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Creating synthetic spaces for higher-order
topological sound transport
Hui Chen1,4, Hongkuan Zhang 2,4, Qian Wu1, Yu Huang2, Huy Nguyen1, Emil Prodan 3✉,

Xiaoming Zhou 2✉ & Guoliang Huang 1✉

Modern technological advances allow for the study of systems with additional synthetic

dimensions. Higher-order topological insulators in topological states of matters have been

pursued in lower physical dimensions by exploiting synthetic dimensions with phase tran-

sitions. While synthetic dimensions can be rendered in the photonics and cold atomic gases,

little to no work has been succeeded in acoustics because acoustic wave-guides cannot be

weakly coupled in a continuous fashion. Here, we formulate the theoretical principles and

manufacture acoustic crystals composed of arrays of acoustic cavities strongly coupled

through modulated channels to evidence one-dimensional (1D) and two-dimensional (2D)

dynamic topological pumpings. In particular, the higher-order topological edge-bulk-edge and

corner-bulk-corner transport are physically illustrated in finite-sized acoustic structures. We

delineate the generated 2D and four-dimensional (4D) quantum Hall effects by calculating

first and second Chern numbers and physically demonstrate robustness against the geo-

metrical imperfections. Synthetic dimensions could provide a powerful way for acoustic

topological wave steering and open up a platform to explore any continuous orbit in higher-

order topological matter in dimensions four and higher.
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The physics of the integer quantum Hall effect (IQHE)1 can
manifest intrinsically in a condensed matter system2–4 and
the same physics can be emulated with classical degrees of

freedom, such as electro-magnetic5–8, mechanical9–12, and
acoustic13–17. Hall physics can be theoretically generalized to
higher dimensions18 and experimental realizations of the effect in
four-dimensional (4D) were recently reported with atomic and
photonic systems as well as electric circuits19–21. These experi-
mental works point to two different strategies for emulating
higher space dimensions in physical space. The first approach21

uses the higher dimensional lattice coordinates and orbital indices
only as labels for resonators rendered in physical space, in order
to connect them based on a standard higher dimensional
model22. The second approach relies on synthetic dimensions
generated via space modulations19,20, where the phases of the
modulated structures can be used as adiabatic parameters that
augment the physical space23. In essence, these phase variations
can be treated as an additional global degree of freedom, usually
called the phason, which lives on a torus. Even though the time-
reversal symmetry is not broken for the static configurations of
these systems, the IQHE physics emerges once the phason is
pumped24. As such, this second approach is appealing because it
does not require any active materials or other mechanisms to
break the time-reversal symmetry.

The synthetic dimensions generated by space modulations can
be explored statically, i.e., one point at a time8,25–31, which is
usually achieved by manual reconfiguration of the system. The
phason space can be also explored dynamically and here the most
sought application is where the configuration of the system is
modified cyclically in time such that the original dynamical
pumping proposed by Thouless32 can be observed. The challenge
is to cycle fast enough to overcome the dissipation of a signal that
self-oscillates as it is pumped from one edge to the other. This is
very challenging and it has been only recently achieved experi-
mentally for one-dimensional (1D) but not for two-dimensional
(2D) pumping33–39. A third strategy is to weakly couple modu-
lated waveguides, whose effective dynamics are described by a
Schrödinger-like equation, with the coordinate along the wave-
guides playing the role of time23. This strategy has been experi-
mentally implemented to produce topological pumping with
photonic and elastic degrees of freedom20,23,40–43. The last
strategy mentioned above is not feasible with sound because
acoustic wave-channels cannot be weakly coupled in a continuous
fashion along with the guides and, to our knowledge, it has been
never implemented with acoustic degrees of freedom.

In this work, we present a distinct strategy that functions in the
opposite regime, where the waveguides are replaced by chains of
coupled discrete resonators and strong couplings and modula-
tions are also established in the transversal direction. In fact, the
strategy we are proposing here can be better described as hor-
izontal acoustic crystals carrying different phason values that are
stacked and coupled with each other. By slowly varying the
phason along the stacking direction, we demonstrate here that,
with such an approach, we can explore any continuous orbit
inside the phason space, and even control the speed along this
path to control the shape of the pumped pattern. As a result, we
can render these abstract trajectories, occurring in the synthetic
dimensions, on the physical dimension along the stackings. In
turn, this enables us to control the propagation of the acoustic
modes in space as well as the temporal phases of the signals. In
contrast to the waveguides experiments20,23, where the samples
had to be sliced for data acquisition, our designs enable a “non-
demolition” measurement procedure that does not disrupt or
alter the wave propagation.

