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ABSTRACT
This work focuses on the problem of forecasting the energy
availability of renewable sources such as solar and wind
in smart grids. To solve this problem, we propose to use
weather radar information to make a short-time prediction
of the weather conditions in the area where the renewable
sources are located. For this purpose, an object tracking
method will be used to make the predictions by using as cues
the reflectivity and the velocity. This paper centers in an
object modeling approach based on clustering, which will be
used for the tracking algorithm.

Index Terms— Clustering, weather nowcasting, smart
grids

1. INTRODUCTION

Smart grids are an efficient manner to manage energy grid
systems. In a smart grid, digital technology and instrumenta-
tion systems are incorporated to the power generation, trans-
mission, distribution, and utilization components. The in-
tegration allows to gather the necessary information to effi-
ciently manage the offer and demand of energy. This orga-
nization allows to incorporate and maximize the use of re-
newable energy sources in such a way that the overall opera-
tional cost is minimized [1]. One problem that arises with the
use of renewable energy sources, such as solar and wind, is
that they fluctuate during day, as they are affected by weather
conditions. An energy availability prediction from these re-
newable sources based on the weather conditions would allow
the operators to plan ahead energy dispatch from conventional
sources or consumers to adjust their demand to the renewable
sources availability. Therefore, weather information becomes
of critical importance in this planning. Energy markets at dis-
tribution level, usually sample the power requirements every
15 minutes. Consequently, we propose to develop a system
that will be able to predict the weather conditions 15 minutes
ahead in the areas where the renewable energy sources are
located.

Different weather nowcasting approaches has been pro-
posed in recent years. An algorithm to determine the strike
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probability of thunderstorms in a chosen area is proposed in
[2]. They used constant thunderstorm speed and direction
with constant standard deviation, which was useful for short-
lifetime storms. Ruzansky et al. presented a method to pre-
dict weather conditions 10 minutes ahead using least squares
estimation formulated in the Fourier domain [3]. The pro-
posed equation used the sequence of radar reflectivity fields,
velocity fields, growth, and decay of intensity. Ruzansky and
Chandrasekar in another work proposed to use specific dif-
ferential phase instead of reflectivity to estimate rainfall [4].
Shukla et al. developed a source apportionment (SA) tech-
nique for tracking and nowcasting mesoscale convective sys-
tems (MCS) using satellite image sequences [5]. The convec-
tive areas were detected using neighborhood search criteria
to select contiguous pixels. Thong et al. proposed a hybrid
method combining interpolative picture fuzzy rule technique
and particle swarm optimization for weather nowcasting [6].
The algorithm showed an improvement in prediction against
other methods, but it requires more time to compute. Rossi
et al. presented an algorithm for tracking convective storms
using Kalman filtering [7]. They used a reflectivity thresh-
old to identify convective cells in every time step for then
apply a cluster algorithm to detect the centroid position of
the storms. Bechini and Chandrasekar developed a weather
prediction algorithm that attempts to exploit all the available
dual-polarization and Doppler information provided by a sin-
gle radar [8].

In this paper, we present the pre-processing steps and the
object detection algorithm to make a further short-time pre-
diction. All this based on the reflectivity and velocity infor-
mation provided by the UPRM TropiNet weather radar net-
work. The final objective of this project, which is currently
in development, is to use an object tracking approach to make
the correspondent predictions.

The rest of this paper is organized as follows. Section
2 describes the radar network. Section 3 explains the pre-
processing made to the data supplied by the radars. Section
4 details the implemented method to merge the images pro-
vided by the radar network. Section 5 describes the proposed
clustering algorithm for the high reflectivity zones. Section 6
shows the initial results obtained in this early stage. Finally,
Section 7 provides concluding remarks.
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2. TROPINET RADAR NETWORK

TropiNet is a radar network located in the western side of
Puerto Rico and it comprises three radars as seen in Fig. 2.
Each node is a RXM-25 unit which is a polarimetric and
Doppler weather radar, operating at X-band [9], with a tempo-
ral resolution of one minute with a scan range of 40.161 km,
approximately. The full specifications for each radar node is
documented in [10]. In order to take maximum advantage
of the radar network configuration, the geographic zone in
which the algorithms will make predictions is the zone where
the three radar coverage overlap.

