Downloaded via UNIV OF PENNSYLVANIA on May 17, 2022 at 13:42:04 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

OL ‘ Organic
Letters ,

pubs.acs.org/OrgLett

Solid-Phase Photochemical Decarboxylative Hydroalkylation of

Peptides

Mahmoud Elkhalifa,” Michael B. Elbaum,” David M. Chenoweth,* and Gary A. Molander*

Cite This: Org. Lett. 2021, 23, 8219-8223

I: I Read Online

ACCESS |

[l Metrics & More |

Article Recommendations ‘

@ Supporting Information

ABSTRACT: The compatibility of photochemistry with solid-phase
peptide synthesis is demonstrated via photochemical hydroalkylation
to form C(sp*)—C(sp®) bonds between on-resin Giese acceptors and
redox-active esters. Both iridium-based photocatalysts and Hantszch
ester led to high yields, with final reaction conditions producing full
conversions within 30 min under ambient conditions. The chemistry is
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compatible with a broad range of peptide side chains, redox-active
esters, and resin. These conditions represent the first example of photochemical peptide modifications on resin.

S ince the advent of solid-phase peptide synthesis (SPPS) in
1963, more than 60 peptide pharmaceuticals have been
approved in the United States, Europe, and Japan, more than
150 peptides are currently undergoing clinical development,
and more than 260 have been investigated in human clinical
trials.' SPPS depends greatly on the adaptation of solution-
phase reactions to solid-phase conditions. As examples, since
the 1990s, C—C bond-forming transformations such as the
Stille,” Heck,’ Suzuki—Miyaura,4 and Sonogashira5 reactions
have been adapted to the solid phase by both industry and
academia. Additionally, in 1996, the first example of solid-
phase ruthenium-catalyzed metathesis was reported, and soon
after, the first solid-phase peptide ring-closing metathesis
(RCM) reaction was described.”” Since that time, RCM has
been extensively used to form hydrocarbon-stapled peptides in
biotherapeutics.” Although peptide macrocycles generated via
RCM can be reduced to C(sp®)—C(sp®) bonds, few direct
routes to such structures exist under mild conditions.

Recently, Baran et al. reported two nickel-catalyzed
decarboxylative conjugate addition procedures and demon-
strated their compatibility with solid-phase conditions.”'® Both
procedures utilize nickel-catalyzed cross-coupling mechanisms
to forge C(sp’)—C(sp’) bonds under inert conditions and
required 8—16 h reaction times. Given the importance of solid-
phase peptide C(sp®)—C(sp®) bond formation, an alternate
route through a complementary mechanistic pathway was
deemed desirable.

Although photochemistry on peptides and proteins has been
a very active field,""*? to the best of our knowledge, no studies
on the compatibility of photochemistry with on-resin peptides
have been reported. The application of photochemistry to
solid-phase peptide synthesis offers several distinct advantages
over extant protocols. First, photochemically induced reactions
involving open-shell intermediates exhibit extraordinary
toleration of diverse functional groups. Additionally, light-
mediated transformations typically operate at room temper-
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ature and permit the use of buffers or aqueous mixtures that
offer biocompatible reaction conditions. The reliance on
photon flux also allows the exclusion of light to quench
reactions and control reaction progression precisely and
conveniently.13 Finally, dual photocatalytic cycles have enabled
multicomponent reactions, ideal for making diverse peptide
macrocycles and bicycles in a single, mild synthetic step."*
With the goal of elaborating peptides by photoinduced
Giese-type reactions on a solid support, several procedures
were assessed. In the seminal solution-phase, photosensitized
decarboxylative Giese addition reported by Okada," redox-
active esters (RAEs) were employed as radical precursors and
coupled with Giese acceptors in the presence of 1-benzyl-1,4-
dihydronicotinamide as a reductant and Ru(bpy);Cl, as a
photocatalyst in aqueous THE."> Up to 69% yields were
reported. However, the scope of redox-active esters was limited
to three hydrocarbons. Given the structural complexity of
polypeptides, reaction conditions with high functional group
tolerance were imperative. Furthermore, the Okada reaction
conditions utilized an aqueous reaction medium, which was
expected to be challenging for nonpolar peptide substrates.
In 2015, Overman et al. reported a solution-phase
decarboxylative Giese-type addition involving a reductive
single-electron transfer (SET) of redox-active esters via
photoredox catalysis."® The contribution by Overman and
co-workers involved the photochemical coupling of various
Giese acceptors and tertiary radicals generated from corre-
sponding redox-active esters at room temperature and in
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dichloromethane as the solvent.' The reaction employed
Hantzsch ester [diethyl 1,4-dihydro-2,6-dimethylpyridine-3,5-
dicarboxylate (HE)], Ru(bpy);(BF,),, and i-Pr,NEt and
featured a broad substrate scope for both coupling partners.
A visible light-induced approach to the synthesis and chemical
modification of solid-phase peptides was thus initiated on the
basis of Overman’s mild photochemical hydroalkylation.

