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ultiscale 3D characterization is widely used by materials

scientists to further their understanding of the relationships

between microscopic structure and macroscopic function.
Scientific computed tomography (SCT) instruments are one of the
most popular choices for 3D nondestructive characterization of
materials at length scales ranging from the angstrom scale to the
micron scale. These instruments typically have a source of radia-
tion (such as electrons, X-rays, or neutrons) that interacts with the
sample to be studied and a detector assembly to capture the result
of this interaction (see Figure 1). A collection of such high-reso-
lution measurements is made by reorienting the sample, which is
mounted on a specially designed stage/holder after which recon-
struction algorithms are used to produce the final 3D volume of
interest. The specific choice of which instrument to use depends
on the desired resolution and properties of the materials being im-
aged. The end goal of SCT scans includes determining the mor-
phology, chemical composition, or dynamic behavior of materials
when subjected to external stimuli. In summary, SCT instruments
are powerful tools that enable 3D characterization across multiple
length scales and play a critical role in furthering the understand-
ing of the structure—function relationships of different materials.

Challenges in SCT

The archetypal form of CT involves illuminating a sample with
a beam, measuring a projection image corresponding to the
transmitted or scattered signal, and collecting a set of measure-
ments by rotating the sample (or the source—detector system)
about a single axis in the 0-180° or 0-360° range followed by
a reconstruction routine that inherently assumes a linear rela-
tionship between the measured signal (or some preprocessed
version) and the quantity to be reconstructed. While these types
of systems are common in medical X-ray CT, there are several
aspects that make the SCT problem different and challenging.
These challenges can be grouped into a few broad categories.

Limited-angle measurements
In applications such as electron tomography (one of the
most popular methods for angstrom-scale and nanoscale

32 IEEE SIGNAL PROCESSING MAGAZINE | January 2022 | 1053-5888/22©2022IEEE

Authorized licensed use limited to: Purdue University. Downloaded on May 17,2022 at 13:10:03 UTC from IEEE Xplore. Restrictions apply.



3D imaging), the mechanical limitations of the sample holder
along with the unique shape of the samples may only allow
for acquiring data in a limited angular range (+/-60°) [1],
as illustrated in Figure 2(a). Limited-angle data sets can
also occur in other SCT modalities when the sample hold-
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ers are designed for specialized tasks. An example of this
type of holder is the diamond anvil cell [2] (used for studying
the properties of materials under extremely high pressure),
which strongly attenuates the incident beam in certain
orientations [see Figure 2(b)]. In summary, driven by the
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FIGURE 1. A schematic of common acquisition setups used in SCT systems. (a) The setup used in parallel-beam and cone-beam X-ray/neutron CT
systems. (b) The setup used in electron/X-ray microscope-based scanning probe systems. In each case a source is used to illuminate the sample of
interest, and a detector system (an area detector, a point detector, or an annular detector) captures the result of this interaction. The sample, which
is mounted on a holder, is reoriented to make a collection of measurements. The archetypal acquisition geometry for SCT instruments is to rotate the
sample about a single axis perpendicular to the direction of the incident source and make a collection of measurements followed by reconstruction

using analytic algorithms.
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FIGURE 2. Some of the challenges in SCT. Because of (a) and (b) the mechanical limitations of the sample holder, (c) the shape of the sample being
imaged, and (d) poorly calibrated detectors, it can be challenging to obtain accurate 3D reconstructions from the resulting limited-view, sparse, low
signal-to-noise ratio (SNR) data. Note that a sinogram refers to a particular organization of the measured data from a CT scan, where the vertical axis
corresponds to the orientation, and the horizontal axis corresponds to a single row of the detector.
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flexibility required to engineer sample holders to perform
novel experiments, limited-angle data sets can occur in im-
portant SCT applications, making it challenging to obtain
high-quality reconstructions.

Unconventional measurement geometries

The acquisition geometry used in SCT instruments can be
different compared to that of the conventional single-axis CT
setup. The need for new geometries is driven by the require-
ment to measure samples with unique shapes, which may not
yield sufficient signal-to-noise ratio (SNR) data in certain
orientations. For example, a technique called laminography
has been developed to measure samples that are lamellar,
such as integrated circuit boards. In laminography [3] the
sample is tilted and rotated about this new tilt axis to measure
a signal of sufficient strength on the detector [Figure 2(c)].
Unlike the case of a conventional single-axis CT, analytic
reconstruction algorithms for novel geometries are not read-
ily available, thereby impeding the use of novel acquisition
schemes. In summary, the unique shapes of various samples
to be scanned dictate a greater degree of flexibility in the
measurement geometries for SCT instruments and require
novel reconstruction algorithms.

