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Dynamic Instance-Wise Classification in Correlated
Feature Spaces
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Abstract—In a typical supervised machine learning setting, the
predictions on all test instances are based on a common subset
of features discovered during model training. However, using a
different subset of features that is most informative for each test
instance individually may improve not only the prediction accu-
racy but also the overall interpretability of the model. At the
same time, feature selection methods for classification have been
known to be the most effective when many features are irrelevant
and/or uncorrelated. In fact, feature selection ignoring correlations
between features can lead to poor classification performance. In this
work, a Bayesian network is utilized to model feature dependencies.
Using the dependence network, a new method is proposed that
sequentially selects the best feature to evaluate for each test instance
individually and stops the selection process to make a prediction
once it determines that no further improvement can be achieved
with respect to classification accuracy. The optimum number of
features to acquire and the optimum classification strategy are
derived for each test instance. The theoretical properties of the
optimum solution are analyzed, and a new algorithm is proposed
that takes advantage of these properties to implement a robust and
scalable solution for high-dimensional settings. The effectiveness,
generalizability, and scalability of the proposed method are illus-
trated on a variety of real-world datasets from diverse application
domains.

Impact statement— The ability to rationalize which features to
use to classify each data instance is of paramount importance in
a wide range of application domains, including but not limited to
medicine, criminal justice, and cybersecurity. Correlations between
features, and the need for variable selection at the same stage as
classification, in such application domains present additional chal-
lenges to machine learning related to classification accuracy and
computationally intractability. The proposed framework presents,
to the best of our knowledge, the first practical solution that bal-
ances between classification accuracy and sparsity at the instance
level, by dynamically choosing the most informative features, rel-
ative to each instance, from a set of potentially correlated features,
for classifying each individual instance. The proposed framework
achieves reductions up to 82% in the average number of features
used by state-of-the-art methods without sacrificing accuracy and
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is robust for up to 10% of missing features. Broad positive societal
implications include: fast, accurate, and cost-efficient inference in
complex dynamic settings; and ease of interpretation of and trust
in machine learning outcomes by domain experts (e.g., doctors and
lawyers).

Index Terms—Bayesian network, correlated features, costly
features, datumwise feature selection and classification, sequential
feature selection.

I. INTRODUCTION

WIDE range of applications, including but not limited to

medicine and robotics, demand practical solutions that can
perform feature selection and classification jointly in a dynamic
setting for each data instance individually. For example, consider
a scenario, where a doctor is called to provide a medical diagno-
sis to a patient. The doctor’s diagnosis may often be time critical
(e.g.,inemergencies) and/or depend on numerous costly medical
tests (out of which features are to be extracted), some of which
cost thousands of dollars [1]. At the same time, a different set
of tests may be appropriate for each individual patient (i.e., data
instance). For instance, Kao ef al. [2] have shown that relevant
features for predicting heart failure may differ across patient
subgroups. Finally, considering dependencies between medical
tests (and corresponding features) is equally important [3], since
individual features may seem irrelevant with the class when
examined independently, but when combined may improve clas-
sification accuracy and at the same time enhance interpretability
of the final decision. Similarly, in the domain of robotics, an
autonomous vehicle can control the view of its environment
(e.g., change position and modify sensors parameters) to inspect
and classify an object of interest [4]. In this context, it may
be important to select which sensors to use or what kind of
measurements to take, while at the same time ensuring that an
object in the field of view can be accurately classified.

In this article, the problem of selecting which features to
use to classify each test instance as features sequentially arrive
one at a time is explored. The current work extends the prior
work [5], which formalized this problem with the simplifying
assumption that features are conditionally independent given the
class variable. Specifically, building upon [5], herein, features
ensure consistency: correlation versus dependence is efficiently
and effectively modeled using a Bayesian network. In general,
handling feature dependencies can lead to computationally in-
tractable solutions [6]. Therefore, a novel feature ordering is
presented, such that each selected feature contains the maximum
possible new information about the class variable with respect
to the already evaluated feature set. The optimum solution is
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also derived for this more general formulation, and important
structural properties are analyzed that facilitate the design of a
scalable method. The proposed method is evaluated and com-
pared with prior work on a variety of real-world datasets.

Next, the unique contributions of this work are summarized
as follows: 1) the optimum stopping feature (i.e., the feature
at which the sequential evaluation process terminates) and the
optimum classification strategy are mathematically derived for
each data instance individually without imposing any assump-
tions on feature dependencies; 2) the structure of the optimum
solution is theoretically analyzed; 3) an efficient implementation
of the optimum solution is introduced that considers feature
correlations to guide the feature selection process; and 4) the
effectiveness, generalizability, and scalability of the proposed
method are evaluated using 11 publicly available datasets. To
facilitate reproducibility, the source code of the proposed method
is available at:!

II. RELATED WORK

In this section, the most relevant prior work on feature selec-
tion and classification is summarized.

To accommodate large or unknown feature spaces during
model training, streaming feature selection methods [7] are
designed to handle features arriving sequentially over time.
Existing work on this area can be roughly categorized into two
directions depending on the availability of prior information
about the feature space [8]-[11] or not [12], [13]. In gen-
eral, various threshold-based approaches have been proposed,
where a newly arriving feature is selected if a constraint is
satisfied (e.g., predefined threshold [8], dynamically varying
threshold [9], conditional independence via G?-test [10], or
Fishers Z-test [11]). In [12], features are selected if they exhibit
high correlation with the class variable and low correlation
with already selected features, while the boundary region of
the decision is kept as small as possible. Zhou et al. [13]
extends [12] by considering the size of the neighborhood of
each data instance. Motivated by real-world applications, where
training instances arrive sequentially or access to the full training
dataset is not feasible, Wu et al. [14] jointly train a linear model
and acquire a sparse representation of the feature space global
to the entire dataset during the training process. All the above
works use the same fixed set of features to classify all instances
during festing. In sharp contrast to the above lines of work, in
the proposed setting, both the training instances and the full
feature space are available during the training process, and the
goal is to dynamically select and use for classification a different
subset of features for each instance during the testing process.
As a result, each testing instance is classified using different
variable features. This instance-wise property is demonstrated
in Section VI-G.

Recent studies have shown that relevant features may differ
across data instances, for example, in predicting heart failure
for different patients [2]. At the same time, as complex machine
learning models become more prevalent, the need to inter-
pret their results becomes critical. Hence, instance-wise feature
selection [15]-[17] tries to identify a small number of relevant
features that explain/predict the output of a machine learning

Uhttps://github.com/IDIASLab/IFC2F

model during testing. In [15], a single neural network is learned
to identify the top k features that explain a pretrained model
based on mutual information. Yoon et al. [16] adopt an actor—
critic architecture with three neural networks, bypassing the
need for backpropagation to outperform [15]. To avoid the high
computational cost of the above methods, Xiao and Wang [17]
limit the number of possible relevant feature subsets to K, and
model this constraint with a mixture of K deep neural networks.
The sensitivity magnitude of the model is then used to select
the most relevant features. These methods work in a static
setting, since all feature values of a test instance must be first
revealed. Such methods do not scale for large feature spaces,
since the search space grows exponentially with the number
of features. The method proposed herein can be used for model
interpretability and as such is related to these methods. However,
unlike that line of work, the proposed method is dynamic, in
the sense that features arrive sequentially one at a time during
testing, and the goal is to jointly select features and classify
each data instance in this regime. Additionally, the number of
features used for each instance is neither fixed nor predefined;
it is optimally derived by the proposed framework. Finally, the
proposed method scales well, with large feature spaces being
able to accommodate more than 1 million features.

