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Abstract—In many real-world applications, e.g., medical diag-
nosis, behavioral analysis, Bayesian networks are used to describe
relationships between variables. However, such variables are
not directly observable, but can be inferred through noisy but
costly features. In this paper, our previously proposed framework
of dynamic instance-wise feature selection and classification
is extended to work with structured data instances, i.e., data
instances where relationships between classification variables are
represented using a known Bayesian network. The objective is
to maximize classification accuracy while minimizing the total
cost of selected features. To this end, starting from lowest degree
nodes, the proposed method sequentially selects features for each
variable in the Bayesian network and performs classification.
The resulting classification decisions are propagated through the
Bayesian network and used during the classification process of the
remaining variables. The performance of the proposed method
is illustrated on two datasets and its effectiveness is compared
with existing methods.

Index Terms—Sequential feature selection, inference, Bayesian
networks, noisy observations, instance-wise decision making

I. INTRODUCTION

In many application domains, Bayesian networks repre-
sented by directed acyclic graphs (DAG), are used to describe
relationships between variables of interest [1]. For example,
in medical diagnosis, the cancer Bayesian network [2] with
five nodes, i.e., “pollution”, “smoker”, “cancer”, “X—ray”
and “dyspnoea”, represents the factors that might affect a
patients’ chance of having cancer. Nonetheless, the Bayesian
network variables are not directly observed, but instead can
be inferred through access to noisy but costly features. For
instance, emotion and personality traits can be extracted from
various physiological signals collected via biomedical sensors
(e.g., galvanic skin response (GSR), electrocardiogram (ECG),
electroencephalogram (EEG)) and self-reported questionnaires
[31-[51.

The wide applicability of Bayesian networks in various
domains (e.g., medical diagnosis [2], [6], [7], behavioral
analysis [8]) has led to the design of various classifiers for such
networks [9]-[13]. However, such methods typically assume
that the Bayesian network represents the relationships between
a single classification variable and a set of noisy features, and
thus, the goal is to infer the value of such variable. On the other
hand, prior work on Bayesian networks for supervised learning
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consider more than one classification variables [14]-[16], the
relationships between which are represented through a known
Bayesian network structure. The objective in this case is to
infer the values of all classification variables in the network,
exploiting their relationships. Still, such classification variables
are assumed to be fully observable (i.e., not observed through
noisy features). However, in many real-world applications,
this assumption does not hold; in fact, classification variables
are observed via noisy features, while at the same time, they
exhibit relationships between them. For instance, the affective
state and personality traits of an individual, which are only
observable through noisy GSR, ECG, and EEG sensor data
[3], are related and thus, can be represented by a Bayesian
network with two classification variables. Finally, in time-
sensitive applications like medical diagnosis, accessing fea-
tures comes at a cost while exhibiting different informativeness
(e.g., magnetic resonance imaging is a costly but informative
operation). Thus, a mechanism to dynamically select features
in a sequential manner to infer the values of classification
variables in such settings is necessary.

In this paper, a method is proposed to dynamically select
features for classification of structured data instances, i.e., data
instances where relationships between classification variables
are represented using a known Bayesian network. Building
upon our prior work [17], which considers a single classifi-
cation variable, the proposed approach dynamically selects a
subset of the available features and reaches an appropriate clas-
sification decision for each variable in the Bayesian network
during testing. Classification decisions are propagated through
the Bayesian network starting from the lowest degree nodes
and used during the classification of the remaining variables.
The performance of the proposed approach is validated in
a synthetic and a real-world dataset, and compared with
established classification and feature selection methods with
respect to accuracy, number of features selected, and time.
The obtained results indicate the superiority of the proposed
approach compared to such existing methods in the context of
structured environments.

