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Abstract—In a typical supervised machine learning setting, the
predictions on all test instances are based on a common subset
of features discovered during model training. However, using a
different subset of features that is most informative for each test
instance individually may improve not only the prediction accu-
racy but also the overall interpretability of the model. At the
same time, feature selection methods for classification have been
known to be the most effective when many features are irrelevant
and/or uncorrelated. In fact, feature selection ignoring correlations
between features can lead to poor classification performance. In this
work, a Bayesian network is utilized to model feature dependencies.
Using the dependence network, a new method is proposed that
sequentially selects the best feature to evaluate for each test instance
individually and stops the selection process to make a prediction
once it determines that no further improvement can be achieved
with respect to classification accuracy. The optimum number of
features to acquire and the optimum classification strategy are
derived for each test instance. The theoretical properties of the
optimum solution are analyzed, and a new algorithm is proposed
that takes advantage of these properties to implement a robust and
scalable solution for high-dimensional settings. The effectiveness,
generalizability, and scalability of the proposed method are illus-
trated on a variety of real-world datasets from diverse application
domains.

Impact statement— The ability to rationalize which features to
use to classify each data instance is of paramount importance in
a wide range of application domains, including but not limited to
medicine, criminal justice, and cybersecurity. Correlations between
features, and the need for variable selection at the same stage as
classification, in such application domains present additional chal-
lenges to machine learning related to classification accuracy and
computationally intractability. The proposed framework presents,
to the best of our knowledge, the first practical solution that bal-
ances between classification accuracy and sparsity at the instance
level, by dynamically choosing the most informative features, rel-
ative to each instance, from a set of potentially correlated features,
for classifying each individual instance. The proposed framework
achieves reductions up to 82% in the average number of features
used by state-of-the-art methods without sacrificing accuracy and
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is robust for up to 10% of missing features. Broad positive societal
implications include: fast, accurate, and cost-efficient inference in
complex dynamic settings; and ease of interpretation of and trust
in machine learning outcomes by domain experts (e.g., doctors and
lawyers).

Index Terms—Bayesian network, correlated features, costly
features, datumwise feature selection and classification, sequential
feature selection.

I. INTRODUCTION

A
WIDE range of applications, including but not limited to

medicine and robotics, demand practical solutions that can

perform feature selection and classification jointly in a dynamic

setting for each data instance individually. For example, consider

a scenario, where a doctor is called to provide a medical diagno-

sis to a patient. The doctor’s diagnosis may often be time critical

(e.g., in emergencies) and/or depend on numerous costly medical

tests (out of which features are to be extracted), some of which

cost thousands of dollars [1]. At the same time, a different set

of tests may be appropriate for each individual patient (i.e., data

instance). For instance, Kao et al. [2] have shown that relevant

features for predicting heart failure may differ across patient

subgroups. Finally, considering dependencies between medical

tests (and corresponding features) is equally important [3], since

individual features may seem irrelevant with the class when

examined independently, but when combined may improve clas-

sification accuracy and at the same time enhance interpretability

of the final decision. Similarly, in the domain of robotics, an

autonomous vehicle can control the view of its environment

(e.g., change position and modify sensors parameters) to inspect

and classify an object of interest [4]. In this context, it may

be important to select which sensors to use or what kind of

measurements to take, while at the same time ensuring that an

object in the field of view can be accurately classified.

In this article, the problem of selecting which features to

use to classify each test instance as features sequentially arrive

one at a time is explored. The current work extends the prior

work [5], which formalized this problem with the simplifying

assumption that features are conditionally independent given the

class variable. Specifically, building upon [5], herein, features

ensure consistency: correlation versus dependence is efficiently

and effectively modeled using a Bayesian network. In general,

handling feature dependencies can lead to computationally in-

tractable solutions [6]. Therefore, a novel feature ordering is

presented, such that each selected feature contains the maximum

possible new information about the class variable with respect

to the already evaluated feature set. The optimum solution is
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also derived for this more general formulation, and important

structural properties are analyzed that facilitate the design of a

scalable method. The proposed method is evaluated and com-

pared with prior work on a variety of real-world datasets.

Next, the unique contributions of this work are summarized

as follows: 1) the optimum stopping feature (i.e., the feature

at which the sequential evaluation process terminates) and the

optimum classification strategy are mathematically derived for

each data instance individually without imposing any assump-

tions on feature dependencies; 2) the structure of the optimum

solution is theoretically analyzed; 3) an efficient implementation

of the optimum solution is introduced that considers feature

correlations to guide the feature selection process; and 4) the

effectiveness, generalizability, and scalability of the proposed

method are evaluated using 11 publicly available datasets. To

facilitate reproducibility, the source code of the proposed method

is available at:1

II. RELATED WORK

In this section, the most relevant prior work on feature selec-

tion and classification is summarized.

To accommodate large or unknown feature spaces during

model training, streaming feature selection methods [7] are

designed to handle features arriving sequentially over time.

Existing work on this area can be roughly categorized into two

directions depending on the availability of prior information

about the feature space [8]–[11] or not [12], [13]. In gen-

eral, various threshold-based approaches have been proposed,

where a newly arriving feature is selected if a constraint is

satisfied (e.g., predefined threshold [8], dynamically varying

threshold [9], conditional independence via G2-test [10], or

Fishers Z-test [11]). In [12], features are selected if they exhibit

high correlation with the class variable and low correlation

with already selected features, while the boundary region of

the decision is kept as small as possible. Zhou et al. [13]

extends [12] by considering the size of the neighborhood of

each data instance. Motivated by real-world applications, where

training instances arrive sequentially or access to the full training

dataset is not feasible, Wu et al. [14] jointly train a linear model

and acquire a sparse representation of the feature space global

to the entire dataset during the training process. All the above

works use the same fixed set of features to classify all instances

during testing. In sharp contrast to the above lines of work, in

the proposed setting, both the training instances and the full

feature space are available during the training process, and the

goal is to dynamically select and use for classification a different

subset of features for each instance during the testing process.