Similar to this work, classification with costly features [18],
[19] considers costs associated with feature evaluation and mis-
classification, and the goal is to limit the number of features
used for classification per data instance during testing. Such
methods, however, define the problem globally with respect
to the training dataset, namely, by introducing a penalization
term to limit the number of features used for classification in
a standard empirical loss minimization problem. In that sense,
even though such approaches end up sequentially evaluating
different features per instance before they classify it, the result-
ing classification function is globally learned with respect to
the dataset. This modified problem is shown to be equivalent
to a deterministic Markov decision process (MDP) formulation
and solved by a linear [18] or nonlinear approximation [19] of
the associated @)-function. The size of the state space of the
MDP grows exponentially with the dimension of the feature
space, making these methods impractical for high-dimensional
settings. The proposed approach in this article is conceptually
different from these methods in that the problem of joint feature
selection and classification is defined and solved individually
with respect to each data instance. In addition, the optimum
classification strategy and the optimum number of features to
be used for classification for each data instance individually are
mathematically derived in the generic case of correlated features.
Last but not least, key properties of the optimum solution are
uncovered, thus enabling the proposed method to scale to large
feature spaces.

III. PROPOSED FRAMEWORK

In this section, the task of instanc-ewise supervised multiclass
classification in correlated feature spaces is posed as a sequential
decision process for which the optimum solution is derived.
Specifically, the goal is to learn to sequentially choose a subset
of features, relative to each test instance, using which each
particular instance is to be assigned to one of L classes. Table I
summarizes the notation used hereafter.
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TABLE I

EXPLANATION OF MAIN SYMBOLS USED IN THIS ARTICLE
Symbol | Description
S collection of data instances
s data instance s € S
P Feature set
K # of features
Fy, kth feature F, e F (1< k< K)
fr value of kth feature Fj (1 <k < K)
L # of classes
C class variable
¢ class assignment to class C
i prior probability of class ¢
ek Cost coefficient of kth feature Fj,
Qij Missclassification cost for classes c; and c;

6B BB

Fig. 1. Sample Bayesian network of features in /' and the class variable in C.

Dependencies between features and the class variable (see
Fig. 1) are modeled using a Bayesian network B = {G, ©} [20],
which can be learned using methods such as in [21] and [22].
Specifically, a directed acyclic graph G = (V, E), where V =
F U{C} is the set of features in F' augmented with variable
C and F is the set of edges denoting correlations” among the
nodes in V/, is given, and the set © of conditional probability
distributions (CPDs) for G is learned during training.

The goal is to leverage feature dependencies to train an
instance-wise classifier that allows the number of features used
for classification to vary relative to each instance, so as to
optimize the tradeoff between accuracy and sparsity at the
individual instance level. Specifically, in order to select one out
of L possible classes for each instance s, the proposed approach
evaluates features sequentially by choosing the features that are
1) highly correlated with the class variable and 2) conditionally
independent with the already evaluated feature set. At each
step, the proposed approach considers the cost of examining the
remaining features to decide between continuing the process or
if enough information is available for a classification decision to
be reached. Herein, two random variables R and D g are defined.

Definition 1: Random variable R € {0, ..., K} denotes the
number of feature evaluations before the framework terminates.
The event {R = k} represents that the framework stops after
evaluating k features.

Definition 2: Random variable Dy € {1,..., L} denotes the
assigned value for class variable C based on the information ac-
cumulated up to feature F'r. The event { D;p_j; = i} represents
assignment of class ¢; using features {f1, f2, ..., fx}.

The optimum value R* and the best class assignment D%, for
each data instance s € S are obtained by minimizing

R L L

J(R,Dg) = ]E{ Zek} +ZZQ2’J’P(DR =7,C=c¢)
k=1 j=1i=1

€]

2Correlation is measured using mutual information, which quantifies the
“distance” from independence between a pair of random variables [23].

where e, > 0 is the feature evaluation cost representing the
time and effort required to evaluate feature Fy, (Q;; > 0 is the
missclassification cost of assigning class c¢; when class ¢; is
true,and P(Dpr = j,C = ¢;) is the joint probability of assigning
class ¢; when class ¢; is true. Specifically, E{37_, e} is
the expected cost accrued due to feature evaluations, and the
double summation corresponds to expected cost associated with
the classification rule Dg. Thus, the optimization problem is

equivalent to finding R*, D%., such that
minimize J (R, Dg) . 2)

,Dr

To solve (2), first, a subset of highly correlated features with
the class variable C is identified. These features are sufficient
for accurately inferring C’s value. This is achieved by finding
the Markov blanket [20] M¢ of C in G. B¢ denotes the induced
subgraph of G with nodes Vi, = M¢ U {C}. Features in M
are then sequentially evaluated so that at each step, the feature
in the subset of currently unselected features, that provides the
maximum additional information about C with respect to the
already evaluated feature set, is selected. This is achieved using

_ diag (Ap(Fr|F1, .. Fi1,C)) mra

3

Tk

AL (Fy|Fyy .o Freq, C)mha
where Ak(Fk|F1, .. .,Fk,hC) = [P(Fk‘Fl, . .7}‘_'1671,C1)7
oy P(Fy|Fy, ..., Fr1,c)]" can be computed using exact

inference algorithms (see, e.g., [22]), diag(A) denotes a
diagonal matrix with diagonal elements being the elements in

vector A, my = [p1,p2,...,pr]’, and

e 2 [mp, e, T 4)
is the a posteriori probability vector with 7l =
P(ci|Fy, ..., Fy).Inlieuof P(C = ¢;|Fr = f1,-.., Fx = [r)s
P(ci|Fy, ..., Fy) is used hereafter to improve readability.

For illustration purposes, suppose that F is the feature most
correlated with C. Let El C {M¢ U C} denote the subset of F}’s
Markov blanket in Bc. F} is conditionally independent to all
F, e {M; — él} given B;. Therefore, the next feature to be
evaluated should come from { M — B }. It follows that the kth
feature to be evaluated must belong to { M — ! B;}.

Next, P(Dg = j,C = ¢;) can be simplified as P(Dgr =
Jr¢i) = E{mRlip,—;;} by exploiting the fact that xr =
S, xp 1 p—y) for any sequence of random variables {x},
where 14 = 1 when A occurs, and 14 = 0 otherwise. Thus

R L
J(R,Dr) =E{> e+ > Qfmrl{p,—j &)
k=1 =1

A
where Q]‘ = [Ql,j7 Qz,j, ey QL’j]T.
At this point, the optimum classification strategy D7, can be

obtained for any given R by noting that Zle Q;‘-Fﬂ rRlpp—j) =
g(mr), where g(wg) £ mini ;< [Q] 7r]. Therefore, the opti-
mum classification strategy D7, for any given R is

Dy = argmin; ;<. [Q]TWR] 6)

which assigns the given data instance to the class yielding the
minimum misclassification cost. This suggests that J(R, Dg) >
minp,, J(R, D), which, in turn, implies that the cost function
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Optimum

[ Sto i
InsDt:\t:ce el action g( < ft
strategy g(mr) < Ag(mi) instance
inllzallze k=0 ) Compare Using Eq. (6)
7m0 = [p1,P2,- -, PL] g(m) S Ar(me)
Continue Extract the next
best feature from
the Bayesian
Network
Using Eq. (3) Fyiq = arg max _ MI(X;C)
Xe{Mc—Uk_, Bi}

Fig.2.  Graphical illustration of the proposed framework. M I(X;C) denotes
mutual information between variables X and C.

in (5) can be reduced to

R
J(R)=ES Y er+g(mr) (7
k=1
Note that (7) can be minimized with respectto R € {0,... , K}

in at most K + 1 stages using dynamic programming [24], as
shown in Theorem 1.