With the control over the phason, we demonstrate edge-to-
edge topological pumping of sound in 1D-modulated acoustic

crystals, as well as edge-to-edge and corner-to-corner topological
pumping in 2D modulated acoustic crystals. The higher-order
topological corner-to-corner modes in our system are principally
different from conventional realizations. We demonstrate these
types of pumping processes that the topological sound transport
is robust against random fluctuations in the resonator couplings.
We also demonstrate that the pumping along a given orbit in the
phason space occurs only in specific space directions. We
delineate the generated 2D and 4D quantum Hall systems by
calculating first and second Chern numbers. We also discuss
various ways in which we can control these pumping processes
and, moreover, we discuss topological mode steerings in 2D
modulated acoustic crystals that are entirely specific to the 4D
IQHE physics. We believe that our work breaks ground for
engineering applications, where the couplings in an acoustic
crystal can be programmed for selective and robust point-to-
point distribution of acoustic signals.

Results
Physical rendering of synthetic spaces. We describe here the
mechanism behind the physical rendering of a synthetic space
and we start by describing the general setting. It consists of a
generic acoustic structure of discrete resonators such that each
resonator has an address ðn;mÞ, with n being a horizontal label
and m a vertical one. The couplings in the horizontal plane occur
through channels whose modulated widths are specified by a
phason ϕ, which lives on a phason space such as the ds-torus.
Here, ds represents the dimension of the synthetic space. The
couplings in the vertical direction are established through uni-
form channels. Now, we assume an infinitely long system in the
z-direction and consider any curve ϕðzÞ in the phason space with
bounded first derivative ϕ0ðzÞ, which we parametrize by the
continuous z-coordinate. We use this curve to specify the phason
values for each horizontal layer, specifically, ϕm ¼ ϕðϵzmÞ, where
zm ¼ maz is the physical coordinate of the mth layer. The para-
meter ϵ is small and is there to ensure that the variations of the
phason from one layer to another are small. Compared with the
wave-guide setting, the major differences are the discrete char-
acter of the z-coordinate and the strong coupling in the hor-
izontal direction.

The resulting dynamical matrix Dϕ governing the collective
resonant modes depends on the chosen path ϕðzÞ and, while Dϕ is
not periodic in the z-direction, it displays the following
covariance property

Ty
vDϕTv ¼ Dϕ�τ ; τ zð Þ ¼ z þ ϵaz; ð1Þ

where Tv is the vertical translation by az . If Qn;m is the acoustic
resonant mode supported by the ðn;mÞ-cavity, then the pressure
field of the resonant collective modes can always be sought in
the form

R
dkzΨkz

ðr;ϕÞ(See Supplementary Note 1 for multi-
mode expansions), with

Ψkz
r;ϕ
� � ¼ ∑

n;m
eikzmφn;m ϕ; kz

� �
Qn;mðrÞ; ð2Þ

and the covariance property (1) requires

φn;mþ1 ϕ; kz
� � ¼ φn;mðϕ � τ; kzÞ ð3Þ

Since ϕðzÞ is a smooth path, then, ϕ � τ � ϕþ ϵazϕ
0 and, as

such, φn;mþ1ðϕ; kzÞ � ϕn;mðϕ; kzÞ to 0th order in ϵ. In these
conditions, the vertical dispersion of the φ-coefficients can be
ignored and the φn;m coefficients for a fixed m become the eigen-
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modes of the reduced Hamiltonian (see Supplementary Note 1)

Hkz
ðϕmÞ ¼ ∑

n
vðkzÞ2jnihnj

þ∑hn;n0iκn;n0 ðϕmÞjnihn0j;
ð4Þ

where the last sum goes over the neighboring cavities and κn;n0 are
the horizontal couplings, determined entirely by the phason value
ϕm ¼ ϕðϵzmÞ. Also, νðkzÞ is the dispersion of the decoupled
vertical channels and, if ϵðϕmÞ is the eigenvalue of the φ-mode,
then the value of kz at layer m is determined by the relation
f 2 � ν kz

� �2 ¼ ϵðϕmÞ. The conclusion is that, by examining the
horizontal spatial profiles of the collective resonant modes, one
layer at a time, we can visualize the states of the Hamiltonian
HðϕÞ along arbitrary paths inside the phason space.

