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Quantum spin liquids, exotic phases of matter with topological order, have been a major focus in physics
for the past several decades. Such phases feature long-range quantum entanglement that can
potentially be exploited to realize robust quantum computation. We used a 219-atom programmable
quantum simulator to probe quantum spin liquid states. In our approach, arrays of atoms were placed on
the links of a kagome lattice, and evolution under Rydberg blockade created frustrated quantum states
with no local order. The onset of a quantum spin liquid phase of the paradigmatic toric code type

was detected by using topological string operators that provide direct signatures of topological order
and quantum correlations. Our observations enable the controlled experimental exploration of
topological matter and protected quantum information processing.

otivated by theoretical work carried

out over the past five decades, a broad

search has been underway to identify

signatures of quantum spin liquids

(QSLs) in correlated materials (7, 2).
Moreover, inspired by the intriguing predic-
tions of quantum information theory (3),
approaches to engineer such systems for topo-
logical protection of quantum information are
being actively explored (4). Systems with frus-
tration (5) caused by the lattice geometry or
long-range interactions constitute a promising
avenue in the search for QSLs. In particular,
such systems can be used to implement a class
of so-called dimer models (6-10), which are
among the most promising candidates to host
QSL states. However, realizing and probing
such states is challenging because they are
often surrounded by other competing phases.
Moreover, in contrast to topological systems
that involve time-reversal symmetry breaking,
such as in the fractional quantum Hall effect
(I1), these states cannot be easily probed by
means of, for example, quantized conductance
or edge states. Instead, to diagnose spin liquid
phases, it is essential to access nonlocal ob-
servables, such as topological string operators
(1, 2). Although some indications of QSL phases
in correlated materials have been previously
reported (12, 13), thus far, these exotic states
of matter have evaded direct experimental
detection.
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Programmable quantum simulators are well
suited for the controlled exploration of these
strongly correlated quantum phases (14-21).
In particular, recent work showed that various
phases of quantum dimer models can be effi-
ciently implemented by using Rydberg atom
arrays (22) and that a dimer spin liquid state of
the toric code type could be potentially created
in a specific frustrated lattice (23). Toric code
states have been dynamically created in small
systems by using quantum circuits (24, 25).
However, some of the key properties, such
as topological robustness, are challenging to
realize in such systems. Spin liquids have also
been explored by using quantum annealers,
but the lack of coherence in these systems has
precluded the observation of quantum fea-
tures (26).

Dimer models in Rydberg atom arrays

The key idea of our approach is based on a
correspondence (23) between Rydberg atoms
placed on the links of a kagome lattice (or
equivalently, the sites of a ruby lattice) (Fig. 1A)
and dimer models on the kagome lattice (8, 10).
The Rydberg excitations can be viewed as
“dimer bonds” that connect the two adjacent
vertices of the lattice (Fig. 1B). Because of the
Rydberg blockade (27), strong and properly
tuned interactions constrain the density of
excitations so that each vertex is touched by
a maximum of one dimer. At 1/4 filling, each
vertex is touched by exactly one dimer, result-
ing in a perfect dimer covering of the lattice.
Smaller filling fractions result in a finite den-
sity of vertices with no proximal dimers, which
are referred to as monomers. A QSL can emerge
within this dimer-monomer model close to
1/4 filling (23) and can be viewed as a co-
herent superposition of exponentially many
degenerate dimer coverings with a small ad-
mixture of monomers (Fig. 1C) (10). This cor-
responds to the resonating valence bond (RVB)
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state (6, 28), which was predicted long ago
but is so far still unobserved in any experi-
mental system.

To create and study such states experimental-
ly, we used two-dimensional arrays of 219 5’Rb
atoms individually trapped in optical tweez-
ers (29, 30) and positioned on the links of a
kagome lattice (Fig. 1A). The atoms were ini-
tialized in an electronic ground state |g) and
coupled to a Rydberg state |) by means of a
two-photon optical transition with Rabi fre-
quency Q. The atoms in the Rydberg state |r)
interact with one another through a strong
van der Waals potential V = V,/d®, where d is
the interatomic distance. This strong inter-
action prevents the simultaneous excitation
of two atoms within a blockade radius R}, =
(VO/Q)I/ 6 (27). We adjusted the lattice spacing
a and the Rabi frequency Q so that for each
atom in |r), its six nearest neighbors are all
within the blockade radius (Fig. 1B), result-
ing in a maximum filling fraction of 1/4. The
resulting dynamics correspond to unitary evo-
lution U(t) governed by the Hamiltonian

%{=@de *A(t);ni
+y Vimny 1)

i<j

where % is Planck’s constant 2 divided by 2r,
n; = |r;)(r;| is the Rydberg state occupation at
site 4, of = |g;)(ri| + |73)(g:], and A(?) is the
time-dependent two-photon detuning. After
the evolution, the state was analyzed by means
of projective readout of ground-state atoms
(Fig. 1A, right) (29).