Theorem 1: For k = K —1,... ,0, the function Jy(m) is
related to Ji 11 (mx11) as follows:

Je(mi) = min [g(my), Ax ()] ®)
WhereAk(ﬁk) £ €41 Jrsz_*_l A£+1(Fk+1|F1, ey Fk,C)ﬂ'k

J diag(Agy1 (Frp1|Fr,--, Fr,C)) ke
k+1 AT (Fra|Fu, o Fie O

>, and JK(ﬂ'K) = g(ﬂ'K).
The optimum feature selection strategy is {Fi, Fo, ..., Fr},
where R* is equal to the first k < K for which g(71,) < Ak (mg),
or R* = K if there are no more features to be evaluated.

Fig. 2 summarizes the process of classifying a data instance
during testing. Initially, ¥ = 0 and w9 = [p1, ..., pr]. At each
stage k, the proposed framework compares the cost g(my)
of stopping to the expected cost Ay () of continuing. If
g(mi) < Ag(my), the framework stops evaluating features and
classifies the instance using (6). Otherwise, it evaluates the next
best feature Fjy; = arg MAXy 07—k By MI(X;C) from
the Bayesian network and updates 7 using (3). Details about the
computation of mutual information, M I(X; C), are provided in
Section V-A. These steps are repeated until the data instance is
classified using a subset of or all K features.

IV. THEORETICAL RESULTS

In this section, important properties of the optimum classi-
fication strategy D7, in (6) and the optimum feature selection
strategy in (8) are analytically derived.

Consider a general form of the function g¢(wg) used
to derive the optimum classification strategy in (6)
given by g(w) £ mini;<1[Q] @], @ € [0,1]F, where
w = [wi,...,wr]?, such that w; > O,ZiLzl w; = 1. Here,
the domain of ¢g(ww) is the probability space of to, which is an
(L — 1)-dimensional unit simplex. Function g(w) has some
interesting properties, as described in Lemma 1.

Lemma 1: The function g(w) is concave, continuous, and
piecewise linear. In particular, g(w) consists of at most L
hyperplanes, represented by the set {Q] }7_, of L vectors.

Next, consider the general form of the function

Ap(rk) in () given by Ax(w)=epi1+ Yy, AT
7 diag(A(F41|Fy,....Fi ,C))w

(Fk:+1‘F17 v ,FK,C)WJkJr] AT(ijranhlm,FK{(C)w

Lemma 2 summarizes the key properties of this function.

Lemma 2: The functions Ay (w), k =0,..., K — 1,arecon-
cave, continuous, and piecewise linear.

The properties of functions g(w) and A (w) stated in Lem-
mas 1 and 2, respectively, allow for a parsimonious represen-
tation of the function related to the optimum feature selection
strategy in (8), as stated in Theorem 2.

Theorem 2: At every stage k € {0,..., K}, there exists a
set{a}}, ai € RY™E of vectors such that Jj, () = min; o o]

; i1 A (HTL
with {ac } = {Qj }7_0- ) .

The above properties can be used to derive an efficient algo-
rithmic implementation of the optimum solution.

V. PROPOSED ALGORITHM

Theorem 2, Lemma 1 and the fact that Ji(w) =
min(g(w), Ax(w)], k € {0,..., K — 1}, allow for an efficient
implementation of the optimum feature selection strategy in
Theorem 1. Specifically, the decision to stop or continue the
feature evaluation process depends only on the vector af =
arg min,; o) ], such thatif o € {Q] }7_, the feature evalu-
ation process stops; otherwise, the next feature is to be evaluated.
This is based on the fact that if arg min,; )] € {QT }y,
it implies that g(w) < Ag(w) due to the following two rea-
sons: 1) the set {Q]»T}JLZO of L vectors represents the L hyper-
planes of g(w) (see Lemma 1); and 2) Ji. (o) = min;[a} o] =
min[g(w), Ax(w)]. Based on this fact, a dynamic Instance-
wise joint Feature selection and Classification algorithm for
Correlated Features (IFC2F) is presented. Initially, o is set to
7o, and af = arg min,; [afywo] is computed. If oy € {Q] }1_y,
IFC?F classifies the instance under examination to the appro-
priate class, based on the optimum classification strategy in (6).
Otherwise, the first feature is evaluated. IFC?F repeats these
steps until either it decides to classify the instance using < K
features or using all K features. Algorithm 1 describes these
steps in detail. The input vector sets {}, } can be computed using
a standard point-based value iteration algorithm [25] during
training. For simplicity, the Perseus algorithm [26] is used,
among the several point-based value iteration algorithms in the
literature [27]. Specifically, a fixed number j3 (e.g., ~100 [26]) of
reachable w vectors from each stage, marginal probability tables
A(Fg|Fy,. .., Fr_1,C), misclassification costs ();; and feature
evaluation costs e;, were provided to the Perseus algorithm to
obtain {a} },k € {0,..., K — 1}.

A. Practical Considerations

The adjusted mutual information (AMI)? between each fea-
ture and the class variable is computed, and M¢ is acquired by
removing low correlation features based on a threshold 7 on
AMLI. Specifically, 7 is initialized to 1 and is iteratively halved
until the number of filtered features is greater than zero. For

3The maximum of this value represents perfect correlation between the
variables, while a value around zero represents independence [28].
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Algorithm 1: IFC?F.

Input: Vector sets {cf}, ..., {a% }, and
misclassification costs @Q;;,4,7 € {1,...,L}
Qutput: Classification decision D of the instance under
examination, number R of features used
Initialize @ = 7
for k =0to K do
if k = K or arg min,; [ajw] € {Q] }}_, then
Break
else
Obtain next feature value fj1
Update w using (3)
end if
end for
Return: D = argmin, ¢ ;< [Q] @], R = k

simplicity, the Bayesian network is assumed to exhibit a tree
structure rooted at the class variable (experiments are performed
on three alternative network structures in Section VI-C). Such
networks can be efficiently constructed (e.g., by building the
maximum spanning tree [29]) using pairwise conditional mutual
information. Conditional probability tables (i.e., P(Fj|Ilg,),
where Iy, denotes the set of parents of F}), are estimated
using a smoothed maximum likelihood estimator. Specifically,

P(Fa = fulFy = f5,C=¢;) = %, where N, ; ; denotes
the number of samples that satisfy F,, = f, and F}, = f3, and be-
long to class c;, N}, ; denotes the number of samples that satisfy
Fy = f3, and belong to class ¢;, and V' is the number of quanti-
zation levels considered. The a priori probabilities are estimated
as P(c;) = ZLNiN' ,i=1,...,L, where N; is the number
of instances that bélong to class ¢;. To reduce both memory
requirements and the number of computations when storing and
computing marginal probability tables A(Fy|Fy,. .., Fy_1,C),
the dependence of each variable is limited to be second order,
such that the only dependence for Fj, other than C is its first
ancestor in the set {F, ..., Fj_1}, except for F, which has C
as its only dependent.

