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Abstract— In this paper, we study a new security issue
brought by the renewable energy feature in green Internet of
Things (IoT) network. We define a new attack method, called
the malicious energy attack, where the attacker can charge
specific nodes to manipulate routing paths. By intelligently
selecting the victim nodes, the attacker can “encourage” most
of the data traffic into passing through a compromised node
and harm the information security. The performance of the
energy attack depends on the charging strategies. We develop two
reinforcement-learning enabled algorithms, namely, Q-learning
enabled intelligent energy attack (Q-IEA) and Policy Gradient
enabled intelligent energy attack (PG-IEA). Through interacting
with the network environment, the attacker can intelligently take
attack actions without knowing the private information of the IoT
network. This can greatly enhance the adaptability of the attacker
to different network settings. Simulation results verify that the
proposed IEA methods can considerably increase the amount of
traffic traveling through the compromised node. Compared with
the network without attack, an additional 53.3% data traffic is
lured to the compromised node, which is more than 4 times
higher than the performance of Random Attack.

Index Terms— Green IoT networks, security, malicious energy
attack, reinforcement learning.

I. INTRODUCTION

THE rapid development of the Internet of things (IoT),
body area network (BAN), and smart infrastructure

involves an ever-increasing number of sensors and actuators.
Powering a large number of low-power devices in these
applications is a great challenge, as battery replacement is
time-consuming and cost-inefficient. This encourages us to
utilize renewable energy to meet the clean and self-sustainable
requirements of the coming green revolution [1], [2].

Through scavenging energy such as sunlight, wind, electro-
magnetic waves, and biothermal energy from the surrounding
environment, an energy harvesting node (EHN) in a green
IoT network can run semi-perpetually without any battery
replacement [3]. Although the efficiency of energy harvesting
greatly depends on external sources, which is susceptible to
atmospheric changes and physical obstacles, still, the energy
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harvesting technique offers a promising solution for extend-
ing the lifespan of green IoT network. Consider that radio
frequency (RF) energy radiated from cellular base stations,
TV towers, and Wi-Fi access points is widely available in both
indoor and outdoor environments. In this work, we mainly
focus on RF energy harvesting.

The energy harvesting ability greatly extends the sustain-
ability and scalability of green IoT networks; nevertheless,
it causes some new security issues. In [4] [5] [6], eaves-
dropping attacks are implemented by taking advantage of the
absence of encryption in RF energy harvesting network due
to power constraints. Other research like [7] [8], implement
some traditional attack methods (e.g. DoS, jamming) to disrupt
the availability of EH networks by making use of RF energy
harvesting features. Most attack methods are implemented
at the physical layer, but still utilize the traditional way to
compromise the network. Those issues are less threatening
since tons of research has been studied on detection and
prevention from those traditional attack methods [9]. Beyond
that, in some researches [5], the author attacks the energy
source rather than sensor nodes in a wireless power transfer
network. The goal is to trick the energy source to transfer more
energy to the attacker so that other nodes drain their energy
faster. This new type of attack method needs the network to
include an energy source that intentionally transfers energy
over the air. But still, this kind of attack is easy to detect
since it is a direct attack on the network.

In this paper, we propose a new attack method, called
malicious energy attack, which exploits the energy-aware
properties of routing protocols in green IoT networks [10].
Energy-aware routing protocols have been widely adopted in
power-constrained networks to extend the lifespan of wireless
networks with a limited energy supply [11]. In malicious
energy attack, the malicious energy source (MES) manipulates
routing paths in the network layer by consciously charging
specific EHNs [12]. The infected nodes that receive extra
energy from the energy attacker will become more active than
ordinary nodes to work as data forwarders or information
aggregators. As shown in Fig. 1, if the MES is able to select the
infected nodes properly, it can manipulate the routing path and
“encourage” most data traffic to pass through the compromised
node that deviates from the source and the destination.

Different from the traditional primary attack methods, such
as black hole, wormhole, selective forwarding, Sybil attack,
and acknowledgment spoofing, that directly attack the routing
protocol (i.e., on information plane), our proposed malicious
energy attack is considered as a secondary attack incurred
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Fig. 1. An example of malicious energy attack. (a) An ordinary green
IoT networks without energy attack chose a shorter path from Source to
Destination. (b) An green IoT networks attacked by the MES chose a path
through the Compromised node.

on the energy plane. It does not fabricate messages or cause
harmful interference to the routing protocol. Instead, the
attacker actively provides extra energy to selected nodes in
order to attract interested data traffic to a specific IoT node.
We call the energy attack secondary attack since the MES
can not directly profit from the energy attack, but can greatly
improve the efficiency of other primary attack methods. In this
article, we use eavesdropping as an example to illustrate
how the malicious energy attack creates opportunities for
eavesdroppers to sniff confidential data from any target node.
The malicious energy attack can greatly threaten the security
of green IoT networks and has not been fully studied.

The amount of traffic that can be “lured” to the compro-
mised node heavily depends on the energy distribution of
EHNs with the energy-aware routing. To optimize the effi-
ciency of malicious energy attack, MES needs to wisely decide
which nodes in a green IoT network should be attacked. This
question may not be difficult to answer if we know the global
network status of green IoT networks (i.e., network topology,
energy harvesting rate and the instant remaining energy of
each node, traffic rate on each node, etc.) and the parameters
of the routing protocol in path selection. The optimal energy
attack can be formulated as a deterministic optimization
problem [13]. Unfortunately, in practice, an attacker is very
likely to face an unknown network environment. For this
reason, we need to develop some strategies for the attacker
to make intelligent attack decisions without knowing network
and routing configuration.

The recent development of the reinforcement learning (RL)
technique provides a promising solution to tackle the above
challenges [14]. Inspired by the powerful ability of RL to inter-
act with an unknown environment, we propose an RL-enabled
intelligent energy attack strategy in this paper. The Q-learning
algorithm and Policy Gradient algorithm are implemented on
the MES to help find an optimal attack strategy that can
maximize the data traffic lured to the compromised node.
The malicious energy attacker will train itself intelligently to
improve its attack pattern by interacting with the green IoT
network.

The main contributions of this paper are three folds:
• First, we identify a new attack method in energy-aware

green IoT networks, called malicious energy attack. The
malicious energy attack manipulates the routing path
at the network layer by intentionally charging specific
EHNs. As an emerging attack method, the malicious
energy attack is immune to many existing security mech-
anisms since it is an indirect attack method that disrupts
the network protocols through energy.

• Secondly, we study how to enhance the efficiency of
malicious energy attack via the RL. By applying rein-
forcement learning, the MES can attack the network intel-
ligently without knowing the global network settings or
the routing protocols. The reinforcement learning-enabled
intelligent energy attack significantly outperforms the
energy attack methods without learning ability.

• Thirdly, we conduct a simulation to verify the effec-
tiveness of the malicious energy attack as well as the
performance of the proposed RL-based algorithm. The
simulation results show the effectiveness and the effi-
ciency of our proposed RL-based algorithm. From the
simulation results, the proposed algorithm lures an addi-
tional 53.3% data traffic travel through the compromised
node compared to the original network without attack.
The performance of the proposed algorithm is more
than 4 times higher than the Random Attack method.

