partition of the items; and (ii) we require that the allo-

cation probabilities are rounded to a discrete set 𝐿𝛿 . Both desiderata

follow from their proof [81].

Theorem 5.3 ([57]). Let D be a distribution of independent unit-
demand valuations over 𝑛 items. Then, for any constant 𝜀 > 0,
there exists a unit-demand mechanism26 with partition-symmetric
menu-size complexity at most 𝑛polylog(𝑛) which recovers at least
(1 − 𝜀)-fraction of the optimal revenue. Furthermore, for some con-
stant 𝛿 > 0 that depends on 𝜀, the probabilities that the mecha-
nism allocates each item always belong to the discrete set 𝐿𝛿 :={
1, 1 − 𝛿, (1 − 𝛿)2, . . . , (1 − 𝛿)

3

𝛿
ln𝑛

}
∪ {0}; in particular there are

only 𝑂 (log𝑛) possible probabilities.

5.2 Proof of Theorem 5.1
Proof. We begin with the partition-symmetric mechanism of

[57] (see Theorem 5.3). Denote its partition-symmetric menu-size

complexity by𝐶 . In the first stage of the protocol, the Buyer chooses

a partition-symmetric menu line among 𝐶 options, and then a sub-

set 𝑆𝑖 is drawn by Chance from the 𝜎 ≤ 𝑛 subsets in the partition.

(Each subset 𝑆𝑖 is drawn with probability equal to the sum of proba-

bilities of items in that subset.) This first stage uses𝑂 (log𝑛 + log𝐶)
communication. We henceforth focus on implementing the mech-

anism restricted to 𝑆𝑖 . I.e. a mechanism whose menu has a fixed

payment 𝑃 and the set of feasible allocations is symmetric with

respect to any permutation of 𝑆𝑖 .

Since the set of feasible allocations is symmetric, it suffices to

consider the histogram of allocation probabilities. The Buyer may

assign each probability from the histogram to any item in 𝑆𝑖 . Recall

also that by Theorem 5.3, all the probabilities in the histogram

belong wlog to a discrete set 𝐿𝛿 of 𝑂 (log(𝑛)) feasible probabilities.
In particular, the histogram can be described by 𝑂 (log2 (𝑛)) bits
(since the count for each probability is an integer between 0 and

|𝑆𝑖 | ≤ 𝑛).

The second stage of the protocol proceeds by recursively consid-

ering smaller subsets of 𝑆𝑖 . The nodes of Chance are parameterized

by a number 𝜏 draws uniformly at random from [0, 1]. At the first
iteration, the Buyer’s suggested strategy is to send the histogram of

probabilities for the lexicographically first half of items in 𝑆𝑖 . (This

is equivalent to sending the histogram for the second half of the

items since the total histogram is known.) If the sum of probabili-

ties in the first half is greater than 𝜏 , the protocol recurses on the

first half; otherwise it recurses on the second half. After𝑂 (log |𝑆𝑖 |)
iterations, only one item is left. The Buyer is allocated that item

and pays 𝑃 .

26
We say that a mechanism is unit-demand if it never allocates more than one item to

the Buyer. (This is wlog for direct revelation mechanisms with unit-demand buyers.

But in general, for mechanisms where the Seller does not fully learn the Buyer’s

valuation, it is not obvious how to convert a mechanism where she allocates a bundle

of items to a unit-demand mechanism without increasing the partition-symmetric

menu-size complexity.)
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IC. We prove that the second stage of the protocol is IC and also

has the same expected allocation and payment as in the original

mechanism; IC of the first stage then follows from IC of the original

mechanism. To show second-stage IC, let 𝑝 𝑗 denote the probabil-

ity that the Buyer assigns item 𝑗 in the last iteration when it is

not the only remaining item. Observe that any Buyer’s strategy

for the second stage is fully determined by the vector of 𝑝 𝑗 ’s. By

reverse induction over the iterations of the protocol, observe that

the histogram of all 𝑝 𝑗 ’s is exactly equal to the histogram of feasi-

ble probabilities. Finally note that at the end of the protocol, the

Buyer is allocated item 𝑗 with probability 𝑝 𝑗 . Therefore, by IC of

the original protocol, the Buyer’s suggested strategy is optimal.

Communication complexity. The first stage of the protocol re-
quires𝑂 (log𝑛+ log𝐶) communication. Each iteration of the second

stage requires 𝑂 (log2 (𝑛)) bits to describe the histogram, and there

are at most 𝑂 (log(𝑛)) iterations. Hence the total communication

complexity is 𝑂 (log3 𝑛 + log𝐶) = polylog(𝑛). □

6 COMMUNICATION LOWER BOUND FOR
UNIT-DEMAND VALUATIONS

We consider revenue maximization with unit-demand valuations

as an example to demonstrate our proof technique. Our framework

for constructing hard instances will rely on the design properties

of a set system and a vector family, which are presented in the two

lemmata in the following subsection.