As a result, each testing instance is classified using different

variable features. This instance-wise property is demonstrated

in Section VI-G.

Recent studies have shown that relevant features may differ

across data instances, for example, in predicting heart failure

for different patients [2]. At the same time, as complex machine

learning models become more prevalent, the need to inter-

pret their results becomes critical. Hence, instance-wise feature

selection [15]–[17] tries to identify a small number of relevant

features that explain/predict the output of a machine learning

1https://github.com/IDIASLab/IFC2F

model during testing. In [15], a single neural network is learned

to identify the top k features that explain a pretrained model

based on mutual information. Yoon et al. [16] adopt an actor–

critic architecture with three neural networks, bypassing the

need for backpropagation to outperform [15]. To avoid the high

computational cost of the above methods, Xiao and Wang [17]

limit the number of possible relevant feature subsets to K, and

model this constraint with a mixture of K deep neural networks.

The sensitivity magnitude of the model is then used to select

the most relevant features. These methods work in a static

setting, since all feature values of a test instance must be first

revealed. Such methods do not scale for large feature spaces,

since the search space grows exponentially with the number

of features. The method proposed herein can be used for model

interpretability and as such is related to these methods. However,

unlike that line of work, the proposed method is dynamic, in

the sense that features arrive sequentially one at a time during

testing, and the goal is to jointly select features and classify

each data instance in this regime. Additionally, the number of

features used for each instance is neither fixed nor predefined;

it is optimally derived by the proposed framework. Finally, the

proposed method scales well, with large feature spaces being

able to accommodate more than 1 million features.

Similar to this work, classification with costly features [18],

[19] considers costs associated with feature evaluation and mis-

classification, and the goal is to limit the number of features

used for classification per data instance during testing. Such

methods, however, define the problem globally with respect

to the training dataset, namely, by introducing a penalization

term to limit the number of features used for classification in

a standard empirical loss minimization problem. In that sense,

even though such approaches end up sequentially evaluating

different features per instance before they classify it, the result-

ing classification function is globally learned with respect to

the dataset. This modified problem is shown to be equivalent

to a deterministic Markov decision process (MDP) formulation

and solved by a linear [18] or nonlinear approximation [19] of

the associated Q-function. The size of the state space of the

MDP grows exponentially with the dimension of the feature

space, making these methods impractical for high-dimensional

settings. The proposed approach in this article is conceptually

different from these methods in that the problem of joint feature

selection and classification is defined and solved individually

with respect to each data instance. In addition, the optimum

classification strategy and the optimum number of features to

be used for classification for each data instance individually are

mathematically derived in the generic case of correlated features.

Last but not least, key properties of the optimum solution are

uncovered, thus enabling the proposed method to scale to large

feature spaces.

III. PROPOSED FRAMEWORK

In this section, the task of instanc-ewise supervised multiclass

classification in correlated feature spaces is posed as a sequential

decision process for which the optimum solution is derived.

Specifically, the goal is to learn to sequentially choose a subset

of features, relative to each test instance, using which each

particular instance is to be assigned to one of L classes. Table I

summarizes the notation used hereafter.
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TABLE I
EXPLANATION OF MAIN SYMBOLS USED IN THIS ARTICLE

Fig. 1. Sample Bayesian network of features in F and the class variable in C.

Dependencies between features and the class variable (see

Fig. 1) are modeled using a Bayesian networkB � {G,Θ} [20],

which can be learned using methods such as in [21] and [22].

Specifically, a directed acyclic graph G = (V,E), where V =
F ∪ {C} is the set of features in F augmented with variable

C and E is the set of edges denoting correlations2 among the

nodes in V , is given, and the set Θ of conditional probability

distributions (CPDs) for G is learned during training.

The goal is to leverage feature dependencies to train an

instance-wise classifier that allows the number of features used

for classification to vary relative to each instance, so as to

optimize the tradeoff between accuracy and sparsity at the

individual instance level. Specifically, in order to select one out

of L possible classes for each instance s, the proposed approach

evaluates features sequentially by choosing the features that are

1) highly correlated with the class variable and 2) conditionally

independent with the already evaluated feature set. At each

step, the proposed approach considers the cost of examining the

remaining features to decide between continuing the process or

if enough information is available for a classification decision to

be reached. Herein, two random variablesR andDR are defined.

Definition 1: Random variable R ∈ {0, . . . ,K} denotes the

number of feature evaluations before the framework terminates.

The event {R = k} represents that the framework stops after

evaluating k features.

Definition 2: Random variable DR ∈ {1, . . . , L} denotes the

assigned value for class variable C based on the information ac-

cumulated up to featureFR. The event {D{R=k} = i} represents

assignment of class ci using features {f1, f2, . . . , fk}.

The optimum value R∗ and the best class assignment D∗
R∗ for

each data instance s ∈ S are obtained by minimizing

J(R,DR) = E

{
R∑

k=1

ek

}
+

L∑

j=1

L∑

i=1

QijP (DR = j, C = ci)

(1)

2Correlation is measured using mutual information, which quantifies the
“distance” from independence between a pair of random variables [23].

where ek > 0 is the feature evaluation cost representing the

time and effort required to evaluate feature Fk, Qij � 0 is the

missclassification cost of assigning class cj when class ci is

true, andP (DR = j, C = ci) is the joint probability of assigning

class cj when class ci is true. Specifically, E{
∑R

k=1 ek} is

the expected cost accrued due to feature evaluations, and the

double summation corresponds to expected cost associated with

the classification rule DR. Thus, the optimization problem is

equivalent to finding R∗, D∗
R∗ , such that

minimize
R,DR

J (R,DR) . (2)

