2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) | 978-1-7281-7586-7/21/$31.00 ©2021 IEEE | DOI: 10.1109/PIMRC50174.2021.9569613

Optimal CPU Frequency Scaling Policies for
Sustainable Edge Computing

Yu Luo*, Lina Puf, and Chun-Hung Liu*
* Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS, 39762
TDepartment of Computer Science, University of Alabama, Tuscaloosa, AL 35487
e-mail: yu.luo@ece.msstate.edu; lina.pu@ua.edu; chliu@ece.msstate.edu

Abstract— Sustainable edge computing (SEC) is a promising
technology that can reduce energy consumption and computing
latency for the mobile Internet of things (IoT). By collecting solar
or wind energy from the environment, an SEC cloudlet outside
the electric grid can provide powerful computing capabilities for
resource-constrained mobile IoT devices. Considering significant
density variation of sustainable energy over time, the SEC
cloudlet needs to dynamically adjust the clock frequency of the
central processing unit (CPU) to balance energy consumption
and computing power. In this paper, we consider the limited
energy storage of the cloudlet and develop an offline optimal
CPU frequency scaling policy to maximize the overall computing
power of the cloudlet within a certain period of time. The tightest
string policy that gives a graphical viewpoint of the optimal CPU
frequency scaling is found.

I. INTRODUCTION

In recent years, mobile edge computing (MEC) is emerging
as a new computing paradigm for the mobile Internet of things
(IoT) [1]. By deploying small-scale servers, called cloudlets,
at the edge of the Internet, IoT devices can offload computing
tasks to the cloudlet for preprocessing, thereby significantly re-
ducing response time and saving network bandwidth between
the IoT network and cloud servers.

Current research on MEC assumes that the cloudlet is
always connected to the electric grid. In this case, how
to minimize the energy consumption of the cloudlet while
meeting the deadline of each task is the main objective. To
achieve this goal, strategies that offload tasks from mobile
devices to the cloudlet and manage the computing power of
the cloudlet have been comprehensively studied [2]-[4].

Sustainable cloudlets that can harvest solar or wind en-
ergy will greatly improve the scalability and sustainability of
existing mobile IoT networks and allow the deployment of
cloudlets in the area where power grids are not available.
As will be introduced in the paper, it is realistic to use
solar or wind energy to power a high-performance cloudlet
to provide resource-limited IoT devices with considerable
computing power to perform complex tasks in the wild.

In SEC, managing the computing power of cloudlets is
a new challenge, as the power density of wind and solar
energy is not constant, but changes over time [5]. The en-
ergy harvested from the environment may not always allow
cloudlets to run at full speed. We should carefully study how
to manage power consumption of the cloudlet in a dynamic
energy environment to maximize computing performance.

978-1-7281-7586-7/21/$31.00 ©2021 IEEE

In order to effectively use the harvested energy, the clock
frequency of the central processing unit (CPU) needs to be
adjusted carefully since it determines the computing power
of the cloudlet. Generally, the energy consumption rate of
CPU is approximately proportional to the square of the clock
frequency [6]. As a result, from the energy perspective,
increasing the clock frequency to improve computing power
is not energy efficient. The optimal CPU frequency scaling
becomes a challenging task as both the energy efficiency and
the limitations of task deadlines need to be considered.

In this paper, we consider the scenario where the energy that
can be collected in the future is known. We aim at optimizing
the overall computing power so the total number of computing
tasks that can be completed by cloudlet in a specific time
period is maximized. To achieve this objective, we build a
model that can convert the CPU frequency management into
an optimization problem with a concave objective function
and several convex constraints. The constraints can prevent the
cloudlet from violating the energy storage limitation and the
energy causality constraint (sustainable energy cannot be used
before it arrives). By solving the Karush-Kuhn-Tucker (KKT)
conditions, we obtain the tightest string policy that provides a
graphical viewpoint of the optimal CPU frequency scaling.

The rest of the paper is organized as follows: Section II
introduces the related work. The system model of the CUP
frequency management for the SEC cloudlet is given in
Section III. In Section IV, we formulate the optimization
problem to maximize the computing power of the cloudlet.
The solutions are provided in Section V and evaluated in
Section VI. We conclude our work in Section VII.