Sparse, low SNR, and poorly calibrated data

SCT instruments are typically purchased from commercial
vendors or built at scientific user facilities (SUFs), where a
source of radiation/particles (e.g., a high flux of neutrons from
a nuclear reactor or monochromatic X-rays from a synchro-
tron) forms the basis for a unique imaging capability. In both
situations, SCT instruments are often very expensive and are
treated as a shared resource, leading to a need for making the
fewest possible measurements to extract the relevant scientific
information from the study. As a result, reducing the number
of measurements (sparse view data) and the duration of each
measurement (leading to low SNR) can be critical to maxi-
mize the throughput to make SCT instruments available to
a large number of users. Sparse-view and low-SNR data can
also occur in the SCT experiments where the sample can suf-
fer radiation damage as with the case of biomaterials. These
types of data are also common in high-speed time-resolved
4D-CT experiments [4], where the goal is to image how a
sample is changing at the microscopic scale when subjected
to external stimuli.

SCT measurements can also be corrupted by different
signals that are independent of the sample. For example, it is
common in conventional X-ray micro-CT [5] and neutron-CT
[3] systems to have spurious radiation strike the detector, lead-
ing to a high-amplitude signal in a few measurements. Fur-
thermore, the detectors used in SCT instruments may not be
perfectly calibrated. One common example of this phenom-
enon is the observation of correlated “streaks” in the measured
sinograms (a way of organizing the CT data so that the data
corresponding to all orientations for a single slice can be eas-
ily visualized) because the gain associated with each detector
pixel is different [see Figure 2(d)]. These imperfections in the

data due to outliers and poorly calibrated detectors result in
reconstructions with streak and ring artifacts when a conven-
tional reconstruction algorithm is directly applied to the data.
In summary, it is challenging to achieve a higher through-
put, reduce damage to samples by lowering their exposure to
source radiation, and improve the spatiotemporal resolution of
4D CT while preserving image fidelity because of the sparse,
low-SNR, and poorly calibrated measurements.

Large data sets

SCT scans are usually conducted to obtain 3D information
at high resolutions. With the advent of faster, higher-pixel-
resolution detectors and the need to measure larger samples,
there has been an explosion in the size of SCT data sets. For
example, it is common across SCT applications to use detec-
tors that are approximately 2,000 x 2,000 pixels and for the
corresponding CT reconstructions to have sizes of the order
of 2,000 x 2,000 x 2,000 voxels. In the case of hyperspectral
SCT instruments [6], [7], the sizes of the data sets are even
larger depending on the number of hyperspectral channels. For
4D CT, this problem is compounded since the number of mea-
surements increases linearly with time. In summary, it can be
challenging to obtain high-quality reconstructions in reason-
able time frames for SCT applications.

Conventional approaches to SCT
Despite the significant advances made in developing various
hardware components of SCT instruments (source, lenses,
sample holders, detectors, and so on), until recently, there
has been less focus on the development of reconstruction al-
gorithms to deal with the various challenges encountered. A
common practice has involved measuring a large amount of
data corresponding to the Nyquist criterion [8] or the maxi-
mum number of measurements at a reasonable SNR that can
be made in an allocated amount of time in the case of a shared
instrument at SUFs. Following the acquisition, the measure-
ments are preprocessed (using, e.g., filters to suppress outliers,
heuristic correction of miscalibrated data, and normalization)
and reconstructed using analytic algorithms, such as filtered
backprojection (FBP) [8], gridrec [9], or Feldkamp—Davis—
Kreiss [10] because of their widespread availability and low
computational complexity. However, the performance of these
algorithms can be poor when dealing with nonlinearities in
the measurement, the presence of high levels of noise, and the
limited number of measurements—which are common in the
context of SCT applications, as discussed in the section “Chal-
lenges in Scientific CT.” The reliance on the use of analytic
reconstruction techniques, in turn, limits the characterization
capability of SCT instruments by resulting in significant arti-
facts from sparse-view, limited, and low-SNR data sets. Addi-
tionally, the reliance on analytic reconstruction algorithms has
led to an inefficient usage of the instruments by requiring the
collection of large amounts of data to ensure the reconstructed
images are of high quality.