B. Complexity Analysis

1) Preprocessing Stage: This stage consists of three steps.
First, extracting the highly correlated feature set based on a
threshold on mutual information is O(K log K'). Second, learn-
ing a tree-based Bayesian network with corresponding CPDs
is O(K? + K L) [29]. Third, computing marginal probability
tables from CPDs is O(KL). Thus, the complexity of the
preprocessing stage is O(K? + KL).

2) Training Stage: In this stage, the optimum {«/}, } vectors
are determined. Computing the optimum o, vectors for all K
stages by considering a fixed set of belief points from each stage
using Perseus algorithm is O(K LV') [26]. Thus, model training
is O(KLV).

3) Testing Stage: The computational complexity of comput-
ing the minimum o} 7o among the set { % } is O(L), since: 1) the
set {a } computed using the Perseus algorithm contains at most
a constant number of vectors [26] and 2) the dot product between
a pair of [0,1]F vectors requires 2L — 1 computations. The

TABLE II
DATASETS USED IN THE EXPERIMENTS
Dataset # Instances # Features # Classes
Madelon 2,000 500 2
Lung Cancer 181 12,533 2
MLL 72 5,848 3
Dexter 300 20,000 2
Car 174 9,182 11
Lung2 203 3,312 5
Leukemia 72 7,129 2
Prostate 102 6,033 2
Spambase 4601 57 2
Dorothea 800 100,000 2
News20 19,996 1,355,191 2

complexity of obtaining a new feature is O(1), while updating
w using (3) is O(L), since a dot product between a pair of
L-dimensional vectors must be computed. Hence, IFC2F can
classify an instance in O(KL).

VI. EXPERIMENTAL EVALUATION

In this section, an extensive set of experiments is conducted to
evaluate the performance of IFC?F using 11 benchmark datasets:
six DNA microarray datasets (Lung Cancer, Lung2, MLL,
Car, Leukemia, and Prostate) [30], four NIPS feature selec-
tion challenge datasets (Dexter, Madelon, Dorothea, and Spam-
base) [31], and one high-dimensional dataset (News20) [32].
Table II summarizes these datasets. For Madelon, MLL, Dexter,
and Dorothea, the originally provided training and validation
sets are used, while for the remaining datasets, fivefold cross-
validated results are reported. All experiments are conducted on
an iMac with Quad-Core Intel Core 17 @3.30-GHz CPU, 16-GB
memory, and macOS Catalina.

A. Effect of Feature Space Quantization

In Section V-A, the feature space was quantized to estimate the
conditional probability tables. Herein, the effect of the number
V of quantization levels on IFC?F is analyzed using four datasets
(Lung2, Dexter, Madelon, and MLL) (see Fig. 3). It is observed
that increasing the number of bins results in a significant drop
in accuracy for the MLL dataset, while for the Dexter dataset,
increasing the number of bins from 2 to 20 results in an improve-
ment in accuracy. All the datasets show areduction in the number
of features used as V' is increased. These observations suggest
that increasing the resolution of the feature space to a very high
value can cause overfitting. However, at the same time, it can help
to accommodate data sparsity in sparse datasets (e.g., Dexter).
On the other hand, the linear relationship between training time
and the number of bins V" in Fig. 3(c) validates the O(K LV)
complexity of IFC?F’s training stage (see Section V-B). In the
rest of the experiments, to eliminate overfitting, V' is set to a
moderate value (i.e., 4), except for sparse datasets (i.e., Dexter,
Dorothea, Spambase, and News20), where V is set to a slightly
higher value (i.e., 10).

B. Effect of Feature Evaluation Cost

To study the behavior of IFC2F for varying values of fea-
ture evaluation cost e = {0.1,0.01,0.001,0.0001}, when all
features incur the same cost (i.e., e = e, Vk), the accuracy
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Fig. 3. Variation of (a) accuracy, (b) average number of features, and (c) training time (in seconds) as a function of the number

V € {2,4,6,8,12,20, 30,40, 50, 100} of bins using Lung2, Dexter, Madelon, and MLL datasets.

TABLE III
ACCURACY AND AVERAGE NUMBER OF FEATURES USED BY IFC2F FOR DIFFERENT FEATURE EVALUATION COST VALUES USING LUNG2, DEXTER, MADELON,
AND MLL DATASETS

Dataset e=0.1 e=0.01 e =0.001 e =0.0001
Accuracy | Avg. # Features | Accuracy | Avg. # Features | Accuracy | Avg. # Features | Accuracy | Avg. # Features
Madelon 0.6217 1.00 0.6700 5.03 0.6867 21.54 0.6767 42.34
Dexter 0.6467 1.00 0.8533 10.95 0.8233 25.52 0.8133 31.02
MLL 0.9333 2.20 1.00 3.40 1.00 3.73 1.00 3.73
Lung2 0.6846 0.00 0.8573 11.30 0.8918 18.01 0.8818 22.30
TABLE IV

ACCURACY AND AVERAGE NUMBER OF FEATURES USED BY IFC2F FOR DIFFERENT DEPENDENCE STRUCTURES USING LUNG2,
DEXTER, MADELON, AND MLL DATASETS

Dataset Tree Line Random Clique
Accuracy | Avg. # Features | Accuracy | Avg. # Features | Accuracy | Avg. # Features | Accuracy | Avg. # Features
Madelon 0.6700 5.03 0.6150 4.73 0.6200 1.54 0.6217 1.00
Dexter 0.8533 10.95 0.7833 6.20 0.7833 12.02 0.6467 1.00
MLL 1.00 3.40 1.00 4.80 0.9333 2.73 0.4667 1.00
Lung2 0.8573 11.30 0.8672 12.57 0.9116 15.47 0.7733 1.00

and the average number of features used for classification
for constant misclassification costs (i.e., Q;; = 1Vi # j, Qs =
0,4,5 € {1,...,L}) are measured (see Table IIT). Different e
values result in different number of features used and levels of
accuracy. Intuitively, using a small portion of the total feature
set leads to low accuracy, whereas when the average number of
features used increases, the performance improves dramatically.
From here onwards, unless specified, results are reported for
e = 0.01, since according to Table III, IFCZF achieves the best
tradeoff between accuracy and the average number of features
used for this value.

C. Effect of Bayesian Network Structure

In this subsection, the behavior of IFC2F is analyzed for
different dependence structures by considering three alternatives
in addition to the tree-based structure (“Tree”) introduced in
Section V-A. Initially, features are reverse sorted (highest value
first) with respect to mutual information with the class variable,
and the following dependence structures are considered: 1)
“Line”: a directed line graph having edges pointing outward
starting from the first feature in the ordering; 2) “Random”:
a random directed acyclic graph; and 3) “Clique”: a complete
directed graph. Note that for all of these dependence structures,
the class variable is considered as a common parent connected to

all feature nodes. Table IV provides a comparison among these
four dependence structures. The “Tree” structure achieves the
best tradeoff between accuracy and the number of features used
and additionally seems to better approximate the true structure in
three out of four datasets. However, it is possible that alternative
and/or simpler structures may be more appropriate in certain
scenarios, as indicated by the case of Lung2, where the random
structure achieves higher overall accuracy (at the expense of
average number of features used). Since the true dependence
structure between features is unknown, a definitive conclusion
about the optimality of the “Tree” structure cannot be reached.
This forms an interesting direction to be explored in future work.
Henceforth, the “Tree” structure is considered in the rest of the
experimental analysis.