The rest of this paper is organized as follows: Section II pro-
vides some background. The implemented system and attack
model are presented in Section III. A glance at the malicious
energy attack and preliminary work are in Section IV. The
intelligent energy attack policy is proposed in Section V, and
a critical proposed training trick Pre-Train is discussed in
Section V-C. Simulation results and analysis are discussed in
Section VI, followed by the conclusion in Section VII.

II. BACKGROUND

In this section, we will introduce some related background
on RF energy harvesting, energy-aware routing and routing
security. In addition, we will briefly introduce RL and discuss
in detail the two RL algorithms that we implemented on MES.

A. Nonlinear Charging Features in RF Energy Harvesting

The RF EHN harvests energy from RF energy sources
(e.g., TV tower, cellular base station, etc.) and stores harvested
energy in a battery. The harvested energy is then used for data
transmission. As revealed in our previous work [15], due
to the nonlinear circuit and nonlinear battery charging, the
charging process of RF EHN has obvious nonlinearity, which
will significantly impact the attack efficiency of malicious
energy attack.

a) Circuit nonlinearity: The harvester circuit exhibits a
nonlinear characteristic due to the nonlinearity of diodes
and the parasitic influence of the used elements in the
rectifier and voltage multiplier [15]. We redraw the
Power Conversion Efficiency (PCE) of the harvester
circuits designed by Le et al. [16], Papotto et al. [17],
Chaour et al. [18], and Umeda et al. [19] in Fig. 2(a).
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Fig. 2. Nonlinear charging features in RF energy harvesting [15].

It is clear that all harvester circuits exhibit a nonlinear
PCE with regard to input power. The nonlinear PCE
implies that in order to achieve good energy efficiency,
the energy attacker needs to charge the victim EHNs at
moderate power. In other words, it is inefficient to attack
EHNs with excessive power just to increase the impact
of MES on the energy distribution of EHNs.

b) Nonlinear battery charging: The nonlinear battery
charging refers to the nonlinear relationship between the
harvested energy and the battery level in the harvesting
process. The theoretical and experimental results in
Fig. 2(b) reveal that the amount of harvested energy is
not constant, but varies nonlinearly with respect to the
normalized battery level even when the same amount of
energy is provided by the energy source. Due to this
nonlinear battery charging feature, the charging current
approaches zero when a battery is nearly full and it will
take infinite time to fully charge the EHN.

Considering the circuit nonlinearity and nonlinear bat-
tery charging, an intelligent energy attack needs to balance
the attack efficiency and energy efficiency. In this work,
we assume that the MES charges EHNs at a power that
maximizes the PCE. The amount of energy to be charged to
EHNs is adjusted by controlling the charging time.

B. Energy Aware Routing and Routing Security

In power-constrained green IoT networks, energy awareness
is an essential property of routing protocols to extend the
lifetime of the network. The shortest path may not be optimal,
especially if nodes on that path have insufficient energy.
Excessively frequent transmissions on certain nodes will cause
early depletion of energy and have serious consequences
for network connectivity. Therefore, to prolong the network
lifetime, packet forwarding is usually scheduled on nodes
with sufficient energy. The low-energy nodes by contrast
tend to stand by to conserve energy. Thus, the high-energy
nodes are more likely to be selected as data forwarders [13]
or information aggregators [20] in the energy-aware routing
protocols.

In networks with energy harvesting capabilities, the harvest
rate of EHNs is another important factor that affects route
selection. The harvesting-aware routing protocols are designed
to align the traffic load with the energy harvesting rate at
different nodes: the higher the energy harvesting rate, the

higher opportunity to be selected as data forwarder [21]. The
representative harvesting-aware routing protocols used in RF
energy harvesting networks include joint routing and charg-
ing (J-RoC) [22], routing-first heuristic algorithm [23], and
energy-opportunistic weighted minimum energy (E-WME)
routing [11]. All of those protocols aim to find an optimal
balance between energy constraint and throughput.

In the rest of the paper, E-WME [11] is selected as our
routing protocol to demonstrate the impact of malicious energy
attacks. In E-WME, it uses (1) to calculate the forwarding cost
for each EHN. It has both energy-aware and harvest-aware
abilities. The forwarding cost is formulated as an exponential
function of the node residual energy, λ, a linear function of
the transmit and receive energies, e, and an inversely linear
function of the harvesting rate, r . The parameter µ is an
appropriately chosen constant. The E-WME will select the
route path with the smallest sum forwarding cost for data
transmission.

C = 1
r log µ

(µ1−λ − 1)e (1)

Routing security plays a critical role in protecting data
privacy and maintaining network stability. In the current
literature, adversary users attempt to threaten network security
through a variety of attack methods, such as the black hole,
wormhole, selective forwarding, Sybil attack, and acknowl-
edgment spoofing [24]. In the traditional network layer attack
method, the attacker usually needs to gain full control of at
least one legitimate node to insert illegal routing information
into the network. Since the legitimacy of the information can
be verified by inserting an artificial imprint (e.g., cryptography,
packet identification, and preamble), the attack can be easily
detected. The secure routing design of green IoT networks to
protect the network security in the information plane [25], [26]
has been extensively studied in the literature.

However, in a malicious energy attack, the routing path
is intentionally manipulated, not by injecting bogus routing
information or creating artificial high-quality links, but by
changing the energy level of EHN. Cryptography cannot
prevent such attack, because the energy attack occurs on the
energy plane and routing information will not be modified
or fabricated. In addition, unlike the wormhole attack, which
transmits the packets to a distant node in the network and thus
can be detected by measuring the distance of a single hop, the
geographic information does not help detect the energy attack.

Even if a defense mechanism is implemented, as long as
EHN obtains energy from the environment, the attacker only
needs to retrain the RL model without knowing the setting
changes in the network, since the network environment is a
black box for the RL algorithm. Due to the learning ability, the
retrained RL model will find an optimal attack strategy with
the presence of countermeasure. However, the performance of
malicious energy attack will decrease as the complexity of the
security mechanism increases. But it should be noted that the
IoT devices are more concerned about resource limitation than
the attacker. These features make the malicious energy attack
immune to many security mechanisms and difficult to defend
or prevent.
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C. Reinforcement Learning

RL is becoming more and more popular because of its abil-
ity to learn the optimal policy through a trial-and-error search
with delayed feedback [27]. A standard learning process of RL
starts with the initial state s perceived from the environment.
Then based on this state, an action a ∈ A will be decided by
the agent following its current policy π [28]. After that, the
reward r , as well as a new state s′, will be obtained from the
environment to optimize the agent policy. The goal is to find
an optimal policy that produces the largest cumulative reward
via a trial-and-error manner [29].

Among the commonly used model-free RL algorithms,
Q-learning and Saras are widely used for discrete and less
computationally intensive tasks because of their simplicity
and ease of implementation. For more complex tasks with
large state and action spaces and high computational cost,
a neural network is used to approximate the value function
or the target policy. Representative algorithms include Policy
Gradient, Deep Q Network (DQN), and Deep Deterministic
Policy Gradient (DDPG).

