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Abstract
Evaporation (E) from about 300 million lakes worldwide without plant physiological constraints
directly reflects hydrological response to atmospheric forcings. However, it remains inadequately
understood about what regulate spatial variability of global lake E across seasons. Here we show
that vertical vapor pressure difference (eD) accounts for 66% of the spatial variability of annual E,
followed by wind speed (16%). The eD is also the predominant factor modulating diurnal
variability in E and causing greater E at night than during the daytime. As a consequence, spatial
variability in nighttime E strongly regulates that in global E across seasons. Therefore, the observed
widespread, heterogeneous changes in lake surface temperature that imply spatial variability in eD
may have contributed to changes in global E variability.

1. Introduction

There are more than 300 million lakes with surface
areas of greater than 0.001 km2 in the world which
cover about 3% of the terrestrial land (Downing et al
2006). In the climate system, lake evaporation (E)
is considered energy limited (Brutsaert and Parlange
1998) and its direct response to climate perturbations
independent of varying terrestrial plant ecosystem
functionalities and regulations make lakes ideal sys-
tems to attribute changes in evaporative processes to
atmospheric forcings. However, spatiotemporal vari-
ations in global lake E in response to environmental
controls remain less studied.

Previous field studies in some individual lakes
have indicated the varying effects of atmospheric vari-
ables and lake-surface processes on lake E at dif-
ferent time scales (Woolway et al 2020). At diurnal
scale, vapor pressure difference (eD) between lake
surface and overlying air, wind-induced turbulence,
and atmospheric stability conditions that are largely

associated with temperature difference (TD) between
the lake surface water temperature (LSWT) and the
overlying air primarily affect E variability (Blanken
et al 2000, Liu et al 2012, Xiao et al 2018). Lake E
at sub-seasonal to seasonal time scales is largely reg-
ulated by invasions of synoptic weather events and
energy inputs (Hostetler and Bartlein 1990, Blanken
et al 2000). Invasions of synoptic weather events dis-
turb local or mesoscale atmospheric forcings that
alter LSWT, leading to changes in water surface
energy balance (Blanken et al 2011, Spence et al
2011). Lake water bodies store large amount of heat
during lake heating periods (e.g. daytime with solar
heating at daily time scales and spring and summer
at seasonal time scales) and release stored heat to
the overlying air during lake cooling periods (e.g.
nighttime and autumn and winter) due to the large
heat capacity of water (Blanken et al 2003, Lenters
et al 2005). The heat storage of lake water bod-
ies lessens temporal changes in LSWT that are off
phase with temporal changes in the over-lake air
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temperature (Ta) (Henderson-Sellers 1986, Bonan
1995). Since the saturation vapor pressure (es) across
the water-air interface is a function of LSWT, such
variations in LSWT strongly affect eD variability, lead-
ing to changes in lake E across different time scales
(Hostetler and Bartlein 1990, Woolway et al 2020).
Climate warming has caused widespread, but geo-
graphically heterogeneous increase in LSWT across
the globe (O’Reilly et al 2015). Lakes tend to chan-
nel more energy towards latent heat flux (LE) than
sensible heat flux (H) in disproportionate rates under
warmer climate conditions (i.e. decrease in Bowen
ratio) (Wang et al 2018). Thus, the heterogeneous lake
warming implies that spatial variability in global lake
Emight have been changed through various feedback
mechanisms.