6.1 Combinatorial Designs
Lemma 6.1. For any constant 𝜀, 𝛿 > 0, there exists a family of

size-𝜀𝑛 subsets X𝑛,𝜀,𝛿 ⊂ {0, 1}𝑛 such that |X𝑛,𝜀,𝛿 | = 2
Ω (𝑛) , and the

intersection between any two distinct subsets 𝑥1, 𝑥2 ∈ X𝑛,𝜀,𝛿 has size
at most (1 + 𝛿)𝜀2𝑛.

Proof. The probabilistic proof is folklore and provided in the

full paper. □

Lemma 6.2. For any constant 𝜀 > 0 and large integer constant ℓ ,
let Rℓ,𝜀 be the discrete distribution supported on {𝜀ℓ−1, 𝜀ℓ−2, . . . , 1}
such that 𝑝 (𝑖) ∝ 𝜀ℓ−𝑖 , where we denote 𝑝 (𝑖) := Pr[𝜀𝑖−1] (this is ap-
proximately the “equal-revenue distribution”). Then, for any constant
𝜂 > 0, there exists a family of vectors C𝑁,ℓ,𝜀,𝜂 ⊂ {𝜀ℓ−1, 𝜀ℓ−2, . . . , 1}𝑁
such that

• |C𝑁,ℓ,𝜀,𝜂 | = 2
Ω (𝑁 ) ,

• and moreover, for any𝑚 = 𝜔 (1) distinct vectors in C𝑁,ℓ,𝜀,𝜂 ,
for all but 𝜂 fraction of 𝑗 ∈ [𝑁 ], for any 𝑖 ∈ [ℓ], there are
(1 ± 𝜂)𝑝 (𝑖) fraction of these𝑚 vectors whose 𝑗-th coordinates
are 𝜀𝑖−1.

Proof. We construct C𝑁,ℓ,𝜀,𝜂 simply by independently sampling

2
𝛿𝑁

vectors from product distribution R𝑁
ℓ,𝜀

for arbitrarily small

constant 𝛿 > 0, and we show that the desired properties hold with

high probability. First, the probability that two random vectors have

the same value at 𝑗-th coordinate is 𝑝 :=
∑
𝑖∈[ℓ ] 𝑝

(𝑖) · 𝑝 (𝑖) for any
𝑗 , and therefore, the probability that the two random vectors are

exactly the same is 𝑝𝑁 . For 𝛿 < log(1/𝑝)/2, by a union bound over

all the pairs of random vectors, every vector is distinct with high

probability. Second, for any𝑚 random vectors, for any 𝑖 ∈ [ℓ], 𝑗 ∈

[𝑁 ], let𝑚𝑖, 𝑗 be the number of vectors whose 𝑗-th coordinates are

𝜀𝑖−1 among the𝑚 random vectors, then by Chernoff bound,

Pr[|𝑚𝑖, 𝑗 − 𝑝 (𝑖)𝑚 | ≥ 𝜂 · 𝑝 (𝑖)𝑚] ≤ 𝑒−𝜂
2 ·𝑝 (𝑖 )𝑚/3 .

By a union bound, the probability that there exists 𝑖 ∈ [ℓ] such that

𝑚𝑖, 𝑗 is not within (1 ± 𝜂)𝑝 (𝑖)𝑚 is at most ℓ · 𝑒−𝜂2 ·𝑝 (𝑖 )𝑚/3
. It follows

that for any fixed 𝜂 fraction of 𝑗 ∈ [𝑁 ], the probability that there

exists 𝑖 ∈ [ℓ] such that𝑚𝑖, 𝑗 is not within (1±𝜂)𝑝 (𝑖) for all 𝑗 among

the 𝜂 fraction is at most (ℓ · 𝑒−𝜂2 ·𝑝 (1)𝑚/3)𝜂𝑁 (notice that 𝑝 (1) is the
smallest among all 𝑝 (𝑖) ’s). By another union bound over all possible

𝜂 fraction of 𝑗 ∈ [𝑁 ], the probability that the second property in

the statement is violated for𝑚 random vectors is at most(
𝑁

𝜂𝑁

)
· (ℓ · 𝑒−𝜂

2 ·𝑝 (1)𝑚/3)𝜂𝑁 ≤ (𝑒/𝜂)𝜂𝑁 · (ℓ · 𝑒−𝜂
2 ·𝑝 (1)𝑚/3)𝜂𝑁

= ((𝑒/𝜂) · ℓ · 𝑒−𝜂
2 ·𝑝 (1)𝑚/3)𝜂𝑁 ,

which is 𝑒−𝜃𝑚𝑁
for some constant 𝜃 that does not depend on 𝛿 .