In this article, we choose Q-learning and Policy Gradient
algorithms to implement intelligent energy attack from the
perspectives of computational cost and hardware requirements.
Q-learning is a simple yet effective algorithm: it is expected
to enhance energy attack performance at low computational
costs and with low hardware requirements. Compared to a
similar algorithm, Sarsa, Q-learning is an off-policy algorithm.
It estimates the Q-value for state-action pairs based on the opti-
mal greedy policy, independent of the agent’s action selection
policy. As an off-policy algorithm, Q-learning can converge
to the optimal strategy much faster than Sarsa. We choose
Q-learning because of its cost-effectiveness. Policy Gradient
is more resource-consuming than Q-learning but also more
efficient: it is expected to achieve higher performance in
terms of attack efficiency as will be verified in Section VI-C.
Compared with deterministic algorithms like DQN and DDPG,
Policy Gradient can better solve the non-deterministic issue
in our energy attack scenario. Due to the imperfect state
information and limited knowledge of the global network,
the optimal policy under a certain state should not be fixed.
The Policy Gradient that generates a probability distribution
of actions perfectly solves the uncertainty challenges in the
intelligent energy attack.

In Q-learning enabled intelligent energy attack (Q-IEA), the
continuous state (i.e., the energy level of nodes) is discretized
into ten levels and the action space is 1 and 0 indicating
whether the node is under energy attack or not. The Policy
Gradient enabled intelligent energy attack (PG-IEA) is used
to deal with the more practical situation with continuous state
space (i.e., energy level) and larger action space (i.e., how
much energy is charged). Next, we will introduce Q-learning
and Policy Gradient algorithms in more details.

1) Q-Learning Algorithm: A Q-learning agent uses the
Q value to evaluate the effectiveness of each action in a
specific state. The agent maintains a Q table to record the
learned experience. As an off-policy algorithm, the Q-learning
agent uses a decaying ε − greedy policy to fully explore

TABLE I

NOTATION TABLE

the environment to approach the optimal target greedy policy.
Compared with the on-policy algorithm Saras, Q-learning
can approach the optimal policy faster. After training, the
agent greedily chooses the action with the highest Q value
to maximize the reward.

A typical equation used to update the Q value is depicted
in (2), where all notations can be found in Table I. The learning
rate α and discount factor γ in (2) are two important hyper-
parameters that affect the training process. The learning rate
controls the aggressiveness of learning. The higher the learning
rate, the more the agent will rely on the current reward, and
less on the knowledge learned from past experiences. The
discount factor controls the prediction of the future rewards,
allowing the agent to have a longer-term view.

Q(st , at ) = (1 − α)Q(st , at ) + α[R(st , at )

+γ ∗ max
a

Q(st+1, a)] (2)

2) Policy Gradient Algorithm: Different from Q-learning,
the Policy Gradient algorithm is a so-called policy-based
algorithm that directly uses a neural network instead of an
intermediate Q table to approximate the target policy. Once
state is given, the Policy Gradient agent generates a proba-
bility distribution of the entire action space. The good actions
with higher rewards will have higher probability, while the bad
actions have lower chances to be chosen.

We use C ∗r as the loss function in PG-IEA, where C is the
cross-entropy between the final executed action and the pre-
dicted probability distribution. Cross-entropy is widely used
in supervised machine learning to derive the error between
prediction and the ground truth. In our proposed PG-IEA,
we use the final executed action as the ground truth, since the
actual ground truth is not available to the MES. In this way, the
PG-IEA algorithm always assumes the executed action is good
and later updates the neural network to minimize the error
so that the prediction can gradually approach the executed
action. Considering that the executed action may not always
be optimal during training, we multiply it with reward , r ,
to indicate how much the neural network should update toward
the selected action. If r is very large, it indicates a good
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action, and a big step is taken to approach this action. If r
is very small or even 0, the model will only take a very small
step or even do not update the model. In this way, the model
will finally converge to the optimal policy by minimizing the
loss function.

With the defined loss function, the PG-IEA agent aims to
search for an optimal parameterized policy πθ , which maps the
state to a probability distribution on the actions space [30].
θ represents the parameters of the Policy Gradient neural
network. Given the instantaneous state s and the action a,
the cumulative loss function can be written as (3).

J (θ) =
∑

s

d(s)
∑

a

πθ (a, s)R(s, a)C(a). (3)

Here, d(s) represents the transition distribution of state s, and
πθ (a, s) denotes the probability of selecting action a under
state s. All notations can be found in Table I. If we want
to update the Policy Gradient neural network by a gradient,
we will need to calculate the gradient of the target function,
∇θ J (θ). The direct calculation of ∇θ J (θ) is very difficult
because it depends on both the action selection and the state
distribution.

The ∇θ J (θ) can be expressed as:

∇θ J (θ) = ∇θ

(
∑

s

d(s)
∑

a

πθ (a, s)R(s, a)C(a)

)

. (4)

In (4), d(s) is the state distribution following πθ , which is
indirectly determined by πθ . It is hard to calculate the gradient
of d(s) since the global network environment is unknown to
the attacker. Luckily, the intelligent energy attack is a one-
step Monte-Carlo learning progress. Therefore, d(s) is not a
function of θ . Similarly, neither R(s, a) nor C(a) depends
on θ . We can simplify the gradient of target function to be:

∇θ J (θ) =
∑

s

d(s)
∑

a

(
R(s, a)C(a)∇θπθ (a, s)

)
. (5)

∇θπθ (a, s) can be rewrote as πθ (a, s)∇θ log πθ (a, s). Hence,
the gradient of the target function can be expressed as:

∇θ J (θ) = E
(

R(s, a)C(a)∇θ log πθ (a, s)
)

. (6)

Here, we only need to calculate the gradient of the policy
πθ (a, s). Once the gradient is known, we can use this gradient
to update the parameters θ according to (7).

θt+1 = θt + α rt C(at )∇θ log πθ (at , st ), (7)

where, at and st are the action and state at time t respectively,
and rt is the reward, which is the amount of interested
traffic attracted to the compromised node in our energy attack
scenario.

The Q-learning and Policy Gradient algorithms discussed
above both aim to search for the optimal policy, but in different
ways. In Q-learning, the agent uses the Q value to indicate the
effectiveness of each state − action pair. Therefore, as long
as enough state −action pairs are visited, the Q-learning can
guarantee to find the optimal policy. However, this no longer
holds in Policy Gradient, because it uses a neural network

to approximate the optimal policy. Each weight update in the
neural network will affect the output of all other states, which
makes it achieve better training efficiency than Q-learning
because fewer state visits are required to train the neural
network. The drawback is that the neural network is only an
approximation to the optimal policy [31]. Thus, the Policy
Gradient algorithm can approximate but may never reach the
optimal policy [31].

III. SYSTEM AND ATTACK MODEL

In this section, we introduce the system model and attack
model of malicious energy attack. Specifically, we consider
a green IoT network that uses RF energy harvesting as the
energy source. In the attack model, we will introduce how the
attacker implements the energy attack.

A. System Model

An example of an RF energy harvesting powered IoT
network is shown in Fig. 1. Each EHN harvests ambient RF
energy from the air and stores the harvested energy for future
computation and communication usage. Since the ambient RF
energy density is very thin, EHNs usually maintain a low
energy level. We use uniformly distributed random variables
to represent the fluctuations in ambient RF energy density
over time. The average harvesting rates are also slightly
different among EHNs, indicating the heterogeneity of the
energy harvesting process in the network. We use Poisson–
distributed random variables to represent dynamic network
traffic. Due to the randomness of the energy consumption
caused by the dynamic network traffic, and the randomness
of energy harvesting, the battery levels of EHNs are highly
dynamic, which further leads to changes in path selections.