In the rest of this article, we will present an overview of
recent advances in nonlinear reconstruction algorithms that
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have enabled significant improvements in the performance of
SCT instruments—enabling faster, more accurate, novel imag-
ing capabilities. We emphasize that, while this article focuses
on SCT applications where a linear forward model accurately
describes the physics of image formation (up to pointwise
normalization), there are important CT applications, such as
phase-contrast imaging and ptychography, where the underly-
ing physics-based model is significantly more complicated, but
for which the ideas presented here are equally relevant.

We will first focus on model-based image reconstruction
(MBIR) algorithms [11] that formulate the inversion as solv-
ing a high-dimensional optimization problem involving a data-
fidelity term (which includes a physics-based forward model)
and a regularization term (based on a model for the sample
to be imaged). By accurately modeling the physics and noise
statistics of the measurement and combining it with state-of-
the art regularizers, we will highlight how dramatic improve-
ments are being made in the performance of several types of
SCT instruments. While the development of MBIR methods
has demonstrated that it is possible to dramatically improve
the performance of CT instruments, these techniques are com-
putationally expensive for the high-resolution scans encoun-
tered in SCT applications. This bottleneck had led researchers
to adapt and develop noniterative deep learning (NIDL)
approaches based on convolutional neural networks [12] to
attain similar improvements to those of the MBIR methods in
certain scenarios. In the last part of the article, we will present
an overview of recent approaches using DL-based algorithms
for improving SCT instruments. We will summarize different
approaches developed to address the tomographic inversion—
including data-domain and image-domain learning. The recent
advances have shown that DL-based methods are a promis-
ing tool to complement MBIR methods because of their rapid
inference time on large high-resolution SCT data sets while
enabling similar improvements in image quality, and reduction
of the scan time.

MBIR for SCT instruments

MBIR [11] refers to an umbrella term for joint maximum a pos-
teriori (MAP) estimation [13] or a regularized inversion ap-
proach to solving image reconstruction problems. In the MBIR
framework, the reconstruction task is formulated as

(%, y) — argmin {I(y; x, y) + r(x; B)}, (N

xeQuye¥
where y is a vector containing the measurements, x is a vector
corresponding to the object to be reconstructed, / is a data-
fidelity function that enforces consistency of the reconstruc-
tion with the measured data based on a physics-based forward
model, y is a vector of calibration parameters associated
with the measurement, Q and ¥ are constraint sets, and r
is a regularization term with parameters S. In the context of
MAP estimation [11], / corresponds to the negative log-like-
lihood function, and r corresponds to the negative log-prior
function. MBIR approaches have been used for several imag-
ing problems and have enabled significant dose reduction in

medical X-ray CT and accelerations of magnetic resonance
imaging scans while preserving image quality compared to
conventional approaches in the respective fields. The main
challenges in the design of MBIR methods are the formula-
tion of the cost function of the type in (1) by an appropriate
choice of the physics-based forward model, noise-dependent
data-fidelity loss, /, application-dependent regularizer, r, and
the design of fast optimization algorithms to obtain a mini-
mum of the cost function. In what follows, we will present the
ways in which different MBIR algorithms have been devel-
oped for 3D and 4D SCT.

Volumetric CT
The goal of volumetric CT is to reconstruct some property of a
sample, such as the linear attenuation coefficient, scatter coef-
ficient, or complex-valued index of refraction, in three dimen-
sions. The most straightforward adoption of MBIR for SCT
has been for conventional transmission or scatter-type CT, us-
ing a data-fidelity term of the form
10 1) =3 Iy — Axlf

0= ly— Axlw, @
where W is a diagonal matrix containing the inverse noise vari-
ance in the measurements, A is the tomographic projection op-
erator, and y either contains the log-normalized transmission
measurements [14] or the measured signal itself [15] from each
orientation. This model can be derived by assuming that the mea-
surements are corrupted by additive white Gaussian noise or by
using a quadratic approximation to the log-likelihood function
based on Poisson statistics [16]. A variety of regularizers has been
combined with the model in (2), but one popular class is the gener-
alized Markov random field-based (MRF) regularizer [16], which
includes the popular anisotropic total variation and the g-general-
ized Gaussian MRF [17]. These regularizers are of the form

ro B =Bs D, wip(xi—x)),

{ijiex

3

where p is a function that penalizes differences between
neighboring voxels, Bs is a parameter that adjusts the weight
assigned to the regularization terms, y is a set containing all
pairs of neighboring voxels in three dimensions, and w;; are
weights associated with each pair of voxels. MBIR algorithms
based on combining the models in (2) and (3) have been de-
veloped for parallel-beam electron tomography [14], [15], [18],
[19], synchrotron-based X-ray CT [2], [5], and neutron tomog-
raphy [20], enabling significantly higher-quality reconstruc-
tions compared to the analytic reconstruction algorithms from
the sparse, limited-view, and low-SNR data routinely encoun-
tered in these applications.