To solve (2), first, a subset of highly correlated features with

the class variable C is identified. These features are sufficient

for accurately inferring C’s value. This is achieved by finding

the Markov blanket [20] MC of C in G. BC denotes the induced

subgraph of G with nodes VBC
= MC ∪ {C}. Features in MC

are then sequentially evaluated so that at each step, the feature

in the subset of currently unselected features, that provides the

maximum additional information about C with respect to the

already evaluated feature set, is selected. This is achieved using

πk =
diag (∆k(Fk|F1, . . . , Fk−1, C))πk−1

∆T
k (Fk|F1, . . . , Fk−1, C)πk−1

(3)

where ∆k(Fk|F1, . . . , Fk−1, C) = [P (Fk|F1, . . . , Fk−1, c1),
. . . , P (Fk|F1, . . . , Fk−1, cL)]

T can be computed using exact

inference algorithms (see, e.g., [22]), diag(A) denotes a

diagonal matrix with diagonal elements being the elements in

vector A, π0 = [p1, p2, . . . , pL]
T , and

πk � [π1
k, π

2
k, . . . , π

L
k ]

T (4)

is the a posteriori probability vector with πi
k =

P (ci|F1, . . . , Fk). In lieu of P (C = ci|F1 = f1, . . . , Fk = fk),
P (ci|F1, . . . , Fk) is used hereafter to improve readability.

For illustration purposes, suppose that F1 is the feature most

correlated with C. Let B̃1 ⊆ {MC ∪ C} denote the subset ofF1’s

Markov blanket in BC . F1 is conditionally independent to all

Fk ∈ {MC − B̃1} given B̃1. Therefore, the next feature to be

evaluated should come from {MC − B̃1}. It follows that the kth

feature to be evaluated must belong to {MC −
⋃k−1

i=1 B̃i}.

Next, P (DR = j, C = ci) can be simplified as P (DR =
j, ci) = E{πi

R1{DR=j}} by exploiting the fact that xR =∑K
k=0 xk1{R=k} for any sequence of random variables {xk},

where 1A = 1 when A occurs, and 1A = 0 otherwise. Thus

J(R,DR) = E

⎧
⎨
⎩

R∑

k=1

ek +

L∑

j=1

QT
j πR1{DR=j}

⎫
⎬
⎭ (5)

where Qj � [Q1,j , Q2,j , . . . , QL,j ]
T .

At this point, the optimum classification strategy D∗
R can be

obtained for any givenR by noting that
∑L

j=1 Q
T
j πR1{DR=j} �

g(πR), where g(πR) � min1�j�L[Q
T
j πR]. Therefore, the opti-

mum classification strategy D∗
R for any given R is

D∗
R = argmin1�j�L

[
QT

j πR

]
(6)

which assigns the given data instance to the class yielding the

minimum misclassification cost. This suggests thatJ(R,DR) �
minDR

J(R,DR), which, in turn, implies that the cost function
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Fig. 2. Graphical illustration of the proposed framework. MI(X; C) denotes
mutual information between variables X and C.

in (5) can be reduced to

J̃(R) = E

{
R∑

k=1

ek + g(πR)

}
. (7)

Note that (7) can be minimized with respect to R ∈ {0, . . . ,K}
in at most K + 1 stages using dynamic programming [24], as

shown in Theorem 1.

Theorem 1: For k = K − 1, . . . , 0, the function J̄k(πk) is

related to J̄k+1(πk+1) as follows:

J̄k(πk) = min [g(πk),Ak(πk)] (8)

whereAk(πk) � ek+1 +
∑

Fk+1
∆T

k+1(Fk+1|F1, . . . , Fk, C)πk

J̄k+1

(
diag(∆k+1(Fk+1|F1,...,Fk,C))πk

∆T
k+1

(Fk+1|F1,...,Fk,C)πk

)
, and J̄K(πK) = g(πK).

The optimum feature selection strategy is {F1, F2, . . . , FR∗},

whereR∗ is equal to the first k < K for which g(πk) � Ak(πk),
or R∗ = K if there are no more features to be evaluated.

Fig. 2 summarizes the process of classifying a data instance

during testing. Initially, k = 0 and π0 = [p1, . . . , pL]. At each

stage k, the proposed framework compares the cost g(πk)
of stopping to the expected cost Ak(πk) of continuing. If

g(πk) � Ak(πk), the framework stops evaluating features and

classifies the instance using (6). Otherwise, it evaluates the next

best feature Fk+1 = argmax
X∈{MC−∪k

i=1
B̃i}

MI(X; C) from

the Bayesian network and updatesπk using (3). Details about the

computation of mutual information, MI(X; C), are provided in

Section V-A. These steps are repeated until the data instance is

classified using a subset of or all K features.

IV. THEORETICAL RESULTS

In this section, important properties of the optimum classi-

fication strategy D∗
R in (6) and the optimum feature selection

strategy in (8) are analytically derived.

Consider a general form of the function g(πR) used

to derive the optimum classification strategy in (6)

given by g(�) � min1�j�L[Q
T
j �], � ∈ [0, 1]L, where

� = [ω1, . . . , ωL]
T , such that ωi � 0,

∑L
i=1 ωi = 1. Here,

the domain of g(�) is the probability space of �, which is an

(L− 1)-dimensional unit simplex. Function g(�) has some

interesting properties, as described in Lemma 1.

Lemma 1: The function g(�) is concave, continuous, and

piecewise linear. In particular, g(�) consists of at most L
hyperplanes, represented by the set {QT

j }
L
j=1 of L vectors.

Next, consider the general form of the function

Ak(πK) in (8) given by Ak(�) = ek+1 +
∑

Fk+1
∆T

(Fk+1|F1, . . . , FK , C)�J̄k+1

(
diag(∆(Fk+1|F1,...,FK ,C))�

∆T (Fk+1|F1,...,FK ,C)�

)]
.

Lemma 2 summarizes the key properties of this function.

Lemma 2: The functionsAk(�), k = 0, . . . ,K − 1, are con-

cave, continuous, and piecewise linear.