Lake E and its environmental controls are also
indirectly regulated by lake attributes such as geo-
graphic locations and depths (Sene et al 1991,
Delclaux et al 2007, Rosenberry et al 2007). Lake
geographic locations dictate seasonal variations of
available energy inputs (i.e. solar radiation). The
lake-depth dependent water heat storage controls
temporal phase difference between energy inputs and
E (Granger and Hedstrom 2011) and therefore plays
a critical role in modulating E patterns. In tropical
lakes, both shallow and deep, the mean monthly E
is generally in-phase with net radiation (Rn), while
diurnal variations in E are sensitive to wind speed
(Sene et al 1991, Delclaux et al 2007). For mid- and
high-latitude shallow lakes, there is a strong correla-
tion between mean monthly E and Rn. In mid- and
high-latitude deep lakes, however, a phase difference
of one to three months (i.e. time delays) affected by
lake depths can occur between E and Rn (Rouse et al
2003, Oswald and Rouse 2004, Li et al 2016), and
diurnal variations in E are best explained as a func-
tion of wind speeds and eD (Rouse et al 2003, Shao
et al 2015).While these previous field studies demon-
strate varying effects of specific factors among envir-
onmental controls and lake attributes on lake E for
specific lakes, spatial variability in global lake E as
a result of the collective effects from these factors
remains less studied.

It is challenging to measure lake E (Lenters et al
2005). Several indirect methods have been used for
deriving lake E based on readily measured variables,
including pan coefficient (Kohler et al 1955), water
budget (Sturrock 1978), Bowen ratio energy balance
(Ficke 1972, Sturrock 1978), Penmanmodel (Penman
1948), Priestly and Taylormodel (Priestley and Taylor
1972), and Thornthwaitemodel (Thornthwaite 1948)
among many others. More recently, the in-situ lake
Emeasurements using the eddy covariance technique
have become increasingly available (Rouse et al 2005,
Nordbo et al 2011, Wang et al 2017). Nevertheless,
these eddy covariancemeasurements of lake E remain
sparse. To advance understanding of spatiotemporal

variations in E and the associated environmental
controls, numerical lake models have emerged as a
useful approach to simulate global lake E (Wang et al
2018).

This study reports spatial variability of global
lake E across seasons and quantifies the impacts of
atmospheric forcings on these variations. Using Lake,
Ice, Snow, and Sedimentation Simulator (LISSS) to
simulate global lake E, we aim to answer the fol-
lowing questions: (a) what is the spatial distribu-
tion of global lake E and how available energy is
partitioned among surface energy fluxes across sea-
sons; (b) what are the key environmental para-
meters regulating lake E variability; and (c) how
the spatial variability in day and night E regulates
global lake E variability and what are their driving
parameters.

2. Materials andmethods

2.1. Model simulation and validation
We use the LISSS in the Community Land Model
(CLM v. 4.5) to simulate LSWT and lake surface
energy fluxes including LE or E, H, and heat flux
into or from lake water (G). For ice/snow covered
lakes during cold moths, the ice-surface temperat-
ure is used as LSWT. The LISSS is a sub-module
within the CLM that uses a nested hierarchy con-
sisting of five land units or tiles (glacier, urban,
agricultural, vegetation, and lake) to represent sur-
face heterogeneity at the subgrid level for each CLM
grid. In this study, the CLM simulations are con-
ducted at 0.94◦ × 1.25◦ horizontal resolutions and
30 min temporal resolution over 1930–2016 driven
by CRUNECP atmospheric forcing dataset with the
first 50 years as the spin-up period. The CLM uni-
fies all lakes within a grid cell by using the mean
depth and runs LISSS at subgrid level as one tile
to calculate surface energy fluxes. The brief descrip-
tions of LISSS are given in text S1 (available online
at stacks.iop.org/ERL/17/054006/mmedia). The out-
puts from 4591 lake tiles are extracted and then ana-
lyzed in this study. The good performance of the
LISSS in reproducing fluxes has been demonstrated
by several studies (Subin et al 2012a, Hu et al 2017,
Wang et al 2018, Xiao et al 2018). Our own val-
idation also indicates its good performance (figure
S1). The simulated lake E and LSWT are validated
against observations (figure S1). The statistical ana-
lysis indicates that simulated surface fluxes are sig-
nificant with r2 = 0.89, RMSE = 12.02 W m−2,
p < 0.01 for E and r2 = 0.96, RMSE = 1.8 ◦C,
p < 0.01 for lake surface temperature. Despite of
the model good performance in simulating surface
fluxes, the LISSS tends to have a positive bias of
about 0.69 ◦C in the simulated LSWT. The implic-
ations of this bias for lake E are discussed in
section 4.2.
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Table 1. The magnitude of lake surface energy balance components at annual and seasonal time scales. The mean values of latent heat
(LE), sensible heat (H), lake heat storage (G), and net radiation (Rn) are listed. Except for G, the positive values represent flux from lake
surface to the atmosphere and vice versa. For G, the positive values show flux from the lake water surface to the layers below.