To explore many-body phases in this system,
we used quasi-adiabatic evolution, in which
we slowly turned on the Rydberg coupling Q
and subsequently changed the detuning A
from negative to positive values by using a
cubic frequency sweep over ~2 us (Fig. 1D). We
stopped the cubic sweep at different endpoints
and first measured the density of Rydberg ex-
citations (n). Away from the array boundaries
(which result in edge effects permeating just
two layers into the bulk), we observed that the
average density of Rydberg atoms was uniform
across the array (fig. S4) (31). Focusing on the
bulk density, we found that for A/Q > 3, the
system reaches the desired filling fraction
(n) ~1/4 (Fig. 1E, top). The resulting state
does not have any obvious spatial order (Fig.
1A) and appears as a different configuration of
Rydberg atoms in each experimental repeti-
tion (fig. S5) (31). From the single-shot images,
we evaluated the probability for each vertex of
the kagome lattice to be attached to one dimer
(as in a perfect dimer covering), zero dimers (a
monomer), or two dimers (representing weak
blockade violations). Around A/Q ~ 4, we ob-
served an approximate plateau at which ~80%
of the vertices were connected to a single dimer
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(Fig. 1E), indicating an approximate dimer
covering.

Measuring topological string operators

A defining property of a phase with topolog-
ical order is that it cannot be probed locally.
Hence, to investigate the possible presence of
a QSL state, it is essential to measure nonlocal
observables. In the case of dimer models, a

particularly convenient set of nonlocal varia-
bles is defined in terms of topological string
operators, which are analogous to those used
in the toric code model (3). For the present
model, there are two such string operators,
the first of which characterizes the effective
dimer description; the second probes quan-
tum coherence between dimer states (23).
We first focused on the diagonal operator

Fig. 1. Dimer model in Rydberg atoms arrays. (A) Fluorescence image of

219 atoms arranged on the links of a kagome lattice. The atoms, initially in the
ground state |g), evolve according to the many-body dynamics U(t). The final
state of the atoms was determined by means of fluorescence imaging of ground-
state atoms. Rydberg atoms are indicated with red dimers on the bonds of

the kagome lattice. (B) We adjusted the blockade radius to Ry/a = 2.4 by
choosing Q = 2r x 1.4 MHz and a = 3.9 um, so that all six nearest neighbors of
an atom in |r) are within the blockade radius Ryp. A state consistent with the
Rydberg blockade at maximal filling can then be viewed as a dimer covering of
the kagome lattice, where each vertex is touched by exactly one dimer. (C) In

A

Fig. 2. Detecting a dimer phase by means of diagonal string operator.

(A) The Z string operator measures the parity of dimers along a string. (B) A
perfect dimer covering always has exactly one dimer touching each vertex of the
array, so that (Z) = (—1) around a single vertex and (Z) = (—1)"endosed vertes g
larger loops. (C) Z parity measurements following the quasi-adiabatic sweep of Fig. 1D,
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sures the parity of Rydberg atoms along a
string S perpendicular to the bonds of the
kagome lattice (Fig. 2A). For the smallest
closed Z loop, which encloses a single ver-
tex of the kagome lattice, (Z) = —1 for any
perfect dimer covering. Larger loops can be
decomposed into a product of small loops
around all the enclosed vertices, resulting in
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the idealized limit, the QSL state corresponds to a coherent superposition of
exponentially many dimer coverings. (D) Detuning A(t) and Rabi frequency Q(t)
used for quasi-adiabatic state preparation. (E) (Top) Average density of Rydberg
excitations (n) in the bulk of the system, excluding the outer three layers