We began our studies using ChemMatrix Rink Amide resin,
which features a PEG-based polymer, rather than polystyrene,
to avoid potentially reactive aromatics. Aromatic Giese
acceptor 1 was employed for ease of analysis by LC-MS and
"H NMR. Acrylamide was chosen as the electron-deficient
olefin over acrylate for its ease of incorporation into peptides.
Installation of the solid-phase Giese acceptor began with
synthesis of Fmoc-(4-acrylamide)-Phe-OH, which was then
incorporated onto resin. The Fmoc group was deprotected
using non-nucleophilic DBU, and subsequently, the substrate
was acylated on the N-terminus. Alternatively designed as a
late-stage peptide modification, Fmoc-(4-Trt-amino)-Phe-OH
was incorporated onto the resin. After N-terminal deprotection
and acylation, the Trt group was removed, and the aniline was
reacted with acrylic acid and (1-cyano-2-ethoxy-2-oxoethyl-
ideneaminooxy)dimethylamino-morpholino-carbenium hexa-
fluorophosphate (COMU). The purity of crude material in
this protocol was 86% as judged by analytical HPLC (page S15
of the Supporting Information).

Attempts to optimize the coupling of on-resin olefin (1)
with 1-adamantyl N-(acyloxy)phthalimide (2a) rapidly gen-
erated fruitful conditions with Ru(bpy),(PFy), as the photo-
catalyst and i-Pr,NEt as the reductant in DMF with blue LED
irradiation at room temperature. These conditions produced
the coupled product 3a with a 30% conversion (Table 1, entry
1). Examination of photocatalysts identified [Ir{dF(CF;)-
ppy}(bpy)IPEg (EY? M*/M™ = +1.32 V)" as a suitable
catalyst for the solid-phase photocoupling (Table 1, entries 2—

Table 1. Optimization of Solid-Phase Photocatalytic
Hydroalkylation Conditions

55@

2a (5 equiv)

Nf

H%NJ{ FLEINEL 66 ot "

O/ o H DMF (20 mM) oNif\uk

1 Ar, 16 h, Blue LEDs (o) 3

entry deviation from initial conditions 3 (P/1S%) 3 (conv, %)
1 none 0.26 30
2 (1r{dF(CF;)ppy}.(bpy)PFs 0.38 100
3 [Ir{dF(CF;)ppy},(dtbbpy) ]PF, 0.31 88
4 4C2IPN¢ 0.14 59
s Cl-4CzIPN? 0.10 31
6 entry 2 with polystyrene resin 0.38 100
7 THF 0.24 89
8 no light 0.00 0
9 no i-Pr,NEt 0.03 7
10 no photocatalyst 0.09 14
11 5 equiv of Hantzsch ester 0.40 100

Product/mternal standard ratio as determined by LC-MS.

YConversion to 3a as determined by LC-MS. €1,2,3,5-Tetrakis-
(carbazol-9-yl)-4,6-dicyanobenzene. 92,4,5,6- Tetrakls(3 6-dichloro-
9H-carbazol-9-yl)isophthalonitrile.
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S). A similar conversion was observed using the Rink amide
polystyrene resin (Table 1, entry 6). Decreasing the reaction
time to <16 h proved to be detrimental to the reaction yield
(page S7 of the Supporting Information). The use of THF as a
solvent, which was advantageous for the coupling of tert-alkyl
N-phthalimidoyl oxalates,"® decreased the conversion to 3a to
89% (Table 1, entry 7). In the absence of light, no product was
observed (Table 1, entry 8). Excluding the photocatalyst or i-
Pr,NEt resulted in product formation with substantially
diminished yields (Table 1, entries 9 and 10), demonstrating
that the superstoichiometric amine reductant was ineffective at
fragmenting redox-active esters. Comparable results in the
absence of the photocatalyst were observed by Okada and co-
workers in the initial decarboxylative Michael addition
report.”> The addition of Hantzsch ester as a reductant
generated superior yields (Table 1, entry 11) particularly for
primary redox-active esters (page S8 of the Supporting
Information). A similar yield and conversion were produced
in the absence of the photocatalyst (page S8 of the Supporting
Information).