Since there are

(
2
𝛿𝑁

𝑚

)
≤ (𝑒 · 2𝛿𝑁 /𝑚)𝑚 ≤ 𝑒𝛿𝑚𝑁

distinct subsets of𝑚

random vectors of C𝑁,ℓ,𝜀,𝜂 , by union bound, for 𝛿 < 𝜃 , for any fixed

𝑚, the second property in the statement is violated with probability

at most 𝑒−(𝜃−𝛿)𝑚𝑁
. Finally, the proof finishes by taking a union

bound over all𝑚 = 𝜔 (1), namely,

∑
𝑚=𝜔 (1) 𝑒

−(𝜃−𝛿)𝑚𝑁 = 𝑜 (1). □

6.2 The Main Lower Bound Result
Now we prove the following lower bound result for communica-

tion complexity of approximate revenue maximization with unit-

demand valuations. Specifically, we construct a family of priors

and show that most priors are hard for all low-communication

(almost) truthful-in-expectation randomized protocols to approxi-

mately maximize revenue.

Theorem 6.3. For every constant 𝜏 > 0, any 𝜏-approximate (al-
most) truthful-in-expectation protocol for revenuemaximization, where
the seller has 𝑛 items, and the buyers have unit-demand valuations,
requires Ω(𝑛) bits of communication in expectation.

Proof. We first construct a family of prior distributions of the

buyers’ valuations and then argue that in order to achieve any

constant approximation, a protocol tree (which we will elaborate

shortly) can not be shared by many prior distributions, which im-

plies the communication complexity lower bound by a counting

argument.

Construction. For arbitrarily tiny constants 𝜀1, 𝜀2, 𝛿1, 𝜂 > 0 and

large integer constant ℓ such that 𝜂, 𝜀1 (1 + 𝛿1) ≪ 𝜀ℓ
2
, we take the

set family X𝑛,𝜀1,𝛿1 from Lemma 6.1 and let 𝑁 := |X𝑛,𝜀1,𝛿1 | = 2
Ω (𝑛)

,

and then, we take the vector family C𝑁,ℓ,𝜀2,𝜂 from Lemma 6.2 with

|C𝑁,ℓ,𝜀2,𝜂 | = 2
Ω (𝑁 ) = 2

2
Ω (𝑛)

. We let each 𝑥 ∈ X𝑛,𝜀1,𝛿1 represent

a subset of items. Notice that we can fix a one-to-one mapping

between the coordinates of a vector in C𝑁,ℓ,𝜀2,𝜂 and all the sets in

X𝑛,𝜀1,𝛿1 , and therefore, for any vector 𝑐 ∈ C𝑁,ℓ,𝜀2,𝜂 , 𝑥 ∈ X𝑛,𝜀1,𝛿1 , we

can denote 𝑐 (𝑥) as 𝑐’s value at the coordinate that corresponds to
𝑥 .

For each vector 𝑐 ∈ C𝑁,ℓ,𝜀2,𝜂 , we construct a prior distribution

D𝑐 of the buyers’ valuations as follows — First, for each 𝑥 ∈ X𝑛,𝜀1,𝛿1 ,
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B

C

(𝑌1, 𝑞1)

0 𝑝1

(𝑌2, 𝑞2)

1 1 − 𝑝1

0

C

(𝑌3, 𝑞3)

0 𝑝2

(𝑌4, 𝑞4)

1 1 − 𝑝2

1

Figure 2: A depth-2 protocol tree.

we define a unit-demand valuation 𝑣𝑥𝑐 : 2
[𝑛] → R≥0 as follows:

𝑣𝑥𝑐 (𝑆) :=
{
0 𝑥 ∩ 𝑆 = ∅
𝑐 (𝑥) otherwise.

Then, we let D𝑐 be the uniform distribution over 𝑣𝑥𝑐 ’s for all 𝑥 ∈
X𝑛,𝜀1,𝛿1 . Finally, the family of prior distributions is F = {D𝑐 | 𝑐 ∈
C𝑁,ℓ,𝜀2,𝜂 }.

Interpretation. The following interpretations might be helpful

for reading the proof. Each 𝑥 ∈ X𝑛,𝜀1,𝛿1 corresponds to a set of

items which are (equally) valuable to the buyer with valuation

𝑣𝑥𝑐 . Each vector 𝑐 ∈ C𝑁,ℓ,𝜀2,𝜂 specifies for each 𝑥 ∈ X𝑛,𝜀1,𝛿1 how

valuable such an item is to the buyer with valuation 𝑣𝑥𝑐 . By the

design property of X𝑛,𝜀1,𝛿1 , every 𝑣
𝑥1
𝑐 , 𝑣

𝑥2
𝑐 with distinct 𝑥1, 𝑥2 are

interested in mostly different items. By the design property of

C𝑁,ℓ,𝜀2,𝜂 , for a large number of valuations 𝑣𝑥𝑐 ’s with distinct 𝑐’s

but the same 𝑥 , the values of an item in 𝑥 to these valuations are

distributed roughly according to the “equal revenue distribution”

Rℓ,𝜀2 defined in Lemma 6.2.

