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Current quantum simulation experiments are starting to explore nonequilibrium many-body dynamics in

previously inaccessible regimes in terms of system sizes and timescales. Therefore, the question emerges as

to which observables are best suited to study the dynamics in such quantum many-body systems. Using

machine learning techniques, we investigate the dynamics and, in particular, the thermalization behavior of

an interacting quantum system that undergoes a nonequilibrium phase transition from an ergodic to a many-

body localized phase. We employ supervised and unsupervised training methods to distinguish non-

equilibrium from equilibrium data, using the network performance as a probe for the thermalization

behavior of the system. We test our methods with experimental snapshots of ultracold atoms taken with a

quantum gas microscope. Our results provide a path to analyze highly entangled large-scale quantum states

for system sizes where numerical calculations of conventional observables become challenging.
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Introduction.—After a global quench in a thermalizing
system, local observables approach a value that corre-
sponds to their expectation value in a typical microcanon-
ical many-body eigenstate of the system [1-3]. Depending
on the properties of the system and the initial state, the path
to thermal equilibrium can vary. For example, conserved
quantities can slow down the equilibration process [4-6] or
a quasistationary prethermal state can form, which exhibits
properties different from the true thermal equilibrium
state [7].

Quantum simulation experiments can enable the obser-
vation of the time evolution of a quantum many-body
system starting from a nonequilibrium state with almost
perfect isolation from the environment. In the past decade, a
variety of nonequilibrium phenomena has been observed
with examples ranging from exotic phases realized through
Floquet driving [8—10] to many-body localization [11] and
prethermalization [12]. In many cases, theory can provide a
clear prediction as to which observables should be studied,
such as a given order parameter for a well-known phase
transition. For some problems, however, it is not as clear
which observable to look at, and by making a choice for
one specific quantity, valuable information might be dis-
carded. In many platforms with microscopic readout, Fock
space snapshots of the quantum many-body state are the
measured dataset. Fock space snapshots provide a wealth of
information about the quantum many-body state by pro-
viding access to both local observables and nonlocal, high-
order correlations.
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In order to address the challenge of finding suitable
observables, artificial neural networks have recently
emerged as a valuable tool in quantum many-body physics
17-13]] and in nonequilibrium statistical mechanics [18].
Previous machine learning approaches to study nonequili-
brium systems have focused on quantities such as the
entanglement spectrum [19-21] or full eigenstates [22],
which are, however, experimentally inaccessible.

In this Letter, we study the dynamics of an interacting
quantum many-body system in terms of experimental Fock
space snapshots with the help of neural networks, Fig. 1(a).
We find this analysis to have two main advantages:
(i) These snapshots are directly measured in many quantum
simulation platforms, and large numbers of snapshots can
be routinely obtained. (ii) Raw data are used, where no
analysis for specific quantities has taken place and all
available information can be used without any bias. We
consider the one-dimensional Bose-Hubbard model
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Here, a;

&fﬁ,— is the particle number operator. The first term
corresponds to hopping between neighboring sites, the
second term is the interaction, here fixed at U/J = 2.9, and
the last term is the quasiperiodic potential mimicking
on-site disorder with amplitude W, which can be created

in a cold atom setup with an incommensurate lattice

annihilates (creates) a boson on site i and #fi; =
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as h; =cos(2zfi+ ¢). In this Letter, we consider
1/ =1.618.

This system exhibits a many-body localized (MBL)
phase, where thermalization breaks down as the disorder
strength is increased beyond a critical value. The transition
from an ergodic to a many-body localized phase is
fundamentally different from the well-studied case of
equilibrium phase transitions, as it describes a nonequili-
brium setting [23-31]. Finding the transition point is
numerically challenging, because it is usually obtained
from entanglement properties or the level statistics, which
can only be obtained for small system sizes where full
diagonalization of the Hamiltonian is possible. Here, we
focus on Fock space snapshots of the many-body quantum
state as input data, which are the direct output of quantum
gas microscopy experiments and thus experimentally
readily accessible for the systems of interest. This approach
has the advantage that significantly bigger system sizes can
be reached experimentally.