The properties of functions g(�) and Ak(�) stated in Lem-

mas 1 and 2, respectively, allow for a parsimonious represen-

tation of the function related to the optimum feature selection

strategy in (8), as stated in Theorem 2.

Theorem 2: At every stage k ∈ {0, . . . ,K}, there exists a

set {αi
k}, α

i
k ∈ R

1×L, of vectors such that J̄k(�) = mini[α
i
k�]

with {αi
K} � {QT

j }
L
j=0.

The above properties can be used to derive an efficient algo-

rithmic implementation of the optimum solution.

V. PROPOSED ALGORITHM

Theorem 2, Lemma 1 and the fact that J̄k(�) =
min[g(�),Ak(�)], k ∈ {0, . . . ,K − 1}, allow for an efficient

implementation of the optimum feature selection strategy in

Theorem 1. Specifically, the decision to stop or continue the

feature evaluation process depends only on the vector αI
k =

argminαi
k
[αi

k�], such that ifαI
k ∈ {QT

j }
L
j=0, the feature evalu-

ation process stops; otherwise, the next feature is to be evaluated.

This is based on the fact that if argminαi
k
[αi

k�] ∈ {QT
j }

L
j=0,

it implies that g(�) � Ak(�) due to the following two rea-

sons: 1) the set {QT
j }

L
j=0 of L vectors represents the L hyper-

planes of g(�) (see Lemma 1); and 2) J̄k(�) = mini[α
i
k�] =

min[g(�),Ak(�)]. Based on this fact, a dynamic Instance-

wise joint Feature selection and Classification algorithm for

Correlated Features (IFC2F) is presented. Initially, � is set to

π0, and αI
0 = argminαi

0
[αi

0�] is computed. If αI
0 ∈ {QT

j }
L
j=0,

IFC2F classifies the instance under examination to the appro-

priate class, based on the optimum classification strategy in (6).

Otherwise, the first feature is evaluated. IFC2F repeats these

steps until either it decides to classify the instance using < K
features or using all K features. Algorithm 1 describes these

steps in detail. The input vector sets {αi
k} can be computed using

a standard point-based value iteration algorithm [25] during

training. For simplicity, the Perseus algorithm [26] is used,

among the several point-based value iteration algorithms in the

literature [27]. Specifically, a fixed numberβ (e.g.,∼100 [26]) of

reachable� vectors from each stage, marginal probability tables

∆(Fk|F1, . . . , Fk−1, C), misclassification costs Qij and feature

evaluation costs ek were provided to the Perseus algorithm to

obtain {αi
k}, k ∈ {0, . . . ,K − 1}.

A. Practical Considerations

The adjusted mutual information (AMI)3 between each fea-

ture and the class variable is computed, and MC is acquired by

removing low correlation features based on a threshold η on

AMI. Specifically, η is initialized to 1 and is iteratively halved

until the number of filtered features is greater than zero. For

3The maximum of this value represents perfect correlation between the
variables, while a value around zero represents independence [28].
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Algorithm 1: IFC2F.

Input: Vector sets {αi
0}, . . . , {α

i
K−1}, and

misclassification costs Qij , i, j ∈ {1, . . . , L}
Output: Classification decision D of the instance under

examination, number R of features used

Initialize � = π0

for k = 0 to K do

if k = K or argminαi
k
[αi

k�] ∈ {QT
j }

L
j=0 then

Break

else

Obtain next feature value fk+1

Update � using (3)

end if

end for

Return: D = argmin1�j�L[Q
T
j �], R = k

simplicity, the Bayesian network is assumed to exhibit a tree

structure rooted at the class variable (experiments are performed

on three alternative network structures in Section VI-C). Such

networks can be efficiently constructed (e.g., by building the

maximum spanning tree [29]) using pairwise conditional mutual

information. Conditional probability tables (i.e., P (Fk|ΠFk
),

where ΠFk
denotes the set of parents of Fk), are estimated

using a smoothed maximum likelihood estimator. Specifically,

P̂ (Fa = fa|Fb = fb, C = ci) =
Na,b,i+1
Nb,i+V

, where Na,b,i denotes

the number of samples that satisfyFa = fa andFb = fb, and be-

long to class ci, Nb,i denotes the number of samples that satisfy

Fb = fb, and belong to class ci, and V is the number of quanti-

zation levels considered. The a priori probabilities are estimated

as P (ci) =
Ni∑L
i=1 Ni

, i = 1, . . . , L, where Ni is the number

of instances that belong to class ci. To reduce both memory

requirements and the number of computations when storing and

computing marginal probability tables ∆(Fk|F1, . . . , Fk−1, C),
the dependence of each variable is limited to be second order,

such that the only dependence for Fk other than C is its first

ancestor in the set {F1, . . . , Fk−1}, except for F1, which has C
as its only dependent.

B. Complexity Analysis

1) Preprocessing Stage: This stage consists of three steps.

First, extracting the highly correlated feature set based on a

threshold on mutual information is O(K logK). Second, learn-

ing a tree-based Bayesian network with corresponding CPDs

is O(K2 +KL) [29]. Third, computing marginal probability

tables from CPDs is O(KL). Thus, the complexity of the

preprocessing stage is O(K2 +KL).
2) Training Stage: In this stage, the optimum {αi

k} vectors

are determined. Computing the optimum αi
k vectors for all K

stages by considering a fixed set of belief points from each stage

using Perseus algorithm is O(KLV ) [26]. Thus, model training

is O(KLV ).
3) Testing Stage: The computational complexity of comput-

ing the minimumαi
k� among the set {αi

k} isO(L), since: 1) the

set {αi
k} computed using the Perseus algorithm contains at most

a constant number of vectors [26] and 2) the dot product between

a pair of [0, 1]L vectors requires 2L− 1 computations. The

TABLE II
DATASETS USED IN THE EXPERIMENTS

complexity of obtaining a new feature is O(1), while updating

� using (3) is O(L), since a dot product between a pair of

L-dimensional vectors must be computed. Hence, IFC2F can

classify an instance in O(KL).