The development of MBIR methods has shown that it
is possible to achieve a similar image quality as that of the
analytic reconstruction methods using about one-half or even
one-fourth the typical number of measurements made [2], [20]
at X-ray and neutron-CT instruments. This potentially enables
two to four times more samples to be measured at these
instruments than would have been possible when analytic
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reconstruction methods were used. Another advantage of using
the model in (2) is that the W matrix can be used as a simple
means to adjust the relative weight of each measurement to
reject subsets of measurements that are corrupted. Prior to the
development of MBIR methods, the standard practice in sev-
eral SCT applications has been to leave out entire projection
data sets corresponding to a specific orientation because of the
corruption of a subset of the data, resulting in an inefficient
use of the measurements. For example, in [2], the effective use
of the weight matrix helped suppress streak artifacts due to
beam blocking caused by the strong attenuation from a dia-
mond anvil cell sample holder [see Figure 2(b)] in a CT study
about the behavior of materials under extremely high pressure.
Finally, we note that while the quadratic data-fidelity term in
(2) has been demonstrated to be useful across several SCT
applications, alternate models derived by assuming the mea-
surements have a Poisson distribution of the form

M
1(y; )= 2 {[Ax]; = yilog([Ax])}. )
i=1

where M is the total number of measurements, have also been
used along with regularizers of the form in (3) for low-dose
SCT applications [6].

The MBIR approach using the models in (2) and (3) has also
been developed for novel CT geometries. One such example is
for laminography, where the sample is rotated about a tilted axis
instead of the conventional perpendicular axis [see Figure 2(c)]
to image samples that might otherwise heavily attenuate the
beam and thereby require a very long scan time. The authors in
[3] have developed an MBIR technique based on a new forward
model term that incorporates the new acquisition geometry into
the A matrix in (2). In addition to the benefits of enabling high-
quality reconstructions from sparse-view and low-SNR data,
MBIR approaches are useful for such novel geometries because

MBIR Volume Rendering

FBP (Analytic Reconstruction)

analytic reconstruction algorithms may not be readily available
or can result in significant artifacts in the reconstructed images.

Similar MBIR approaches have also been recently devel-
oped for single-particle cryoelectron microscopy [21], a widely
used angstrom-scale 3D bioimaging technique in which the
reconstruction involves inverting ultralow-dose data from par-
allel-beam projection images corresponding to arbitrary orien-
tations of the sample defined by a set of Euler angles. This line
of research has demonstrated that it is possible to obtain high-
quality 3D reconstructions by using MBIR techniques despite
the complicated geometry of acquisition associated with the
SCT instrument, thereby allowing scientists to be able to have
an additional control variable for their experimental acquisition.

Another powerful advantage of using MBIR methods for
SCT is the ability to account for unknown calibration param-
eters associated with the measurement. In cases where the
measurements are impacted by poorly calibrated detectors,
conventional algorithms can produce reconstructions with
significant artifacts. To address poorly calibrated data, the
authors in [5] and [15] modified the forward model in (2) to
account for parameters such as detector gains and offsets. For
example, in dark-field electron tomography [15], the gains and
offsets of the detector are typically not measured. To address
this challenge, a forward model of the form

1y % 1d) =% |y = TAx = dlfy 5)

was proposed, where / is a diagonal matrix containing the un-
known gain associated with the detected signal at each pro-
jection orientation, and d is a vector containing the unknown
offsets. Using this model along with constraints on / resulted
in an algorithm that significantly improved the image qual-
ity compared to the traditional FBP method that was widely
used in the field (see Figure 3). A similar approach [5] was

MBIR

(€)

FIGURE 3. A comparison of MBIR with FBP on an experimental high-angle annular dark-field electron tomography data set of titanium dioxide nanoparticles.
The illustration includes (a) a 3D MBIR volume rendering and a single cross section from a 3D reconstruction obtained using the (b) FBP and the (c) MBIR
approach. The data set contained 60 projection images of size 1,024 x 1,024 pixels measured in an angular range of + 60°. In spite of the low SNR, sparse,
limited-view data with unknown calibration parameters, the MBIR method significantly suppresses artifacts compared to the FBP method. This highlights
how the use of powerful reconstruction algorithms can improve the imaging capability of SCT instruments. (Source: [15]; adapted with permission.)
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used to address the challenge of poorly calibrated detectors,
where each pixel in the detector has a different gain [as shown
in Figure 2(d)], by modeling the unknown detector gains into
the MBIR framework, leading to reconstructions that signifi-
cantly suppress the ring artifacts that commonly result from
such miscalibrations (see Figure 4).