(31). (Bottom) Probabilities of empty vertices in the bulk (monomers; blue
symbols), vertices attached to a single dimer (red symbols), or to double dimers

green symbols). After A/Q ~ 3, the system reaches

~1/4 filling, where most vertices are attached to a single dimer, which is
consistent with an approximate dimer phase. The average density of defects
per vertex in the approximate dimer phase is ~0.2.
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with the addition of a 200-ns ramp-down of Q at the end to optimize preparation. At
different endpoints of the sweep and for (D) different loop sizes, we measured a
finite (Z), which is consistent with an approximate dimer phase. The sign of (Z)
properly matches the parity of the number of enclosed vertices: 6 (red), 11 (green),
15 (blue), and 19 (orange). (E) The measured (Z) for the two largest loops (fig. S9).
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Fig. 3. Probing coherence between dimer states by means of off-diagonal
string operator. (A) Definition of X string operator on a single triangle of

the kagome lattice. (B) On any closed loop, the X operator maps any dimer
covering into another valid dimer covering, so that (X) measures the coherence
between pairs of dimer configurations. (C) The X operator is measured by
evolving the initial state under the Hamiltonian (Eq. 1) with A = 0 and reduced
blockade radius to encompass only atoms within each individual triangle,
implementing a basis rotation that maps X into Z. (D) In the experiment, after

<Z> _ (_1)#enclosed vertices (Fig. QB). The pres-
ence of monomers or double-dimers reduces
the effective contribution of each vertex, re-
sulting in a reduced (Z).

To measure (Z) for different loop shapes
(Figs. 2, C and D), we evaluated the string
observables directly from single-shot images,
averaging over many experimental repetitions
and over all loops of the same shape in the bulk
of the lattice (3I). In the range of detunings
where (n) ~1/4, we clearly observed the emer-
gence of a finite (Z) for all loop shapes, with
the sign matching the parity of enclosed ver-
tices, as expected for dimer states (Fig. 2B).
The measured values were generally |(Z)| < 1
and decreased with increasing loop size, sug-
gesting the presence of a finite density of de-
fects. Nevertheless, these observations indicate
that the state we prepared was consistent with
an approximate dimer phase.

‘We next explored quantum coherence prop-
erties of the prepared state. To this end, we con-
sidered the off-diagonal X operator, which acts
on strings along the bonds of the kagome lat-
tice. It is defined in Fig. 3A by its action on a
single triangle (23). Applying X on any closed
string maps a dimer covering to another valid
dimer covering (for example, a loop around a
single hexagon in Fig. 3B). A finite expectation
value for X therefore implies that the state con-
tains a coherent superposition of one or more
pairs of dimer states coupled by that specific
loop, which is a prerequisite for a QSL. The
measurement of X can be implemented by per-
forming a collective basis rotation, illustrated
in Fig. 3C (23). This rotation was implemented
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through time evolution under the Rydberg
Hamiltonian (Eq. 1) with A = 0 and reduced
blockade radius Ry/a = 1.53, so that only the
atoms within the same triangle were subject
to the Rydberg blockade constraint. Under
these conditions, it was sufficient to consider
the evolution of individual triangles separate-
ly, where each triangle can be described as a
four-level system (/A A /A, A). Within this
subspace, after a time t = 4n/(3Q+/3), the
collective three-atom dynamics realizes a
unitary U, that implements the basis rota-
tion that transforms an X string into a dual
Z string (31).

Experimentally, the basis rotation was imple-
mented after the state preparation by quench-
ing the laser detuning to A, = 0 and increasing
the laser intensity by a factor of ~200 to reduce
the blockade radius to Ry/a = 1.53 (Fig. 3D)
(31). We calibrated t by preparing the state
at A/Q = 4 and evolving under the quench
Hamiltonian for a variable time. We measured
the parity of a Z string that was dual to a target
X loop and observed a sharp revival of the
parity signal at t ~ 30 ns (Fig. 3E) (23). Fixing
the quench time 1, we measured (X) for dif-
ferent values of the detuning A at the end of
the cubic sweep (Fig. 3F) and observed a finite
X parity signal for loops that extend over a
large fraction of the array. These observations
clearly indicate the presence of long-range
coherence in the prepared state.