So far we have established that the coefficients φn;m for fixed m
are eigen-modes of Hamiltonian (4), but what are the weight and
the phase of these modes in Eq. (2)? An expansion in the first
order in ϵ (see Supplementary Note 1) reveals that the answer is
supplied by the equation

iϵΓðϕÞ∂ϕjφðϕÞi ¼ ½HðϕÞ � ϵðϕÞ�jφðϕÞi; ð5Þ
which governs the evolution of the φ-coefficients along the ϕ-
trajectory. The function Γ ϕ

� �
is determined entirely by the

vertical mode dispersion. After a proper change of variable, Eq.
(5) becomes the classic equation of adiabatic evolution44, hence
the amplitudes of the modes along the z-direction are all equal
but a non-trivial phase eiαðzÞ does develop along the stacking
direction. It can be computed as the Berry phase of the Wilczek-
Zee connection45 along the path ϕðzÞ The important conclusion is
that we not only can control the spatial profiles of the modes but
also their phases. The latter has been already proposed as vehicles
for certain forms of information processing with classical meta-
materials46. Last, it is worth mentioning that if the acoustic crystal
is finite in the z-direction, the collective resonant modes are given
by linear superpositions of the kz solutions of Eq. (5) and they
occur at quantized values of the wavenumbers for which the top
and bottom boundary conditions are simultaneously satisfied.
Since the effective Hamiltonian from Eq. (4) is independent of the
sign of the wavenumber, the main conclusion regarding the
horizontal spatial profiles of the modes holds without
modifications.

1D topological pumping. Figure 1a, b show a planar array of
acoustic cavities coupled horizontally and vertically through
channels. Each cavity has an address ðn;mÞ 2 Z2 and the thick-
ness of the horizontal channel connecting ðn;mÞ and ðnþ 1;mÞ
resonators is modulated according to the protocol
hxnm ¼ h0½1þ δcosðbnmod 3 þ ϕmÞ�, where h0 is the average
thickness of the horizontal channels, δ is the modulation ampli-
tude, and bj’s are free parameters. The values of phason for each
layer are set by ϕðzÞ ¼ ϕi þ ðϕf � ϕiÞ z

Lz
, where ϕi ¼ �0:2π, ϕf ¼

0:2π and Lz ¼ 16az . This results in a variation4ϕ ¼ 0:026π from
one layer to another, hence within the adiabatic conditions (see
Supplementary Note 2 for further details).

By design, when bj ¼ ðj� 1Þ 2π3 , the effective Hamiltonian
Hkz

ðϕÞ in Eq. (4) is just the 1D Aubry-André-Harper model47

associated with the 2D Hofstadter model at magnetic flux π=3,
with ϕ playing the role of a quasi-momentum. Figure 1c shows
the resonant spectrum of Hkz

ðϕÞ as function of ϕ and kz . The
computation is carried out with COMSOL Multiphysics on the
domain of a finite horizontal stack with kz-twisted Bloch
boundary conditions in the vertical direction. The bulk and the
boundary spectra are shown with distinctive colors and, as
expected from the Hofstadter butterfly48, two bulk spectral gaps

are observed. Also from the Hofstadter butterfly, one can read
that the lower and upper band gaps carry first Chern numbers
C1 ¼ �1; 1f g: This is confirmed in Supplementary Note 1 by
direct calculations of the Chern numbers for an entire phase
diagram computed for various values of bj’s. At last, as expected
from the bulk-boundary correspondence for the 2D IQHE,
topological edge modes are observed in the spectrum reported in
Fig. 1c (see the blue sheets). At fixed kz , there are precisely one
chiral edge band per edge and the slopes of these bands are
consistent with the values of the Chern numbers (see Supple-
mentary Note 1).