After incorporation of the Hantzsch ester, a reaction time
screen revealed full conversions within 30 min (page S9 of the
Supporting Information). Control studies produced similar
NMR yields under air and without the amine base (Table 2,

Table 2. Development of Solid-Phase, Metal-Free
Photochemical Hydroalkylation Conditions

e TR

H H 2b (5 equiv)
O/N\H/\Hk Hantzsch ester (5 equiv) H H )K
0 DMF (20 mM) 0 \ﬂ/\ﬁ
1 1 h, Blue LEDs (0] 3b

deviation from initial

entry conditions 3b (conv”) yield of 3b (%)*
1 none 100 90
2 under argon 100 88
3 under argon with DIPEA 100 90
4 Rink amide polystyrene resin 100 90
S no Hantzsch ester 0 0
6 no light 0 0
7 >S5 equiv of HE and RAE no improvement no improvement
8 <5 equiv of HE and RAE inconsistent conv  inconsistent yield

“Determined by crude NMR.

entries 1—3). Conversion of 100% was also observed using
Rink amide polystyrene resin (Table 2, entry 4). Comparable
catalyst-free conditions were reported in the original report by
Okada, as well as by Overman and Shang in the solution
phase.''®"? No product was formed in the absence of light or
Hantzsch ester (Table 2, entries 4 and S). Increasing the
number of equivalents of Hantzsch ester and redox-active ester
resulted in no improvements, while decreasing the number of
equivalents of these reactants led to inconsistent results (page
S10 of the Supporting Information).

Although Overman proposed a photocatalytic reduction of
the redox-active esters (Scheme 1A),"**" recent investigations
have revealed that the reduction takes place largely via a light-
induced charge transfer within an electron donor—acceptor
(EDA) complex formed between the Hantzsch ester and the
redox-active ester (Scheme 1B).>' Photoactivation of the EDA
complex induces an inner sphere electron transfer from the
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Scheme 1. Mechanistic View of the Light-Mediated
Decarboxylative Hydroalkylation
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“(A) Envisioned mechanism for the photocatalytic decarboxylative
hydroalkylation. (B) Mechanistic view of the catalyst-free photo-
chemical decarboxylative hydroalkylation.

Hantzsch ester to the redox-active ester, leading to carbon-
centered radical III via homolytic fragmentation and
decarboxylation. The radical then adds to the electron-
deficient olefin and generates intermediate IV, which abstracts
a hydrogen atom from the oxidized Hantzsch ester to generate
pyridinium salts, furnishing the desired hydroalkylation
product. Because of the speed, cost, and operational simplicity
of the catalyst-free conditions, they were utilized to explore the
scope of the process.

The performance of the hydroalkylation using a series of
simple redox-active esters was first investigated (Scheme 2).
The on-resin Giese acceptor coupled efficiently with primary,
secondary, and tertiary alkyl RAE partners. Tertiary (3b) and
secondary (3f) carbon-centered radicals performed nearly
identically, while their primary analogues produced diminished
yields, except for a-benzyloxy radical (3i) and Boc-f-alanine
(3p). Cyclic redox-active esters, including adamantyl (3a), 3-
cyclopentenyl (3d), and cyclohexyl (3e), all converted to the
desired product with excellent yields. NHPI esters featuring
nitrogen-based (3h and 3p), oxygen-based (3n), and sulfur-
based (3k and 30) heterocyclic moieties were also compatible
with the hydroalkylation protocol.

Cycloadditions between terminal alkynes and azides (“click
chemistry”) are widely utilized for bioorthogonal trans-
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Scheme 2. Scope of Solid-Phase Photochemical
Hydroalkylation”
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“Yields determined by quantitative "H NMR; conversions determined
by quantitative '"H NMR and reported in parentheses.

formations in which considerations of reaction efficiency,
chemical inertness, cost, and compatibility with aqueous
conditions are paramount. An alkynyl-substituted RAE was
synthesized and found to deliver a 58% yield of 3j. The
moderate yield was expected because of the difficulty of
generating primary radicals as well as their reduced
nucleophilicities. Furthermore, reports of terminal alkynes
undergoing decarboxylative radical addition to form alkenes
suggested a loss of reactant may be partially responsible, as

well*»** The interaction between biotin and streptavidin is
one of the strongest in nature and widely utilized in biology
and biochemistry (K; = 107 M).** A biotinyl-substituted
RAE was synthesized and found to react with the solid-phase
substrate in 86% yield, which is high given the yields of other
primary RAEs (30).