II. RELATED WORK

CPU frequency scaling and task offloading play a crucial
role in MEC to minimize the energy consumption of cloudlets
without missing task deadlines of resource-limited devices.
It needs to comprehensively consider the deadline of each
task, the quality of the wireless channel, the topology of the
tasks (sequential, parallel, or general dependency), and the
power consumption of communications and computations and
properly allocate energy and time between computation and
wireless communication [2]-[4].

In [2], joint task allocation and CPU frequency scaling are
modeled as a stochastic optimization problem, which takes
into account the dynamics of task arrival and variation of

1291

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on May 17,2022 at 12:37:14 UTC from |IEEE Xplore. Restrictions apply.

sz s
1

B

Cloudlet

"
ey, e -
WS Mobile 10T device

uﬂémé é:

Figure 1. Network architecture of SEC with mobile IoT devices.

wireless channel states. This work aims at minimizing the
energy consumption subject to the queue delay constraint of
the cloudlet. In [3], it assumes that mobile devices can harvest
energy from environments. How to manage the transmission
power of the mobile device and the CPU frequency of the
cloudlet is studied. The goal of that work is to minimize
the execution delay and task dropping cost of the device.
In [4], the authors consider an application that combines
MEC with the wireless power transfer (WPT) technology,
where a power station can transmit energy packets to charge
mobile devices. In the work, both the binary offload scheme
and the partial offload scheme are studied to maximize the
computation efficiency (the ratio of the total computed bits to
the consumed energy) of the cloudlet.

Unlike existing research, we assume that the cloudlet rather
than IoT devices can collect renewable energy to drive a high-
performance CPU. The feasibility of powering cloudlet with
renewable energy and how to optimize the CPU frequency of
the cloudlet in a dynamic energy environment have not yet
been studied, which are the focus of this paper.

III. SYSTEM MODEL

In this section, we briefly introduce the SEC architecture
with mobile IoT. Then, an optimization problem is formulated
to optimize the performance of computation-intensive IoT
networks.

A. Network Architecture

We consider a mobile IoT network, where many mobile
devices are running computation-intensive applications in the
wild, such as AR and target recognition. Due to size, energy,
and heat dissipation limitations, performing all tasks locally
is inefficient. In order to reduce energy consumption and
computing latency, mobile devices offload their tasks to nearby
sustainable cloudlets, as shown in Fig. 1.

Different from mobile IoT devices, the cloudlet can have a
relatively large size, so that it can scavenge solar or wind
energy from the surrounding environment to power high-
performance CPUs. Taking wind energy as an example, even
with a micro wind turbine (weight: 12 kg, rotor-swept area:
1.2m?), it can harvest energy at 177 W and 524 W power when
the wind speeds are 11 m/s (24.6 mph) and 20 m/s (44.7 mph),
respectively [7]. These energy harvesting rates are sufficient to
drive high-performance server processors, such as Intel Xeon

Gold 6328HL [8] or AMD EPYC 7501 [9], the thermal design
point (TDP) of which are 165W and 175 W, respectively.

Taking solar energy as another example, the peak intensity
of solar energy in non-shaded areas can reach 600 W/m? [10].
The power conversion efficiency of commercial solar panels is
between 15% and 20% [11]. Therefore, a two square meters
(1.4mx1.4m) solar panel can generate 180 W to 240 W of
power, which can easily drive high-performance CPUs.

After receiving computing tasks from mobile devices, the
cloudlet will preprocess the raw data (e.g., feature extraction or
data compression), and then upload useful information to the
cloud server via satellite internet constellation (e.g., Starlink by
SpaceX [12]) for further data processing, or directly download
computing results to IoT devices. With the assistance of the
cloudlet, internet traffic can be greatly alleviated and the
workload of mobile devices can be significantly reduced.

B. Mathematical Model

Denote the clock frequency of the cloudlet CPU at time ¢ by
fe(t). According to processor design [13], the CPU’s power
consumption can be divided into three parts: the short-circuit
power, the transistor leakage power, and the dynamic power,
where the last part dominates the others when the CPU is
running. Therefore, we use the dynamic power to approximate
the total power consumption of the cloudlet.

According to the circuit theory [6], the dynamic power at
time ¢, which is denoted by Py(t), can be calculated as

Py(t) = af.()V2(D), (1)

where « is a constant related to the processor architecture
and V,(t) is the CPU power supply voltage at time ¢. Fur-
thermore, f. is proportional to V. [13]. By adopting dynamic
voltage scaling (DVS) technology, modern processors can
dynamically scales down the voltage based on the frequency
requirement [14]. Consequently, the CPU clock frequency can
be written as a function of the dynamic power:

Lo(t) = BP (1),

where [is the frequency scaling coefficient, which is a
constant greater than zero.