We assume that E-WME routing is implemented at the
Network layer. It selects the routing paths based on the energy
harvesting rate of the node, the energy level of EHNs, and
the hop number. The EHN with a higher harvest rate, more
energy, and smaller hop number will have a lower forwarding
cost. The path with the smallest cumulative forwarding cost
will be selected to relay the traffic from the source to the desti-
nation. When there are no external energy sources (i.e., energy
attackers), all EHNs in the network have a comparable energy
harvest rate, so paths with fewer hops and shorter distances
tend to be selected as the preferred forwarding route.

Each node in the green IoT network can work as a sender
or receiver. But we assume that the attacker is only interested
in the data traffic between a specific pair of source and
destination nodes. The source node continuously sends data
packets to its destination.

B. Attack Model

Considering that the energy attack is a secondary attack,
we use eavesdropping as an example primary attack. Assume
there exists a compromised node that performs eavesdropping
attack and is interested in the network traffic from the source
to the destination. The objective of energy attack is to attract
targeted data traffic to the compromised node to improve the
efficiency of eavesdropping.
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The performance of the malicious energy attack is evaluated
by the additional traffic attracted to the compromised node.
It heavily depends on which nodes will be attacked and the
energy distribution of the EHNs. If the attacker knows the
global network status (i.e., network topology, energy distribu-
tion, harvest rate, etc.), the optimal energy attack can be easily
solved by the deterministic optimization algorithms [13]. How-
ever, this assumption is unrealistic. In this paper, we consider
a more practical scenario, where MES does not know the
location information of each node, but only knows the area of
the green IoT network. The attacker evenly divides the green
IoT network area into many small cells containing about 0–2
EHNs. We assume that cell division is optimal, and each cell
contains only one EHN. In each energy attack, the MES, which
is equipped with beamforming antennas, charges specific cells
directionally by increasing the RF density of the cells.

In order to assist the energy attack, we assume that some
observer nodes are deployed by the attacker to monitor and
record the traffic traveling through the local spied area. This
information is used to construct the state space in RL-based
energy attack and will be reported to the MES regularly. Since
the attacker does not know the locations of the source and
destination nodes, we assume that the attacker cannot find the
optimal locations for the observer nodes. Therefore, we evenly
place three observers around the compromised node in order to
cover a large spied area. We assume the observer nodes have a
larger communication range than ordinary EHNs. Therefore,
the observer nodes can form a multi-hop link for reporting
data to MES. The monitoring coverage of observers is set to
70% of the transmission range of EHNs.

In addition, the energy harvest rate information is also valu-
able information to the attacker. We assume the attacker will
manually measure the average RF energy density of each cell
in the initial stage and then use this value as the estimated har-
vesting rate to construct the state. Even though the harvesting
rate varies over time, the average harvesting rate is sufficient
to perform intelligent energy attack. The compromised node
will count the amount of traffic it receives/overhears and report
this information (i.e., reward in RL) to the MES.

The reinforcement learning algorithm is implemented on
MES to select the best nodes to attack in order to maximize
the amount of traffic lured to the compromised node. We have
developed two algorithms, namely, Q-IEA and PPG-IEA. The
implementation details will be discussed in Section V.

IV. GLANCE AT ENERGY ATTACK

Before diving into IEA, we conduct a preliminary exper-
iment to investigate the impact of the malicious energy
attack and also investigate the potential of developing IEA
in an unknown network environment. Here, we simulate a
small green IoT network containing 39 EHNs deployed in a
400m×400m area. The data generated by the source node, S,
is sent to the destination node, D, as shown in Fig. 3(a).

Due to the energy and the size constraints of EHN, the
transmission range of each node is relatively short, and the
data is usually forwarded through multiple hops. Let E1 and
E2 be two compromised nodes located at the edge of the

Fig. 3. Network traffic distribution from S to D; the green band shows the
main path; E1 and E2 are two compromised nodes.

Fig. 4. The impact of the malicious energy attack on data path selection in
different scenarios.

network. At the network layer, we implement the E-WME
routing method as we explained in Section II-B. We draw the
routing paths without energy attack from node S to destination
D in Fig. 3(a). The color of the path indicates the distribution
of the traffic. The darker the path is, the more the traffic
goes through. Although different paths can be selected for
data delivery, due to fewer hop counts, most of the traffic
passes through several main paths within the green band in
Fig. 3(a). Consequently, in an ordinary network without attack,
only 5.95% and 2.43% of generated target data packets travel
through two compromised nodes, E1 and E2, respectively as
shown in Fig. 3(b). This shows that in the ordinary network,
E1 and E2 have very low possibility to capture the interested
traffic since they are significantly deviated from the main path.

However, the situation will immediately change once the
attacker starts to assist the compromised nodes. As demon-
strated in Fig. 4(a), when the MES intentionally provides
extra energy to node N1 and N2, the path N1→ E1→ N2
is selected as a preferred route from node T to destination S.
By comparing Fig. 4(a) and Fig. 3(a), we can observe dramatic
changes in the traffic distribution caused by the malicious
energy attack. Over 54.98% of target data goes through the
compromised node, E1, almost ten times higher than that in
the ordinary network without energy attack. Similar results can
be observed in scenario 2, where the compromised node, E2,
is further deviated from the main path than E1. In this case,
we let MES simultaneously charge the three nodes marked by
the red circle in Fig. 4(b). With the energy attack, over 54%
of targeted traffic goes through E2, which is 22 times higher
than that of the ordinary network.
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These test results verify that the malicious energy attack is
very effective in manipulating the data path in the green IoT
network. Especially in a small network like Fig. 3(a), attacking
one or two nodes is sufficient to attract remarkable network
traffic to the compromised node. In this case, the MES can
use brute force attacks to easily figure out the optimal attack
strategy, so intelligent attack strategies are not very necessary.
But in practice, when a green IoT network contains a large
number of nodes, attacking one EHN will hardly lead to a
visible increment in rewards. The simple brute force attack
will be very inefficient. This motivates us to develop Intelligent
Energy Attack (IEA) policies to help MES wisely select the
nodes to attack in a large green IoT network, which will be
introduced in the next section.

V. INTELLIGENT ENERGY ATTACK POLICY

In light of the unknown network and routing information,
there are two main challenges in the design of an optimal
energy attack strategy. First of all, without knowing the
network state information (e.g., traffic distribution, routing
protocols, and energy level of EHNs), it is difficult to math-
ematically model the relationship between the network status
and the amount of traffic traveling through the compromised
node. Second, the network environment is highly dynamic.

If MES attacks the green IoT network based on an instan-
taneous status of the network, the solution may be only
optimal for a snapshot of the network. Therefore, how to
adjust the attack pattern to accommodate the dynamics of
the network is challenging. In order to tackle the above
challenges, we propose two reinforcement-learning enabled
attack methods, namely, Q-IEA and a PG-IEA. In this section,
we will provide more details about the two proposed algo-
rithms, including how to build the essential RL parameters
and a thorough explanation of the neural network structure of
the two algorithms.