An optimal truthful-in-expectation protocol for the hard instances.
The first step for proving the lower bound is to show that there is a

truthful-in-expectation protocol that extracts the full welfare using

𝑂 (𝑛) bits of communication for the family of Bayesian instances

constructed above. The protocol is as follows: the buyer sends the

set 𝑥 that corresponds to his valuation 𝑣𝑥𝑐 to the seller, which takes

𝑛 bits, and then, if 𝑥 ∈ X𝑛,𝜀1,𝛿1 (otherwise the seller stops), the seller

samples an item 𝑖 from set 𝑥 uniformly at random and gives the item

𝑖 to the buyer and charges him 𝑐 (𝑥), where 𝑐 corresponds to the

priorD𝑐 . This protocol is obviously individual rational and revenue

maximizing if the buyer tells the truth. To show truthfulness in

expectation, suppose the buyer’s true set of interest is 𝑥 ; without

loss of generality, we can assume that the buyer sends some 𝑥 ′ ∈
X𝑛,𝜀1,𝛿1 , because otherwise, the seller stops, and the buyer gets net

utility 0, which is not better than telling the true 𝑥 . Moreover, if the

buyer sends 𝑥 ′ ≠ 𝑥 , by the design property ofX𝑛,𝜀1,𝛿1 , he receives an

item in 𝑥 with probability at most 𝜀1 (1 + 𝛿1). Hence in expectation,

the net utility is at most 𝜀1 (1+𝛿1)𝑐 (𝑥)−𝑐 (𝑥 ′) ≤ 𝜀1 (1+𝛿1)−𝜀ℓ−1
2

< 0,

where the first inequality is due to 𝑐 (𝑥) ≤ 1 and 𝑐 (𝑥 ′) ≥ 𝜀ℓ−1
2

, and

the second is due to our choice of parameters. Thus, sending 𝑥

instead of 𝑥 ′ is strictly better in expectation.

Representing a protocol as a protocol tree per prior distribution. Ob-
serve that once the prior distribution is fixed, a protocol can be

viewed as a protocol tree. See Figure 2 for example. Without loss

of generality, the protocol tree starts with the root B representing
the buyer’s round and then alternates between the buyer B and the

seller C (Chance). At each round, represented by a node, the buyer

or the seller can choose to send a bit 0, represented by left edge, or

bit 1, represented by right edge, to the other. At a leaf, both players

agree on a set of items 𝑌 allocated to the buyer and a payment 𝑞

to the seller. The protocol is possibly randomized, and hence, at a

seller’s round, the seller
27

can send bit 0 with probability 𝑝 and send

bit 1 with probability 1 − 𝑝 , which are represented by the weights

on the edges. At a buyer’s round, the buyer’s strategy depends on

his valuation, but we can assume without loss of generality that

the buyer always deterministically chooses a bit to send, because

the buyer is strategic and hence sending the bit that has better net

utility in expectation (sending the bit that maximizes the seller’s

revenue if both choices are (almost) equal, and sending bit 0 if it is

still a tie) is a (almost) dominant strategy for the buyer that maxi-

mizes the seller’s revenue among all (almost) dominant strategies.

Therefore, the buyer’s prescribed (almost) dominant strategy can

be deterministically decided by the protocol tree and his valuation.

To make the proof easier, we show that we can without loss of

generality assume some nice properties for the protocol trees, and

we will only consider such protocol trees afterwards.

Claim 6.4. Any (almost) truthful-in-expectation protocol with
𝑂 (𝑘) communication in expectation for our hard instance can be
changed (with arbitrarily small loss of the approximation factor) such
that

• the protocol tree has 𝑂 (𝑘) depth,
• and moreover, the payment at any leaf of the protocol tree is
2
𝑂 (𝑘) .

Suppose a protocol uses 𝛼𝑘 bits of communication in expectation

where 𝛼 is a positive constant. For an arbitrarily large constant 𝛽 ,

by Markov’s inequality, the protocol takes ≥ 𝛽𝑘 communication

with probability at most 𝛾 := 𝛼/𝛽 . Observe that if we trim all the

nodes at level ≥ 𝛽𝑘 of the protocol tree T , the buyer’s expected

utility (before payment) is at least 1 − 𝛾 fraction of that for T (for

our instance, the loss is at most 𝛾 ). If we further trim every node

that is reached with probability ≤ 4
−𝛽𝑘

for any buyer, the buyer’s

expected utility loses at most another 2
−𝛽𝑘

, because there are at

most 2
𝛽𝑘

nodes left after the first trimming step. Since we introduce

new leaves after trimming, we need to specify the allocation and

the payment for each of them. For each new leaf, we simply let

its allocation be the empty set, and we let its payment be the least

possible expected payment at this node in T (that is, the minimum

expected payment achieved by the worst possible buyer’s responses

in the subtree rooted at this node in T ).