In nature, the power density of sustainable energy changes
over time. Let pp, (¢) be the incident power at time ¢. According
to the energy causality, the cloudlet cannot use the energy that
has not yet arrived. As a result, the total energy consumed by
cloudlet cannot exceed the cumulative harvested energy, i.e.,

/Ot Pa(u) du < /Otph(w du,

Assume the maximum capacity of the energy storage used
by the cloudlet is FE,,,;. To avoid battery overflow, the
difference between the cumulative harvested energy and the
total consumed energy cannot over E,,q,, 1.€.,

t t
/ pr(u)du — / Piy(uw)du < Epgz, VE>0. (4)
0 0

Py =0, 2

V>0 (3)

The computing power of the cloudlet linearly increases with
the CPU clock frequency to execute a fixed amount of machine

1292

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on May 17,2022 at 12:37:14 UTC from |IEEE Xplore. Restrictions apply.

codes. Without loss of generality, assuming that it takes CPU
an average of one clock cycle to execute a machine code,
then according to the relationship between f. and Py given
in (2), we can formulate the following optimization problem
to optimize the overall computing power, so the total number
of machine codes that can be executed by the cloudlet within
time period, [0, T}, is maximized:

T,

P
PI: argmax BP;(t)dt, T, >0,

Py(t)>0 JoO

t t
st. CI: / Pi(u)du §/ pn(uw) du, VEe[0,T,],
0 0

¢ ¢
C2: / pr(u) du—/ Py(u)du < Epgq, VE€[0,T,].
0 0
&)

The objective function of P1 enables the cloudlet to achieve
the best computing performance in a certain period of time,
which is suitable for computation-intensive IoT applications.

IV. PROCESSING POWER OPTIMIZATION

Based on the optimization problem P1 given in Sec-
tion III-A, this section studies how to manage the CPU clock
frequency in order to maximize the computing power of the
cloudlet within a certain period of time.

To solve P1, we first discretize p;, in (5). Let At represent
a short time period, which is an aliquot part of T},. The time
interval [nAt, (n+ 1)At] is referred to as the time slot n,
which is represented by t,,. When At is small enough, it is
reasonable to assume that the incident power of sustainable
energy remains constant within a time slot, then we have that

t € [nAt,(n+1)At), n=0,1,2....
(6)
Let Ej,[n] = At py,[n] be the energy received in the n*" time
slot, then the accumulative harvested energy by time ¢ is

t n
/ph(u)du:ZEh[i], t>0,n=0,1,2.... (7)
0 i=0

pn(t) = prn],

Substituting (7) into the constraints of (5), then we can obtain
the following Lemma and Corollary:

Lemma 1. Under the optimal policy, the CPU clock frequency
remains unchanged within a time slot.

Corollary 1. For a given total amount of energy consumed
in a certain period of time, the computing power can be
maximized if the CPU clock frequency remains the same.

Proof. As shown in (2), the CPU clock frequency is a con-
cave function of the dynamic power. Therefore, the proof of
Lemma 1 and Corollary 1 can refer to the proof of inequality
(2.8) in the BT-problem of [15]. O

According to Lemma 1, the optimal clock frequency of the
CPU in time slot n can be expressed in a discrete form:

fX@t) = frin], t € [nAt,(n+1)At), n=0,1,2.... (8)

In addition, from Lemma 1 and (2), it can be realized that
P;(t) in (5) becomes a piece-wise linear function of ¢. Let
P,[n] represent P;(t) at time nAt, then we have that

1
feln] = BP} [nl,

where N, = T,,/At — 1.
Through the above discretization process, the continuous

optimization problem P1 can be converted into a piece-wise
optimization problem:

n=0,...,N,, 9)

N,

P2: arg max Z ,BPd% [i]At, N,=0,1,2 ...,
Pqlil >0 5,
st. CL: Y Pyli] At <Y By, n=0,...,N,,
i=0 i=0

n n
C2: > Enli]—> Puli] At < Epae, n=1,..., N,
1=0 =0

(10)
In the optimization problem P2, the objective function is con-
cave because it is a linear combination of concave functions. In
addition, C1 and C2 in (10) are composed of linear constraints,
which are convex. Consequently, there exist KKT multiplier

sets g = {po, ..., pon, } and X = {A1,..., AN, 41} to make
the following conditions hold [16]:
Stationarity:
Ny)
Vp: (L= Vp:1i) Z BP} i) At
i=0
Np n n
—> 1nVp; [i](ZPd[i] At = By [ﬂ)
n=0 =0 =0
NP n n
=Y AV m(ZEh (i)=Y Pali] At—EW> =0,
n=1 i=0 i=0

(1D
where £ is the Lagrangian function and V,(-) denotes the
partial derivative with respect to x.