A. Reinforcement Learning Parameters

One of the major challenges for IEA is how to construct
the state space in light of the highly dynamic and unknown
network status. A reasonable design of state space can greatly
determine the performance of the agent. The ideal state
information should contain the residual energy distribution of
all nodes in the network. However, this information is private
to each EHN and cannot be obtained by an attacker. Instead,
we deployed some observer nodes that cooperate with MES.
These nodes act as spy nodes to monitor the local traffic,
then provide it to the attacker. The attacker already has the
energy harvest information as we introduced in III-B. With
the estimated harvest rate and traffic of spied nodes, we can
roughly estimate the battery level1 of nodes in the monitored
areas of the spy nodes. The spy nodes will then calculate the
average energy level of the spied area and report this value to
MES. MES will use this information to construct a vector as

1Although at the beginning, there will be errors in the estimations of battery
level due to the heterogenous initial energy among different nodes. But as the
experiment goes, the error will gradually decrease, which converges to ≤ 5%
in our simulation.

Fig. 5. IEA process.

the state, in which each element is the average energy of a
spied area, as shown in Fig. 5.

In each period, the MES takes action at to lure the most
target traffic to pass through the compromised node. The action
of Q-IEA contains a list of nodes (e.g. Node 7, 8, 9) to be
attacked. For PG-IEA, an action consists of two vectors, the
list of nodes (e.g. Node 7, 8, 9 in Fig. 5) to be attacked and
the amount of energy to be charged to correspond to nodes
(e.g. 50%, 50%, 20% in Fig. 5). Then, the MES performs
action to provide extra energy to the victim nodes. Finally,
the compromised node calculates the amount of targeted data
traffic travels through it (e.g. 40% in Fig. 5) as a reward
and reports it to the MES. MES uses states and reward
to update the model and then repeats this process until the
end. We measure the amount of targeted traffic lured through
the compromised node as the reward, rt . In each period, the
reward information is reported to the MES. The agent aims to
find the best policy that maps the state to the most appropriate
action, thereby maximizing the total reward.

B. Construction of IEA

Considering that Q-learning only deals with discrete
states, but the energy level is a continuous variable, in the
Q-IEA implementation, the energy levels from 0 to 100%
are uniformly discretized into levels 0 to 9. In each episode,
Q-IEA selects k number of victim EHNs to attack under a
specific state. To charge the selected victim EHNs, we use
a simplified on-off attack policy instead of training a new
model to fine-tune the charging energy. In other words, the
battery will be charged to nearly full when the nodes are under
energy attack.2 That is because Q-IEA is a greedy algorithm,
it cannot find a policy for better balances energy efficiency
and performance. Instead, it will always fully charge the victim
EHNs to maximize the reward. Therefore, the output of Q-IEA
is a vector of size k that represents the k number of victim
EHNs to be fully charged.

2Due to the nonlinear charging feature of the battery, it will take an infinite
time to charge the EHN to full battery. In this paper, we assume the EHN is
charged to over 90% when it is attacked in Q-IEA.
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Fig. 6. PG-IEA Attacker Model Structure.

Fig. 7. Neural Network Structure used in PG-IEA.

The PG-IEA is composed of two independent decision-
makers, one is used to select victim EHNs and the other is
for deciding how much energy to charge, as shown in Fig. 6.
In PG-IEA, the node ID selection neural network (IDNN) is
used to select the k number of victim EHNs to attack based
on the state observed from the green IoT network. The output
of IDNN together with state is the input of the energy level
adjustment neural network (ENN), which is used to determine
the amount of charging energy.

The neural network structure of IDNN is depicted in
Fig. 7(a). It has a hidden layer with 10 neurons and uses
the tanh function as the activation function. The number of
neurons in the output layer is equal to the total number of
candidate victim EHN. By using a softmax function, it con-
verts the output of IDNN to a probability distribution of all
candidate victim EHNs during the attack. It then samples from
this distribution to select k number of victim EHNs. The output
of IDNN is a vector of size k, which contains only 1 or 0 to
indicate the attack state. In the training phase of IDNN, it uses
the same on-off attack in Q-IEA to find the most appropriate
policy.

ENN is trained to determine how much energy it should
charge as shown in Fig. 7(b). The input of ENN is a
combination of state observed from the green IoT network
and the output vector of the IDNN. ENN has two hidden
layers with 20 neurons and 10 neurons respectively and uses
Relu as the activation function. The output contains the mean
value, µ, and variance, σ , which are used to generate a uniform
distribution of 0-100%. Based on distribution, it randomly
samples a value as the amount of energy that the attacker
will charge the selected victim EHNs.

Usually, an exploration mechanism is needed in RL to avoid
the agent falling into a local optimum. Since Q-IEA is a greedy
algorithm, we set a decaying exploration rate to allow Q-IEA
to explore more experience and converge to the optimal policy.
In PG-IEA, the IDNN and ENN use the Adam optimizer
function to update the neural network. The Adam optimizer
can automatically adjust the learning rate to ensure the stability

of the learning process. Also, PG-IEA itself is a combination
of exploration and exploitation. Therefore, there is no need to
set up an exploration mechanism for PG-IEA.

C. Pre-Train Process

In a large green IoT network, charging most nodes, espe-
cially the ones far away from the compromised node, does
not help to manipulate traffic through the compromised node.
We call these EHNs invalid nodes. Since the size of the IEA
structure is related to the number of candidate victim EHNs,
as we discussed in Section V-B, a large number of invalid
nodes in the action space leads to inefficient and lengthy
training of the IEA. For this reason, we add a Pre-Train
stage before training the IEA agent to reduce the action space
and improve the training efficiency of IEA. In each Pre-Train
attack period, we attack one EHN and record the cumulative
reward of the EHN, which is then used as an indicator to
eliminate invalid EHNs.

Aiming at efficiently exploring the action space and exploit-
ing the learned knowledge, we test three Pre-Train algorithms,
namely 1) Q-IEA, 2) One-step Q-learning, and 3) Random
Attack. Q-IEA is the same as the algorithm we introduced
in Section V. One-step Q-learning is a simplified stateless
Q-learning [32]. Different from the time-varying st in (2), One-
step Q-learning only has one global state, s, and Q table is
updated according to (8). Another difference is that there is
no decay parameter γ in the One-step Q-learning compared
to typical Q-learning. In Q-IEA and One-step Q-learning, the
actions are selected based on the decay ε–greedy policy.
In Random Attack, it chooses a random EHN to attack in
each attack period without learning anything.

Q(s, at ) = (1 − α)Q(s, at ) + αR(s, at ) (8)

In summary, Q-IEA and One-step Q-learning have the same
action selection policy, but the learning process is different.
Due to the larger Q-table, the Q-IEA will perform worse
than One-step Q-learning. Because the goal of Pre-Train is to
quickly eliminate invalid nodes instead of high performance
in every state. So a large Q-table may lead to lower training
efficiency in the perspective of Pre-Train. One-step Q-learning
and Random Attack are only different in the action selection.
One-step Q-learning will better exploit the learned knowledge
than Random Attack which in turn leads to more efficient
training. In Section VI, we will conduct an evaluation to
verify our prediction and select the most appropriate Pre-Train
algorithm and the best settings.

Given the cumulative reward, a simple way to select valid
nodes is to sort the EHNs according to the cumulative reward,
and then select a fixed number of nodes with the highest
reward. But this is unreasonable since the number of valid
nodes varies with the location of the source node and des-
tination node. Since the network topology is unknown to
the attacker, it is difficult to know how many valid EHNs
we should select. In this paper, we use the mean value of
the cumulative reward as the threshold. Only nodes whose
cumulative reward is higher than the threshold will be selected
as valid nodes.
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Fig. 8. An example of a large green IoT network with 90 EHNs.