II. PRELIMINARIES

In this section, the process of dynamically selecting features
and reaching a classification decision is summarized for each
variable in the Bayesian network. For more details, the reader
is referred to our prior work [17].
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A. Description

Consider a known Bayesian network structure G = (X, E)
described by a DAG. Here, X 2 {X;,X,,...,X,} is
the set of n nodes corresponding to n variables in G,
where each X;,7 = 1,2,...,n, is a categorical variable
that can take multiple values. E is the set of directed
edges that represent relationships between variables. A set
FE{FS L FRLFe L FR2 ™ FRnY of
features is available, where F,CX",k = 1,2,..., K;, denotes
the kth feature associated with variable X;. Our objective
is to infer the values of the variables in X by balancing
classification accuracy with the total cost of selected features.
Next, we state the following two important assumptions:
(A1) Features Fkxi,k =1,2,...,K;, associated with variable
X,; are assumed conditionally independent given the
variable Xj.

(A2) The ordering of the features FkX’i,k =1,2,...,
fixed and given for each variable X;.

Ki, is

B. Optimization Setup

Consider the pair of random variables (1;, Dr,) associated
with class variable X;,7 = 1,2,...,n. Random variable
R; € {0,1,..., K;} represents the last feature selected from
the ordered set F™: (BN, ., Fl)fl} associated with
variable X;. Random variable Dp, represents the classification
decision associated with variable X;. Since X is a categorical
variable, X; belongs to one of V; possible classes. As a result,
Dp, takes Values in the set {1,2,... ,Ni}. Associated with

each feature F “ is a cost e,'€7 k=1,2,..., K;. Furthermore,

associated w1th a classification de01310n is cost M}, which
represents the cost of selecting class Cz Pl =1,2,...,N,,

while the true class is CXi,m = 1,2,..., N;. The objective
is to sequentially select the minimum number R; of features
to reach a classification decision Dp, by minimizing the
following cost function:

Zek

where P(Dpg, = I,C:Xi) represents the joint probability of
selecting class C’lXi while the true class is Cﬁl. Here, the first
expression denotes the total cost of evaluating R; features in
the sequential process, while the second expression penalizes
missclassification errors.

J(R;i, Dg,) +ZZMlm (Dr, =1,Cin), (1)

=1 m=1

C. Optimum Solution

To minimize the cost function in Eq. (1), we first find the
optimum decision D% for a given R;. Then, the reduced cost
function, J(R;), depends only on R;. Finally, we find the
optimum R} by minimizing J(R;) [17]. We refer to D7, and
R as optimum classification and feature selection strategies,
respectively.

Consider the posterior probability 7, £ [}, 77, ..., 7|7
after selecting k£ out of K features associated with variable
X;. The probability 7* £ P(C:X: L F kX ) denotes
the posterior probability of the m*" class, m = 1,2,..., N;.
At stage k = 0, m9 = [p1,p2,...,pn,]T, where P(CXi) =
Pm,m = 1,2,..., N;. From Bayes’ rule, as more features

>

are sequentially selected, the posterior probability ;" is
recursively updated as follows:
e PE IO o
k= X X Xi|Xiy Ni *
P(E|CT ) mh_y + . 4 P(FCR )Ty
Eq. (1) can be rewritten in terms of the posterior probability
and the indicator function 14 (i.e., 14 £ 1 when event A
occurs, and 0 otherwise) as follows:

Zek +Z Z MlmWR,]le l}] .

=1 m=1
3)
The optimum classification strategy D7, for any given feature
selection strategy R; can be shown to be [17]:

J(R;, Dg,) =

D3, = argmin [(M;’)Tm], (4)
1<I<N;

A . . -
where M; = [Mj,, My, ..., My]
function in Eq. (3) can be written as:

R; )
> e+ g(m)l , )

k=1

. As a result, the cost

J(R) =E

where g(7g,) £ mini <<, [(M})" 7r,].