We now focus on the spatial profiles of the modes, as excited at
frequency f= 4960 Hz, indicated by the red horizontal sheet in
Fig. 1c. It is chosen to intersect the dispersion surface of the edge
modes such that we can visualize a topological pumping of sound.
All modes along the curve resulted from the intersection of the
f= 4960 Hz plane and the dispersion surfaces will be excited. As
argued in the previous section, ϕ is resolved by the z-coordinate,
hence this pumping curve, shown again in Fig. 1d, can be
parametrized by the physical coordinate along the stacking,
ðϕðzÞ; kzðzÞÞ. In other words, the spectral data from Fig. 1d have
been rendered in the physical dimension, for us to observe. We
now can understand the spatial profiles of the excited modes,
when examined one stack at a time. Along the horizontal stack at
a given coordinate z, one should observe the mode of HðϕðzÞÞ at
energy f 2 � ν kz zð Þ� �2

. The evolution of this mode along the
pumping curve is shown in Fig. 1d, which confirms that sound is
indeed pumped from one edge to the other. For example, the left
edge state denoted in the inset (1) is selected as an initial state
with a negative pumping value, which remains localized on the
left boundary with the adiabatic increase of the pumping
parameter and the corresponding wavenumber. When the
pumping parameter approaches ϕ ¼ 0, the left edge state
becomes the bulk state as inset (2) depicted. As the pumping
parameter increases further, the bulk state is then transformed
into an edge state (3) localized at the right side. Then our
prediction is that sound is transported from one side to the
opposite side of the structure and this topological sound steering
can be witnessed by walking along vertical coordinate. Experi-
mental observation and confirmation of the adiabatic pumping
via topologically protected boundary states are reported in Fig. 1e.
Here, the sound is injected into the bottom-left corner of the
structure and the pressure field is mapped by a microphone for
each site (see Methods). As one can see, the pressure distribution
indeed renders the topological pumping process in the physical
dimensions. The experimental observation is also verified by the
numerical simulation based on the exact geometry (Fig. 1f, see
also Supplementary Movie 1 for 1D transient topological edge
pumping). The minor difference between experiment and
simulation may be attributed to manufacturing deviations from
connecting adiabaticity and perfect coupling to edge states
(Details of the sample manufacturing, numerical simulation,
and experimental testing can be found in Methods). Let us also
point out that there is a substantial region where the wave has a
bulk character and where dissipation mostly occurs (Details of
loss effects can be found in Supplementary Note 1). This region
can be reduced by optimizing the function ϕðzÞ from a linear to a
tangent hyperbolic profile.

2D topological pumping. We now investigate the three-
dimensional (3D) acoustic structure shown in Fig. 2a, b, engi-
neered to have a phason ϕ ¼ ðϕx; ϕyÞ living on 2-torus.
In this case, each cavity has an address ðn;mÞ 2 Z3 and
the thicknesses of the horizontal connecting channels in the
α ¼ x; y directions are modulated according to the protocol
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hαn;m ¼ h0½1þ δcosðbαnα mod 3 þ ϕαmÞ�; while the vertical connect-
ing channels are uniform. By design, the effective horizontal
Hamiltonian (4) is just a sum of two copies of the Hamiltonian
from 1D topological pumping, H ϕ

� � ¼ H ϕx
� �� I þ I

N
HðϕyÞ,

which is known to host 4D QHE physics20.
The system can be pumped along an orbit inside the phason

space by using the strategy described in Section “Physical
rendering of synthetic spaces”. The particular crystal is designed
to pump along the diagonal orbit ϕðzÞ ¼ ðϕðzÞ; ϕðzÞÞ, with
ϕ zð Þ ¼ ϕi þ ðϕf � ϕiÞ z