Climate region
Component
(W m−2)

Season

AnnualSpring Summer Autumn Winter

30◦ S–30◦ N LE 128.7 136.6 129.0 111.0 126.3
H 12.8 15.5 16.8 14.8 15.0
G 20.3 4.5 −15.2 −9.1 0.1
Rn 161.7 156.6 130.6 116.7 141.4

30◦ S–60◦ S
and 30◦

N–60◦ N

LE 29.7 99.9 67.2 10.7 51.9
H −1.3 15.6 22.2 −5.1 7.9
G 67.3 38.4 −64.5 −7.7 8.4
Rn 95.7 153.9 24.9 −2.1 68.1

>60◦ N LE 1.1 45.8 19.5 −1.8 16.2
H −9.7 12.0 5.7 −17.0 −2.3
G 47.3 59.0 −48.5 −9.5 12.1
Rn 38.7 116.8 −23.3 −28.3 26.0

Global LE 53.2 94.1 71.9 40.0 64.8
H 0.6 14.4 14.9 −2.4 6.9
G 45.0 34.0 −42.7 −8.8 6.9
Rn 98.7 142.4 44.1 28.8 78.5

2.2. Methods for data analysis
One-year fluxes at the 30 min interval by averaging
the fluxes over 2000–2016 are used to examine their
spatial variations across seasons. The simulated fluxes
at the 30min resolution were then aggregated to daily
and seasonal means. We divided the global lakes in
three climate regions and calculated arithmeticmeans
of all values of individual lakes within a climate region
(table 1). The time periods with incoming shortwave
radiation greater or less than 25 W m−2 are defined
as daytime or nighttime, respectively. The unit of
mm d−1 is used for both the daytime and night-
time E despite of the different time durations for day-
time and nighttime so that their evaporation rates
can be directly compared. Fluxes are averaged over
single lakes and then over the latitude before themean
zonal ratios of fluxes are calculated. It is important to
note that the average fluxes over the latitude are not
weighted by lake area and therefore are independent
of lake size. The seasons are synchronized for both
the hemispheres. For example, spring is defined as a
combination of March–May in the Northern Hemi-
sphere and September–November in the Southern
Hemisphere. Here and throughout, H and LE from
lake surface to the atmosphere are defined as positive,
and the downward radiation flux components and G
from the water surface to the layers below are defined
as positive.

Multiple linear regression (MLR) is performed to
analyze the influence of eD, wind speed, Ta, specific
humidity (qa), andRn onE. All variables are standard-
ized before analysis is made by removing mean and
scaling to unit variance so that the results can be inter-
preted at comparable scales. The relative importance
(i.e. variance explained, β) of each environmental
variable as E driver is quantified by a ratio between
the regression coefficient of individual variable and

the sum of regression coefficient of all variables from
the MLR. We use the arithmetic mean of β over latit-
udes within each climate region to explain the spatial
variability of driving variables on lake E. The response
of lake E to change in eD and air vapor pressure defi-
cit (VPD) is also compared using E sensitivities to eD
and VPD. Such sensitives are calculated using Theil-
Sen’s linear regression with a 95% confidence interval
(Sen 1968). The Theil-Sens is a robust nonparamet-
ric approach which calculates all possible slopes and
returns the median slope as an estimate of the linear
trend. The one-year flux data at the 30 min temporal
resolution are used in both the regression analysis and
the sensitivity analysis.