Complementary slackness:

un<ZPd[i] AtZEh[iD =0, n=0,...,N,, (12)
i=0 1=0

,\,,(ZEh[i] ZPd[i]At—E,,me) =0, n=1,...,N,. (13)
=0

i=0
Dual feasibility:
1u’n207 n:07"'7Np7
An >0, n=1,...,Np.
In the following section, we will introduce how to use the

KKT conditions to find the optimal solution for P2 from the
graphical perspective.

(14)

1293

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on May 17,2022 at 12:37:14 UTC from |IEEE Xplore. Restrictions apply.

V. GRAPHICAL PERSPECTIVE OF PROCESSING POWER
OPTIMIZATION

This section studies how to adjust the CPU clock frequency
from the graphical point of view to maximize the computing
power of the cloudlet. We first construct an energy feasibility
tunnel based on the constraints of the energy causality and
the energy storage capacity. Afterward, based on Lemma 1
and Corollary 1, we give a solution to P2, which is called the
tightest string policy.

A. Energy Feasibility Tunnel

In Fig. 2, X-axis is the time and Y-axis is the accumulative
energy. The energy feasibility tunnel forms the constraints to
the dynamic energy based on C1 and C2. As shown in the
figure, at any time, the dynamic energy cannot fall outside
the tunnel: If it excesses the upper bound of the tunnel, the
energy causality constraint will be violated; if it is below the
lower bound of the tunnel, the constraint of the energy storage
capacity will not hold.

g n

S Y Ejli) Eppx
S i=0 \ _’_‘—l

(9}

2 Na

5 .

3 Ne B~
£ ZPA[‘JAt i=0

3 —At—| i=0

e r—

Ty h)] Iy Is 13] t

Figure 2. Energy feasibility tunnel
The dynamic energy curve, i.e., Y ., Pyli] At, is admissi-
ble if it is in the energy feasibility tunnel. In problem P2, we
aim at finding an admissible curve to maximize .#(Py), where

N, N
F(Py) = BPFi], N,=0,1,2.... (15)
i=0
The accumulative energy consumed by the CPU increases
monotonically with time, therefore according to Lemma 1, we

can obtain the following Corollary:

Corollary 2. Under the optimal policy, the dynamic energy
curve touches neither the upper bound nor the lower bound
of the energy feasibility tunnel in a time slot.

Proof. The accumulative energy increases monotonically with
time. Therefore, if the dynamic energy curve touches the
lower bound of the energy feasibility tunnel at time 7;, where
T, € (mAt, (m + 1)At), the curve will be below the lower
bound of the energy feasibility tunnel between (mAt, T;),
which violates the constraint of energy storage capacity (i.e.,
curve (e) in Fig. 3).

According to Lemma 1, if the optimal dynamic energy curve
reaches the upper bound of the energy feasibility tunnel at time
T, then the curve will exceed the upper bound of the energy
feasibility tunnel between (T, (m+1)At), which violates the
energy causality constraint (i.e., curve (d) in Fig. 3). O

T
o

\ n
ZE/,UJ - E/m/\
i=0

Accumulative energy

(=]

1

m—1

1,

m 1 4

Figure 3. Three possible states of the dynamic energy curve and the end of
time slot m.

According to Corollary 2 and the constraints of energy
causality and energy storage capacity, at the end of %,,, the
optimal dynamic energy curve has only three potential states:
(a) passing through the energy feasible tunnel, (b) reaching the
upper bound of the tunnel, and (c) touching the lower bound
of the tunnel shown in Fig. 3. States (d) and (e) will not occur.

B. Solution of Processing Power Optimization

By solving the KKT stationarity condition in (11), the
following result can be obtained:

3
B Z,Ufnfz)‘n 9
(16)

Combining (16) with the complementary slackness and the
dual feasibility of the KKT conditions, we can obtain the
following lemmas:

Pili]= N,=0,1,2....