Lz
, where Lz ¼ 15az . In Supplementary

Note 3, we present additional 3D acoustic structures, engineered
to pump along the orbit ðϕðzÞ; ϕiÞ. Figure 2c shows the dispersion
surfaces of the resulting effective Hamiltonian (4) as a function of
the pumping parameter ϕ and kz . The computation, which is
carried as for the 2D structure, reveals two bulk gaps and, in
addition, two spectral sheets highlighted in blue for which the
modes are localized along two edges, as well as one sheet
highlighted in green for which the modes are localized at the
corners. In Supplementary Note 1, we demonstrate that both bulk
gaps carry non-trivial second Chern numbers. Figure 2d (upper
panel) shows the pumping curves resulted from the intersection
of the dispersion diagram with the plane at frequency
f ¼ 7498Hz, with the latter highlighted in red in Fig. 2c. In
contrast to the 1D topological pumping, there is more than one

such pumping curve. Similarly, Fig. 2d (lower panel) shows the
pumping curve resulted from the intersection with the plane at
frequency f ¼ 6175Hz; with the latter highlighted in purple in
Fig. 2c. All these pumping curves are parametrized by the z-
coordinate and, as in the 1D case, we can predict that, if one
examines the horizontal stack at coordinate z, one should observe
the eigen-modes of HðϕðzÞÞ at energy f 2 � ν kz zð Þ� �2

. Samples of
these modes are rendered in the inset of Fig. 2d and, as one can
see, both pumping curves that we engineered are very special.
Indeed, as one pumps along the blue contours, the mode is
pumped from one pair of edges to the opposite pairs of edges,
whereas if one pumps along the green curve the mode is pumped
from one corner to the opposite corner. Both pumping processes
proceed through a bulk delocalization transition.

In Fig. 3a, we demonstrate experimentally that the predicted
edge-bulk-edge pumping is indeed rendered in the physical space
of the 3D structure. The acoustic wave is excited by a sound
speaker along the bottom edge at f ¼ 7498Hz and the pressure
distribution is measured by the microphone, layer by layer along
the stacking direction (see Methods). As seen in Fig. 3a, the
pressure field does evolve from the left to the right edge as
one walks along the stacking direction. It is interesting to note
that the edge states that we excite have the same energies as bulk
states, which are also seen as being excited in the very bottom

Fig. 1 2D channel-modulated acoustic crystal and its dispersion property. a Schematic of the 2D channel-modulated acoustic crystal and its unit-cell.
b Photograph of the printed 2D channel-modulated sample. c Dispersion diagram of a supercell composed of 15 coupled cavities, terminated by a hard-wall
boundary along the x-direction, and a periodic boundary condition along the z-direction. The topological pumping of edge states is represented by blue
surfaces, whereas the bulk bands are indicated by gray surfaces. d Wave number kz as a function of the pumping parameter for frequency f= 4960 Hz,
corresponding to the cross-section illustrated by the red horizontal sheet in c. The insets show the topological mode from left to right localization with the
change of the pumping parameter ϕ from �0:2π to 0:2π along the z-direction. The color scale corresponds to the pressure amplitude. e, f Experimental e
and numerical f demonstrations of topological edge pumping in the 2D crystal with the frequency at f= 4960 Hz. The color scale corresponds to the
pressure amplitude.
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layer. However, as the bulk states extend throughout the
horizontal layer, they experience increased dissipation and, as
such, fade away along the stacking direction. On the other hand,
the topologically pumped states are long-propagated, which
further demonstrates the advantages of the topological steering of
sound. A numerical simulation is also conducted to validate our
experimental observation (Fig. 3b, the corresponding pressure
distribution along z-direction can be found in Supplementary
Figure 12, see also Supplementary Movie 2 for 2D transient
topological edge pumping).

In Fig. 3c, we demonstrate experimentally that also the
predicted corner-bulk-corner pumping can be rendered in the
physical space of our 3D structure. Indeed, with the source placed
at a bottom corner and with the frequency adjusted at
f= 6175 Hz, one sees the measured pressure field evolving
towards the opposite corner as one walks along the staking
direction. This pumping is resolved much better than in the
previous case, because the source couples less effectively to the
bulk modes, hence the latter are not excited in this setup. Also,
due to the reduced dimensionality of the mode, the dissipation is
weaker and the pressure field can be sustained longer along the
stacking direction. Numerical simulations for the entire 3D
structure are reported in Fig. 3d and they validate our
experimental findings (the corresponding pressure distribution
along z-direction can be found in Supplementary Figure 12, see

also Supplementary Movie 3 for 2D transient topological corner
pumping).