Finally, new forward models have also been formulated to
address the challenge of outliers due to gamma/X-ray/neutron
strikes and spurious scatter due to Bragg diffraction when
imaging samples that contain single-crystal domains. Because
it is complicated to explicitly develop a physics-based model
for such data, researchers have used new data-fidelity terms
based on heavy-tailed distributions for the / in (1) including the
generalized Huber function [5], [14] and the Student 7 function
[22] (see Figure 5) in the MBIR framework. Specifically, new
forward models of the form

1: 0 =5 T((y = A0y W), ©)

where T':RY — R, T'(e) =X, y(e)), and y is of the form
shown in Figure 5, have been used in [5], [14], and [22].
While it is more complicated to find a minimum of the

Gridrec (Analytic Reconstruction)

(b)

FIGURE 4. A single (cropped) cross section from a 3D reconstructed
volume of a carbon fiber data set acquired using a synchrotron X-ray
instrument. (a) Because of miscalibrated detectors, direct use of the
analytic algorithm results in a reconstruction with ring artifacts. (b) How-
ever, the use of a specially designed MBIR method suppresses the ring
artifacts while preserving detail and reducing noise. (Source: [5]; adapted
with permission.)

resulting cost function, such an algorithm can further
improve image quality compared to baseline MBIR algo-
rithms based on quadratic data-fidelity and analytic recon-
struction algorithms.

Time-resolved CT

SCT is also used to image the temporal dynamics of an ob-
ject that is undergoing change in response to external stimuli,
such as varying temperature and pressure. This mode of im-
aging, commonly known as 4D CT, is used to image the evo-
lution of samples in three dimensions with respect to time.
In materials science, 4D CT is used to study dynamic phe-
nomena, such as solidification, phase transformations, crack
formation, and battery degradation. 4D CT is performed us-
ing a variety of radiation sources that include X-rays, elec-
trons, and neutrons, at resolutions ranging from nanometer-
to micron-length scales mostly using the setup of the type
in Figure 1(a).

One way in which 4D CT has been performed is by
subjecting the material to the desired stimuli (like a cer-
tain pressure), acquiring a conventional CT for that spe-
cific stimulus point and repeating the process for different
stimuli. The measurements corresponding to each CT scan
are then reconstructed into a single 3D volume of the 4D
reconstruction. Indeed, the 3D MBIR methods of the section
“Volumetric CT” can be directly applied to these scenarios
to reduce the time required to collect the data for a single
reconstruction. However, if the goal of the study is to per-
form in situ imaging of the dynamics of rapidly changing
material properties, then the overall problem becomes sig-
nificantly more challenging.

Figure 6 illustrates a data-acquisition scheme for 4D CT
of a sample that is changing continuously in the course of the
measurement. To conduct in situ 4D CT, the sample is rotat-
ed continuously about a single axis, and the projection data
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FIGURE 5. Penalty functions used for robust MBIR. In several SCT appli-
cations, the measurements can be corrupted by outliers due to strong dif-
fraction from crystalline samples, and gamma-ray/X-ray/neutron strikes
on the detector in addition to detector noise. By using penalty functions
based on heavy-tailed probability density functions, such as the general-
ized Huber function or the Student ¢ function instead of the conventional
quadratic function (dotted line) for the data-fidelity term, it is possible to
obtain high-quality reconstructions with minimal pre/postprocessing.
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are measured using a low-exposure setting on the detector
to reduce motion blur. Each measurement corresponds to the
projection of the sample at a certain time and orientation with
respect to the incident beam. Obtaining a 3D reconstruction
corresponding to each time point is not possible because we
only have a single projection image corresponding to that state
of the sample. Therefore, algorithms designed for 4D CT of
continuously varying samples have used different strategies to
acquire and process the data. The most common approach is
to group the data corresponding to a few orientations (see Fig-
ure 6) and perform a 3D-CT reconstruction for each set with
the implicit assumption that the sample does not change in the
time window corresponding to each set. However, because of
the widespread use of analytic reconstruction algorithms, there
has been a tendency to believe that each set needs to contain
measurements that cover a full angular range (typically 180°)
and that a large number of such measurements (of the order of
a few thousand for typical detectors) is required to obtain high-
fidelity reconstructions.