3. Results

3.1. Spatial variations of global lake E across
seasons
Lake E is intrinsically influenced by the water surface
energy balance and partitioning. Globally, the annual
mean lake E is 2.3 mm d−1, and the corresponding
annual mean LE (64.8 W m−2) accounts for about
82.5% of the annual mean global Rn (figure 1(a)
and table 1), suggesting that majority of the available
energy is partitioned into latent heat fluxes. Annu-
ally, the global lakes receive 165.5Wm−2 of incoming
shortwave radiation and 300.6 W m−2 of incoming
downward longwave radiation (figure S2). The lakes
reflect 21.9 W m−2 of the incoming shortwave radi-
ation and absorb remaining 444.3 W m−2 of radi-
ative flux (Rabs). In response, the lakes adjust their
surface temperature and radiate longwave radiation
(365.8 W m−2, 82.3%) and fuel LE (64.8 W m−2,
14.6%) and H fluxes (6.9 W m−2, 1.5%) (figure
S2). Here below the surface energy balance equation
(Rn = LE+H+G) is primarily used to analyze how

3
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Figure 1. Spatial variations in mean lake evaporation E (mm d−1). (a) Annual. (b) Spring. (c) Summer. (d) Autumn. (e) Winter.
Each row, from left to right, shows the spatial distribution of E, zonal mean E, and the ratio of zonal mean latent heat flux (LE)
and net radiation (Rn), respectively. The shaded areas in zonal mean plots denote 10th and 90th percentile of E. Because of near
zero/negative Rn in the latitudes of >40◦ N and 40◦ S, the LE/Rn ratio is very large/small and therefore has been omitted in
autumn and winter zonal plots. The positive values represent flux from lake surface to the atmosphere.

the surface absorbed Rn is partitioned into LE, H,
and G.

Global lake E shows distinct spatial variations
across seasons (figure 1 and table 1). The annual
zonal mean E peaks at about 14◦ N (5.4 mm d−1)
and decreases towards the polar regions with a level-
off zone (4.1 mm d−1) from 30◦ S to the equator
and the minimum E at 75◦ N (figure 1(a)). Sea-
sonal variations of the zonal mean E in spring and
winter resemble the annual ones, but with the level-
off zone substantially reduced in winter (figures 1(b)
and (e)). A second peak occurs around 25◦ S in sum-
mer and autumn (figures 1(c) and (d)). At the annual
and seasonal time scales, latitudinal variations in E
are primarily explained by latitudinal variations in
Rn (figure S3; r2 > 0.75, p < 0.05), suggesting that
latitudinal variations in lake E at seasonal to annual
time scales are strongly constrained by latitudinal

variations in energy input. However, latitudinal vari-
ations in wind speed plays minor roles in affecting
latitudinal variations in E at such time scales (figure
S3; p > 0.05). LE/Rn from 30◦ S to 30◦ N is about
89.3%, and LE/Rn for the latitudes of >30◦ N is about
69.3% (figure 1(a) and table 1). The lower LE/Rn

at latitudes of >30◦ N is attributed to the fact that
more Rn is channeled towards snow/ice melting, as
compared with low-latitude lakes. The zonal mean
H/Rn varies slightly across the latitudes from about
30◦ S to 30◦ N, but it decreases with increasing latit-
udes at the latitudes of >30◦ N (figure 2). In spring,
the negative H and Rn at the northern high latit-
udes of >30◦ N (figure 2(b)) are primarily utilized for
melting snow/ice, leading to low E (figure 1(b)). In
summer, Rn absorbed by high-latitude lakes is parti-
tioned into positiveH and LE and heat stored in lakes
(figures 1(c) and 2(c)). The negative Rn at latitudes
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Figure 2. Spatial variations in mean net radiation (Rn) and sensible heat flux (H). (a) Annual. (b) Spring. (c) Summer.
(d) Autumn. (e) Winter. The left panel shows spatial and mean zonal distribution of Rn. The negative Rn in the latitudes of >40◦