After the above changes, the first property obviously holds for

the new protocol tree T ′
, and the second also holds, because if any

leaf has payment larger than 4
𝛽𝑘
, then the probability of reaching

that leaf (or node) in the original T for any buyer is at most 4
−𝛽𝑘

(otherwise the expected payment is greater than 1 for a buyer

that reaches this node with probability > 4
−𝛽𝑘

, which exceeds

the largest possible buyer’s value and hence violates individual

27
We assume that the seller is not strategic in the private-coin model. In the public-coin

model, the seller can not be strategic, because his responses can be inferred from the

public randomness and the pre-specified protocol tree, and thus, he can keep silent

unless he observes that the buyer is cheating.
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rationality), and this leaf should have been trimmed. It remains to

show that the approximation factor is decreased arbitrarily little by

the above changes.

To prove this, consider the buyer’s (almost) dominant strategy

𝑠∗ in T , we change the strategy in the way that the buyer makes

the same response as 𝑠∗ at every node that will not be trimmed

by the above steps and makes the worst possible responses (which

minimize the expected payment) in the subtree rooted at every

node that will be trimmed. This results in a new strategy 𝑠 that

gives the buyer almost the same expected utility as 𝑠∗ (as we have
shown, the loss is at most 𝛾 + 2

−𝛽𝑘
). It follows that the expected

payment for 𝑠 can only be 𝛾 + 2
−𝛽𝑘

(plus another negligible error if

the original protocol is only almost truthful) less than that for 𝑠∗,
since otherwise the expected net utility of 𝑠 is significantly better

than 𝑠∗. Moreover, the expected payment for 𝑠 can not be more

than that for 𝑠∗ by definition of 𝑠 , and hence, the expected net

utility of 𝑠 is same as that of 𝑠∗ up to negligible error. Furthermore,

observe that 𝑠 (ignore 𝑠’s responses at trimmed nodes) gets the

same expected utility and payment for the buyer in T ′
. If 𝑠 is an

almost dominant strategy in T ′
(which indeed is as we will show),

then we are done because we have shown the expected payment

for 𝑠 in T ′
(or T ) is same (up to negligible error) as that for 𝑠∗ in

T .

To see 𝑠 is an almost dominant strategy in T ′
, suppose for con-

tradiction there is another strategy 𝑠 ′ with an non-negligible im-

provement of expected net utility over 𝑠 in T ′
. We extend 𝑠 ′ to a

strategy for T by letting it make worst possible response (which

minimize the expected payment) for the nodes that will be trimmed

in T ′
. Note that the extended 𝑠 ′ has the same expected net utility

in T as that in T ′
, which is significantly better than 𝑠’s expected

net utility in T ′
(and hence 𝑠 or 𝑠∗’s expected net utility in T ). This

contradicts that 𝑠∗ is a (almost) dominant strategy in T .

One protocol tree can not be shared by many priors. Now we show

the main claim that leads to the lower bound result.

Claim 6.5. For any constant 𝜏 > 0 and any𝑚 = 𝜔 (1), any single
protocol tree can only achieve 𝜏 approximation on ≤ 𝑚 priors in F .

Assume for contradiction that there are𝑚 = 𝑤 (1) priorsD𝑐1 , . . . ,D𝑐𝑚

in F sharing the same protocol tree. By Lemma 6.2, for all but 𝜂

fraction of 𝑥 ∈ X𝑛,𝜀1,𝛿1 , the empirical distribution of 𝑐𝑖 (𝑥)’s for
𝑖 ∈ [𝑚] is close to Rℓ,𝜀2 defined in Lemma 6.2, namely, the number

of 𝑖’s such that 𝑐𝑖 (𝑥) = 𝜀𝑡−1
2

is (1 ± 𝜂)𝑝 (𝑡 )𝑚, where 𝑝 (𝑡 ) ∝ 𝜀ℓ−𝑡
2

.

In the rest of the proof of Claim 6.5, we show that for any such 𝑥 ,

the average revenue over valuations 𝑣𝑥𝑐𝑖 for all 𝑖 ∈ [𝑚] achieved
by the protocol tree is at most 𝜃 :=

(𝜀2+1/ℓ) (1+𝜂)
1−𝜂 fraction of the

optimum. Notice that 𝜃 is a constant that we can make arbitrarily

small. This will finish the proof of the claim, because for at least

one of D𝑐1 , . . . ,D𝑐𝑚 , the protocol tree achieves no more than the

average of the expected revenues for D𝑐1 , . . . ,D𝑐𝑚 , which is at

most 𝜏 = 𝜃 + 𝜂𝜀1−ℓ
2

1−𝜂 fraction of the optimal revenue (we generously

assume that it achieves full revenue on the 𝜂 fraction of 𝑥 ∈ X𝑛,𝜀1,𝛿1
that is excluded from the above analysis, and the full revenue for

any 𝑥 from this 𝜂 fraction is at most 1, which is at most 𝜀1−ℓ
2

times

the full revenue of any 𝑥 ′ from the other 1 − 𝜂 fraction), and

𝜂𝜀1−ℓ
2

1−𝜂
is arbitrarily small by our choice of parameters.