VI. SIMULATION AND ANALYSIS

In this section, we evaluate the performance of the proposed
IEA algorithm and compare the performance of IEA with
benchmark solutions. Beyond that, we also evaluate the perfor-
mance from different aspects to demonstrate the effectiveness
and the efficiency of the proposed IEA algorithm.

A. Simulation Settings

Precision agriculture can be a potential application of the
green IoT network. By deploying wireless energy harvesting
nodes (EHNs) with sensors in farmland, people can monitor
the state of the soil (e.g., the moisture, temperature, and pH
value) in a large area for a long time [33]. In the simulations,
we generate a large green IoT network with 90 EHNs deployed
in 700 meters by 700 meters area, as shown in Fig. 8. The
average distance between adjacent nodes is 70 meters, while
the maximum transmission range of each node is 100 meters.
In the test, each EHN generates data packets following the
Poisson distribution with a mean value λ = 0.2 packets per
slot. We assume the compromised node in the bottom left
corner is interested in the target traffic from the source node
at the top left corner to the destination node at the bottom
right corner. The source node generates 0.5 data packets per
slot and sends them to the destination node. The blue arrow
lines in the graph constitute the preferred main path in the
ordinary network without malicious energy attack. The green
IoT network is built based on Python wsnsimpy, a dedicated
simulator for wireless sensor networks. We modified the
package accordingly to fully support energy harvesting and
malicious energy attack.

The EHN in the network has a heterogenous average
energy harvest rate, rn , which follows a uniform distribution.
On average, it takes 75 slots to charge the battery (i.e., super-
capacitor) to nearly full.3 Once fully charged, it can send
roughly 17 packets before the battery reaches the low-energy
threshold. The EHN in low-energy mode remains in inactive
mode and avoids forwarding packets for neighboring nodes.
Due to the randomness of the network traffic, the battery level
of EHNs is highly dynamic, which further results in different

3Note that, due to the nonlinearity of the battery, the actual amount of energy
that can be captured by the EHN depends on the instant residual energy of
the battery [15]. Therefore, the amount of harvested energy in each slot will
not be constant but calculated based on Equation (6) of [15].

path selections from the source node to the destination node.
In addition, to simulate the dynamics of the radio environment,
the harvest rate and Poisson distribution will slightly change
over time. For every 100 slots, we re-generate the Poisson
distribution of each node and let the harvest rate fluctuate 1%
around its initial value.

We suppose the MES selects five victim EHNs to attack
and only charges once at the beginning of each attack period.
We set 20 slots as an observation episode. Three spy nodes
are evenly placed around the compromised node. The spied
area range is 70 meters, which is marked by the blue circle
in Fig. 8. At the end of each period, the spy node uses the
average value of the estimated energy of all monitored nodes
as the average energy of the spied area.

In our simulation, we choose the random attack as the
baseline. Random attack is an inefficient but simple attack
method. In each attack period, it selects random nodes to attack
without learning anything. As discussed earlier, if the routing
information and the instant energy level of each EHN are
known, the optimal energy attack can be easily solved using
deterministic optimization algorithms. Although the optimal
energy attack is infeasible to implement, we consider it as the
upper bound of malicious energy attack. In the performance
evaluation, we compare the performance of all proposed IEA
algorithms with benchmark algorithms under different settings.
In each period, the Upper Bound method will select the top
five nodes with the lowest residual battery level to attack.

We construct the neural network on Tensorflow 2.2.0. The
total training time for Q-IEA and PG-IEA is 8K and 10K
episodes respectively. The performance of Q-IEA and PG-IEA
is tested on Nvidia Jetson NANO 2GB dev-kit board without
using GPU. The evaluation results will be discussed in the
following sections.

B. Performance Evaluation for Pre-Train

In this section, we compare the performance of different
Pre-Train algorithms to select the most appropriate one for
IEA. The impact of training time, exploration rate, and learn-
ing rate on Pre-Train is analyzed. Each result is the average
of ten independent tests. We evaluate the performance of Pre-
Train in terms of accuracy and the number of valid nodes it
extracts. The accuracy is calculated as the ratio of the number
of correctly selected valid EHNs to the total number of claimed
valid EHNs. It measures the ability of each algorithm to
accurately select valid EHNs.

1) Training Time: In this test, We evaluate the performance
of three Pre-Train algorithms with different training times, and
the results are presented in Fig. 9 and Fig. 10

As shown in Fig. 9, the accuracy of the three algorithms
increases as the training time increases. Because Pre-Train
needs enough time for both exploration and learning process
to obtain better accuracy. Since at the beginning of the Pre-
Train, all methods are in the exploration stage. As the training
episodes increases, the learning experience will gradually
dominate the action selection, and the interference caused by
the randomness of the energy distribution of EHNs will be
reduced. Victim EHNs that receive extra energy obtain a higher
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Fig. 9. Accuracy of different Pre-Train methods over training time.

Fig. 10. Valid Node Number of different Pre-Train methods over training
time.

cumulative reward and a better accuracy is obtained as the
training time increases.

Benefiting from their efficient exploration scheme, both
One-Step Q-learning and Q-IEA achieve better accuracy
than the Random method. As a result, EHNs that have
higher rewards have more chances to be visited in One-Step
Q-learning and Q-IEA than in Random Attack. And One-
Step Q-learning is further superior to Q-IEA in the per-
spective of extraction accuracy. Without the time-varying
state st , One-Step Q-learning has a much smaller Q-table than
Q-IEA, which improves the training efficiency as discussed
in Section V-C. So as the training goes, it will focus on the
valid nodes earlier than Q-IEA since the latter method needs
more time to explore all the states. To achieve a comparable
accuracy, Q-IEA will require a much longer training time than
One-Step Q-learning.

Note that Random method achieves higher performance in
term of valid node number as shown in Fig. 10. The Random
Attack method can generally extract more valid nodes than
the other two methods at the expense of lower accuracy. This
result is intuitive, because all EHNs have the same chance
to be selected in the Random Attack. This has two benefits
for extracting more valid nodes. First, the rewards of all
EHNs are more flattened in Random Attack. As a result, there
will be more number of EHNs whose rewards exceeds the
average reward. Second, valid EHNs are less likely to be
missed. Generally, all nodes along the source→compromised
node→destination path are valid nodes. However, in a large
green IoT network (e.g., 90 nodes in our test), it is common
that attacking one valid EHN, especially the one that is far
away from the compromised node, will not obtain obvious
excessive rewards. In Q-IEA and One-Step Q-learning, EHNs
with any tiny reward have a chance to be captured. In Random

Fig. 11. Accuracy of One-step Q-learning with different exploration rate.

Fig. 12. Valid Node Number of One-step Q-learning with different explo-
ration rate.

Attack, by contrast, these valid EHNs have a high chance of
being missed.

Note that more valid nodes come at the expense of the much
lower accuracy of Random Attack. Due to the random energy
distribution of EHNs in the large green IoT network, attacking
an invalid EHN may also cause a positive reward when the
source→compromised node→destination path happens to be
the preferred path. By comparing the three Pre-Train methods,
we select One-Step Q-learning with more than 5k training
episodes for Q-IEA and PG-IEA. In the rest of the Pre-Train
evaluation, we use One-Step Q-learning as the default Pre-
Train algorithm to find its best settings.