Finally, the optimum feature selection strategy R} can be
found by minimizing the cost function in Eq. (5) via dynamic
programming [17]. Specifically, since there are K; available
features associated with variable X, there are maximum K; +
1 stages for the associated dynamic programming equations:

Li(me) = min [g(my), L(me)] k=0, K =1, ©)

where,
Li(mr) = €jr + Lk+1(ﬂk+1)<Af+1(F;fﬁ1)7Tk)’ (7)
P

with AR(FY) 2 [P(FX|CM),..., P(FXICR))T and

LKi(ﬂ—Ki) g(ﬂ-Ki)'
III. PROPOSED APPROACH

In this section, the proposed approach to identify the values
of all variables in the Bayesian network is described exploiting
the results of Section II. Specifically, for each variable X;,: =
1,2,...,n, in the Bayesian network G, features associated
with that particular variable are sequentially selected based
on Eq. (6), and a final classification decision is reached
using Eq. (4). The process begins by initializing the posterior
probability 7y for each variable X;. If the cost of continuing
the feature selection process is less than the cost of reaching
a classification decision, the first feature in the set FX¢ is se-
lected and the posterior probability is updated based on Eq. (2).
The process is repeated until either a subset of features is
selected or all of the available features are reviewed. In either
case, a classification decision is reached using the updated
posterior probability along with the optimum classification
strategy of Eq. (4). The proposed approach consists of a
training and a testing phase, as discussed next.
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During training, the optimum -classification and feature
selection strategies described by Eqgs. (4) and (6) are solved
offline for each variable X;,7 = 1,2,...,n. Specifically,
quantizing the interval [0,1] such that van"'zl =1, a
K; x d matrix is generated for each variable X;, where d
is the number of possible 7 vectors, and used to numerically
solve Egs. (4) and (6). This procedure is done for all variables
in the Bayesian network G.

During testing, the numerical solutions determined during
training are used to dynamically select features and reach a
classification decision for each variable X;,7 = 1,2,...,n, in
the Bayesian network G. Specifically, starting with nodes of
in—degree 0 in the Bayesian network, the proposed approach
sequentially selects features based on Eq. (6) and reaches a
classification decision based on Eq. (4). Next, considering
the structure of the Bayesian network, the proposed approach
moves on to nodes with in—degree greater than O for which
classification decisions for their parents have been reached.
The classification decisions of the parents are incorporated
into the posterior probability computation in Eq. (2) for each
of their children. This process is repeated until all variables
in the Bayesian network G have been assigned a classifi-
cation decision. Fig. 1 shows a graphical representation of
the proposed approach for an example Bayesian network G
consisting of four binary random variables. Selected features
at each round of the proposed method are highlighted. As
illustrated, variables X7, X2, and X3 are classified using 3,5
and 2 features, respectively.

IV. NUMERICAL RESULTS

In this section, experiments are conducted to illustrate the
performance of the proposed approach. Before proceeding
with presenting and discussing the relevant results, some
practical considerations are reviewed. Specifically, for each
variable X;,7 = 1,2,...,n, a maximum likelihood esti-
mator is used to estimate P(F;'|CXi) = %;;1}1’/{
1,2,...,K;,m = 1,2,...,N; during training. Here Sj »,
denotes the number of instances that belong to class CX¢ and
FkX i takes a specific value, while S,,, denotes the total number
of instances that belong to class C:Xi. Prior probabilities

P(CXi) are estimated as —xo=— m = 1,...,N;,i =

mn Sty Sm

BUEE . . g

SENEEEE

FUENES 5
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(b) (c)
Fig. 1. Graphical representation of proposed approach for a data instance during testing. (a) Original Bayesian network, (b) Feature selection and classification
for variables of in—degree 0, (c) Feature selection and classification for variables of in—degree greater than 0.

TABLE I
ACCURACY AND AVERAGE NUMBER OF FEATURES FOR SAME COST
e = 0.0001 FOR ALL FEATURES IN THE SYNTHETIC DATASET.