Probing spin liquid properties

The study of closed string operators showed
that we prepared an approximate dimer phase
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the state preparation, we set the laser detuning to A; = 0 and increased Q to
2n x 20 MHz to reach Ry/a = 1.53. (E) By measuring the Z parity on the dual
string (red) of a target X loop (blue) after a variable quench time, we identified
the time 1 for which the mapping in (C) is implemented. (F) We measured (X)
for different final detunings of the cubic sweep and (inset) for different loop
sizes and found that the prepared state has long-range coherence that extends
over a large fraction of the array (31). The dual Z loops corresponding to the
X loops shown in the inset are defined in fig. S3 and (31).

with quantum coherence between dimer cov-
erings. Although these closed loops are in-
dicative of topological order, we needed to
compare their properties with those of open
strings to distinguish topological effects from
trivial ordering—the former being sensitive to
the topology of the loop (32-34). This compar-
ison is shown in Fig. 4, D and E, and indicates
several distinct regimes. For small A, we found
that both Z and X loop parities factorize into
the product of the parities on the half-loop
open strings; in particular, the finite (Z) is a
trivial result of the low density of Rydberg
excitations. By contrast, loop parities no longer
factorize in the dimer phase (3 <A/Q <5). In-
stead, the expectation values for both open
string operators vanish in the dimer phase,
indicating the nontrivial nature of the corre-
lations measured with the closed loops (31).
More specifically, topological ordering in the
dimer-monomer model can break down either
because of a high density of monomers, cor-
responding to the trivial disordered phase at
small A/Q, or owing to the lack of long-range
resonances, corresponding to a valence bond
solid (VBS) (23). Open Z and X strings distin-
guish the target QSL phase from these proxi-
mal phases: When normalized according to
the definition from Fredenhagen and Marcu
(FM) (Fig. 4, B and C) (32, 33), vanishing
expectation values for these open strings can
be considered to be key signatures for the QSL.
In particular, open Z strings have a finite ex-
pectation value when the dimers form an or-
dered spatial arrangement, as in the VBS phase.
At the same time, open X strings create pairs
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of monomers at their endpoints (Fig. 4A), so a
finite (X) can be achieved in the trivial phase,
where there is a high density of monomers.
Therefore, the QSL can be identified as the
only phase where both FM string order pa-
rameters vanish for long strings (23).

The measured values of the FM order param-
eters are shown in Fig. 4, F and G. We found
that (Z)g, is compatible with zero over the
entire range of A/Q, where we observed a fi-
nite Z parity on closed loops, indicating the
absence of a VBS phase (Fig. 4F), which is
consistent with our analysis of density-density
correlations (fig. S6) (31). At the same time,
(X) gy converges toward zero on the longest
strings for A/Q > 3.3 (Fig. 4G), indicating a
transition out of the disordered phase. By
combining these two measurements with the
regions of nonvanishing parity for the closed
Z and X loops (Figs. 2 and 3), we conclude that
for 3.3 <A/Q<4.5, our results constitute a
direct detection of the onset of a QSL phase
(Fig. 4, F and G, shaded area).

The measurements of the closed-loop oper-
ators in Figs. 2 and 3 show that |(Z)|, [(X)| < 1
and that the amplitude of the signal decreases
with increasing loop size, which results from
a finite density of quasiparticle excitations.
Specifically, defects in the dimer covering such
as monomers and double-dimers can be inter-
preted as electric (e) anyons in the language of
lattice gauge theory (23). Because the presence
of a defect inside a closed loop changes the
sign of Z, the parity on the loop is reduced
according to the number of enclosed e-anyons

as|(Z)| = ‘<(—1)#e“dosed H“yons> ‘ The average

number of defects inside a loop is expected to
scale with the number of enclosed vertices—
with the area of the loop—and we observed an
approximate area-law scaling of |(Z)| for small
loop sizes (Fig. 4H). However, for larger loops
we observed a deviation from area-law scaling,
closer to a perimeter law. This can emerge if
pairs of anyons are correlated over a char-
acteristic length scale smaller than the loop
size [a discussion of the expected scaling is
provided in (31)]. Pairs of correlated anyons
that are both inside the loop do not change
its parity because their contributions cancel
out; they only affect (Z) when they sit across
the loop, leading to a scaling with the length
of the perimeter. These pairs can be viewed
as resulting from the application of X string
operators to a dimer covering (Fig. 4A), orig-
inating, for example, from virtual excitations
in the dimer-monomer model (3I) or from
errors caused by state preparation and detec-
tion. State preparation with larger Rabi fre-
quency (improved adiabaticity) results in
larger Z parity signals and reduced e-anyon
density (fig. S9).