Lemma 2. Under the optimal policy, the CPU clock frequency
remains unchanged when the energy storage is neither full nor
empty (ie, 0 < Yo" (Enplm]— Pyli]At) < Epag Ym €
[0, Np —1]: f&[m] = f&lm+1]).

Proof. The dynamic energy curve in Lemma 2 corresponds to
the state (a) in Fig. 3. In this state, we have that

S Pl At— S Eli] £0, (17)
=0 1=0

m m

> Buli] =Y Pali]At — Epaa # 0. (18)
=0 =0

Substituting (17) and (18) into the complementary slackness
of the KKT conditions, (12) and (13), it can be obtained that
tm = 0 and A\, = 0. Then, according to (16), it can be
obtained that

- _3
2

N, N,
3 P P
P; [m] = E Pm+ Z Un_/\m_ Z /\n
n=m+1 n=m+1
i 3 N, N, T2
- 13 St > M = Pi[m+1].
L n=m-+1 n=m-+1
(19)

From (19) and the relation between the CPU clock frequency
and the dynamic power given in (9), we have that f*[m+1] =

fe[ml. O

1294

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on May 17,2022 at 12:37:14 UTC from |IEEE Xplore. Restrictions apply.

Lemma 3. Under the optimal policy, the CPU clock fre-
quency increases monotonically when the energy storage
becomes empty (i.e, Y .- Pyli]|At = > 1" Eplm], Vm €
0N, — 1] f2fm+ 1 £ [m)).

Proof. The dynamic energy curve in Lemma 3 corresponds to
the state (b) in Fig. 3. In this state, we have that

> Pali] At = Exi] =0, (20)
=0 1=0

> Enli) = > Pali)At — Epax # 0. @1)
=0 =0

Substituting (21) into the complementary slackness of the
KKT conditions given in (13), it can be obtained that \,, =
0. Substituting (20) into (12), and then according the dual
feasibility of the KKT conditions given in (14), we have that
m > 0. Fianlly, according to (16), it can be obtained that

3

i 3 N, N, Tz
P;[m] = B Hom =+ Z Mo = A — Z An
n=m-+1 n=m++1
i 3 N, N, T2
S 2 Z Hn — Z /\n :P;[m+1}
_ﬁ n=m+1 n=m+1

(22)
From (22) and the relation between the CPU clock fre-
quency and the dynamic power described in (9), we have that

fem+1] = f2m]. H

Lemma 4. Under the optimal policy, the CPU clock frequency
decreases monotonically when the energy storage becomes full
(e, Yo Pali)At=3"" Ep[m]+ Emaq Ym € [0, N, —1]:
felm+1] < f2lm]).

Proof. The dynamic energy curve in Lemma 4 corresponds to
the state (c) in Fig. 3. In this state, we have that

> Pli] At =Y "Eyli] #0, (23)
=0 =0

> EBuli] =Y Pali)At — Epga = 0. (24)
=0 =0

Substituting (23) into the complementary slackness of the
KKT conditions given in (12), we can obtain u,, = 0.
Substituting (24) into (13), and then according to the dual
feasibility of the KKT conditions given in (14), we have
Am > 0. Finally, according to (16), it can be obtained that

~ _3
2

From (25) and the relation between the CPU clock fre-
quency and the dynamic power given in (9), we have that

felm +1] < fem]. &

Lemma 5. Under the optimal policy, the cloudlet consumes
all the harvested energy by the end of the last slot (i.e.,

S Pl At = Y0 Eyli)).

Proof. If energy is not exhausted in the last time slot with
the optimal P;[¢], ¢ = 1,...,N,, we can always find
P}[N,] > P;[N,]| that consumes all collected energy. Because
Z(+) in (15) is a monotonically increasing function of Py,
thus .Z(P}[Np]) > F(P;[Np]), which means that P;[N,] is
not optimal. Therefore, the optimal policy must consume all
harvested energy in the last time slot. O

C. Tightest String Policy

Here, we use an example to introduce how to utilize the
Lemmas and Corollaries proved in Section IV and Section V-B
to optimize the computing power for the cloudlet.

As shown in Fig. 4, we first mark several turning points in
the feasible energy tunnel as p;, ¢ = 0,...,8, where pg is
the starting point. The optimal dynamic energy curve can be
obtained through the following steps.

Energy causality constraint Pg

[P7 Energy storage capacity constraint

Accumulative energy

~

Figure 4. The tightest string policy for computing power optimization.