Variable | Accuracy | Average No. of features
X1 0.9030 44119
Xo 0.8850 4.2400
X3 0.8830 4.3740
X4 0.8770 4.4930
X5 0.8890 4.4074
1,...,n during training. Features are ordered for each variable

as per the increasing order of the sum of type I and II errors
scaled by the cost coefficient of the kth feature of each variable
to promote low cost features. As a result, feature orderings
differ for each classification variable.

Initially, a synthetic dataset containing five binary random
variables X £ {Xi, X», X3, X4, X5} is considered. Each
variable X; is associated with five features, ie., n = 5
and K; = 5, ¢ = 1,...,5. Thus, the total size of the
feature space is |[F| = 5 x 5 = 25. Each feature F\' k =
1,2,...,5, takes random discrete values in the set {1,2,3}.
A dataset of 1,000 data instances was created, where vari-
ables were generated as a linear combination of features plus
noise. Specifically, X; £ 22:1 ci(’Fle + o, where cff‘
are real-valued constants and o € {0,...,10}. Constants
cf" represent the relative importance of each feature to the
corresponding variable, ie., ¢X' = [2,2,2,0.2,3},(:)(2 =
[2,2,0.1,0.2,3],cX3 = [2,2,0.1,0.2,3], ¢+ = [2,2,0.1,2, 3]
and ¢Xs = [10,10, 10,10, 10]. Then, X; was converted to a
binary variable using its median as the threshold. The five—
fold cross validated results are reported in Table I for feature
costs 62 = 0.0001 when all features have the same cost,
ie., e = e,Vk,i. The results indicate that high accuracy can
be achieved with less than five features. Further, we suspect
that differences in accuracy and number of features arise
due to wrong classification decisions propagated through the
Bayesian network and different feature orderings per variable.
Assigning larger cost values results in selecting less number
of features, affecting accuracy and vise versa.

Next, the performance of the proposed approach is illus-
trated on a real-world dataset of student performance [18]. The
dataset includes information about 649 students described by
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Fig. 2. Variation for accuracy of each variable G1, G2, G3 as a function of
feature cost e € {0.00001,0.0001,0.001,0.01,0.1,0.5,1.0} and average
accuracy of the three variables.

30 features (e.g., demographic, social, school-related), and the
goal is to infer three period grades, denoted as G, G2, and
G, respectively. To generate the Bayesian network for this
dataset, a correlation—based analysis is followed and directed
edges are drawn considering the immediate effect of cause
variables [14]. Specifically, G5 exhibits strong correlation with
G1 and G4 [18], and thus, the resulting Bayesian network
consists of the variables X £ {G, Gy, G3}, with two directed
edges, G; — G3 and G2 — G3. We treat G1, G and G3
as binary random variables by setting them equal to one if
G; > 11,i = 1,2,3, and zero otherwise. The feature set is
F 2 (FC, . FSVFC2 . FS2 FCe .. FS*Y, where
K; = 30,7 = 1,2,3. All experiments are conducted on a PC
with Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz with 16
GB memory, and five—fold cross validated results are reported.

Fig. 2 illustrates the trade—off between accuracy and feature
cost for different cost values under the assumption that features
incur the same cost, i.e., 62 = e,Vk,i. The accuracy for
each variable as well as the average accuracy of variables
G1,Go and G3 are reported. Results are reported in the
case where misclassification costs are assumed the same,
ie, Mj = 1,V # m,M} 0,l,m € {1,...,N;}.
As expected, using different feature costs leads to different
accuracy levels, while acquiring more features typically leads
to better accuracy, as long as such features are informative. In
the case eﬁ; = e = 0.0001, accuracy levels for G1, G2, and
G are 0.7271, 0.7317, and 0.7284, respectively, using on av-
erage 12.7470, 12.3127 and 6.6724 features, respectively. The
number of features selected to classify variables G; and Gs
do not differ significantly. However, variable G'3 requires less
features to be classified, since apart from feature information,
the proposed approach exploits parent classification decisions.
From here onwards, results are reported for eff = e = 0.0001.