A second type of quasiparticle excitation
that could arise in this model is the so-called

Semeghini et al., Science 374, 1242-1247 (2021)

magnetic (/) anyon. Analogous to e-anyons,
which live at the endpoints of open X strings
(Fig. 4A), m-anyons are created by open Z
strings and correspond to phase errors be-
tween dimer coverings (fig. S11) (31). These
excitations cannot be directly identified from
individual snapshots but are detected with
the measurement of closed X loop operators.
The perimeter law scaling observed in Fig. 41
indicates that m-anyons only appear in pairs

3.0 3.5 4.0 4.5 5.0 5.5 6.0
A/Q

# enclosed vertices
6 10 14 18 22

12 14 16 18 20 22
# atoms on loop

with short correlation lengths (31). These ob-
servations highlight the prospects for using
topological string operators to detect and probe
quasiparticle excitations in the system.

Toward a topological qubit

To further explore the topological properties
of the spin liquid state, we created an atom ar-
ray with a small hole by removing three atoms
on a central triangle (Fig. 5), which creates

2.5 3.0 3.5 4.0 4.5 5.0 55
A/Q

# enclosed hexagons
1 2 3 4 5

0.35 1
0.30 1
0.25 1

0.20 1
5 0.15 4

0.90 -

) 1/area

0.85 1@—— —0——0

) 1/perim

% 0.80 |

12 16 20 24 28 32
# atoms on loop

Fig. 4. String order parameters and quasi-particle excitations. (A) An open string operator X,pen acting
on a dimer state D) creates two monomers (e-anyons) at its endpoints (m-anyons are shown in fig. S11).
(B and C) Definition of the string order parameters (Z)g and (X),. (D) Comparison between (Zjsed)
and <Zoper.>2 measured on the strings shown in the inset. The expectation value shown for the open string is
squared to account for a factor of two in the string lengths. (E) Analogous comparison for X. (F and

G) Zooming in on the range with finite closed loop parities, we measured the FM order parameters for
different open strings (insets). We found that (Z), is consistent with zero over the entire range of A, whereas
(X)py vanishes for A/Q 2 3.3, which allowed us to identify a range of detunings consistent with the onset
of a QSL phase (shaded area). (H) Rescaled parities (Z)Y/*® and (Z)YP*'™ evaluated for A/Q = 3.6, where
area and perimeter are defined as the number of vertices enclosed by the loop and the number of atoms
on the loop, respectively. For small loops, Z scales with an area law but deviates from this behavior for larger

loops, converging toward a perimeter law. (I) (X)

1/area

(the area, in this case, is the number of enclosed

hexagons) and (X)"/"*"™ evaluated for A/Q = 35, indicating an excellent agreement with a perimeter-law scaling.
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Fig. 5. Topological properties in array with a hole. (A) A lattice with nontrivial topology is obtained by
removing three atoms at the center to create a small hole. The dimer states can be divided into two distinct
topological sectors 0 and 1. Z strings connecting the hole to the boundary always have a well-defined
expectation value within each sector and opposite sign between the two sectors; the correlations between
two such strings Z1Z, are identical for both sectors. (B) Measured expectation values for the operators 7.
and X, defined in the inset, indicate that in the QSL region (shaded area), we prepared a superposition

state of the two topological sectors ({Z)

= 0) with a finite overlap with the |+) state ((X.) > 0). (C) Finite

expectation values for the correlations between pairs of hole-to-boundary Z strings (inset), which is

consistent with (A).

an effective inner boundary [both inner and
outer boundaries here correspond to the so-
called m-type boundaries (31)]. This resulted
in two distinct topological sectors for the dimer
coverings, where states belonging to different
sectors can be transformed into each other only
through large X loops that enclose the hole,
constituting a highly nonlocal process (involv-
ing at least a 16-atom resonance) (fig. S13). We
define the logical states |0r) and |1,) as the
superpositions of all dimer coverings from the
topological sectors 0 and 1, respectively. One
can define (23) the logical operator ¢} as being
proportional to any Z;, string operator that
connects the hole with the outer boundary,
given that these have a well-defined eigen-
value +1 for all dimer states in the same sector
but opposite for the two sectors. The logical
of is instead proportional to X, which is any
X loop around the hole. This operator anti-
commutes with Z;, and has eigenstates |+) ~
(o) + [11))/v2 and | -) ~ (j01) — [11))/V/2.