Now consider any such𝑥 that the empirical distribution of 𝑐𝑖 (𝑥)’s
for 𝑖 ∈ [𝑚] is close to Rℓ,𝜀2 , and let 𝐶𝑡 be the set of 𝑐𝑖 ’s with

𝑐𝑖 (𝑥) = 𝜀𝑡−1
2

. Without loss of generality, the buyers with valuation

𝑣𝑥𝑐 𝑗𝑡
for all 𝑐 𝑗𝑡 ∈ 𝐶𝑡 use the same dominant strategy. Moreover,

consider any 𝑐 𝑗𝑡 ∈ 𝐶𝑡 and any 𝑐 𝑗𝑡+1 ∈ 𝐶𝑡+1, we denote the expected
utility and payment achieved by the prescribed dominant strategy

for 𝑣𝑥𝑐 𝑗𝑡
by 𝑢𝑡 and 𝑞𝑡 , respectively, and analogously, we denote

𝑢𝑡+1 and 𝑞𝑡+1 for 𝑣𝑥𝑐 𝑗𝑡+1 . If the buyer with valuation 𝑣𝑥𝑐 𝑗𝑡
plays the

strategy for 𝑣𝑥𝑐 𝑗𝑡+1
instead, he will get expected utility 𝑢𝑡+1/𝜀2 and

payment 𝑞𝑡+1, because by definition 𝑣𝑥𝑐 𝑗𝑡
= 𝑣𝑥𝑐 𝑗𝑡+1

/𝜀2. By definition

of (almost) dominant strategy, we have the following inequality (the

inequality holds approximately when we consider almost truthful-

in-expectation protocols, and the error is negligible to the later

derivations)

𝑢𝑡+1
𝜀2

− 𝑞𝑡+1 ≤ 𝑢𝑡 − 𝑞𝑡 . (2)

Moreover, by individual rationality,

𝑞𝑡+1 ≤ 𝑢𝑡+1, (3)

and it follows that

𝑞𝑡 ≤ 𝑢𝑡 −
𝑢𝑡+1
𝜀2

+ 𝑞𝑡+1 (Rearranging Eq. (2))

≤ 𝑢𝑡 −
𝑢𝑡+1
𝜀2

+ 𝑢𝑡+1 (By Eq. (3))

= 𝑢𝑡 − 𝑢𝑡+1

(
1

𝜀2
− 1

)
. (4)

Furthermore, because 𝑐𝑖 (𝑥)’s for 𝑖 ∈ [𝑚] are distributed like Rℓ,𝜀2 ,

the sum of the revenues obtained from the 𝑣𝑥𝑐𝑖 ’s for all 𝑖 ∈ [𝑚] is at
most (up to a (1 + 𝜂) multiplicative error)

ℓ∑
𝑡=1

𝑚𝑝 (𝑡 )𝑞𝑡 ≤
ℓ−1∑
𝑡=1

𝑚𝑝 (𝑡 )
(
𝑢𝑡 − 𝑢𝑡+1

(
1

𝜀2
− 1

))
+𝑚𝑝 (ℓ)𝑢ℓ

(By Eq. (4) and Eq. (3))

=𝑚𝑝 (1)𝑢1 +𝑚
ℓ∑

𝑡=2

𝑢𝑡

(
𝑝 (𝑡 ) − 𝑝 (𝑡−1)

𝜀2
+ 𝑝 (𝑡−1)

)
(Rearranging the sum)

=𝑚𝑝 (1)𝑢1 +𝑚
ℓ∑

𝑡=2

𝑢𝑡𝑝
(𝑡−1)

(By definition of 𝑝 (𝑡 ) )

=𝑚𝑝 (1)𝑢1 +𝑚𝜀2

ℓ∑
𝑡=2

𝑢𝑡𝑝
(𝑡 )

≤ 𝑚𝑝 (1) +𝑚𝜀2

ℓ∑
𝑡=2

𝑝 (𝑡 )𝜀𝑡−1
2

,

(By 𝑢𝑡 ≤ 𝜀𝑡−1
2

)

which is atmost 𝜀2 fraction of
∑ℓ
𝑡=1𝑚𝑝 (𝑡 )𝜀𝑡−1

2
plus𝑚𝑝 (1) , but𝑚𝑝 (1)

is only 1/ℓ fraction of

∑ℓ
𝑡=1𝑚𝑝 (𝑡 )𝜀𝑡−1

2
by its definition. Because

𝑐𝑖 (𝑥)’s for 𝑖 ∈ [𝑚] are distributed like Rℓ,𝜀2 , the optimal total

revenue we can get from all the 𝑣𝑥𝑐𝑖 for 𝑖 ∈ [𝑚] (which is equal to

their total value) is at least (1 − 𝜂)∑ℓ
𝑡=1𝑚𝑝 (𝑡 )𝜀𝑡−1

2
, and hence, the
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average revenue achieved by the protocol tree on valuations 𝑣𝑥𝑐𝑖 for

𝑖 ∈ [𝑚] is at most
(𝜀2+1/ℓ) (1+𝜂)

1−𝜂 fraction of the optimum.