D. Comparison With Baselines

In this subsection, IFC?F is compared with 1) two dynamic
feature selection methods: ETANA [5], F-ETANA [5] and 2)
six streaming feature selection methods: OFS-Density [12],
OFS-A3M [13], SAOLA [11], OSFES [10], Fast-OSES [10],
and Alpha-Investing [9]. In streaming feature selection meth-
ods [9]-[13], a feature is selected if it satisfies an appropriately
defined criterion (e.g., belongs in the approximated Markov
blanket of the class variable [10], [11]; p-statistic is greater than
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TABLE V
COMPUTATIONAL COMPLEXITY OF BASELINES

Method Computational Complexity
OFS—Density [13] O(K2NZlog N)
OFS—-A3M [14] O(K?NZ%log N)

SAOLA [12] O(K?)

OSFS [11] O(K?’KKT)
Fast—OSFS [11] O(KKK)
Alpha—-Investing [10] | O(K?)

Parameters K and N denote number of features and instances,
respectively.

a dynamically varying threshold [9]) or such that the boundary
region of the decision is maintained as little as possible [12],
[13]. These methods are designed to handle sequentially arriving
features during model training and select a global common
subset of features that is used to classify all instances during
testing. Table V summarizes the computational complexity of
the baselines, as reported by their authors. The complexity of
the proposed approach is discussed in Section V-B. The main
reason for comparing with such methods is twofold. First, both
these methods and the proposed algorithm are sequential (i.e.,
examine one feature at a time). Second, these baselines have
been shown to outperform standard feature selection algorithms
and scale well in high-dimensional settings. Similar to IFC?F,
ETANA and F-ETANA assume that all features are available
during training, while during testing, features arrive sequentially
one at a time for each data instance. However, ETANA and
F-ETANA assume that features are conditionally independent
given the class variable.

For a fair comparison, all streaming feature selection meth-
ods use a k-nearest-neighbor classifier with three neighbors to
evaluate a selected feature subset, since it has been shown to
outperform support vector machine, classification and regres-
sion tree, and J48 classifiers on the datasets used in [11] and
[12]. At the same time, parameter « used by SAOLA, OSFS,
and Fast-OSFS is set to 0.01, which has been shown to produce
the best performance [10], [11]. The code for all baselines is
either publicly available or has been provided by their authors.
The same training and testing datasets are used by all methods.
Finally, the same metrics (i.e., accuracy, number of features used,
and time) used by the baselines are adopted. Observations from
Tables VI-VIII are summarized next.

Madelon: TFC?F achieves the highest accuracy. In fact, this
corresponds to an improvement of 7.8% in accuracy with be-
ing 27.8% faster in joint feature selection and classification
compared to ETANA, which has the second highest accuracy.
ETANA, however, requires 18.7% less features on average com-
pared to IFC2F.

Lung Cancer: ETANA, F-ETANA, SAOLA, and Fast-OSFS
achieve the highest accuracy, but require 50.4% to 3.75 x 103%
more features on average and are 200% to 1.82 x 10°% slower
in joint feature selection and classification for a difference of
1.7% in accuracy compared to IFC2F.

MLL: Both IFC?F and ETANA achieve 100% accuracy. How-
ever, IFC2F requires 32.9% less features on average and is 200%
faster in joint feature selection and classification compared to
ETANA.

Dexter: IFC?F achieves the highest accuracy and is the fastest
in joint feature selection and classification.

Car: F-ETANA achieves the highest accuracy (10.7% im-
provement), but requires 1.31 x 103% more features on average
and is 1.26 x 103% slower in joint feature selection and classi-
fication compared to IFC2F.

Lung2: OFS-Density achieves the highest accuracy, but re-
quires 43.4% more features on average and is 5.55 x 10%%
slower in joint feature selection and classification compared to
IFC2F for a difference of 5.4% in accuracy.

Leukemia: TFC2F, ETANA, and F-ETANA achieve the high-
est accuracy. However, IFC?F requires 8.7% and 80.1% less
features on average compared to ETANA and F-ETANA,
respectively.

Prostate: ETANA achieves the highest accuracy, but is 50%
slower in joint feature selection and classification compared to
IFC?F.

Spambase: OFS-A3M achieves the highest accuracy, but re-
quires approximately nine times more features for a difference
of 4.9% in accuracy and is much slower compared to IFC?F.

Dorothea: TFC?F and Fast-OSFS achieve the highest accu-
racy. However, Fast-OSFS requires approximately ten times
more features on average and is much slower compared to IFC2F.

Several observations can be drawn from the above results. For
the majority of datasets, ETANA achieves the highest accuracy,
while IFC?F is competitive achieving higher or closely second
performance compared to ETANA. This result demonstrates the
fact that for some datasets, the assumption of features being con-
ditionally independent given the class variable (used in ETANA)
is more appropriate than assuming that features are dependent
(used in IFC?F). On the other hand, IFC?F requires less number
of features on average than ETANA, while OSES consistently
selects the least number of features among all baselines. This
observation suggests that considering feature dependencies
helps to get rid of redundant features. Furthermore, IFC?F
is the fastest algorithm to perform joint feature selection and
classification in all the datasets compared to the baselines. This is
due to the fact that it uses less number of features on average per
datainstance. Specifically, easy to classify data instances require
few features as opposed to more challenging data instances that
require more features to be accurately classified by IFC2F.

E. Performance Assessment on a High-Dimensional Dataset

In this subsection, the performance of IFC2F and the baselines
is discussed within the context of the News20 dataset. Except
for IFC2F, ETANA, F-ETANA, and SAOLA, the rest of the
methods were unable to generate results within a cutoff time
of 12 days. Although SAOLA achieves the highest accuracy,
it requires approximately six times more features and is ~160
times slower in joint feature selection and classification for a
mere improvement of 4.6% in accuracy compared to IFC2F (sec-
ond last row in Tables VI-VIII). This experiment demonstrates
the ability of IFCF to scale for more than 1.3 million features
and provides further supporting evidence for the advantage of
dynamically selecting features and classifying each data instance
individually.