VI. EXPERIMENTAL EVALUATION

In this section, an extensive set of experiments is conducted to

evaluate the performance of IFC2F using 11 benchmark datasets:

six DNA microarray datasets (Lung Cancer, Lung2, MLL,

Car, Leukemia, and Prostate) [30], four NIPS feature selec-

tion challenge datasets (Dexter, Madelon, Dorothea, and Spam-

base) [31], and one high-dimensional dataset (News20) [32].

Table II summarizes these datasets. For Madelon, MLL, Dexter,

and Dorothea, the originally provided training and validation

sets are used, while for the remaining datasets, fivefold cross-

validated results are reported. All experiments are conducted on

an iMac with Quad-Core Intel Core i7 @3.30-GHz CPU, 16-GB

memory, and macOS Catalina.

A. Effect of Feature Space Quantization

In Section V-A, the feature space was quantized to estimate the

conditional probability tables. Herein, the effect of the number

V of quantization levels on IFC2F is analyzed using four datasets

(Lung2, Dexter, Madelon, and MLL) (see Fig. 3). It is observed

that increasing the number of bins results in a significant drop

in accuracy for the MLL dataset, while for the Dexter dataset,

increasing the number of bins from 2 to 20 results in an improve-

ment in accuracy. All the datasets show a reduction in the number

of features used as V is increased. These observations suggest

that increasing the resolution of the feature space to a very high

value can cause overfitting. However, at the same time, it can help

to accommodate data sparsity in sparse datasets (e.g., Dexter).

On the other hand, the linear relationship between training time

and the number of bins V in Fig. 3(c) validates the O(KLV )
complexity of IFC2F’s training stage (see Section V-B). In the

rest of the experiments, to eliminate overfitting, V is set to a

moderate value (i.e., 4), except for sparse datasets (i.e., Dexter,

Dorothea, Spambase, and News20), where V is set to a slightly

higher value (i.e., 10).

B. Effect of Feature Evaluation Cost

To study the behavior of IFC2F for varying values of fea-

ture evaluation cost e = {0.1, 0.01, 0.001, 0.0001}, when all

features incur the same cost (i.e., ek = e, ∀k), the accuracy
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Fig. 3. Variation of (a) accuracy, (b) average number of features, and (c) training time (in seconds) as a function of the number
V ∈ {2, 4, 6, 8, 12, 20, 30, 40, 50, 100} of bins using Lung2, Dexter, Madelon, and MLL datasets.

TABLE III
ACCURACY AND AVERAGE NUMBER OF FEATURES USED BY IFC2F FOR DIFFERENT FEATURE EVALUATION COST VALUES USING LUNG2, DEXTER, MADELON,

AND MLL DATASETS

TABLE IV
ACCURACY AND AVERAGE NUMBER OF FEATURES USED BY IFC2F FOR DIFFERENT DEPENDENCE STRUCTURES USING LUNG2,

DEXTER, MADELON, AND MLL DATASETS

and the average number of features used for classification

for constant misclassification costs (i.e., Qij = 1∀i �= j,Qii =
0, i, j ∈ {1, . . . , L}) are measured (see Table III). Different e
values result in different number of features used and levels of

accuracy. Intuitively, using a small portion of the total feature

set leads to low accuracy, whereas when the average number of

features used increases, the performance improves dramatically.

From here onwards, unless specified, results are reported for

e = 0.01, since according to Table III, IFC2F achieves the best

tradeoff between accuracy and the average number of features

used for this value.

C. Effect of Bayesian Network Structure

In this subsection, the behavior of IFC2F is analyzed for

different dependence structures by considering three alternatives

in addition to the tree-based structure (“Tree”) introduced in

Section V-A. Initially, features are reverse sorted (highest value

first) with respect to mutual information with the class variable,

and the following dependence structures are considered: 1)

“Line”: a directed line graph having edges pointing outward

starting from the first feature in the ordering; 2) “Random”:

a random directed acyclic graph; and 3) “Clique”: a complete

directed graph. Note that for all of these dependence structures,

the class variable is considered as a common parent connected to

all feature nodes. Table IV provides a comparison among these

four dependence structures. The “Tree” structure achieves the

best tradeoff between accuracy and the number of features used

and additionally seems to better approximate the true structure in

three out of four datasets. However, it is possible that alternative

and/or simpler structures may be more appropriate in certain

scenarios, as indicated by the case of Lung2, where the random

structure achieves higher overall accuracy (at the expense of

average number of features used). Since the true dependence

structure between features is unknown, a definitive conclusion

about the optimality of the “Tree” structure cannot be reached.

This forms an interesting direction to be explored in future work.

Henceforth, the “Tree” structure is considered in the rest of the

experimental analysis.

D. Comparison With Baselines

In this subsection, IFC2F is compared with 1) two dynamic

feature selection methods: ETANA [5], F-ETANA [5] and 2)

six streaming feature selection methods: OFS-Density [12],

OFS-A3M [13], SAOLA [11], OSFS [10], Fast-OSFS [10],

and Alpha-Investing [9]. In streaming feature selection meth-

ods [9]–[13], a feature is selected if it satisfies an appropriately

defined criterion (e.g., belongs in the approximated Markov

blanket of the class variable [10], [11]; p-statistic is greater than
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TABLE V
COMPUTATIONAL COMPLEXITY OF BASELINES

Parameters K and N denote number of features and instances,

respectively.

a dynamically varying threshold [9]) or such that the boundary

region of the decision is maintained as little as possible [12],

[13]. These methods are designed to handle sequentially arriving

features during model training and select a global common

subset of features that is used to classify all instances during

testing. Table V summarizes the computational complexity of

the baselines, as reported by their authors. The complexity of

the proposed approach is discussed in Section V-B. The main

reason for comparing with such methods is twofold. First, both

these methods and the proposed algorithm are sequential (i.e.,

examine one feature at a time). Second, these baselines have

been shown to outperform standard feature selection algorithms

and scale well in high-dimensional settings. Similar to IFC2F,

ETANA and F-ETANA assume that all features are available

during training, while during testing, features arrive sequentially

one at a time for each data instance. However, ETANA and

F-ETANA assume that features are conditionally independent

given the class variable.