N and 40◦ S represents heat loss from lake surface through longwave radiation. The spatial distribution of H, its zonal mean, and
the ratio of zonal mean H and Rn are shown in right panel. The negative H shows flux from overlying atmospheric air towards
lake surface. Because of near zero/negative Rn in the latitudes of >40◦ N and 40◦ S in autumn and winter, the H/Rn ratio is very
large/small and therefore is omitted in autumn and winter zonal plots.

of >30◦ N in autumn is attributed to the hysteresis
of lake temperatures due to heat storage. Such heat
storage drives LE and causes positive H in this sea-
son (figures 1(d) and 2(d)) as dry cold air masses
passes over warmer lakes (Blanken et al 2003, Lenters
et al 2005). In winter, lakes at the latitudes of >30◦ N
become frozen, and the negative Rn is almost bal-
anced by the negativeH, whereas LE approaches zero
(figures 1(e) and 2(e)). These results indicate that LE
has the large spatial variability; however, it remains
unclear as to which atmospheric variables predomin-
antly regulate such variability.

3.2. Vapor pressure difference (eD) regulating lake
E spatial variability across seasons
Our statistical analysis indicates that spatial variabil-
ity in the annual mean E is mainly explained by that
in eD (66%) followed by wind speed (16%) (figure
S4(a)). The remaining 18% of the E variability is
explained by a combination of other drivers includ-
ing Ta (figure S5; β = 0.08), qa (figure S5; β = 0.07),
and Rn (figure S5; β = 0.03). In the latitudes of 30◦ S
to 30◦ N, the regression coefficients between E and eD
are negatively correlated with regression coefficients

between E and wind speed (figure S6). This negative
correlation indicates that eD and wind speed jointly
regulate the E variability in this region (figure S4(a)).
However, the relatively high but varying eD in these
latitudes acts as the primary driving variable of E
under persistently adequate turbulent mixing in the
over-lake atmosphere with strong wind (figure 3(a)).
In the latitudes of >30◦ N and 30◦ S, high wind speed
provides strong vertical turbulent mixing, but eD is
low and keeps decreasing with increasing latitudes
(figure 3(a)). As a result, the low eD acts as a strong
constraint on evaporation and regulates E variability,
which also explains the high regression coefficients
between E and eD. At the seasonal scales, eD still out-
paces wind speed in regulating spatial variability in E
(figures S4(b)–(e)).

3.3. Nighttime E contributes more to spatial
variability in global lake E than daytime E
Our analysis shows that global mean nighttime E is
about 14% greater than the global mean daytime E
(figure 4(a) and table S3). The annually averaged dif-
ferences in E (△E) between nighttime (En) and day-
time (Ed) demonstrate substantial spatial variability
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Figure 3. Spatial variations in mean vapor pressure difference (eD) and wind speeds (U). (a) Annual. (b) Spring. (c) Summer.
(d) Autumn. (e) Winter. The left two panels show the spatial and zonal mean distribution of eD, respectively. The positive eD
represents higher vapor pressure at air-water interface than air vapor pressure. The right three panels show the spatial distribution
of U, the daytime and nighttime zonal mean of U, and the zonal mean of the U difference between daytime and nighttime (△U).
The positive△U represents higher wind speeds at nights than during the day.

from approximately −0.9–4.2 mm d–1. Note that
the unit of mm d–1 is still used for En (Ed) which,
when dividing by 24 h, results in the nighttime (day-
time) evaporation rate in mm h–1 independent of
the length of nighttime (daytime). The large posit-
ive annual △E primarily occurs across the latitudes
from about 30◦ S to 30◦ N where the zonal mean
En can be 38% higher than the daytime counter-
part. The zonally averaged annual△E has two peaks,
one (1.4 mm) around 25◦ S and the other (1.7 mm)
around 14◦ N, and becomes negative (i.e. higher Ed)
in the latitudes of >30◦ S and 30◦ N (figure 4(a)).
Seasonal variations in the zonally averaged △E in
spring, autumn, and winter resemble the annual △E
while approaching zero in the latitudes of >30◦ N
in winter. In summer, however, △E peaks (2.1 mm)
in about 25◦ S and remains positive across latitudes
(figure 4(c)).