Finishing the proof by a counting argument. For any constant 𝜏 > 0,

suppose that the communication complexity of a 𝜏-approximate

truthful-in-expectation protocol is 𝑘 = 𝑜 (𝑛), and without loss of

generality we assume that the protocol always uses up 𝑘 bits. We

count how many protocol trees we can have. Note that a protocol

tree is determined by the (𝑌, 𝑞) pairs on the leaves and the proba-

bilities on the edges. Without loss of generality, we can assume that

the payments and the probabilities have finite precision, namely,

the probabilities are rounded to {𝑖/4𝑛 | 𝑖 = 0, 1, . . . , 4𝑛}, and the

payments are rounded to {𝑖/4𝑛 | 𝑖 = 0, 1, . . . , 2𝑂 (𝑛) }. To see this,

first observe that rounding can only change the payment at any leaf

by at most 1/4𝑛 , and similarly, it can only change the probability

of reaching any leaf by 𝑂 (1/4𝑛), and therefore, it only changes

the expected utility and the expected payment for the buyer by at

most 𝑂 (2𝑘/4𝑛) = 𝑂 (1/2𝑛). As we have noted along the proof, the

analysis works for almost truthful-in-expectation protocols, which

tolerates this extra 𝑂 (1/2𝑛) error.
Therefore, there are at most 2

𝑛
choices of 𝑌 and at most 2

𝑂 (𝑛)

choices of 𝑞, which implies at most 2
𝑂 (𝑛)

choices of (𝑌, 𝑞) at each
leaf, and there are at most 4

𝑛
choices of the probability on each

edge. Since the depth of the protocol tree is no more than 𝑘 , there

are 2
𝑘
leaves and 2

𝑘+1
edges at most. Altogether, there are at most

(2𝑂 (𝑛) )2𝑘 · (4𝑛)2𝑘+1 = 2
2
𝑘+𝑜 (𝑛)

possible protocol trees. Furthermore,

by Claim 6.5, these protocol trees can only beat 𝜏-approximation

on at most 2
2
𝑘+𝑜 (𝑛) ·𝑚 priors in total for any𝑚 = 𝜔 (1), but there

are 2
2
Ω (𝑛)

priors in F . Hence, most priors in F are hard for all the

𝑜 (𝑛)-communication protocols.

□

6.3 Separating the Complexity of
Implementing and Incentivizing

Remark 6.6. There is an 𝑂 (log𝑛)-communication implementa-

tion of the optimal protocol for our hard instances. Combining

with the lower bound, this shows an exponential separation be-

tween communication complexity of almost truthful-in-expectation

implementation and that of non-truthful implementation for this

protocol, even when the buyer’s valuation has constant precision.

Proof. Amore communication-efficient non-truthful implemen-

tation is that the buyer randomly chooses an item 𝑖 of interest and

sends 𝑖 and 𝑐 (𝑥) to the seller, and then the seller gives the item 𝑖

to the buyer and charges the buyer 𝑐 (𝑥), which only uses 𝑂 (log𝑛)
bits of communication. □

6.4 Extending to Gross-Substitutes Valuations
Our technique for proving lower bound for unit-demand valuations

can be applied to gross-substitutes (and XOS) valuations. We state

the result below, the proof of which can be found in the full paper.

Theorem 6.7. For every constant 𝜏 > 0, any 𝜏-approximate (al-
most) truthful-in-expectation protocol for revenuemaximization, where
the seller has 𝑛 items, and the buyers have gross substitutes valua-
tions, requires 2Ω (𝑛1/3) bits of communication in expectation. For XOS

valuations with 𝑛 items, the communication complexity lower bound
for any constant approximation can be improved to 2Ω (𝑛) .

7 COMMUNICATION LOWER BOUND FOR
XOS VALUATIONS WITH INDEPENDENT
ITEMS

In this section, we sketch the construction of hard instances to

show that beating 4/5 approximation for XOS valuations with inde-

pendent items requires exponential communication. The complete

proof can be found in the full paper. Note that constant-factor

approximation is known (e.g., [74]) for more general subadditive

valuations with independent items.

Theorem 7.1. For every constant 𝜏 > 0, any ( 4
5
+ 𝜏)-approximate

(almost) truthful-in-expectation protocol for revenue maximization,
where the seller has 𝑛 items, and the buyers have XOS valuations
with independent items, requires 2Ω (𝑛) bits of communication in
expectation.

Proof sketch. The proof follows the same strategy as the proof

of the previous lower bounds. First, we construct a family of prior

distributions of XOS valuations with independent items. We focus

on the following special case of prior distributions of XOS valua-

tions with independent items — Given any integer 𝑏, for each item

𝑖 ∈ [𝑛] there is a distribution D𝑖 over R
𝑏
≥0, an XOS valuation 𝑣 is

generated by first sampling a vector 𝑎 (𝑖) from each D𝑖 and then

defined as

𝑣 (𝑆) = max

𝑗 ∈[𝑏 ]

∑
𝑖∈𝑆

𝑎
(𝑖)
𝑗
.