‘We measured Z;, and X;, on the strings de-
fined in Fig. 5B, inset, following the same
quasi-adiabatic preparation as in Fig. 1D. We
found that in the range of A/Q associated
with the onset of a QSL phase, (Z;) = 0, and
(X1) > 0, indicating that the system is in a
superposition of the two topological sectors,
with a finite overlap with the |+) state (Fig.
5B), which is consistent with the symmetric

Semeghini et al., Science 374, 1242-1247 (2021)

initial state and the quasi-adiabatic prepara-
tion procedure (31). To further support this
conclusion, we evaluated correlations (Z,Z,)
between hole-to-boundary strings, which are
expected to have the same expectation val-
ues for both topological sectors (Fig. 5A). In
agreement with this prediction, we found that
the correlations between different pairs of
strings have finite expectation values, with
amplitudes decreasing with the distance be-
tween the strings (Fig. 5C) owing to imperfect
state preparation. These measurements rep-
resent the first steps toward initialization
and measurement of a topological qubit in
our system.

Discussion and outlook

It is not possible to classically simulate quan-
tum dynamics for the full experimental sys-
tem, so we compare our results with several
theoretical approaches. First, our observations
qualitatively disagree with the ground-state
phase diagram obtained from density-matrix-
renormalization-group (DMRG) (35, 36) sim-
ulations on infinitely long cylinders. For the
largest accessible system sizes, including van
der Waals interactions only up to intermediate
distances (~4a), we found a Z, spin liquid in
the ground state (fig. S15). However, unlike in
deformed lattices (23), longer-range couplings
destabilize the spin liquid in the ground state

3 December 2021

of the Hamiltonian (Eq. 1) on the specific ruby
lattice used in the experiment, leading to a
direct first-order transition from the disordered
phase to the VBS phase (figs. S15 and S16). By
contrast, we experimentally observed the onset
of the QSL phase in a relatively large parameter
range, and no signatures of a VBS phase were
detected.

To develop additional insight, we performed
time-dependent DMRG calculations (35-37)
that simulated the same state preparation pro-
tocol as in the experiment on an infinitely long
cylinder with a seven-atom-long circumference
(31). The results of these simulations are in
good qualitative agreement with our exper-
imental observations (fig. S19). Specifically,
similar to the results in Fig. 4, in the region
Q ~3.5t04.5 we found nonzero signals for
closed Z and X loops, which cannot be fac-
torized into open strings (fig. S19). Consistent
with experimental observations, these indi-
cate the onset of spin liquid correlations. In
addition, exact diagonalization studies of
a simplified blockade model reveal how the
dynamical state preparation creates an ap-
proximate equal-weight and equal-phase super-
position of many dimer states, instead of the
VBS ground state (31). We conclude that quasi-
adiabatic state preparation occurring over a
few microseconds is insensitive to longer-
range couplings and generates states that
retain the QSL character (31). Although this
phenomenon deserves further theoretical
studies, these considerations indicate the
creation of a metastable state with key char-
acteristic properties of a QSL.

Our experiments offer detailed insights into
elusive topological quantum matter. These
studies can be extended along a number of
directions, including improvement of the
robustness of the QSL by using modified lat-
tice geometries and boundaries (22, 23) as
well as optimization of the state preparation
to minimize quasiparticle excitations; under-
standing and mitigation of environmental
effects associated, for example, with dephasing
and spontaneous emission (31); and optimiza-
tion of string operator measurements by using
quasi-local transformations (38), potentially
with the help of quantum algorithms (39). At
the same time, hardware-efficient techniques
for robust manipulation and braiding of topo-
logical qubits can be explored. Furthermore,
methods for anyon trapping and annealing
can be investigated, with eventual applications
toward fault-tolerant quantum information
processing (40). With improved program-
mability and control, a broader class of topo-
logical quantum matter and lattice gauge
theories can be efficiently implemented (41, 42),
opening the door to their detailed explora-
tion under controlled experimental conditions
and providing a route for the design of quan-
tum materials that can supplement exactly
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solvable models (3, 43) and classical numer-
ical methods (35, 36).

Note added in proof: During the completion

of this manuscript, we became aware of re-
lated work demonstrating the preparation of
toric code states by using quantum circuits on

a

superconducting processor (44).
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Synthesizing topological order

Topologically ordered matter exhibits long-range quantum entanglement. However, measuring this entanglement in
real materials is extremely tricky. Now, two groups take a different approach and turn to synthetic systems to engineer
the topological order of the so-called toric code type (see the Perspective by Bartlett). Satzinger et al. used a quantum
processor to study the ground state and excitations of the toric code. Semeghini et al. detected signatures of a toric
code—type quantum spin liquid in a two-dimensional array of Rydberg atoms held in optical tweezers. —JS
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