For a fair comparison, all streaming feature selection meth-

ods use a k-nearest-neighbor classifier with three neighbors to

evaluate a selected feature subset, since it has been shown to

outperform support vector machine, classification and regres-

sion tree, and J48 classifiers on the datasets used in [11] and

[12]. At the same time, parameter α used by SAOLA, OSFS,

and Fast-OSFS is set to 0.01, which has been shown to produce

the best performance [10], [11]. The code for all baselines is

either publicly available or has been provided by their authors.

The same training and testing datasets are used by all methods.

Finally, the same metrics (i.e., accuracy, number of features used,

and time) used by the baselines are adopted. Observations from

Tables VI–VIII are summarized next.

Madelon: IFC2F achieves the highest accuracy. In fact, this

corresponds to an improvement of 7.8% in accuracy with be-

ing 27.8% faster in joint feature selection and classification

compared to ETANA, which has the second highest accuracy.

ETANA, however, requires 18.7% less features on average com-

pared to IFC2F.

Lung Cancer: ETANA, F-ETANA, SAOLA, and Fast-OSFS

achieve the highest accuracy, but require 50.4% to 3.75× 103%

more features on average and are 200% to 1.82 × 106% slower

in joint feature selection and classification for a difference of

1.7% in accuracy compared to IFC2F.

MLL: Both IFC2F and ETANA achieve 100% accuracy. How-

ever, IFC2F requires 32.9% less features on average and is 200%

faster in joint feature selection and classification compared to

ETANA.

Dexter: IFC2F achieves the highest accuracy and is the fastest

in joint feature selection and classification.

Car: F-ETANA achieves the highest accuracy (10.7% im-

provement), but requires 1.31 × 103% more features on average

and is 1.26 × 103% slower in joint feature selection and classi-

fication compared to IFC2F.

Lung2: OFS-Density achieves the highest accuracy, but re-

quires 43.4% more features on average and is 5.55 × 104%

slower in joint feature selection and classification compared to

IFC2F for a difference of 5.4% in accuracy.

Leukemia: IFC2F, ETANA, and F-ETANA achieve the high-

est accuracy. However, IFC2F requires 8.7% and 80.1% less

features on average compared to ETANA and F-ETANA,

respectively.

Prostate: ETANA achieves the highest accuracy, but is 50%

slower in joint feature selection and classification compared to

IFC2F.

Spambase: OFS-A3M achieves the highest accuracy, but re-

quires approximately nine times more features for a difference

of 4.9% in accuracy and is much slower compared to IFC2F.

Dorothea: IFC2F and Fast-OSFS achieve the highest accu-

racy. However, Fast-OSFS requires approximately ten times

more features on average and is much slower compared to IFC2F.

Several observations can be drawn from the above results. For

the majority of datasets, ETANA achieves the highest accuracy,

while IFC2F is competitive achieving higher or closely second

performance compared to ETANA. This result demonstrates the

fact that for some datasets, the assumption of features being con-

ditionally independent given the class variable (used in ETANA)

is more appropriate than assuming that features are dependent

(used in IFC2F). On the other hand, IFC2F requires less number

of features on average than ETANA, while OSFS consistently

selects the least number of features among all baselines. This

observation suggests that considering feature dependencies

helps to get rid of redundant features. Furthermore, IFC2F

is the fastest algorithm to perform joint feature selection and

classification in all the datasets compared to the baselines. This is

due to the fact that it uses less number of features on average per

data instance. Specifically, easy to classify data instances require

few features as opposed to more challenging data instances that

require more features to be accurately classified by IFC2F.

E. Performance Assessment on a High-Dimensional Dataset

In this subsection, the performance of IFC2F and the baselines

is discussed within the context of the News20 dataset. Except

for IFC2F, ETANA, F-ETANA, and SAOLA, the rest of the

methods were unable to generate results within a cutoff time

of 12 days. Although SAOLA achieves the highest accuracy,

it requires approximately six times more features and is ∼160

times slower in joint feature selection and classification for a

mere improvement of 4.6% in accuracy compared to IFC2F (sec-

ond last row in Tables VI–VIII). This experiment demonstrates

the ability of IFC2F to scale for more than 1.3 million features

and provides further supporting evidence for the advantage of

dynamically selecting features and classifying each data instance

individually.

F. Statistical Significance

To validate the statistical significance of the results presented

in Sections VI-D and VI-E, a Friedman test, which constitutes

a well-known method to compare the performance of several
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TABLE VI
COMPARISON OF ACCURACY

The highest accuracy, and the second highest accuracy are bolded and gray-shaded, and gray-shaded, respectively. Cells are marked with “−−” if the

corresponding method was unable to generate results within a cutoff time of 12 days.

TABLE VII
COMPARISON OF AVERAGE NUMBER OF FEATURES USED

The minimum and the second minimum average number of features used are bolded and gray-shaded, and gray-shaded, respectively. Cells are marked

with “−−” if the corresponding method was unable to generate results within a cutoff time of 12 days.

algorithms across multiple datasets [33], is conducted. The

average ranking (avg. rank) of each method is given in the last

row in Tables VI–VIII. The p-values of the Friedman test on

classification accuracy, the average number of features used

and time required for joint feature selection and classification

are 1.69× 10−4, 8.07× 10−7 and 4.55× 10−24, respectively.

Thus, there is a significant difference [33] in the performance of

IFC2F and the baselines.