Fig. 3 shows the distribution of number of features used by
data instances during testing. We observe that the majority of
data instances use less than the available 30 features to reach
a classification decision. Most of the time, (G; and G5 use 6

40 40 40
20 20 20
0 0 0
0 20 0 20 0 20
(a) (b) (c)

Fig. 3. Distribution of number of features used by data instances during
testing for e = 0.0001. (a) G1, (b) G2, (c) Gs.

and 7 features respectively, while GG3 uses only 4 features.

The frequency of features selected during testing (Fig. 4)
demonstrates the importance of different features on classifi-
cation decisions. For example, features “school” and “failures”
are most often selected to classify all variables. Intuitively,
student’s school and number of past class failures have higher
impact on student’s grades compared to other features. To
better understand the effect of each feature, different costs
efc, k=1,...,30, were considered for each feature. Specifi-
cally, features were ranked based on the difficulty (i.e., easy,
medium, hard) of collecting them. For instance, “absences”
is easily accessible from school reports [18] (i.e., assigned
rank = 1), while private information like “romantic” which
describes the romantic relationship status of a student, was
harder to acquire (i.e., assigned rank = 3). Cost was then
computed as e}, = rank x 0.0001 for each k = 1,...,30. This
results in a mere 0.67% difference in accuracy using 27.88%
more features on average compared to constant feature costs,
which illustrates that the accuracy is robust for different feature
costs. Furthermore, in order to preserve accuracy levels, in this
case, the proposed approach tends to select more lower rank
features (i.e., rank 1 or 2).

Finally, the proposed approach is compared with i) two
widely used classifiers, Logistic Regression (LR) and Naive
Bayes (NB), ii) one offline feature selection method, L—1
norm based feature selection (Lasso), and iii) our own prior
work, ETANA [17]. Since none of these methods can explicitly
handle multiple variables related through a Bayesian network,
G1,G9, and G3 are combined to create a single variable
G = (Gy1,G2,G3) with 23 possible assignments. Table II
reports five—fold cross validated average accuracy, average
number of features selected, and training and testing time. We
observe that both the proposed approach and ETANA use less
than the 30 available features contrary to LR and NB. Lasso,
on the other hand, even though it performs feature selection
offline, still uses most of the available features. With respect
to accuracy, we observe that the proposed method achieves
the best accuracy (even with respect to ETANA). This is
expected since the proposed method takes advantages of the
relationships between variables in the Bayesian network. With
respect to time, the proposed method runs much faster than
ETANA, but slower than the baselines. Putting our findings
into perspective, the proposed approach is able to achieve the
best accuracy by selecting the most informative or low—cost
features, while significantly decreasing the time requirements
of ETANA.
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Fig. 4. Frequency of features selected during testing for different data instances. (a) G, (b) G2, (c) Gs3.

TABLE I
COMPARISON BETWEEN PROPOSED APPROACH AND BASELINES.

Proposed

approach LR NB Lasso ETANA
Accuracy 0.7291 0.6021 0.0816 0.6237 0.6191
Training (sec) 0.5726 0.0650 0.0012 0.0638 | 3093.9127
Testing (sec) 0.6398 0.0002 0.0007 0.0002 1.5129
Avg. # features | 10.5774 | 30.0000 | 30.0000 | 29.2000 18.2159

V. CONCLUSIONS AND FUTURE WORK

In this paper, a dynamic feature selection method for classi-
fication of structured data instances is proposed. Relationships
between variables of a data instance are described by a known
Bayesian network. The proposed method dynamically selects
features in a sequential manner during testing, and reaches
a classification decision for each variable in the Bayesian
network using a subset of the available features. Classification
decisions are propagated through the Bayesian network during
this process and used during the decision—making process
of the remaining variables. The proposed approach is shown
to outperform existing classification and feature selection
methods in terms of accuracy and average number of features
used. In future work, we plan to carefully analyze and address
the effect of misclassifications as well as extend the proposed
approach to account for correlated feature spaces.
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