Step 1: Connect py with all turning points in the energy
feasibility tunnel. Remove the strings that have any portion
fall outside the tunnel. The rest of the strings, which are pyp1,
Dopz, and pops, are considered as admissible starting strings.

Step 2: According to Corollary 2, among all admissible
starting strings, we keep the one with the longest duration and
remove others. If two starting strings have the longest duration,
such as pop2 and pop3 in Fig. 4, and then go to the next step
to examine each retained string.

Step 3: We check pops first. Let py be the new starting
point, and then repeat Step 1 and Step 2 to obtain all
admissible strings, p2p4 and pap5. Because pops hits the lower
bound of the energy feasibility tunnel, which means that the
energy storage is full. In this case, according to Lemma 4,
the CPU will reduce the frequency and the dynamic power in

3 N, N, the next slot. As a result, the slope of pzp; must be smaller
Pilm] = 3 Lo + Z Lo — Am — Z A than that of pops. However, it can be observed from Fig. 4
n=m-+1 n=m-+1 that the slopes of psps and pyps are both greater than the
_ _3 slop of pgpz. Therefore, pops needs to be removed from the

3 Ny Ny ’ . admissible strings, and only pgps is retained.
= B Z Pn = Z An = Fy[m+1]. Step 4: Let p3 be the new starting point, then we repeat Step
[\n=mil n=m+1 1 and Step 2 to obtain all admissible strings, which are P3pg
(25 and P3p7. We first check p3pg. According to Lemma 35, the

1295

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on May 17,2022 at 12:37:14 UTC from |IEEE Xplore. Restrictions apply.

cloudlet must spend all received energy at the end of the time
slot. Therefore, the end point of the dynamic energy curve is
ps. As shown in the figure, p3pg reaches the upper bound of the
energy feasibility tunnel. In this case, the CPU will increase
the frequency and the dynamic power in the next slot based
on Lemma 3. Therefore, the slope of pgp; should be greater
than that the slope of p3pg, which is unsatisfactory. Therefore,
D3ps is removed from the admissible strings. Finally, p3p7 and
D7ps are retained as the optimal solution.

Step S5: After obtaining the optimal strings through Step 1
to Step 5, the optimal dynamic power of the CPU in each time
slot is available, which is the slope of the strings. Finally, the
optimal CPU frequency can be calculated by (9).

The optimal strings obtained through the above steps are
the tightest that follows the Lemmas. The corresponding CPU
frequency scaling policy is called the tightest string policy. To
be specific, assume that a thread ball is placed in the energy
feasibility tunnel. We tie one end of the thread ball to the
starting point pg, and then withdraw the thread at the endpoint
ps. The process will not stop until the thread is fully tightened.
Finally, the thread left in the tunnel has the shortest length and
the tightest shape. Similar observation can also be found in
the transmission scheduling of wireless communications with
deadline constraints [15].

VI. PERFORMANCE EVALUATION

This section evaluates the performance of different CPU
frequency scaling strategies. We first briefly introduce the
simulation configuration. Then, we compare the performance
of three different offline strategies.

A. Simulation Setup

In the simulation, we will evaluate the performance of the
optimal CPU frequency scaling policy in different settings,
and compare it with the following two frequency management
strategies:

- Average scaling strategy: In this strategy, the cloudlet
estimates the average of the energy harvesting rate, and
adjusts the CPU frequency so that the dynamic power is
equal to the average energy harvesting rate.

- Greedy scaling strategy: In this strategy, the cloudlet will
spend all the collected energy at the end of each time slot
to maximize short-term computing power.

The simulations are carried out on MATLAB. In the simu-
lation, the length of each time slot is At=10 min. The default
value of the average energy harvesting rate is pp, =96 W, thus
the average amount of energy that the cloudlet can receive in
each time slot is £;, = 16 Wh or 5.76 x 10* J. The frequency
scaling coefficient is set to 3=0.565x10°. With this frequency
scaling coefficient, when the dynamic power is 10 W and
150 W, the CPU clock frequencies are 1.2 GHz and 3.0 GHz,
respectively.

B. Performance Comparison

In Fig. 5, we evaluate the impact of the energy storage
capacity on the average clock rate (f.) of different CPU scaling

N M—H—/’A\A/A
I
S o6t 1
2
o

—X
S 24r X 1
8 X =X
Sool x — * —4&— Optimal strategy | |
© — X— Average strategy
G>) Greedy strategy
< 2 \ . . .