In this case, D1 × D2 × · · · × D𝑛 specifies a prior distribution of

XOS valuations.

Construction. Let 𝜀0, 𝜀1, 𝛿1, 𝜂, 𝛾 > 0 be arbitrarily tiny constants

such that 𝜀1 (1 + 𝛿1) + 𝜀0 (1 + 𝛿0) < 1

2−𝛾 − 1

2
. Given a set family

X𝑛−1,𝜀0,𝛿0 from Lemma 6.1, we let 𝑏 := |X𝑛−1,𝜀0,𝛿0 | = 2
Ω (𝑛)

. We

can think of each set in X𝑛−1,𝜀0,𝛿0 = {𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑏) } as a bi-
nary vector. For each 𝑖 ∈ [𝑛 − 1], we let D𝑖 be the trivial distribu-

tion with singleton support {𝑎 (𝑖) }, where 𝑎 (𝑖) ∈ R𝑏≥0 is defined as

𝑎
(𝑖)
𝑗

=
𝑥
( 𝑗 )
𝑖

(2−𝛾 )𝜀0 (𝑛−1) for all 𝑗 ∈ [𝑏]. Now we take another set family

X𝑏,𝜀1,𝛿1 = {𝑦 (1) , 𝑦 (2) , . . . , 𝑦 (𝑁 ) } from Lemma 6.1 and a vector fam-

ily C𝑁,2, 1
2
,𝜂 = {𝑐 (1) , 𝑐 (2) , . . . , 𝑐 (𝑀) } from Lemma 6.2, where 𝑁 :=

|X𝑏,𝜀1,𝛿1 | = 2
Ω (𝑏)

and𝑀 := |C𝑁,2, 1
2
,𝜂 | = 2

Ω (𝑁 )
. For each 𝑐 (𝑖) , we let

D𝑐 (𝑖 )
𝑛 be the uniform distribution over {

𝑐
(𝑖 )
𝑗

+1
2

·𝑦 ( 𝑗) | 𝑗 ∈ [𝑁 ]}. The
family of prior distributions isF = {D1×D2×· · ·×D𝑐 (𝑖 )

𝑛 | 𝑖 ∈ [𝑀]}.
For each prior, a valuation is sampled according to the procedure

described in the previous paragraph, and specifically, a valuation

function 𝑣
𝑦 ( 𝑗 )

𝑐 (𝑖 )
, determined by 𝑐 (𝑖) and 𝑦 ( 𝑗) , is given as follows

𝑣
𝑦 ( 𝑗 )

𝑐 (𝑖 )
(𝑆) = max

𝑡 ∈[𝑏 ]
1{𝑛 ∈ 𝑆}·

𝑐
(𝑖)
𝑗

+ 1

2

·𝑦 ( 𝑗)𝑡 +
∑

𝑟 ∈𝑆\{𝑛}

𝑥
(𝑡 )
𝑟

(2 − 𝛾)𝜀0 (𝑛 − 1) .
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Interpretation. In this instance, any valuation 𝑣
𝑦 ( 𝑗 )

𝑐 (𝑖 )
, when re-

stricted to items [𝑛 − 1], becomes a single scaled binary XOS valua-

tion in which the clauses correspond to the scaled binary vectors

𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑏) (they represent pairwise nearly disjoint subsets

(of items in [𝑛 − 1]) that are equally valuable to every buyer), and

each of these clause has total value
1

2−𝛾 . Each binary vector 𝑦 ( 𝑗)

then decides which of these clauses 𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑏) interact with
the item 𝑛, i.e., the item 𝑛 has positive contribution to the clause

𝑥 (𝑡 ) in the valuation 𝑣
𝑦 ( 𝑗 )

𝑐 (𝑖 )
iff 𝑦

( 𝑗)
𝑡 = 1. (Distinct 𝑦 ( 𝑗) ’s define almost

completely different interactions.) Each binary vector 𝑐 (𝑖) then

specifies for each 𝑦 ( 𝑗) how large the contribution of 𝑛 is for each

clause where, according to𝑦 ( 𝑗) , the item𝑛 has positive contribution,

i.e., the item 𝑛 contributes value 1 to every clause 𝑥 (𝑡 ) it interacts

with (i.e., for which 𝑦
( 𝑗)
𝑡 = 1) in the valuation 𝑣

𝑦 ( 𝑗 )

𝑐 (𝑖 )
if 𝑐

(𝑖)
𝑗

= 1 and

contributes value 0 if otherwise. For a large number of valuations

𝑣
𝑦 ( 𝑗 )

𝑐 (𝑖 )
’s with distinct 𝑐 (𝑖) ’s but the same 𝑦 ( 𝑗) , the contributions of

the item 𝑛 in these valuations (to every clause it interacts with) are

distributed roughly according to the “equal revenue distribution”

R
2,1/2. □
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