The emergence of the chiral boundary spectrum that makes
possible the topological pumpings observed in Fig. 3 is owing to
the second Chern number of the gaps, which is the strong
topological invariant in 4D. As it is the case for any strong
topological invariant, topological boundary spectrum emerges
regardless of how the boundary of the crystal is cut, provided the
available quasi momenta are properly sampled. In our case, the
phason plays the role of synthetic momenta and this implies that
the pumping process along a given phason orbit manifests only in
a particular space direction. To demonstrate that the pumping
processes are indeed highly directional, we simulate the acoustic
characteristics of the 3D structure for different phason orbits and
with the source placed at different space locations and
encountered the following scenarios: (1) propagation along a
facet; (2) propagation along an edge; (3) pumping in the x but not
in the y direction; (4) pumping in the y but not in the x direction;
(5) pumping along the first diagonal x ¼ y but not along the
second diagonal x ¼ �y. (6) pumping along the second diagonal
x ¼ �y but not along the first diagonal (see Supplementary
Note 3). We also demonstrate what we call an “antagonistic”
effect, which manifests as follows: If edge-to-edge or corner-to-
corner pumping is observed with the source placed on one edge
or corner, respectively, then the pumping or any propagation is

Fig. 2 3D channel-modulated acoustic crystal and its dispersion property. a Schematic of the 3D channel-modulated acoustic crystal and its unit cell. b
Photograph of the printed 3D channel-modulated sample. c Dispersion diagram of a supercell composed of 9 ´9 coupled cavities, terminated by a hard-
wall boundary along x and y directions, and a periodic boundary condition along the z-direction. Bulk modes are shown in gray, topological pumping of edge
and corner modes are in blue and green, respectively. dWave number kz as a function of the pumping parameter for fixed frequencies f ¼ 7498Hz (upper
panel) and f ¼ 6175Hz (lower panel), corresponding to the cross-section illustrated by the red and purple planes in c. The inset in the upper panel shows
the diagonal orbit with the phason value from ð�0:2π;�0:2πÞ to ð0:2π;0:2πÞ. The insets below c and d show representative mode shapes for each type of
mode. The color scale corresponds to the pressure amplitude.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25305-z ARTICLE

NATURE COMMUNICATIONS | (2021)12:5028 | https://doi.org/10.1038/s41467-021-25305-z | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


completely absent if the source is moved to the opposite edge or
corner. In this respect, the structure acts like a perfect “transistor”
because the pumping can be turned on and off by 180� rotations.
In fact, by combining all the effects listed above, our 3D structure
can be transformed into a multifunctional and programmable
acoustic device for sound transport and distribution. We stress
that our structure does not possess any crystalline symmetry so
that the bulk polarizations are not quantized49. Therefore, the
higher-order topological corner modes in our system are
fundamentally different from previous realizations based on
quantized quadrupole polarization50–52 or quantized Wannier
centers53–56.

Topological phases with non-zero second Chern numbers
display intriguing wave transport characteristics, such as robust-
ness against impurities or defects22. It is of interest to quantify the
extent of the topological protection in such conditions. To
evaluate that, a 3D hollow structure is constructed by removing
nine cavities at the center of the system and the topological edge-
bulk-edge and corner-bulk-corner pumpings in the defected
structure are experimentally measured, as shown in Fig. 4a, c,
respectively. When comparing performance with the system

without defects (Fig. 3a, c), both edge and corner modes can be
smoothly pumped despite the presence of defects on a relatively
large scale. This confirms that the topological pumping is
immune against back reflections from defects or discontinuity.
The experimental observation is also verified by the numerical
simulation based on the exact geometry (Fig. 4b, d). In addition, a
robust topological pumping due to disorder in the pumping
parameters is also numerically evaluated in the Supplementary
Note 4.