60 80 100 120
E (Wh)

max

Figure 5. Impact of energy storage capacity on the performance of different
CPU frequency management strategies.

strategies. The amount of energy harvested in each time slot
follows a truncated Gaussian distribution that lies between
0 Wh and 50 Wh with a mean of 16 Wh and a standard devia-
tion of 10 Wh. The truncated Gaussian distribution guarantees
that the energy harvesting rate is a positive value less than
300 W, which is the peak energy harvesting rate that a 2.5 m?
solar panel with 20% energy conversion efficiency can be
achieved in an unshadowed area. The results presented in the
figure are the average of 10 simulations.

As illustrated in Fig.5, the performance of the average CPU
frequency scaling strategy is much lower than that of the other
two strategies, especially when the energy storage capacity is
low. In addition, the optimal strategy and the greedy strategy
are less affected by the variation of FE,,,,. As a result, in
the optimal strategy and the greedy strategy, f. is almost a
constant relative to F,,,,. For example, when the maximum
capacity of energy storage increases from 55 Wh to 130 Wh,
f. with the average frequency management strategy increases
from 2.22 GHz to 2.43 GHz. In this case, the computing power
of the cloudlet is improved by 8.6%. On the contrast, if
the optimal strategy is adopted, f. slightly increases from
2.65GHz to 2.71 GHz. As a result, there is only a 2.5%
improvement in computing power.

Compared with the optimal strategy, the performance of
the greedy strategy is relatively low due to the inefficient
energy utilization. Specifically, as shown in (2), the clock
frequency of the CPU is a concave function of the dynamic
power. Therefore, it is not efficient to improve the computing
power of the cloudlet by increasing the dynamic power.
In fact, if the maximum capacity of the energy storage is
unlimited and all tasks have no deadline, the most efficient
way to use the harvested energy is to perform the task at the
lowest frequency, thereby maximizing the total clock cycles
for a given energy consumption. However, the greedy strategy
consumes all collected energy at the highest possible power.
The energy collected in past time slots cannot be saved for
future use, resulting in low energy utilization.

Compared with the greedy strategy, the average CPU fre-
quency scaling policy has higher energy efficiency due to the
lower average dynamic power. However, the energy harvesting
efficiency of the average strategy is relatively low because
it uses the collected energy in a conservative manner. As
a consequence, when the dynamic power of the average

1296

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on May 17,2022 at 12:37:14 UTC from |IEEE Xplore. Restrictions apply.

NG
> 0 o

N
(S

Optimal strategy
Average strategy |
Greedy strategy XX Xy

—_—

n
o

—_—a

Average clock rate (GHz)
N
w

N

2 4 6 8 10
Standard deviation of E, (Wh)

Figure 6. Impact of energy variation on the performance of different CPU
frequency management strategies.

strategy is lower than the energy harvesting rate, the energy
storage may overflow. Increasing the maximum capacity of the
energy storage can improve the performance of the average
CPU frequency scaling strategy, making it gradually approach
the optimal solution by reducing the probability of battery
overflow.

In Fig. 6, we evaluate the impact of energy dynamics on
the performance of the three CPU frequency management
strategies. In the figure, the maximum capacity of the energy
storage and the average energy harvesting rate are set to
FErar = 85Wh and pp, = 16 Wh, respectively. Denote the
standard deviation of FEj as oj, which can indicate the
variation of energy intensity. In order to clearly show the
relationship between the performance of the three strategies
and o}, we perform the linear fit to all discrete points, and
show the results with the solid line in the figure.

As shown in Fig. 6, when the fluctuation of energy intensity
becomes large, the performance of all three CPU management
strategies decreases linearly. According to Lemma 2, it can
be realized that an ideal energy feasibility tunnel should be
the one that allows the CPU frequency to remain constant
throughout the whole tunnel. In this case, the tightest string
will be a single line segment connecting the start and end of the
tunnel. To achieve this, the height of the steps in the energy
feasibility tunnel needs to be consistent, which requires the
fluctuation of the energy intensity to be as small as possible.
Otherwise, the slope of the tightest string will keep changing to
meet the constraints of the energy causality and energy storage
capacity, thereby reducing the efficiency of energy utilization.