F. Statistical Significance

To validate the statistical significance of the results presented
in Sections VI-D and VI-E, a Friedman test, which constitutes
a well-known method to compare the performance of several
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TABLE VI
COMPARISON OF ACCURACY
Dataset IFC2F ETANA | F-ETANA | OFS-Density | OFS-A3M | SAOLA | Fast-OSFS OSFS Alpha-Investing
Madelon 0.6700 0.6217 0.5180 0.5117 0.5117 0.5817 0.5417 0.5817 0.6050
Lung Cancer | 0.9724 0.9890 0.9890 0.9835 0.9779 0.9890 0.9890 0.9724 0.9613
MLL 1.00 1.00 0.9467 0.9600 0.9067 0.8667 0.8000 0.8000 0.9333
Dexter 0.8533 0.8133 0.7967 0.8527 0.7375 0.7800 0.7800 0.7967 0.5000
Car 0.7471 0.8097 0.8274 0.5973 0.7929 0.7982 0.6082 0.5575 0.6429
Lung2 0.8573 0.8820 0.8918 0.9117 0.8717 0.8817 0.8420 0.8471 0.8820
Leukemia 0.9571 0.9571 0.9571 0.9438 0.7914 0.9295 0.9295 0.8867 0.8324
Prostate 0.9005 0.9310 0.9010 0.9210 0.8148 0.8910 0.8633 0.8833 0.9014
Spambase 0.8104 0.8467 0.5109 0.7870 0.8598 0.8241 0.8011 0.8011 0.8074
Dorothea 0.9429 0.9400 0.7714 0.9314 0.9314 0.9114 0.9429 0.9000 0.6457
News20 0.7503 | 0.7352 0.6346 —= —= 0.7846 —— —— ——
Avg. rank 3.41 2.32 4.36 4.82 6.27 4.55 6.18 6.95 6.14
The highest accuracy, and the second highest accuracy are bolded and gray-shaded, and gray-shaded, respectively. Cells are marked with “——"" if the
corresponding method was unable to generate results within a cutoff time of 12 days.
TABLE VII
COMPARISON OF AVERAGE NUMBER OF FEATURES USED

Dataset IFC2F | ETANA | F-ETANA | OFS-Density | OFS-A3M | SAOLA | Fast-OSES | OSFS | Alpha-Investing

Madelon 5.03 4.09 55.48 2.00 2.00 3.00 3.00 3.00 4.00

Lung Cancer 1.35 2.03 6.56 37.20 8.40 52.00 6.80 4.00 4.60

MLL 3.40 5.07 14.69 11.00 12.00 28.00 5.00 3.00 7.00

Dexter 10.95 12.80 243.4 10.00 104.0 21.00 9.00 6.00 1.00

Car 24.20 12.90 340.20 6.80 36.00 41.40 8.40 5.20 24.40

Lung2 11.30 15.59 27.91 16.20 18.00 28.20 9.40 5.80 34.40

Leukemia 1.90 2.08 9.53 4.40 13.40 21.60 4.60 2.20 3.20

Prostate 4.08 3.34 10.39 5.80 40.20 14.00 3.80 1.60 7.00

Spambase 4.72 7.47 56.00 7.60 42.20 24.60 33.80 33.80 42.60

Dorothea 2.29 2.89 8.10 17.40 34.00 32.00 24.00 3.00 113.0

News20 43.68 81.70 4000.6 —— —— 241.8 —— — ——

Avg. rank 2.91 3.36 7.09 4.68 6.86 6.91 4.41 2.86 5.91

The minimum and the second minimum average number of features used are bolded and gray-shaded, and gray-shaded, respectively. Cells are marked
with “——"if the corresponding method was unable to generate results within a cutoff time of 12 days.

algorithms across multiple datasets [33], is conducted. The
average ranking (avg. rank) of each method is given in the last
row in Tables VI-VIII. The p-values of the Friedman test on
classification accuracy, the average number of features used
and time required for joint feature selection and classification
are 1.69 x 1074, 8.07 x 1077 and 4.55 x 10724, respectively.
Thus, there is a significant difference [33] in the performance of
IFC?F and the baselines.

G. Demonstration of Instance-Wise Feature Selection

Table IX demonstrates the instance-wise nature of IFC2F
using four illustrative examples from the IMDB movie reviews
dataset (50 000 instances, 89 523 features, and two classes) [34].
The IMDB dataset is selected because the raw text of reviews is
available and can be directly used to interpret the classification
rationale. The training and validation sets with bag-of-words
features are used as provided. The Markov blanket based fea-
ture ordering is { “bad,” “great,” “no,” “best,” “even,” “plot,”
“nothing,” “love,” “don’t,” “waste,” ... }. Fig. 4 illustrates the
evolution of the posterior probability distribution 7, as more
and more features are evaluated, until the stopping condition
g(mr) < Ag(my) is satisfied. At that time, the instance is as-
signed to the class with the maximum posterior probability;
this is a direct result of using constant missclassification costs,
ie., Qo1 = Qo =1,Q00 = Q11 = 0 [see (6)]. Observe that
the proposed framework evaluates more features to predict
challenging reviews such as (c) and (d) compared to easy and
straightforward reviews such as (a) and (b). In summary, IFC%F

positive
0.50
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0.50
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o ) 0.50

‘bad’ 0.58 0.4
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(a) ‘no’ 0.28
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CTUl - 0.29 ‘best’ 0.82
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Fig. 4. (a)-(d) Evolution of posterior probability distribution, i.e.,

P(positive| FY, . .., F) (in blue) and P(negative|F7, . .
four IMDB reviews in Table IX.

., Fi) (in orange) for

selects different features for different data instances in adynamic
setting and assigns the class label based on the observed features.

H. Robustness to Missing Features

In this subsection, the ability of IFC?F to handle missing
features is evaluated. Specifically, % of features are randomly
removed from each test instance and the posterior probability
7, is kept unchanged if a feature is missing. % is increased
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TABLE VIII
COMPARISON OF TIME (IN SECONDS) REQUIRED FOR FEATURE SELECTION (F), CLASSIFICATION (C), JOINT FEATURE SELECTION AND CLASSIFICATION (F+C),
MODEL TRAINING (T), AND PREPROCESSING (P)