The spatial variability in △E is predominantly
regulated by that of the difference in eD and TD
between nighttime and daytime (figures S7–S9).
Greater △E between nighttime and daytime cor-
responds to larger difference in eD and TD. The

higher TD at night reflects more unstably stratified
atmospheric conditions. More unstable atmospheric
conditions promote evaporation thereby contrib-
uting to greater evaporation at night than dur-
ing the daytime. However, the difference in wind
speed between nighttime and daytime (△U) plays a
minor role in regulating the spatial variability in △E
(figure 3). In the latitudes of >30◦ S and 30◦ N, the
negative△E is simply attributed to negative△eD (i.e.
the lower eD at night than during the day). The pos-
itive△E is large in the latitudes of <30◦ S and 30◦ N
across seasons, being greatest in the winter with the
highest positive eD (△E/E = 22%; △eD/eD = 11%),
followed by spring (△E/E = 18%; △eD/eD = 9%),
autumn (△E/E = 14%; △eD/eD = 8%), and sum-
mer (△E/E = 12%; △eD/eD = 8%). Note that
the global mean accumulative nighttime evapora-
tion (AEn) remains higher than accumulative daytime
evaporation (AEd) when day and night length is con-
sidered (figure S10). The annual, spring, autumn, and
winter AEn is about 9.4%, 12.5%, 28.0%, and 43.6%
higher than AEd, respectively. In summer, however,
the longer days in the latitudes of >30◦ N cause
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Figure 4. Spatial variations in the difference between nighttime and daytime lake evaporation (∆E). (a) Annual. (b) Spring.
(c) Summer. (d) Autumn. (e) Winter. The three columns, from left to right, show the spatial distribution of∆E, zonal mean E for
daytime and nighttime, and zonal mean∆E, respectively. The positive values represent higher nighttime evaporation than
daytime and vice versa.

AEn to be 14.6% less than its daytime counterpart
(figure S10(c)).

4. Discussion

4.1. Role of VPD inmodulating lake E
Several studies have reported that VPD is a key envir-
onmental variable in regulating spatiotemporal vari-
ations in terrestrial evapotranspiration (Wang et al
2019, Kimm et al 2020), while its role in the global

lake E remains unclear. Although the diurnal vari-
ations in lake E are less sensitive to diurnal vari-
ations in VPD compared to eD (figure 5), it plays
important role in modulating lake E via associated
atmospheric dryness. The thermal lag, by which lakes
retain their daytime temperature values for longer
time due to higher thermal inertia of water (Rouse
et al 2005, Liu et al 2009), causes es to be less sensit-
ive to changes in the nighttime Ta (figure 5). Whereas
the changes in air saturation vapor pressure are highly
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Figure 5. Sensitivity analysis. (a) Annual. (b) Spring. (c) Summer. (d) Autumn. (e) Winter. The first and second columns, from
left, show spatial distributions of sensitivities of lake evaporation E to vapor pressure deficit (VPD) and vapor pressure difference
(eD), respectively. The third and fourth columns show spatial distribution of sensitivities of saturated air vapor pressure and
air-water interface vapor pressure (es) to air temperature (Ta), respectively. Each data point represents the sensitivity obtained by
linear regression for each lake.

sensitive to changes in Ta (figure 5), thereby make
diurnal variations in lake E less sensitive to VPD.
However, the VPD is projected to increase under
future warming trends because of faster increase in
saturated vapor pressure than actual vapor pressure
(Sherwood and Fu 2014, Ficklin and Novick 2017).
The es is also increasing due to rapid lakes warming
globally (O’Reilly et al 2015, Woolway et al 2020).
Higher es and VPD will lead to elevated eD. Our ana-
lysis shows that eD mainly drives lake E across seasons,
suggesting that an increase in VPD will have posit-
ive feedback on lake E trends under future warming
climate.