Fig. 1. Coverage of Isabela (red cross), Cabo Rojo (blue
square), and Lajas (black circle) radars

3. RADAR INFORMATION PRE-PROCESSING

The radars provide images in polar form arranged in matrices,
where each row of the matrix correspond to different radii.
To simplify the image processing, a conversion to cartesian
coordinates is carried out. This process presents two differ-
ent challenges: data mapping and interpolation. The data
mapping refers to the place where every sensed point will be
located in the image after the conversion. The interpolation
refers to process of covering the areas where the radar did not
sense, but it can be inferred from the adjacent points of these
areas, this process is carried out by a median filter. The pro-
cess is identical for the reflectivity and the velocity matrices.

4. IMAGE RADAR FUSION

Since the purpose is to exploit the spatial radar network con-
figuration, a process to merge the images of the three radars

is performed. The first step is to determine the pixel distance
between the centers of the three images. Vincenty’s formula
is a widely used method to calculate the distance between two
points in the earth’s surface, since it is accurate within 0.5mm.
To establish the pixel distance between the three radars, it is
necessary to first calculate the x- and y- physical distance dis-
placements. The pixel distance can be then calculated by us-
ing rule of three.

4.1. Image Reflectivity Fusion

There are several methods to accomplish the fusion process
of reflectivity images. For example, the fusion process could
be made by taking the maximum value, the minimum value,
or by calculating the mean between the different images. In
this work, a weighted mean is used to carry out the fusion
process. The weights of every image is established by giving
the weight according to the closeness to the physical position
of each radar. Consequently, the final value of each point in
the merged image is obtained by
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where MR
ij is the ij-th pixel of the merged reflectivity image

MR, !k
ij is the weight of the ij-th pixel in the k radar, and

Rk
ij is the reflectivity value of the k radar.

4.2. Velocity Data Fusion

A Doppler radar provides a negative number of velocity if
the sensed point is moving towards the radar and a positive
number if the sensed point is moving away the radar. How-
ever, the real direction of the sensed point may be different.
In the overlapping zone, the velocity information provided by
each radar helps to better estimate the direction of each sensed
point.

In order to accomplish the fusion process, for each radar
velocity matrix, it is necessary to create a set of unitary vec-
tors pointing to the physical location of the radar. These uni-
tary vectors can be represented as a pair of matrices contain-
ing the x- and y- component of each vector. Then, the set of
velocity vectors is obtained by making a Hadamard multipli-
cation between the velocity information provided by the radar
and the components of the unitary vectors. The merged veloc-
ity for the x- and y- components MVx and MVy is obtained
by summing their respective components.

5. RAIN-CELLS DETECTION ALGORITHM

Traditional tracking approaches are centered in new manners
to perform the tracking of objects that can suffer occlusions,
scale or appearance changes, rotations, etc. Moreover, the ex-
tracted features are mainly based in geometric characteristics,
e.g., centroid, height, width, etc. However, applications with

���	

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on May 17,2022 at 13:25:46 UTC from IEEE Xplore.  Restrictions apply. 



high uncertainty, like cloud tracking in weather prediction,
cannot be easily addressed using these approaches since the
clouds or rain cells change shape constantly, can completely
disappear, scatter or combined with others.