Discussion
We demonstrate a robust strategy to explore the global degrees of
freedom of modulated wave media. While we have exemplified
here only simple orbits inside the phason spaces, the method has
no limitations on the geometry and topology of these orbits. For
example, in the present study on the 2D pumping, we explored
the fundamental loops x and y of the 2-torus (see the horizontal
and vertical orbits in Supplementary Note 3) as well as the
diagonal orbit, which is topologically equivalent to the combi-
nation Cx þ Cy . The 2-torus, however, supports an infinite
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Fig. 3 Topological pumpings in the 3D channel-modulated acoustic crystal. a, b Experimental a and numerical b observation of edge-bulk-edge pumping.
The sound is injected at the bottom-left edge with the frequency at f ¼ 7498Hz. c, d Experimental c and numerical d observation of corner-bulk-corner
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number of topologically distinct paths, which can be in principle
explored with the methods demonstrated in this work. It remains
to be seen if the phases of the sound signals can be resolved as
predicted in Section “Physical rendering of synthetic spaces”, in
which case the steering of the modes in both space and time
domains could be controlled with the same device. In our opi-
nion, the phason engineering may exhibit the possibility to
implement the topological split-flow device, such as the topolo-
gical beam splitter. In Fig. 5a, we create an acoustic beam splitter
to engineer two-way beam splitting. In the current design, we
consider a 2D system with different phason orbits in four
quadrants: in the first quadrant, the phason value is linearly
distributed from �0:2π to 0:2π along the z-direction; in the
second quadrant, the phason value is linearly distributed from
0:2π to �0:2π along the z-direction; in the third quadrant, the
phason value is held constant with ϕ ¼ 0:2π along the z-direc-
tion; in the fourth quadrant, the phason value is held constant
with ϕ ¼ �0:2π along the z-direction. The input point is located
at the bottom edge between the third and fourth quadrants. As
shown in Fig. 5b, the sound stays confined to the interface until it
arrives at the junction of four quadrants. Then, it splits into the
first and second quadrants, and eventually reaches the two-end
sites. Thanks to topological protection, the propagation is
immune against back reflection from discontinuity. As such, our
design, based on phason engineering and topological pumping,
provides an avenue for the application of acoustic beam splitters.
In addition, by replacing the waveguides with discrete coupled
resonators, one now has the opportunity to engineer the

dispersion with respect to kz quasi-momentum. This will involve
modulations along the vertical direction and this opens a
dimension in the design space, which is yet to be explored.

In conclusion, we have evidenced the topological sound
transport in modulated acoustic crystals through edge-to-edge
topological and corner-to-corner topological pumpings associated
with the 2D and 4D quantum Hall effects by the physical ren-
dering of synthetic spaces. These observations imply that the
system is characterized by a non-zero Chern number and
therefore the topological pumping is immune to bulk scattering
and exhibits strong protection against design imperfections. The
modulated acoustic crystals with synthetic spaces offer a platform
and route for efficient acoustic topological mode transport by
engineering desired patterns on a phason-torus, and the higher
dimensional quantum Hall effect may provide surface acoustic
phenomena in the finite structure. The phason space augments
the physical space and this opens a door to higher-dimensional
physics in acoustics and mechanics. Although we focused on the
acoustic implementation using synthetic spaces, our approach can
be generalized to other degrees of freedom, such as additional
frequency dimensions can also be harnessed for the frequency
modulation57,58. Going forward, it will be important to develop
and explore such broader connections, as the idea of topological
matter in synthetic dimensions is very general and the extension
of this approach to other complex orbits is much awaited. At last,
we emphasize that, in order to achieve a reasonable adiabatic
regime, the number of stacks in our experimental set-ups is
appreciable and, whereas this is perfectly fine for demonstration
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NI PXIe 
System 

x z 

Φ(z) 
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Φ(z) 

Fig. 6 Fabricated samples and experimental setup. a Photograph of the printed 2D channel-modulated sample. b Photograph of the printed 3D channel-
modulated sample and schematic of the experimental setup. The microphone is inserted from the top of the sample to measure the sound pressure of each
cavity.
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purposes, it will be an obstacle for practical applications. Recently,
Fedorova et al.59 showed that the non-adiabatic effects can be
compensated using modulated dissipative channels and that such
a strategy can be used to achieve quantized topological pumping
with fast-driven cycles. It will be interesting to explore if this
strategy can be deployed for our acoustic crystals in order to
reduce the number of stacks needed for the topological pumping
of sound.