Dataset 2 | IFC?F | ETANA | F-ETANA | & | OFS-Density | OFS-A3M | SAOLA | Fast-OSFS | OSFS | Alpha Investing
= =
Fr F 1298 151.1 0.048 0.076 | 0.080 0.033
c | 0070 0097 0428 ¢ 0.011 0.010 0.010 0.01T | 0.011 0.010
Madelon T | 0.155 | 0.247 0.743
R s T 0.074 0.075 0.075 0073 | 0.073 0.076
Fr . [ F 12.80 10.43 2.465 1279 | 18.23 0.459
Lung Cancer |_C. Qand |- @00 0003 0.011 0.012 0.013 0.010 | 0.010 0.010
T 0213 [ 1L79 1310
L g T 0.071 0.089 0.068 0.068 | 0.070 0.072
Fr F 1.468 5513 1513 0564 [ 4.679 0.154
MLL c I 0003 ¢ 0.004 0.011 0.013 0.010 [ 0.010 0.010
T | 0448 | 24.63 3193
L £ o T 0.008 0.071 0.069 0071 | 0.071 0.073
Fr . F 77.88 18453 0.747 T.087 | 2.500 12.08
Dexter c | 0054 0125 0.681 ¢ 0.04% 0.180 0.060 0.038 1 0.033 0.021
T 0290 [ 22.18 2.106
L WL e T 0.090 0.073 0.069 0.067 | 0.063 0.089
Fr . F 8236 1055 7155 0999 | 13.40 0.710
Car Y W | e 0395 ¢ 0.011 0.013 0.013 0.010 [ 0.010 0.013
T | 4950 | 30595 | 37.21
LR e HES 0.070 0.066 0.067 0.070 | 0.070 0.073
Fr F 1437 16.52 0.702 0840 | 1454 0.366
Lung? c | 0008 | 0.052 0.021 0.012 0.013 0.013 0012 [ 0.010 0.013
T 0120 | 7824 6.001 ) —
L LT L5 S| T 0.070 0.067 0.066 0072 | 0.071 0.070
Fr F 1793 5553 0.610 0433 [ 1.079 0.182
Leukemia c IR ol 0002 ¢ 0.337 0.011 0.013 0.010 [ 0.010 0.011
T 0103 | 8.043 2162 ) , )
LN . S o T 0.270 0.069 0.068 0.068 | 0.070 0.072
Fr F 2116 6.010 0.487 0362 | 0.748 0.167
Prostate c IR e 0002 ¢ 0.011 0.012 0.012 0.010 | 0.010 0.010
‘ T 0183 | 7.088 1.620 ) , )
L Gem—{ T 0.070 0.067 0.067 0.069 | 0.071 0.072
Fr F 53.58 65.03 0.083 3879 | 3876 0.049
Spambase c | %066 | 0237 0482 ¢ 0.016 0.027 0.031 0.033 [ 0.033 0.038
T 0030 | 0285 0.012 ) - 5
ol et T 0.086 0.006 0.087 0.067 | 0.065 0.069
Fr F 21527 171610 | 16.99 5352 | 5185 2071
Dorothea c | 0013 | 0035 0033 ¢ 0.051 0113 0.102 0.074 [ 0.027 0.316
T | 0213 | 2046 7.208 - .
B e T 0.005 0.178 0.069 0.067 | 0.070 0.067
F+l 9190 | 117.61 | 34647 |- - - 1444.8 - — -
News20 ¢ ¢ - - 36.26 — - -
T [ 05564 | 30761 | 4397 | . — — 0.106 — — —
P [ 20644 | 13352 | 13310 :
Avg. rank 123 2.82 3.23 736 873 182 527 727 127
The minimum and the second minimum F+C times are bolded and gray-shaded, and gray-shaded, respectively. Cells are marked with “——" if the corresponding

method was unable to generate results within a cutoff time of 12 days.
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Fig. 5. Variation of (a) accuracy and (b) average number of features as the

percentage of missing features increases from 0.01% to 50% across datasets.

from 0.01% to 50%, and the effect on the accuracy and the
average number of features used for classification is noted (see
Fig. 5). Evidently, IFCF is robust for up to 10% missing
features, beyond which value, the posterior probability 7 may
no longer represent the underlying true class value. Thus, IFC2F

can identify informative features to make accurate predictions
when a small subset of features is missing.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this article, a framework to perform dynamic instance-wise
joint feature selection and classification with correlated features
is proposed. Specifically, feature dependencies are modeled
using a Bayesian network. Based on the learned dependence
network, a method is proposed to sequentially select the most
informative features and reach a classification decision for each
instance individually. The effectiveness and scalability of the
proposed method is illustrated on various real-world datasets.
The proposed method robustly performs well on all of them,
with comparable and often superior performance compared to
prior art.

The proposed method selects the most informative features
from the dependence graph utilizing the proposed Markov-
blanket-based feature ordering. This dependence graph, how-
ever, is learned offline during training; hence, the ordering in
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TABLE IX
WORDS (FEATURES) PICKED BY IFC2F ARE HIGHLIGHTED IN YELLOW

IMDB Review Text (True Label, Predicted Label)

I work at a movie theater and every Thursday night we have an employee screening of one movie that comes out the next day.
Today it was The Guardian. I saw the trailers and the ads and never expected much from it, and in no way really did i anticipate
seeing this movie. Well turns out this movie was a lot more than I would have thought. It was a great story first of all. Ashton
Kutcher and Kevin Costner did amazing acting work in this film. Being a big fan of That 70’s Show I always found it hard thinking
of Kutcher as anyone but Kelso despite the great acting he did in The Butterfly Effect, but after seeing this movie I think I might
be able to finally look at him as a serious actor. It was also a great tribute to the unsung heroes of the U.S. Coast Guard. (positive,
positive)

‘great’
‘bad’
0 3

I saw this only because my 10-yr-old was bored. He and his friend hated it but of course liked being at the movies. This is the

dismissed. I won’t defend most of Al Adamson’s films, but this one, along with Dracula VS. FRANKENSTEIN and BLOOD OF
GHASTLY HORROR, are entertaining enough to make up for their awfulness. (positive, negative)

first time I've strongly disagreed with Ebert in many years. There is not a single thing to recommend this film. Willis is good, as ‘no’

always. But the story stinks, is unbelievable, there is no real story, no action, no interesting cinematic sequences, no surprises, and ‘great’

worst of all, the child star is A thoroughly repulsive slug guaranteed to turn off any parent who does not have a dweeby fat slob ‘bad’

for a kid. By all means stay away and spare your child - unless you want to punish him or her. There is no excuse for such lousy 0 5
directing or writing and one hopes these filmmakers will suffer accordingly. (negative, negative)

I felt compelled to comment on this film because it’s listed as the fourth lowest-rated sci-film of all time on the IMDb. WHAT!?!?

Sure, this movie is crappy, but it’'s HILARIOUS! It’s not awful on an Ed Wood level, it’s more surreal and uneven. There are ‘even'

some classic moments in the film. The brain surgery is gross and great and even nuttier when you consider that the film was rated ,

PG! Gor chasing after his dolly before getting battery acid dumped on his face- "Mine! Gimmee!” Zandor Vorkoff’s speeches at b?st

the beginning of the film- "Before Amir, Kali was but another weak nation struggling to break free from centuries of stagnant ‘no’

feudalism!” Angelo Rossito also has some great lines- "No, Gor! No!” ”You want these keys, don’t you, my pretties?” It is ‘great’

absolutely wrong that this is the 4th lowest-rated sci-film on the IMDb because it is ENTERTAINING. No matter how bad a ‘bad'

film is, if it still manages to be weird, quirky, unsettling, or entertaining, it has merit and doesn’t deserve to be dumped on and o 1 23

Jack Lemmon was one of our great actors. His performances in Days Of Wine And Roses, The Apartment, Some Like It Hot,
Missing (to name the first ones that come to mind) were all worthy of Best Actor nomination. His only win was for Save The
Tiger, and that’s a shame. He gets melancholy down to a science, but never brings it into balance with the driver in his character.
He actually did a similar character much better toward the end of his career in the one-note Glengarry Glen Ross. As for the
movie, wonderful supporting work by Jack Gilford as Lemmon’s partner and Thayer David as an arsonist, go for naught because
the rest of the script is a muddled jumble of cliched vignettes, angst, neurotic nostalgia, and pointless moralizing. Worth seeing
once as a time capsule into 1970’s style experimental direction by Avildsen. (negative, positive)

‘best’
‘no’
‘great’
‘bad’

1

The true/predicted label is given at the end of each review. The second column reports features selected for each review in ascending order (Y -axis) versus

feature value (X -axis).

which features are selected is common for all test instances. In
future work, the goal is to address this limitation by dynamically
learning the network structure, since the number of selected
features and the interpretability of the classification depend
on the graph structure at hand. At the same time, to keep the
preprocessing time small, the proposed method opts for filtering
out features based on the mutual information between each
feature and the class label. In future work, approaches such
as multivariate mutual information can be explored to better
capture feature dependencies. Finally, the proposed method as-
sumes that all data instances are available at once during training,
which may not hold in cases where data instances are provided
sequentially. In the future, the applicability of online learning
methods [35] in the proposed setting can be considered.