2) Exploration Rate: In this test, we evaluate the impact of
exploration rate on One-Step Q-learning and present the result
in Fig. 11 and Fig. 12. In the training stage, the exploration rate
allows the agent to explore as many new actions as possible
to avoid missing valid nodes. As training time increases, the
extraction result becomes more accurate. When the exploration
rate is too small, ε = 0.1, the accuracy and the number
of selected valid nodes are low, since the agent is stuck at
attacking the invalid EHNs that accidentally have positive
rewards in the early stage. When ε is greater than 0.3, the
accuracy and number of selected valid EHNs have no obvious
difference. Therefore, in the rest of the tests, we use ε = 0.6
as the default setting of the One-Step Q-learning Pre-Train
algorithm.

3) Learning Rate: According to the Q-table updates equa-
tion showing in (8), the learning rate, α is the only parameter
that affects the learning process in One-Step Q-learning.
To evaluate how the learning rate impacts the Pre-Train result,
we apply different learning rates on One-Step Q-learning and
demonstrate the results in Fig. 13 and Fig. 14.

It can be seen from Fig. 13, the accuracy decreases as α
increases. A small α leads to a higher accuracy at the cost
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Fig. 13. Accuracy of One-step Q-learning with different learning rate.

Fig. 14. Valid Node Number of One-step Q-learning with different learning
rate.

of less number of selected valid nodes. According to (8),
a low learning rate means the algorithm will more rely on
learned experience. The interference of positive reward in
the current period resulted from the accidentally high energy
along the source→compromised node→destination path will
be suppressed. The learning process will become slow but
stable. And vice versa, the learning process will become
aggressive but unstable when the learning rate is too large.
However, the difference in accuracy can be neglected when
the training episode is larger than 20k.

As shown in Fig. 14, the number of valid nodes with α =
0.02 is less than others settings, as the learning is much slower
and more episodes are needed to find a comparable number
of valid nodes with other settings. When α is larger than 0.1,
no obvious difference is observed in terms of accuracy and the
number of valid nodes. In order to balance the accuracy and the
number of selected valid nodes, we set α = 0.1 and training
time to 20k episodes in One-step Q-learning Pre-Train.

C. Performance Evaluation for IEA

In this subsection, we evaluate the performance of IEA and
analyze the impact of the number of nodes attacked, the traffic
rate, and Pre-Train accuracy on the performance of Random
Attack, Q-IEA, and PG-IEA methods. Random Attack uses
the Random Pre-Train to reduce the action space, while Q-IEA
and PG-IEA adopt One-step Q-learning Pre-Train. Each result
is the average performance of 30 independent tests.

1) Performance Comparisons: In order to evaluate the
effectiveness of the different IEA methods, we run the ran-
dom attack, Q-IEA, and PG-IEA with the same simulation
setting and present their performances in Fig. 15. The reward
(i.e., amount of targeted traffic captured by the compromised
node) is normalized by the Upper Bound performance to

Fig. 15. IEA performance comparisons and improvements.

eliminate the impact of network randomness (e.g., randomness
in energy harvesting rate and network traffic) on the attack.
In the Upper Bound attack, we assume the MES knows
the global and instantaneous network states and can choose
the five optimal EHNs to maximize the attack performance.
In a large network shown in Fig. 8, attacking five EHNs is
not sufficient to attract all the targeted traffic through the
compromised node. On average, Upper Bound manipulate
31.1% of total targeted traffic in our tests.

In the ordinary network without energy attack, the com-
promised node only capture 0.2% of normalized traffic
since it largely deviates from the main source→destination
path (i.e., blue arrow lines in Fig. 8). For Random Attack
with the reduced action space from Pre-Train, an additional
11.7% of normalized reward is obtained. With the assistance
of Q-learning, the Q-IEA achieves over two times higher
performance than the Random Attack, which verifies the
effectiveness of Q-IEA. The PG-IEA further improves attack
performance to 53.3%. Different from the Upper Bound attack
that knows global and instantaneous network states, Q-IEA
and PG-IEA only have the average energy of the monitored
nodes in the spied area. The imperfect state information and
limited knowledge of the global network account for the lower
performance of Q-IEA and PG-IEA than the Upper Bound
attack.

As a greedy algorithm, Q-IEA cannot handle the stochastic
optimal policy problem, that is, there may exist multiple opti-
mal actions with probability under a certain state. In contrast,
the goal of Policy Gradient is to find the best attack policy
in each state. During the stochastic learning process, PG-IEA
can find out a couple of actions with higher rewards under
each state. After complete training, PG-IEA will output an
action probability distribution by feeding a particular state.
The higher reward an action can obtain, the higher probability
it will be selected. By addressing the non-unique mapping rela-
tion issue, PG-IEA achieves 23.4% more normalized reward
than Q-IEA on average.

In addition to performance of attack efficiency, we have also
compared the energy efficiency of different attack methods
in Fig. 16. Due to the nonlinear battery charging feature, the
charging efficiency drops significantly after the battery level is
higher than 20%, as illustrated in Fig. 2(b). Therefore, the most
energy-efficient energy attack should charge the EHNs to a
critical level so that it is just enough to lure the targeted traffic
to the compromised node in one attack period, and providing
more power to these EHNs will be a waste of energy.
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Fig. 16. IEA energy efficiency comparisons.

Both Random Attack and Q-IEA have no control on how
much energy to charge and use on/off policy. When the attack
is on, the selected EHN will be provided excessive energy
and charged to a very high power to guarantee the success
of the energy attack. For this reason, we observe signifi-
cant energy waste in Q-IEA and Random Attack algorithms.
As shown in Fig. 16, their energy wastes are 73.3% and 77.3%,
respectively. By contrast, the PG-IEA adopts an ENN to
decide how much energy should be provided to each selected
EHN, which remarkably reduces the energy waste in PG-IEA.
However, due to the imperfect state information and limited
knowledge of the global network, PG-IEA still has 29.5%
of the energy waste compared to the optimal attack strategy.
Fig. 15 and Fig. 16 demonstrate that PG-IEA significantly
outperforms Random Attack and Q-IEA in terms of attack
efficiency and energy efficiency.

2) Resource and Computation Cost Comparison: Even
though the MES is not severely constrained by resources,
resource utilization is still an important metric to evaluate the
performance of Q-IEA and PG-IEA. Therefore, we conduct a
comparative analysis on resource demands and computational
costs of two IEA algorithms.

We use the time spent on optimal action decisions as
the computation cost. In each episode, Q-IEA and PG-IEA
consume 0.79ms and 6.21ms, respectively, to calculate an
optimal action. Due to the complexity of the neural network,
the computation cost of PG-IEA is 7.86 times higher than
Q-IEA. The gap will expand to 12.27 times during the training
since the backpropagation computation of the neural network
is even more complex. To be noticed, the total training time for
PG-IEA is 20K episodes which needs more time to train the
model compared to 8K of Q-IEA. Beyond that, the demanding
RAM for Q-IEA and PG-IEA to implement attacks is 18 MB
and 162.8 MB, respectively. And the storage consumption for
Q-IEA and PG-IEA is 7.47 KB and 190 KB, respectively.
The communication overhead is the same to both algorithms
since the information they interact with the IoT network is
the same.