From Fig. 6, it can be observed that the average frequency
management strategy is more sensitive to energy variation than
the greedy strategy and the optimal policy. For instance, when
the standard deviation of E}, increase from 1 Wh to 9 Wh, fc
with the average frequency management strategy is reduced
from 2.58 GHz to 2.15GHz, that is, the computing power
decreases by 16.7%. In the same situation, the average clock
rate of the greedy strategy is slightly reduced from 2.61 GHz
to 2.45 GHz, that is, the computing power is only reduced by
6.1%. This is because, with the increase of oy, the harvested
energy is very likely to be underutilized. As a result, there is a
high probability that the energy storage overflows in some time
slots, which greatly reduces the energy harvesting efficiency.

VII. CONCLUSION

In this paper, we studied the CPU frequency scaling problem
of the cloudlet with energy harvesting capability. The opti-
mization problem subject to the constraints of energy causality
and energy storage capacity is developed to maximize the
computing power of the CPU within a certain period of time.
By solving the KKT conditions, we conclude several lemmas
which is later used to obtain the optimal CPU frequency
management, namely, the tightest string policy. The tightest
string policy provides a graphical viewpoint of optimal CPU
frequency scaling.

ACKNOWLEDGEMENT

This work is supported in part by the US National Science
Foundation under Grant No. 2051356.

REFERENCES

[11 T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in industrial internet of things: architecture, advances
and challenges,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 4, pp. 2462-2488, 2020.

[2] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen,
“TOFFEE: task offloading and frequency scaling for energy efficiency
of mobile devices in mobile edge computing,” IEEE Transactions on
Cloud Computing, 2019.

[3] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590—
3605, 2016.

[4] F. Zhou and R. Q. Hu, “Computation efficiency maximization in
wireless-powered mobile edge computing networks,” IEEE Transactions
on Wireless Communications, vol. 19, no. 5, pp. 3170-3184, 2020.

[51 J. Cochran, M. Miller, O. Zinaman, M. Milligan, D. Arent, B. Palmintier,
M. O’Malley, S. Mueller, E. Lannoye, A. Tuohy et al., “Flexibility in
21st century power systems,” National Renewable Energy Lab.(NREL),
Golden, CO (United States), Tech. Rep., 2014.

[6] K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “The en-
ergy/frequency convexity rule: modeling and experimental validation on
mobile devices,” in proceedings of International Conference on Parallel
Processing and Applied Mathematics. Springer, 2013, pp. 793-803.

[71 H. Mamur, “Design, application, and power performance analyses of
a micro wind turbine,” Turkish Journal of Electrical Engineering &
Computer Sciences, vol. 23, no. 6, pp. 1619-1637, 2015.

[8] Intel Company, “Intel Xeon Gold 6328HL Processor,” 2021, [Accessed:
Feb, 2021]. [Online]. Available: https://www.intel.com/content/www/us/
en/products/processors/xeon/scalable/gold- processors/gold-6328hl.html

[91 AMD Company, “AMD EPYC 7501, 2021, [Accessed: Feb,
2021]. [Online]. Available: https://www.amd.com/en/products/cpu/
amd-epyc-7501

[10] G. Papadakis, P. Tsamis, and S. Kyritsis, “An experimental investigation
of the effect of shading with plants for solar control of buildings,” Energy
and buildings, vol. 33, no. 8, pp. 831-836, 2001.

[11] Ossila Company, “Perovskites and perovskite solar cells: an introduc-
tion,” 2018, [Accessed: Feb, 2021]. [Online]. Available: https://www.
ossila.com/pages/perovskites-and-perovskite-solar-cells- an-introduction

[12] SpaceX Company, “Starlink,” 2021, [Accessed: Feb, 2021]. [Online].
Available: https://www.starlink.com

[13] T. D. Burd and R. W. Brodersen, ‘“Processor design for portable
systems,” Journal of VLSI signal processing systems for signal, image
and video technology, vol. 13, no. 2, pp. 203-221, 1996.

[14] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and
practical limits of dynamic voltage scaling,” in proceedings of the 41st
Annual Design Automation Conference, 2004, pp. 868—873.

[15] M. A. Zafer, “Dynamic rate-control and scheduling algorithms for
quality-of-service in wireless networks,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2007.

[16] Y. Luo, L. Pu, Y. Zhao, W. Wang, and Q. Yang, “A nonlinear recursive
model based optimal transmission scheduling in RF energy harvesting
wireless communications,” IEEE Transactions on Wireless Communica-
tions, vol. 19, no. 5, pp. 3449-3462, 2020.

1297

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on May 17,2022 at 12:37:14 UTC from |IEEE Xplore. Restrictions apply.

