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Abstract—In many real–world applications, e.g., medical diag-
nosis, behavioral analysis, Bayesian networks are used to describe
relationships between variables. However, such variables are
not directly observable, but can be inferred through noisy but
costly features. In this paper, our previously proposed framework
of dynamic instance–wise feature selection and classification
is extended to work with structured data instances, i.e., data
instances where relationships between classification variables are
represented using a known Bayesian network. The objective is
to maximize classification accuracy while minimizing the total
cost of selected features. To this end, starting from lowest degree
nodes, the proposed method sequentially selects features for each
variable in the Bayesian network and performs classification.
The resulting classification decisions are propagated through the
Bayesian network and used during the classification process of the
remaining variables. The performance of the proposed method
is illustrated on two datasets and its effectiveness is compared
with existing methods.

Index Terms—Sequential feature selection, inference, Bayesian
networks, noisy observations, instance–wise decision making

I. INTRODUCTION

In many application domains, Bayesian networks repre-

sented by directed acyclic graphs (DAG), are used to describe

relationships between variables of interest [1]. For example,

in medical diagnosis, the cancer Bayesian network [2] with

five nodes, i.e., “pollution”, “smoker”, “cancer”, “X–ray”

and “dyspnoea”, represents the factors that might affect a

patients’ chance of having cancer. Nonetheless, the Bayesian

network variables are not directly observed, but instead can

be inferred through access to noisy but costly features. For

instance, emotion and personality traits can be extracted from

various physiological signals collected via biomedical sensors

(e.g., galvanic skin response (GSR), electrocardiogram (ECG),

electroencephalogram (EEG)) and self–reported questionnaires

[3]–[5].

The wide applicability of Bayesian networks in various

domains (e.g., medical diagnosis [2], [6], [7], behavioral

analysis [8]) has led to the design of various classifiers for such

networks [9]–[13]. However, such methods typically assume

that the Bayesian network represents the relationships between

a single classification variable and a set of noisy features, and

thus, the goal is to infer the value of such variable. On the other

hand, prior work on Bayesian networks for supervised learning
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consider more than one classification variables [14]–[16], the

relationships between which are represented through a known

Bayesian network structure. The objective in this case is to

infer the values of all classification variables in the network,

exploiting their relationships. Still, such classification variables

are assumed to be fully observable (i.e., not observed through

noisy features). However, in many real–world applications,

this assumption does not hold; in fact, classification variables

are observed via noisy features, while at the same time, they

exhibit relationships between them. For instance, the affective

state and personality traits of an individual, which are only

observable through noisy GSR, ECG, and EEG sensor data

[3], are related and thus, can be represented by a Bayesian

network with two classification variables. Finally, in time–

sensitive applications like medical diagnosis, accessing fea-

tures comes at a cost while exhibiting different informativeness

(e.g., magnetic resonance imaging is a costly but informative

operation). Thus, a mechanism to dynamically select features

in a sequential manner to infer the values of classification

variables in such settings is necessary.

In this paper, a method is proposed to dynamically select

features for classification of structured data instances, i.e., data

instances where relationships between classification variables

are represented using a known Bayesian network. Building

upon our prior work [17], which considers a single classifi-

cation variable, the proposed approach dynamically selects a

subset of the available features and reaches an appropriate clas-

sification decision for each variable in the Bayesian network

during testing. Classification decisions are propagated through

the Bayesian network starting from the lowest degree nodes

and used during the classification of the remaining variables.

The performance of the proposed approach is validated in

a synthetic and a real–world dataset, and compared with

established classification and feature selection methods with

respect to accuracy, number of features selected, and time.

The obtained results indicate the superiority of the proposed

approach compared to such existing methods in the context of

structured environments.

II. PRELIMINARIES

In this section, the process of dynamically selecting features

and reaching a classification decision is summarized for each

variable in the Bayesian network. For more details, the reader

is referred to our prior work [17].
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A. Description

Consider a known Bayesian network structure G = (X,E)
described by a DAG. Here, X , {X1, X2, . . . , Xn} is

the set of n nodes corresponding to n variables in G,

where each Xi, i = 1, 2, . . . , n, is a categorical variable

that can take multiple values. E is the set of directed

edges that represent relationships between variables. A set

F , {FX1

1 , . . . , FX1

K1
, FX2

1 , . . . , FX2

K2
, . . . , FXn

1 , . . . , FXn

Kn
} of

features is available, where FXi

k , k = 1, 2, . . . ,Ki, denotes

the kth feature associated with variable Xi. Our objective

is to infer the values of the variables in X by balancing

classification accuracy with the total cost of selected features.

Next, we state the following two important assumptions:

(A1) Features FXi

k , k = 1, 2, . . . ,Ki, associated with variable

Xi are assumed conditionally independent given the

variable Xi.

(A2) The ordering of the features FXi

k , k = 1, 2, . . . ,Ki, is

fixed and given for each variable Xi.