Methods
Experimental specification. The stereolithographic 3D printing technique is used
to produce the experimental samples. The acoustic systems consisting of air cavities
connected by modulated channels are made of photopolymer, which serves as
acoustically hard walls owing to a high impedance mismatch compared with the
air. The dissipation effects are minimized by employing the state of the art in 3D
printing, which delivers acoustic crystals made of a single solid piece of high-
quality polymer. Furthermore, the modulation of the connecting channels is
adjusted until the topological gaps opened appreciably such that the dynamics of
the topological pumped modes is virtually unaffected by dissipation effects, at least
for the system sizes considered in our studies.

The fabricated 2D channel-modulated sample (Figs. 1b and 6a) consists of
15 ´ 16 cavities with thickness-modulated channels in the x-direction and
thickness-constant channels in the z-direction. The thickness of modulated

channels is hj ¼ h0 1þ δcos bj þ ϕ
� �h i

ðj ¼ 1; 2; 3Þ, where h0 ¼ 12mm, δ ¼ 0:6,

and b1; b2; b3
� � ¼ f0; 2π=3; 4π=3g. The side length of the cubic cavities is

a1 ¼ 20mm, the length of the modulated channels is L1 ¼ 2mm, the length of the
vertical connecting channels coupling the layers is L2 ¼ 3mm, and their side
length is a2 ¼ 8mm.

The fabricated 3D channel-modulated sample (Figs. 2b and 6b) consists of
9 ´ 9 ´ 15 cavities with thickness-modulated channels in the xy-plane and
thickness-constant channels in the z-direction. The thickness of modulated

channels is hαj ¼ h0 1þ δcos bαj þ ϕα
� �h i

ðα 2 x; y
� �

; j ¼ 1; 2; 3Þ, where
h0 ¼ 11:2mm, δ ¼ 0:75, and bx1 ¼ by1; b

x
2 ¼ by2; b

2
3 ¼ by3

� � ¼ f0; 2π=3; 4π=3g. The
side length of the cubic cavities is a1 ¼ 20mm and the length of the modulated
channels is L1 ¼ 2mm. The length of the vertical connecting channels coupling the
modulated layers is L2 ¼ 3mm, and their side length is a2 ¼ 8mm. The pumping
parameters ϕðzÞ in these two samples are evenly distributed from ϕi ¼ �0:2π to
ϕf ¼ 0:2π along the z-direction.

Figure 6b shows the experimental setup. A cylinder loudspeaker (diameter,
7mm; height, 5mm) and a microphone (20 ´ 9 ´ 4mm) are used as the sound
source and the acoustic pressure probe, respectively, both of which are small
enough to be inserted in the cavities. The NI PXIe data acquisition system (PCI-
4461 and PXIe-4610) is equipped for the experimental measurement, and a lab-
made LabVIEW program controls the PCI-4461 to generate a sinusoidal signal that
is amplified by PXIe-4610 to stimulate the speaker to emit sound waves of a given
frequency. Meanwhile, the microphone is inserted from the top of the sample to
measure the sound pressure signals at the center of each cavity and the data are
recorded by the PCI-4461 data acquisition card. In each measurement, the
unscanned holes are sealed by caps to avoid sound leakage.

Numerical simulations. The full-wave finite-element method simulations in this
work are all performed using the commercial software COMSOL Multiphysics. The
3D geometry is implemented by filling with air (density ρ ¼ 1:225 kg=m3 and
speed of sound v ¼ 343m=s). Eigenmode calculations within the “acoustic
module” are carried out to find the dispersion relations of the supercell. For cal-
culations of the relation between the wave number and pumping parameters as well
as the pressure eigenfunctions of the supercell, the simulations are implemented by
the “PDE (partial difference equation) Interfaces module” in which we write the
coefficient form of the PDE with two independent variables: the density and the
speed of air. Large-scale simulations are then implemented by the “acoustic
module” and frequency domain calculations are performed to obtain the steady
acoustic pressure fields. Supplementary Movies 1–3 are generated by the “acoustic
module” and time-domain calculations are performed to obtain the transient
acoustic pressure fields.

Data availability
All the data supporting the findings of this study are available from the corresponding
authors upon reasonable request. Source data are provided with this paper.

Code availability
The computer code and algorithm that support the findings of this study are available
from the corresponding author upon reasonable request. Source data are provided with
this paper.
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