We consider the dynamics of two one-dimensional
systems of 8 and 12 sites, which are initialized in a
Mott-insulating state with exactly one particle per site.
In Fig. 1, we first train the network to distinguish snapshots
of the many-body quantum state, obtained from exact
diagonalization calculations, for low (W/J = 0.3) and high
(W/J = 11.0) disorder strength for an interaction strength
of U/J = 2.9 in the comparatively long-time limit at time
tJ = 100. We average over ten different disorder realiza-
tions, obtained by varying the phase ¢ in the potential.
After the network has learned to label the extremal cases
correctly with sufficiently high accuracy (> 90%), we input
snapshots for intermediate values of the disorder strength.
After training the neural network on numerically simulated
snapshots, we use experimental data as input, where each
snapshot stems from a different disorder realization. As
output, for each disorder strength we obtain the fraction of
snapshots labeled as “many-body localized” and “therma-
lizing,” see Fig. 1. Based on these results, we conclude that
the many-body localization transition is located within the
range of W/J ~4-8 with strong finite-size drifts. This
result is in agreement with previous experiments [32,33],
which considered conventional observables such as the
local entropy. Notably, the local entropy exhibits volume
law scaling both in the thermal and the MBL phase and is
thus by itself not sufficient to locate the transition without
exact numerics [32]. Our results, in contrast, are able to
distinguish the two phases without any theoretical input,
which suggests that the network learned a more suitable
observable to distinguish the two phases. In the
Supplemental Material [34], we show the level statistics
for system sizes L = 6-8 for comparison. Similar to the
machine learning analysis of a disordered spin chain, based
on the entanglement spectrum in [19], the transition found
by the neural network is as sharp as the level statistics, but
exhibits a small shift to larger disorder strengths.
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FIG. 1. Machine learning many-body localization. The Bose-

Hubbard model with a quasiperiodic disorder potential exhibits a
MBL phase, where thermalization breaks down, as the disorder
strength is increased beyond a critical value. (a) We study the
dynamics of the system after a quench for different disorder
strengths by evaluating snapshots from a quantum gas micro-
scope with neural networks. (b) A neural network is trained to
distinguish exact diagonalization snapshots at W/J = 0.3 and
W/J = 11for U/J = 2.9 and a system with 8 and 12 sites at time
tJ = 100 after a global quench. After the training process is
finished, snapshots at intermediate values of the disorder strength
are used as input. The plot shows the resulting classification for
numerical data (shaded band) as well as experimental snapshots
(symbols). As the system size is increased, the fraction of
snapshots classified as MBL begins to increase at larger values
of W, indicating the transition in the finite-size system. The
accuracies are averaged over two independent runs and the errors
denote one standard error of the mean (SEM).

While we have only compared two extremal disorder
strengths in the long-time limit, the full dynamics of the
system contain much more information. We proceed by
analyzing the time- and disorder-strength dependence of
the system after the global quench.

Learning thermalization.—We now investigate the sys-
tem’s approach to thermal equilibrium by comparing each
time step to a thermal state of the same Hamiltonian. The
performance of the network in distinguishing dynamics
from equilibrium can then be used as a probe of
thermalization.

In order to compare the time-evolved state to thermal
equilibrium, all conserved quantities of the model should
be considered [3]. In our experiment, both the energy
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FIG. 2. Learning thermalization. A system with eight sites and U/J = 2.9 is initialized in a Mott-insulating state of one particle per
site and the ensuing time evolution is investigated. In each time step, the neural network is trained to distinguish snapshots from the
current time step from snapshots from a thermal state with the same energy density, both obtained from exact diagonalization. A high
accuracy indicates that the current time step can be easily distinguished from the thermal state. (a) The resulting classification as
“dynamics” versus “equilibrium” for W/J = 1.0 and W/J = 7.3, averaged over 12 different disorder realizations (shaded line).
Experimental data from the dynamics after the quench is used as input at selected time steps (symbols). (b) Exact diagonalization results

for disorder strengths between W/J = 1 and W/J =
tJ = 100 for disorder strengths between W/J = 1 and W/J =
correspond to the SEM.

density and the particle number are conserved during the
many-body evolution. The energy density of the initial state
is matched by choosing the temperature of the thermal state
accordingly. We take the conservation of the total particle
number into account by calculating the thermal state within
a fixed particle number sector. We numerically generate
snapshots from such a state in thermal equilibrium, as well
as from the time-evolved state for each time step under
consideration.