B. Optimization Setup

Consider the pair of random variables (Ri, DRi
) associated

with class variable Xi, i = 1, 2, . . . , n. Random variable
Ri ∈ {0, 1, . . . ,Ki} represents the last feature selected from

the ordered set FXi , {FXi

1 , . . . , FXi

Ki
} associated with

variable Xi. Random variable DRi
represents the classification

decision associated with variable Xi. Since Xi is a categorical
variable, Xi belongs to one of Ni possible classes. As a result,
DRi

takes values in the set {1, 2, . . . , Ni}. Associated with

each feature FXi

k is a cost eik, k = 1, 2, . . . ,Ki. Furthermore,
associated with a classification decision is cost M i

lm, which

represents the cost of selecting class CXi

l , l = 1, 2, . . . , Ni,

while the true class is CXi
m ,m = 1, 2, . . . , Ni. The objective

is to sequentially select the minimum number Ri of features
to reach a classification decision DRi

by minimizing the
following cost function:

J(Ri, DRi
) = E

[

Ri
∑

k=1

e
i

k

]

+

Ni
∑

l=1

Ni
∑

m=1

M
i

lmP (DRi
= l, C

Xi
m ), (1)

where P (DRi
= l, CXi

m ) represents the joint probability of

selecting class CXi

l while the true class is CXi
m . Here, the first

expression denotes the total cost of evaluating Ri features in

the sequential process, while the second expression penalizes

missclassification errors.

C. Optimum Solution

To minimize the cost function in Eq. (1), we first find the

optimum decision D∗
Ri

for a given Ri. Then, the reduced cost

function, J(Ri), depends only on Ri. Finally, we find the

optimum R∗
i by minimizing J(Ri) [17]. We refer to D∗

Ri
and

R∗
i as optimum classification and feature selection strategies,

respectively.

Consider the posterior probability πk , [π1
k, π

2
k, . . . , π

Ni

k ]T ,

after selecting k out of Ki features associated with variable

Xi. The probability πm
k , P (CXi

m |FXi

1 , . . . , FXi

k ) denotes

the posterior probability of the mth class, m = 1, 2, . . . , Ni.

At stage k = 0, π0 , [p1, p2, . . . , pNi
]T , where P (CXi

m ) =
pm,m = 1, 2, . . . , Ni. From Bayes’ rule, as more features

are sequentially selected, the posterior probability πm
k is

recursively updated as follows:

πm
k =

P (FXi

k |CXi
m )πm

k−1

P (FXi

k |CXi

1 )π1
k−1

+ . . .+ P (FXi

k |CXi

Ni
)πNi

k−1

. (2)

Eq. (1) can be rewritten in terms of the posterior probability

and the indicator function 1A (i.e., 1A , 1 when event A

occurs, and 0 otherwise) as follows:

J(Ri, DRi
) = E

[

Ri
∑

k=1

eik +

Ni
∑

l=1

Ni
∑

m=1

M i
lmπm

Ri
1D{Ri=l}

]

.

(3)

The optimum classification strategy D∗
Ri

for any given feature

selection strategy Ri can be shown to be [17]:

D∗
Ri

= argmin
1≤l≤Ni

[

(Mi
l)

TπRi

]

, (4)

where M
i
l , [M i

1l,M
i
2l, . . . ,M

i
Nil

]T . As a result, the cost

function in Eq. (3) can be written as:

J(Ri) = E

[

Ri
∑

k=1

eik + g(πRi
)

]

, (5)

where g(πRi
) , min1≤l≤Ni

[(Mi
l)

TπRi
].

Finally, the optimum feature selection strategy R∗
i can be

found by minimizing the cost function in Eq. (5) via dynamic

programming [17]. Specifically, since there are Ki available

features associated with variable Xi, there are maximum Ki+
1 stages for the associated dynamic programming equations:

Lk(πk) = min
[

g(πk), L̃k(πk)
]

, k = 0, . . . ,Ki − 1, (6)

where,

L̃k(πk) = eik+1 +
∑

F
Xi
k+1

Lk+1(πk+1)
(

∆T
k+1(F

Xi

k+1
)πk

)

, (7)

with ∆k(F
Xi

k ) , [P (FXi

k |CXi

1 ), . . . , P (FXi

k |CXi

Ni
)]T and

LKi
(πKi

) = g(πKi
).

III. PROPOSED APPROACH

In this section, the proposed approach to identify the values

of all variables in the Bayesian network is described exploiting

the results of Section II. Specifically, for each variable Xi, i =
1, 2, . . . , n, in the Bayesian network G, features associated

with that particular variable are sequentially selected based

on Eq. (6), and a final classification decision is reached

using Eq. (4). The process begins by initializing the posterior

probability π0 for each variable Xi. If the cost of continuing

the feature selection process is less than the cost of reaching

a classification decision, the first feature in the set FXi is se-

lected and the posterior probability is updated based on Eq. (2).