We subsequently incorporated an example of a PEGylation
(3m) featuring an a-alkoxy group that conveniently aided
radical generation. Mini-PEGs are frequently used to tune the
lipophilicity of biomolecules. A coumarin moiety was also
reasonably well-tolerated by the reaction protocol (3n).
Coumarins are found in a broad range of medicinally relevant
natural products, synthetic pharmaceuticals, and fluorescent
labels.”** The low yield of coumarin 3n is likely a result of the
low nucleophilicity of the highly stabilized radical generated
(vide infra). Recognition of protein conformers by fluorine
NMR necessitates the integration of fluorinated moieties
whose chemical shifts are responsive to slight variations in the
local dielectric and magnetic shielding environment. To that
end, an NHPI ester incorporating a fluorine ("’F) NMR
tag””*® was evaluated, with the 3,5-bis(trifluoromethyl)phenyl
moiety 3l selected as a model fluorine probe that was
successfully coupled with a reasonable yield. A single '’F NMR

https://doi.org/10.1021/acs.orglett.1c02928
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peak confirmed the presence of the fluorine ("’F) NMR tag
(page S79 of the Supporting Information).

The amenability of resonance-stabilized radicals, which
exhibit nucleophilicities lower than those of localized carbon-
centered radicals, was also examined. Unfortunately, the
success of substrates generating such stabilized radicals was
limited. Products 31 and 3n derived from primary resonance-
stabilized radicals were obtained in 50% and 26% yields,
respectively. Neither secondary nor tertiary benzylic RAE
substrates produced the product (3c or 3g), perhaps because
of the combination of steric and stabilizing resonance effects.

The abundance of structurally diverse, commercially
available amino acids makes them a particularly appealing
radical feedstock for peptide modification. They are also
attractive building blocks because the amine functional group
promotes radical addition and provides a site for further
functionalization and peptide elongation. The scope of the
coupling using a-amino alkyl radical precursors was therefore
evaluated. Couplings employing Boc-, CBz-, Alloc-, and Fmoc-
protected prolines all produced excellent yields (3q—3u).
Fmoc protection is seldom used in photochemistry, but it is
used abundantly with SPPS. Fmoc-proline was well-tolerated,
albeit with a slightly diminished yield of 72%.

Toleration of the transformation to structural and functional
complexity was further evaluated using a series of tripeptides
(Scheme 3). The Giese acceptor was incorporated as a late-

Scheme 3. Tolerance of Various Amino Acid Side Chains”
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(100%)
5a

97%
(100%)
5b

94%
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5c

7%
(83%)
5d

98%
(100%)
5f
“Yields determined by quantitative "H NMR; conversions determined

by quantitative '"H NMR and reported in parentheses.

stage modification to prevent attack of the N-terminus on the
Giese acceptor during peptide elongation. His, Trp, Cys, Met,
and Tyr moieties have all participated in photochemistry under
various solution-phase conditions,'” but their behavior under
similar conditions protected on the solid phase has not been
tested. In the event, tripeptides incorporating these amino acid
derivatives exhibited high conversions and yields.

The amenability of aliphatic Giese acceptors was then
demonstrated by on-resin acrylation of lysine 6 and subsequent
reaction with CBz-Pro-NHPI (Scheme 4). A 98% yield was
observed. Next, 15-mer collagen model peptide 7 was
synthesized and acylated on the N-terminus. A reaction with
CBz-Pro-NHPI led to full conversion by HPLC (page S112 of
the Supporting Information).

In summary, the development of the photochemical
hydroalkylation of electron-deficient olefins has been reported
in the solid phase. These conditions offer mild, expeditious,
and operationally simple routes for introducing C(sp®)—
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Scheme 4. Tolerance of Aliphatic Giese Acceptors
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“Yield determined by quantitative "H NMR; conversions determined
by quantitative '"H NMR and reported in parentheses. “Conversion
determined by HPLC.

C(sp®) bonds into peptides on resin. They also represent the
first example of a light-mediated peptide modification in the
solid phase and demonstrate the potential for further
elaboration of polypeptides on a solid support.
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