To summarize, Q-IEA requires much fewer resources and
can be implemented on an STM32 dev-board [34]. On the
contrary, PG-IEA requires more hardware and computation
resources, so it must be implemented on a monoboard micro-
computer (e.g. Raspberry pi, Nvidia Jetson series). There-
fore, Q-IEA is recommended to be implemented when the

Fig. 17. Performance of IEA with and without Pre-Train.

attacker has very limited resources. PG-IEA is advocated
for higher performance when the computation resources are
sufficient.

3) Impact of Pre-Train: As discussed in V-C, Pre-Train can
greatly improve the attack performance by eliminating invalid
nodes. So as a critical part of IEA, we demonstrate two tests to
further analyze the impact of Pre-Train on IEA performance,
and the results are shown in Fig. 17 and Fig. 18, respectively.

In the first test, we remove Pre-Train from IEA, which
means all IEA algorithms’ action space contains all EHNs in
the network. The performance comparison with and without
Pre-Train are present in Fig. 17. The reward is normalized by
Upper Bound to eliminate the impact of network randomness.
From Fig. 17, the performance of all attack algorithms is
significantly reduced. The Random Attack only obtains 0.6%
of normalized traffic, that is 95.4% performance lost without
Pre-Train. With the help of Q-learning, Q-IEA still achieves
higher performance than the Random Attack. But Q-IEA only
lures 3.6% of the normalized traffic, the performance dropped
90% without Pre-Train. However, the PG-IEA still performs
better than other algorithms although it only obtains 22.4% of
the normalized traffic as shown in Fig. 17. The performance of
all algorithms is decreased significantly without the Pre-Train
to reduce action space.

As discussed in II-C.1, Q-learning needs extensive valid
attacks to guarantee the optimal action under every state.
Without Pre-Train, the data efficiency is decreased since most
attacks is invalid. Thus, the Q-IEA is struggling to find
the optimal action under every state with so rare useful
experience. Different from Q-IEA, PG-IEA can utilize such
rare experience to directly update the entire neural network
that affects policy under every state. Less data is required
to achieve comparable performance to Q-IEA. Therefore, the
gap between Q-IEA and PG-IEA is expanded by removing
Pre-Train.

In addition to evaluating the impact of the existence of
Pre-Train, another test is demonstrated to evaluate the impact
of the accuracy of Pre-Train. We apply Pre-Train with dif-
ferent accuracy and present the result normalized by Upper
Bound in Fig. 18. The Random Attack is removed from
this test because the accuracy of the Random Attack Pre-
Train algorithm remains consistent. As shown in Fig. 18, the
performance of Q-IEA and PG-IEA gradually improves as the
Pre-Train accuracy increases. With a more accurate Pre-Train
result, the data efficiency will increase during the training since
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Fig. 18. Impact of Different Pre-Train Result.

Fig. 19. Impact of the number of attacked nodes on energy attack.

more invalid nodes are eliminated. Fig. 18 demonstrates that
the high accuracy of Pre-Train will improve the performance
of both Q-IEA and PG-IEA, and PG-IEA always outperforms
Q-IEA.

4) Number of Nodes Attacked: Intuitively speaking, the
more nodes that are attacked (i.e., a larger k), the greater
impact of the MES on the green IoT network, which can
potentially bring more data traffic. Especially if all nodes
along the source→compromised node→destination path are
charged to nearly full, the most majority of the traffic can
be lured to the compromised node. But it is neither practical
nor efficient in reality. So to evaluate the relation between the
number of nodes attacked, performance, and energy efficiency.
We evaluate the performance of IEA with reduced action space
by attacking the different number of nodes, and present the
result in Fig. 19.

The simulation results confirm that with more nodes
attacked, the MES gains stronger forces to lure the targeted
traffic to the compromised node. From the Upper Bound curve,
30% of total traffic is encouraged to the compromised node
with only five nodes attacked. But it only attracts 10% more
traffic with another four nodes attacked. The Q-IEA curve
also verifies that the performance improvement brought by
charging more nodes significantly reduces when k is large. For
this reason, we suggest attacking 3 to 5 nodes in the given
green IoT network setting to balance performance between
reward and energy efficiency. In this paper, MES attacks five
victim EHNs in each episode. We also notice that no matter
how many nodes are attacked, the performance of PG-IEA
always outperforms the Q-IEA because of high data efficiency
and appropriate policy searching strategy.

Fig. 20. Impact of the traffic rate on the performance of PG-IEA.

5) Main Path Traffic: To evaluate the adaptability of
PG-IEA, we investigate the impact of traffic rate on the
performance of proposed IEA algorithms. We set the default
packet generation rate to 0.5 packets per slot and change
the traffic rate based on the default value. The Upper Bound
of 5 nodes attack and the performance of PG-IEA and Q-IEA
are presented in Fig. 20. It shows that as the traffic rate
increases, the performance of PG-IEA and Q-IEA is nearly the
same. But on the contrary, the traffic lured to the compromised
node by the optimal 5-node attack in Upper Bound decreases
as the traffic rate grows.

As the traffic rate grows, the increased packet transmissions
will drain the battery of EHNs in a faster manner. The
nodes that are not being attacked will become the bottleneck
in the energy attack. When the battery on those EHNs is
drained, the source→compromised node→destination path is
likely to become disconnected and the source node tends to
switch to other routes where the compromised node is not
involved. While other nodes along the source→compromised
node→destination path become a severe limitation, attacking
the top five nodes with the lowest residual battery level in
Upper Bound may not be appropriate. The performance gap
between the Upper Bound and two IEA algorithms is caused
by more “wisely” selecting five nodes to attack as traffic
increases.

Fig. 20 also shows that the gap between PG-IEA and Q-IEA
decreases as the traffic rate increases. Especially when the
traffic rate increases by more than 40%, the performance of
the two IEA algorithms becomes the same. When the traffic
rate is high, keeping the attacked node fully charged can
maintain high performance at the cost of low energy efficiency
especially when charged energy is more than an optimal
threshold. But with the assistance of ENN, the PG-IEA will
sacrifice some rewards to achieve a balance between rewards
and energy efficiency as the traffic rate increase. Thus, PG-IEA
only utilizes nearly half of the charged energy used by Q-IEA,
and less than 10% of energy is wasted on average when the
traffic rate increases by more than 40%.

VII. CONCLUSION

In this work, we introduced a new security issue in green
IoT networks where an adversarial energy source can inten-
tionally provide extra energy to specific nodes to manipulate
the data path in the network layer. Malicious energy attack
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is a brand new attack method in green IoT networks and is
worth more investigations in the future. We have well-designed
two reinforcement learning-enabled algorithm to implement
the energy attack. The result shows that both algorithms
outperform the Random Attack method.

However, the imperfect state design cannot accurately reflect
the real network states and may lead to low energy efficiency
during the attack. Because the current network state should be
the superposition of the results of all historical actions. To alle-
viate the impact of this issue, we can utilize historical actions
to improve the current state. Therefore, the requirements for
memory ability are put forward. In future work, we will use
Long Short-Term Memory (LSTM) neural network instead
to further revise our algorithm. Since LSTM can make the
decision based on the current state and history. Beyond that,
we will also consider developing an algorithm for optimal cell
division and evaluate the impact of cell division on the final
attack performance.
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