APPENDIX A
PROOF OF THEOREM 1

At the end of the K'th stage, assuming that all the features
have been examined, the only remaining expected cost is the
optimum misclassification cost of selecting among L classes,
which is Jx (71,) = g(7).

Then, consider any intermediate stage £k = 0,1,..., K — 1.
Being at stage k, with available information 7y, the optimum
strategy has to choose between, either to terminate and incur
cost g(m), which is the optimum misclassification cost of
selecting among L classes, or continue with the next feature
Fy. 1, and incur cost ey and an additional cost Ji 1 (Tx41)
to continue optimally at stage k + 1. Thus, the total cost of
continuing optimally is e 1 + Jr1(7mr11). However, at stage
k, the assignment fj 1 of the next feature Fj is not known.
Thus, the expected optimum cost-to-go, whichisequal to ey 41 +

E{Jk+1(mk+1)|7k }, needs to be considered. Using Bayes’ rule
to express 741 in terms of 7, and by the definition of the
expectation operator, the optimum cost-to-go A () takes the
following form:

Ap(mi) £ erg1 + E {Jppr (T mr
=ept1 + Z P(Fy1|Fy, ..., Fy)
Fr41
7 diag(A(FkJrl'Flw“aFkaC))ﬂ—k:)
X .
k+1< AT<F/€+1|F13"'aFk7C)7Tk ©

Next, the term P(Fji1|F1, Fo, ..., F)) must be simplified.
Specifically, using the Bayes’ rule and the law of total prob-
ability, it can be shown that

P (Fyq1|F1, By, ..o Fy)
_ P(FLFy,..., Fii)
P(Fy, Fs, ..., Fy)

B S PRy FraCy)
Zle P(Fy,... ,F},C))
Zjl‘/zl P(F17 R 7F]€+1|C])P(CJ)

= T . (10)
Ej:l P(Fy,...,F|C;)P(Cy)

Using the chain rule, (10) can be simplified as follows:
P (Fyy1|F1, Fs, ..

Y P(Fy,. . FR[C)P(Figa| Fy, .., Fr, Cj)P(C;)
S PRy FRIC)P(C))

7Fk‘)
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L P(Fy,...,F|C)P(C))

- Z >E P(F,... . FilC;)P(C;)

Jj=1

P(Fy1|Fr, ... Fg,Cj)

I
] =

P(Cj|Fy, ..., Fy)P(Fyp1|Fr, ..., Fi,Cj)

.
Il
_

7 P(Fya|Fy, ..

[
M=

-, F,Cy)

<.
Il
_

= AT(Fyqa|Fy, ..., Fy, C)my. (11)

Finally, substituting (11) into (9), the desired result can be
acquired

Ap(Th41) = exy1 + Z AT (Fy|Fy, ..o B, )
Flga
Xj diag(A(Fk+1|F1,...7Fk,C))7Tk
M\ AT (Fria|FY - Fr, C)mg

(12)

which completes the proof.

APPENDIX B
PROOF OF LEMMA 1

Consider the definition of g(w):

min [Q]w], = €[0,1]".

A
w) =
9(=) 1<j<L

The term Qij is linear with respect to =, and since the mini-
mum of linear functions is a concave piecewise linear function,
g(w) is a concave piecewise linear function as well. Concavity
also ensures the continuity of this function. Minimization over
finite L hyperplanes guarantees that the function g(w) is made
up of at most L hyperplanes. Hence, the set {Q7 }%_, of L
vectors represents those L hyperplanes.

APPENDIX C
PROOF OF LEMMA 2

First, consider the function A _1(w) given by
.AKfl(w) =ex + ZAT(FK‘FI, ce. ,FK,I,C)W
Fr

< J diag (A(Fk|Fy, ..
AT (Fy|

.y FK,1, C)) w
.y FK—l ; C)w '

13)
Using the fact that Jx (7x) = g(7r), (13) can be rewritten as
follows:

AK,l(w) = €eK —|—ZAT(FK|F1,. ..,FK,l,C)w

Fr
diag(A(FK|F17"'7FK7176))W (14)
AT(FK‘Fl,...,FK_l,C)w '

Using the definition of g(z), (14) can be rewritten as follows:

Ak 1(@w) =ex + Y AT(Fg|F,...,Fx 1,C)w
Fr

Q? dlag (A(FK‘FM s 7FK717C))w
AT(F‘I(|F‘17"'aF‘I(—hC)?D

(15)

Using the facts that Q); and A(F|F,. .., Fx_1,C) are non-
negative vectors, (15) can be simplified as follows:

AK,l(w) = €K

+Zlg_i£L [QT diag (A(Fk|Fy, ..., Fx-1,C)) @]
Fr

(16)

Note that the term Q] diag(A(Fg|F,. .., Fx1,C))w is lin-
ear with respect to w. Using the facts that 1) ex > 0, 2) the
minimum of linear functions is a concave piecewise linear func-
tion, and 3) the nonnegative sum of concave/piecewise linear
functions is also a concave/piecewise linear function implies
that A1 () is a concave piecewise linear function. Concavity
also ensures the continuity of this function.
Then, consider the function Ax () given by

Ak o(w) =ex-1+ Z AT(Fg_1|Fy,...,Fg_2,C)w

Fr 1
Xj dia’g(A(FK—l‘Flv"'7FK—2aC))w
K1 AT(FK,1|F17...,FK,27C)W ’
a17)

Note that Jx_1(w) = min[g(w), Ax_1(=)] (see Theo-
rem 1). Using the facts that 1) g(w) is a concave, piecewise
linear function, 2) Ax_1(w) is a concave, piecewise linear
function, and 3) the minimum of two concave/piecewise linear
functions is also a concave/piecewise linear function implies that
Jr_1 (w) is also concave and piecewise linear. Furthermore, the
nonnegative sum of concave/piecewise linear functions is also
a concave/piecewise linear function. Based on this fact and the
factsthater 1 > Oand A(Fx—1|F1, ..., Fx_2,C)isanonneg-
ative vector, the function Ag_s(w) is concave and piecewise
linear. Concavity also ensures the continuity of this function.
Using similar arguments, the concavity, the continuity, and the
piecewise linearity of functions A (w),k =0,..., K — 3, can
also be guaranteed.

APPENDIX D
PROOF OF THEOREM 2

At the final stage, ie, k=K, Jx(w)=g(w)=
minlgng[Q]Tw]. Hence, {O/K} e {Q;‘F ]L:O' The rest of
the proof is very intuitive. Using the facts that 1) g(w) and
Aj (o) are concave and piecewise linear with respect to w,
2)  Ji(w)=min[g(w), Ax(@)],k € {0,..., K — 1} (see
Theorem 1), and 3) the minimum of two concave/piecewise
linear functions is also a concave/piecewise linear function
implies that the function J,(w) is also concave and piecewise
linear. Finally, since Ji(w) is a concave and piecewise
linear function defined on a probability space, it is noted that
Jy(ww) = min;[ad ], where the set {a, }; of vectors represents
its linear pieces.
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