To attack this problem, we propose to use a clustering
method to model the cells as unshaped and unsized objects.
We define zones of high reflectivity as the ones that are larger
than a threshold. Those salient points per frame is the dataset
in which the clustering method will be applied. To develop
the clustering algorithm, it is necessary to take into account
the next characteristics: there has to be an unsupervised clus-
tering algorithm since there is no categories or labels and the
number of cluster per frame is also unknown. Our clustering
algorithm is based on divisive hierarchical clustering, which
is an unsupervised machine learning algorithm. The follow-
ing are the steps for developing the hierarchical clustering: 1)
binarize each frame by using,

BR
ij =

(
1, if MR

ij  TZ

0, otherwise
(2)

where BR is the binarized image and TZ is the reflectivity
threshold, 2) retrieve the location of every salient point in the
binarization, 3) form a single cluster with all points, 4) start
by joining points that its distance is equal or less than a thresh-
old distance, a new cluster is formed if the distance from the
formed cluster to the point is greater than the threshold dis-
tance. To define if a point belongs to a cluster, we define
a threshold distance that is given by the k-neighbor adjacent
pixels from all pixels in the cluster. The process is repeated
until all the points are assigned to a cluster.

From the clusters formed, we will extract the following
features that will be used for the tracking algorithm. 1) Cen-
troids: the x- and y-average of every point in the cluster. 2)
Inter-cluster distances: distance between the nearest neigh-
bors (single linkage), it will be used to predict a possible
merge of clusters. 3) Intra-cluster distances: measure of how
sparse is the cluster. 4) Average velocity: a wind vector that
shows the probable speed and direction of the cluster. 5) Max-
imum velocity: the maximum wind vector associated with
each cluster, it will be used to predict a possible cluster break.
6) Cluster size and 7) number of clusters.

6. INITIAL RESULTS

The tests of the processing algorithms shown in this article
were made over data collected in 2016 [11]. Fig. 6 depicts
an event of rainfall in the overlapping zone of the three radar
nodes. The black bounding boxes enclose the zones of high
reflectivity, which we consider for this example, the zones
that have over 35 dBz [7]. The number of adjacent neighbors
used for the clustering algorithm was 99, which can be seen as
a high number, but in experiments we have found that lower
adjacent neighbors lead to redundant prediction over the same

weather system. In the tracking system, we plan to use a sim-
ilar number of adjacent neighbors as in this example in order
to avoid over processing.

Since the radar network can provide a measure every
minute, our prediction system must be able to make a fore-
cast within this time range. Therefore, we have also evaluated
the elapsed time for the image pre-processing, fusion, and
clustering. We have performed 100 experiments in order to
extract the average time of every step and the entire process.
The results are shown in Table 1. For performance analysis
purposes, we have included the time reported by The Python
ARM Radar Toolkit Py-ART [12] for a fusion of two radar
images. The reason for the large time processing difference
between our algorithm and the Py-ART method could be due
to the more complex pre-processing interpolation used by Py-
ART, which could lead to better results, than the used in our
algorithm. Our time for clustering presents a large standard
deviation because is dependent on the number of rain cells
present in every sample.

Table 1. Time performance comparison
Our Algorithm Py-ART

Pre-processing X̄ = 7.02s s = 0.13s 16.63sImage Fusion X̄ = 0.3s s = 0.009s
Clustering X̄ = 8.34s s = 1.18s –

7. SUMMARY AND FUTURE WORK

This paper presented the initial radar image processing for a
future weather nowcasting system which it could be use as
a service of renewable source energy availability for smart
grids. The pre-processing stage comprises a conversion to
cartesian coordinates and a smoothing process made by two
median filters. The radar image fusion stage uses a weighted
mean scheme for the reflectivity cue and a vector component
summation for the velocity cue. The rain-cell detection is car-
ried out by a clustering algorithm that uses a pixel distance
threshold for determining the pixel association. The outputs
from this clustering process, which are going to be used as
input in the tracking algorithm, are the cluster centroids, the
inter- and intra-cluster distance, the average and maximum
velocity of every cluster, the cluster size, and the number of
clusters per sampled image. Our current work is set on the
cluster matching between consecutive sampled images as well
as the formulation of a dynamic model which it can be used
to the development of a state estimation framework.
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Fig. 2. Reflectivity image of the overlapping zone of the three radar nodes. The colormap used was “pyart NWSRef” [12]
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