The process is repeated until either a subset of features is

selected or all of the available features are reviewed. In either

case, a classification decision is reached using the updated

posterior probability along with the optimum classification

strategy of Eq. (4). The proposed approach consists of a

training and a testing phase, as discussed next.
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Fig. 1. Graphical representation of proposed approach for a data instance during testing. (a) Original Bayesian network, (b) Feature selection and classification
for variables of in–degree 0, (c) Feature selection and classification for variables of in–degree greater than 0.

During training, the optimum classification and feature

selection strategies described by Eqs. (4) and (6) are solved

offline for each variable Xi, i = 1, 2, ..., n. Specifically,

quantizing the interval [0, 1] such that
∑Ni

m=1
πm
k = 1, a

Ki × d matrix is generated for each variable Xi, where d

is the number of possible πk vectors, and used to numerically

solve Eqs. (4) and (6). This procedure is done for all variables

in the Bayesian network G.

During testing, the numerical solutions determined during

training are used to dynamically select features and reach a

classification decision for each variable Xi, i = 1, 2, . . . , n, in

the Bayesian network G. Specifically, starting with nodes of

in–degree 0 in the Bayesian network, the proposed approach

sequentially selects features based on Eq. (6) and reaches a

classification decision based on Eq. (4). Next, considering

the structure of the Bayesian network, the proposed approach

moves on to nodes with in–degree greater than 0 for which

classification decisions for their parents have been reached.

The classification decisions of the parents are incorporated

into the posterior probability computation in Eq. (2) for each

of their children. This process is repeated until all variables

in the Bayesian network G have been assigned a classifi-

cation decision. Fig. 1 shows a graphical representation of

the proposed approach for an example Bayesian network G
consisting of four binary random variables. Selected features

at each round of the proposed method are highlighted. As

illustrated, variables X1, X2, and X3 are classified using 3, 5
and 2 features, respectively.

IV. NUMERICAL RESULTS

In this section, experiments are conducted to illustrate the

performance of the proposed approach. Before proceeding

with presenting and discussing the relevant results, some

practical considerations are reviewed. Specifically, for each

variable Xi, i = 1, 2, . . . , n, a maximum likelihood esti-

mator is used to estimate P (FXi

k |CXi
m ) =

Sk,m+1

Sm+B
, k =

1, 2, . . . ,Ki,m = 1, 2, . . . , Ni during training. Here Sk,m

denotes the number of instances that belong to class CXi
m and

FXi

k takes a specific value, while Sm denotes the total number

of instances that belong to class CXi
m . Prior probabilities

P (CXi
m ) are estimated as Sm∑Ni

m=1
Sm

,m = 1, . . . , Ni, i =

TABLE I
ACCURACY AND AVERAGE NUMBER OF FEATURES FOR SAME COST

e = 0.0001 FOR ALL FEATURES IN THE SYNTHETIC DATASET.

Variable Accuracy Average No. of features

X1 0.9030 4.4119
X2 0.8850 4.2400
X3 0.8830 4.3740
X4 0.8770 4.4930
X5 0.8890 4.4074

1, . . . , n during training. Features are ordered for each variable

as per the increasing order of the sum of type I and II errors

scaled by the cost coefficient of the kth feature of each variable

to promote low cost features. As a result, feature orderings

differ for each classification variable.

Initially, a synthetic dataset containing five binary random

variables X , {X1, X2, X3, X4, X5} is considered. Each

variable Xi is associated with five features, i.e., n = 5
and Ki = 5, i = 1, . . . , 5. Thus, the total size of the

feature space is |F | = 5 × 5 = 25. Each feature FXi

k , k =
1, 2, . . . , 5, takes random discrete values in the set {1, 2, 3}.

A dataset of 1, 000 data instances was created, where vari-

ables were generated as a linear combination of features plus

noise. Specifically, Xi ,
∑5

k=1
cXi

k FXi

k + σ, where cXi

k

are real–valued constants and σ ∈ {0, . . . , 10}. Constants

cXi

k represent the relative importance of each feature to the

corresponding variable, i.e., cX1 = [2, 2, 2, 0.2, 3], cX2 =
[2, 2, 0.1, 0.2, 3], cX3 = [2, 2, 0.1, 0.2, 3], cX4 = [2, 2, 0.1, 2, 3]
and cX5 = [10, 10, 10, 10, 10]. Then, Xi was converted to a

binary variable using its median as the threshold. The five–

fold cross validated results are reported in Table I for feature

costs eik = 0.0001 when all features have the same cost,

i.e., eik = e, ∀k, i. The results indicate that high accuracy can

be achieved with less than five features. Further, we suspect

that differences in accuracy and number of features arise

due to wrong classification decisions propagated through the

Bayesian network and different feature orderings per variable.

Assigning larger cost values results in selecting less number

of features, affecting accuracy and vise versa.

Next, the performance of the proposed approach is illus-

trated on a real–world dataset of student performance [18]. The

dataset includes information about 649 students described by
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