For each time step, we train the network to label the
snapshots from the thermal equilibrium distribution as
equilibrium and the snapshots from the numerically
time-evolved initial state as dynamics. The neural network
parameters are optimized for each time step separately. We
then test the network’s performance by inputting exper-
imental data with different evolution times. In Fig. 2(a), the
resulting classification into the categories dynamics versus
equilibrium is shown as a function of time. Here, we
average over 12 different disorder realizations and take
snapshots at the corresponding effective temperatures.

For small W/J, the system thermalizes comparably fast:
for times ¢tJ > 10, the network reaches an accuracy of 50%,
equivalent to guessing between the two classes. This means
the network fails to distinguish snapshots from the time-
evolved state from the corresponding thermal state. For
high values of W/J, the system fails to thermalize on the
timescales accessed here, and the network is able to
distinguish the current time step from the thermal equilib-
rium state with a high accuracy. Using an interpretable
network architecture [37], we find that, for intermediate
disorder strengths, higher-order correlations play a role in
the classification task (see the Supplemental Material [34]).

10 for the full dynamics. (c) Classification as dynamics versus equilibrium at time
10. The results are averaged over ten independent runs and the error bars

We study the long-time limit at tJ = 100 for a range of
values of the disorder strength. As shown in Fig. 2(c), the
fraction of snapshots classified as dynamics rises strongly
between W/J ~ 4 and W/J ~ 8 and reaches values close to
1, indicating that the system has not reached thermal
equilibrium.

We benchmark our experimental results by testing the
network with theoretical snapshots not used during training
and find good agreement throughout the range of the
covered parameters.

This procedure has the advantage that the features used
to make the classification can vary for different time steps
and the network specifically searches for differences
between the current time and thermal equilibrium. It is
therefore, in principle, capable of identifying specific
observables that have not yet reached their thermal equi-
librium value and thus find, for example, (almost) con-
served quantities. Indeed, with this method we find
deviations from thermal equilibrium already in the range
of W/J ~2-5, in contrast to the results from the classi-
fication scheme in Fig. 1(b). This indicates an improved
sensitivity of our method. Here we consider a system that
exhibits a transition from thermalizing behavior to many-
body localization, which constitutes a canonical example in
the study of nonequilibrium phenomena. Note, however,
that our scheme is not limited to the system considered here
and can be applied to a variety of models. This method also
allows one to detect, for example, prethermal behavior and
the existence of conserved quantities that keep their value
during the dynamics and therefore never reach a generic
thermal equilibrium value. Another canonical model to
study equilibration behavior is the transverse field Ising
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model, which has an extensive number of conserved
quantities. In the Supplemental Material [34], we show
that a neural network performs significantly worse in
distinguishing the time-evolved state from an approxima-
tive generalized Gibbs ensemble, where a few conserved
quantities are taken into account, than the simple thermal
state discussed above, where only the energy density is
considered. This highlights the capability of our approach
to identify conserved quantities, which can drastically alter
the thermalization process. Our method comes at the
expense that one needs snapshots from the thermal density
matrix for training, which—especially in the case of a
nonthermalizing phase such as MBL—may need to be
generated numerically. In the following, we overcome this
limitation by analyzing the transition in the dynamics with
an unsupervised scheme that, in principle, does not rely on
theory data.

Confusion learning.—Several unsupervised learning
schemes that use the network performance to probe
whether and where a phase transition, or more generally,
a qualitative change in the data, exists have been proposed
[38—40]. Here, we adapt a scheme termed ‘“confusion
learning” introduced in Ref. [38]. In brief, the scheme
works as follows: We have a dataset of snapshots for values
of the disorder strength 0.3 < W/J < 11.0. The goal is to
test whether a value W* exists at which the data change
qualitatively. We start with a guess for W* and label all
snapshots for W < W* as phase A and correspondingly all
snapshots with W > W* as phase B. Assuming the snap-
shots are qualitatively different for W < W* as compared to
W > W*, the network should achieve a high accuracy in
assigning the correct labels. However, if there is no
qualitative change at the W* under consideration, there
will be confusion about the correct labels and the accuracy
will thus be lower. Therefore, if there is a qualitative change
in the data, the accuracy as a function of W* will be
maximal if W* corresponds to the transition point. Trivially,
the test accuracy is expected to approach unity when the
guessed W* corresponds to the minimum or maximum
value of W, because all data are labeled equally and no
confusion occurs. In total, the presence of a critical point is
therefore signaled by a characteristic W shape of the test
accuracy as a function of the control parameter.