G. Demonstration of Instance-Wise Feature Selection

Table IX demonstrates the instance-wise nature of IFC2F

using four illustrative examples from the IMDB movie reviews

dataset (50 000 instances, 89 523 features, and two classes) [34].

The IMDB dataset is selected because the raw text of reviews is

available and can be directly used to interpret the classification

rationale. The training and validation sets with bag-of-words

features are used as provided. The Markov blanket based fea-

ture ordering is { “bad,” “great,” “no,” “best,” “even,” “plot,”

“nothing,” “love,” “don’t,” “waste,” . . . }. Fig. 4 illustrates the

evolution of the posterior probability distribution πk as more

and more features are evaluated, until the stopping condition

g(πk) � Ak(πk) is satisfied. At that time, the instance is as-

signed to the class with the maximum posterior probability;

this is a direct result of using constant missclassification costs,

i.e., Q01 = Q10 = 1, Q00 = Q11 = 0 [see (6)]. Observe that

the proposed framework evaluates more features to predict

challenging reviews such as (c) and (d) compared to easy and

straightforward reviews such as (a) and (b). In summary, IFC2F

Fig. 4. (a)–(d) Evolution of posterior probability distribution, i.e.,
P (positive|F1, . . . , Fk) (in blue) and P (negative|F1, . . . , Fk) (in orange) for
four IMDB reviews in Table IX.

selects different features for different data instances in a dynamic

setting and assigns the class label based on the observed features.

H. Robustness to Missing Features

In this subsection, the ability of IFC2F to handle missing

features is evaluated. Specifically, x% of features are randomly

removed from each test instance and the posterior probability

πk is kept unchanged if a feature is missing. x% is increased
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TABLE VIII
COMPARISON OF TIME (IN SECONDS) REQUIRED FOR FEATURE SELECTION (F), CLASSIFICATION (C), JOINT FEATURE SELECTION AND CLASSIFICATION (F+C),

MODEL TRAINING (T), AND PREPROCESSING (P)

The minimum and the second minimum F+C times are bolded and gray-shaded, and gray-shaded, respectively. Cells are marked with “−−” if the corresponding

method was unable to generate results within a cutoff time of 12 days.

Fig. 5. Variation of (a) accuracy and (b) average number of features as the
percentage of missing features increases from 0.01% to 50% across datasets.

from 0.01% to 50%, and the effect on the accuracy and the

average number of features used for classification is noted (see

Fig. 5). Evidently, IFC2F is robust for up to 10% missing

features, beyond which value, the posterior probability πk may

no longer represent the underlying true class value. Thus, IFC2F

can identify informative features to make accurate predictions

when a small subset of features is missing.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this article, a framework to perform dynamic instance-wise

joint feature selection and classification with correlated features

is proposed. Specifically, feature dependencies are modeled

using a Bayesian network. Based on the learned dependence

network, a method is proposed to sequentially select the most

informative features and reach a classification decision for each

instance individually. The effectiveness and scalability of the

proposed method is illustrated on various real-world datasets.

The proposed method robustly performs well on all of them,

with comparable and often superior performance compared to

prior art.

The proposed method selects the most informative features

from the dependence graph utilizing the proposed Markov-

blanket-based feature ordering. This dependence graph, how-

ever, is learned offline during training; hence, the ordering in
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TABLE IX
WORDS (FEATURES) PICKED BY IFC2F ARE HIGHLIGHTED IN YELLOW

The true/predicted label is given at the end of each review. The second column reports features selected for each review in ascending order (Y -axis) versus

feature value (X-axis).

which features are selected is common for all test instances. In

future work, the goal is to address this limitation by dynamically

learning the network structure, since the number of selected

features and the interpretability of the classification depend

on the graph structure at hand. At the same time, to keep the

preprocessing time small, the proposed method opts for filtering

out features based on the mutual information between each

feature and the class label. In future work, approaches such

as multivariate mutual information can be explored to better

capture feature dependencies. Finally, the proposed method as-

sumes that all data instances are available at once during training,

which may not hold in cases where data instances are provided

sequentially. In the future, the applicability of online learning

methods [35] in the proposed setting can be considered.

APPENDIX A

PROOF OF THEOREM 1

At the end of the Kth stage, assuming that all the features

have been examined, the only remaining expected cost is the

optimum misclassification cost of selecting among L classes,

which is J̄K(πk) = g(πk).
Then, consider any intermediate stage k = 0, 1, . . . ,K − 1.

Being at stage k, with available information πk, the optimum

strategy has to choose between, either to terminate and incur

cost g(πk), which is the optimum misclassification cost of

selecting among L classes, or continue with the next feature

Fk+1, and incur cost ek+1 and an additional cost J̄k+1(πk+1)
to continue optimally at stage k + 1. Thus, the total cost of

continuing optimally is ek+1 + J̄k+1(πk+1). However, at stage

k, the assignment fk+1 of the next feature Fk+1 is not known.

Thus, the expected optimum cost-to-go, which is equal to ek+1 +

E{J̄k+1(πk+1)|πk}, needs to be considered. Using Bayes’ rule

to express πk+1 in terms of πk, and by the definition of the

expectation operator, the optimum cost-to-go Ak(πk) takes the

following form:

Ak(πk) � ek+1 + E
{
J̄k+1(πk+1)|πk

}

= ek+1 +
∑

Fk+1

P (Fk+1|F1, . . . , Fk)

× J̄k+1

(
diag (∆(Fk+1|F1, . . . , Fk, C))πk

∆T (Fk+1|F1, . . . , Fk, C)πk

)
. (9)

Next, the term P (Fk+1|F1, F2, . . . , Fk) must be simplified.