4.2. Uncertainties in simulated lake E
The LISSS simulated lake E is statistically significant
while it is acknowledged that uncertainties remain.
The LISSS tends to have a mean positive bias of
0.69 ◦C in simulated LSWT based on our valida-
tions (figure S1(b)). The estimated relation between
LSWT and lake E (text S2 and figure S11) implies
that the simulate LE could have a 5.8% bias in the
annual mean global lake E. However, our test demon-
strates that LISSS did not over-predict LE system-
atically (figure S1(a)). Uncertainties may be associ-
ated with (a) aggregating lakes at subgrid level as one
tile in each CLM grid using mean depth and cal-
culating light extinction coefficient as a function of
depth (Subin et al 2012b); (b) underestimation of

wind drag in case of limited fetch for shallow lakes
leading to insufficient wind-driven turbulent mixing
(Stepanenko et al 2013); (c) inadequate simulations
of vertical circulations in deep lakes (Bennington et al
2014). Another uncertainty source is attributed to
the quality of the forcing dataset. Ideally, meteorolo-
gical variables that drive the model should be meas-
ured directly over lakes. Given that observation sites
over lakes are sparse, all these variables are derived
from reanalysis datasets that are primarily based on
weather stations over land (Qian et al 2006, Shef-
field et al 2006, Saha et al 2010). The use of land-
based datasets to force lakemodels could induce addi-
tional uncertainties (Bradley 1968, McJannet et al
2012). The discrepancies among different datasets are
another source of uncertainty associated with forcing
data (Wang et al 2016). The comparison of terrestrial
latent heat flux simulated by CLM v. 4.5 driven
by CRUNECP (used in this study) and three other
reanalysis products (i.e. MERRA, CFSR, and ERA-
Interim) with flux towermeasurements demonstrates
similar r2 (0.81–0.83) and RMSE (19.66 W m−2–
21.45 W m−2) (Wang et al 2016). The slight dif-
ference in RMSE is attributed to the disparities of
precipitation, air temperature, and downward solar
radiation (Wang et al 2016). However, the independ-
ence of lake E on precipitation by maintaining con-
stant water mass (Oleson et al 2013) implies that sim-
ulated lake E as driven by different forcing datasets
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should result in small differences. Nevertheless, our
LISSS-derived lake E shows variabilities comparable
with measurements in individual lakes across latit-
udes. Thus, the simulated global E variability should
capture its major spatiotemporal features.

5. Conclusions

Using a state-of-science lake model, our study shows
that the annual, spring, summer, autumn, and
winter mean global lake E is 2.3, 1.9, 3.4, 2.6, and
1.4 mm d−1, respectively, with large spatial variab-
ility across seasons. The annual zonal mean E peaks
around 14◦ Nwhere both eD andwind speed are high,
and it then decreases towards both high latitudes with
a leveled-off zone from the equator to 30◦ S where
wind speed is low. Seasonal variations of the zonal
mean E show similar patterns, but with a second peak
in summer and autumn in around 25◦ S where both
eD and wind speed are high. The eD also predomin-
antly modulates seasonal and diurnal variations in
global lake E. Further, our study indicates that the
spatial variability in the nighttime E contributesmore
to that in the global lake E across seasons than that in
the daytime E, which is largely attributed to the night-
time spatial variability in eD. The rapid increase in
LSWT and VPD under warmer climate leads to elev-
ated eD which will have positive feedback on lake E
trends.
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