We train the neural network with numerical snapshots in
the long-time limit (£/ = 100) in order to test for the
presence of a phase transition. Subsequently, we use
experimental data as input to the network [Fig. 3(a)].
The data show the onset of a maximum around
W*/J =1, indicating the presence of a critical point in
agreement with Fig. 1(b). The contrast in the W shape
achieved here is comparable to the signal seen for a spin
model in [38], where instead of snapshots the entanglement
spectrum is used as input to the neural network. In order to
isolate the signal of the phase transition from the trivial part
of the W shape, we subtract the accuracy obtained when
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FIG. 3. Confusion learning. Snapshots of the many-body

quantum state of a system with 12 sites, U/J = 2.9, and various
disorder strengths W /J are analyzed using the confusion learning
scheme. A neural network is trained to label all snapshots with
W < W* as “phase A” and the remainder as “phase B.” If a
qualitative change in the data occurs, the accuracy will peak at an
intermediate value of W*. (a) The resulting accuracy at time tJ =
100 after the global quench for training on numerically simulated
data (shaded line) and sorting experimental data (symbols). Inset:
same data after subtracting the accuracy for randomly labeled
data. (b) The accuracy for repeating the training process for
different time points during the dynamics after the quench using
numerically simulated data. The results are averaged over ten
independent runs and the error bars correspond to the error based
on one SEM.

training on randomly labeled data. The resulting difference,
shown in the inset of Fig. 3(a), exhibits a clear peak at
W*/J =7, that indicates the transition between the differ-
ent dynamical phases. We also check with theoretical
snapshots not used during training and find qualitatively
similar behavior. We attribute the slight deviation in the
maximum to the coarse resolution in the disorder strength
for the experimental data.

Since differences in the thermalization behavior only
present themselves in the course of the dynamics, we
expect the phase transition to remain hidden at short
evolution times. In order to reveal this effect, we perform
the same method with theoretical snapshots at different
evolution times. In Fig. 3(b), the resulting accuracy
achieved by the network is shown as a function of W*.
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These results have several advantages compared to the
previous methods: as opposed to Fig. 1(b), we do not
a priori assume that there is a transition. Moreover, we
specifically train the network to find differences between
the snapshots at all available values of the disorder strength,
thus avoiding bias from the choice of training data.

Summary and outlook.—In this Letter, we used machine
learning techniques to study the nonequilibrium dynamics
after a global quench in the one-dimensional Bose-Hubbard
model with a quasiperiodic disorder potential. We used
supervised as well as unsupervised machine learning
methods to probe for a qualitative change in experimental
snapshots as the disorder strength is tuned. Comparing
the results for systems with 8 and 12 sites, we find that the
critical value of the disorder strength increases with the
system size, proving the need for methods applicable in
large—experimentally accessible—systems. In contrast to
standard tools to locate the MBL transition, the methods
used here can be directly applied to experimental data taken
with a quantum gas microscope and are not limited to small
system sizes. We furthermore studied the approach to
thermal equilibrium—or lack thereof—by training a neural
network to distinguish snapshots from the current time step
from snapshots from a thermal ensemble at the same energy
and particle density. The accuracy achieved by the network
indicates how nonthermal the time-dependent quantum
many-body state is.

An exciting future research direction consists of apply-
ing the same scheme to identify conserved or almost
conserved quantities in experimentally accessible data,
for example, by using a generalized Gibbs ensemble for
comparison. Apart from the concrete system studied here, it
would be interesting to consider other models and phe-
nomena, for example, quantum scars [41,42] and Hilbert
space fragmentation [43-45]. In order to gain additional
physical insights, interpretability is an extremely important
direction for future work and it would be interesting to
study which observables the network uses to make the
classifications considered here [37] and how those observ-
ables change during the time evolution of the many-body
system.
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