Specifically, using the Bayes’ rule and the law of total prob-

ability, it can be shown that

P (Fk+1|F1, F2, . . . , Fk)

=
P (F1, F2, . . . , Fk+1)

P (F1, F2, . . . , Fk)

=

∑L
j=1 P (F1, . . . , Fk+1Cj)

∑L
j=1 P (F1, . . . , Fk, Cj)

=

∑L
j=1 P (F1, . . . , Fk+1|Cj)P (Cj)

∑L
j=1 P (F1, . . . , Fk|Cj)P (Cj)

. (10)

Using the chain rule, (10) can be simplified as follows:

P (Fk+1|F1, F2, . . . , Fk)

=

∑L
j=1 P (F1, . . . , Fk|Cj)P (Fk+1|F1, . . . , Fk, Cj)P (Cj)

∑L
j=1 P (F1, . . . , Fk|Cj)P (Cj)
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=

L∑

j=1

P (F1, . . . , Fk|Cj)P (Cj)∑L
j=1P (F1, . . . , Fk|Cj)P (Cj)

P (Fk+1|F1, . . . , Fk, Cj)

=

L∑

j=1

P (Cj |F1, . . . , Fk)P (Fk+1|F1, . . . , Fk, Cj)

=
L∑

j=1

π
j
kP (Fk+1|F1, . . . , Fk, Cj)

= ∆T (Fk+1|F1, . . . , Fk, C)πk. (11)

Finally, substituting (11) into (9), the desired result can be

acquired

Ak(πk+1) = ek+1 +
∑

Fk+1

∆T (Fk+1|F1, . . . , Fk, C)πk

× J̄k+1

(
diag(∆(Fk+1|F1, . . . , Fk, C))πk

∆T (Fk+1|F1, . . . , Fk, C)πk

)

(12)

which completes the proof.

APPENDIX B

PROOF OF LEMMA 1

Consider the definition of g(�):

g(�) � min
1�j�L

[
QT

j �
]
, � ∈ [0, 1]L.

The term QT
j � is linear with respect to �, and since the mini-

mum of linear functions is a concave piecewise linear function,

g(�) is a concave piecewise linear function as well. Concavity

also ensures the continuity of this function. Minimization over

finite L hyperplanes guarantees that the function g(�) is made

up of at most L hyperplanes. Hence, the set {QT
j }

L
j=1 of L

vectors represents those L hyperplanes.

APPENDIX C

PROOF OF LEMMA 2

First, consider the function AK−1(�) given by

AK−1(�) = eK +
∑

FK

∆T (FK |F1, . . . , FK−1, C)�

× J̄K

(
diag (∆(FK |F1, . . . , FK−1, C))�

∆T (FK |F1, . . . , FK−1, C)�

)
.

(13)

Using the fact that J̄K(πK) = g(πK), (13) can be rewritten as

follows:

AK−1(�) = eK +
∑

FK

∆T (FK |F1, . . . , FK−1, C)�

× g

(
diag (∆(FK |F1, . . . , FK−1, C))�

∆T (FK |F1, . . . , FK−1, C)�

)
. (14)

Using the definition of g(�), (14) can be rewritten as follows:

AK−1(�) = eK +
∑

FK

∆T (FK |F1, . . . , FK−1, C)�

× min
1�j�L

[
QT

j diag (∆(FK |F1, . . . , FK−1, C))�

∆T (FK |F1, . . . , FK−1, C)�

]
.

(15)

Using the facts that Qj and ∆(FK |F1, . . . , FK−1, C) are non-

negative vectors, (15) can be simplified as follows:

AK−1(�) = eK

+
∑

FK

min
1�j�L

[
QT

j diag (∆(FK |F1, . . . , FK−1, C))�
]
.

(16)

Note that the term QT
j diag(∆(FK |F1, . . . , FK−1, C))� is lin-

ear with respect to �. Using the facts that 1) eK > 0, 2) the

minimum of linear functions is a concave piecewise linear func-

tion, and 3) the nonnegative sum of concave/piecewise linear

functions is also a concave/piecewise linear function implies

thatAK−1(�) is a concave piecewise linear function. Concavity

also ensures the continuity of this function.

Then, consider the function AK−2(�) given by

AK−2(�) = eK−1 +
∑

FK−1

∆T (FK−1|F1, . . . , FK−2, C)�

× J̄K−1

(
diag (∆(FK−1|F1, . . . , FK−2, C))�

∆T (FK−1|F1, . . . , FK−2, C)�

)
.

(17)

Note that J̄K−1(�) = min[g(�),AK−1(�)] (see Theo-

rem 1). Using the facts that 1) g(�) is a concave, piecewise

linear function, 2) AK−1(�) is a concave, piecewise linear

function, and 3) the minimum of two concave/piecewise linear

functions is also a concave/piecewise linear function implies that

J̄K−1(�) is also concave and piecewise linear. Furthermore, the

nonnegative sum of concave/piecewise linear functions is also

a concave/piecewise linear function. Based on this fact and the

facts that eK−1 > 0 and∆(FK−1|F1, . . . , FK−2, C) is a nonneg-

ative vector, the function AK−2(�) is concave and piecewise

linear. Concavity also ensures the continuity of this function.

Using similar arguments, the concavity, the continuity, and the

piecewise linearity of functions Ak(�), k = 0, . . . ,K − 3, can

also be guaranteed.

APPENDIX D

PROOF OF THEOREM 2

At the final stage, i.e., k = K, J̄K(�) = g(�) =
min1�j�L[Q

T
j �]. Hence, {αi

K} � {QT
j }

L
j=0. The rest of

the proof is very intuitive. Using the facts that 1) g(�) and

Ak(�) are concave and piecewise linear with respect to �,

2) J̄k(�) = min[g(�),Ak(�)], k ∈ {0, . . . ,K − 1} (see

Theorem 1), and 3) the minimum of two concave/piecewise

linear functions is also a concave/piecewise linear function

implies that the function J̄k(�) is also concave and piecewise

linear. Finally, since J̄k(�) is a concave and piecewise

linear function defined on a probability space, it is noted that

J̄k(�) = mini[α
i
k�], where the set {αi

k}i of vectors represents

its linear pieces.
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