While some of these challenges can be overcome in spe-
cific situations (for example, the imaging of samples that are
exhibiting a periodic motion [23]), the overall use of analytic
reconstruction approaches has limited the application of 4D
CT to the imaging of relatively slow processes. To address the
challenge of obtaining high-fidelity in situ 4D CT, research-
ers have adapted the MBIR methods discussed in the section
“Volumetric CT” combined with synergistic changes in the
way the data are acquired [25]. One prominent approach is the
time-interlaced MBIR (TIMBIR) [4] method, in which the data
are acquired such that the orientation angles (6; in Figure 6)

1, 64, 14

(a)

corresponding to each set are sparsely spaced over an angular
range of 180° and interlaced with the angles in the other sets.
This interlacing offers increased measurement diversity com-
pared to a standard accelerated/sparse-view system in which
the collection of 6; in each set is the same. Using a forward
model that is similar to (6) for the data-fidelity term in (1), the
authors proposed a regularizer of the form

L

r(;Be BY=Bs D, D, wiips(xii — x15)

I=1{i,j s

+ ,Bt Z Z Wmnpt(xm,i - xn,i), (7)

i {mn}ey

where B and B are the regularization parameters for spatial
and temporal regularization, respectively, x; corresponds to the
3D reconstruction for set /, ys and y. represent the sets for the
pairs of voxel neighbors across space and time, respectively, and
wij and win, are weights associated with voxel pairs, which are
set to be inversely proportional to the distance/time between the
neighbors. Using the TIMBIR algorithm, it has been demon-
strated (see Figure 7) that it is possible to obtain high-fidelity
4D reconstructions while accelerating the scan by a factor of 32
compared to what would have been possible if the traditional
protocol were used [4].

The use of regularizers that exploit local spatiotemporal cor-
relations to improve reconstruction fidelity [similar to (7)] has
been widely studied in the research literature. While the regular-
izer (7) that exploits local spatiotemporal correlations is useful,
researchers have also developed more sophisticated regular-
izers based on deformation fields or motion models [26],

Y O tn

Conventional Scan
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Projection Index (n)

Interlaced Scan

2 4 6 8 10 12 14 16
Projection Index (n)

(b)

FIGURE 6. An illustration of the principle underlying 4D CT of samples that are varying continuously based on the geometry of Figure 1(a). (a) In this
case, each measured projection image (y:) corresponds to a specific orientation (6;) and duration of time depending on the exposure and frame rate of
the detector. (b) The projections can be acquired by gradually orienting the sample in a 180° range or by using an interlaced scan, as shown in the plots.
In theory, each projection corresponds to a different state of the underlying 3D object. However, in practice, reconstruction algorithms are designed by
assuming small variations, grouping collections of projection images, and obtaining a 3D reconstruction corresponding to each collection.
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demonstrating that it is possible to further improve the quality of
the MBIR approaches for 4D CT. Other approaches that enforce
spatiotemporal sparsity by relying on the similarity between
nonlocal image patches have also been explored. In summary,
the key advantage of using MBIR approaches is that the mea-
sured data can be grouped in several different ways (each set
potentially corresponding to sparse, low-SNR, and limited-view
sets) and jointly used for reconstruction, thereby enabling high-
fidelity images at unprecedented temporal resolutions.

Accelerating MBIR for large data sets

While methods to accelerate MBIR depend on the specifics of
the forward model, much of the recent research is focused on
conventional parallel-beam CT using models of the form (2)
and (3) because of its widespread use across SCT applications.
Broadly, the solutions to the MBIR cost function based on (2)
and (3) for conventional CT can be categorized into parallel
update methods (like gradient descent) and sequential update
methods (like coordinate descent [16]). In either case, such al-
gorithms are computationally expensive since they involve a
large number of forward projection (multiplication by A) and
backprojection (multiplication A’) operations, which are typi-
cal in any iterative solution to the cost-function minimization.
For 4D CT, this problem is compounded since the number of
views can be an order of magnitude larger than for 3D CT.
The computational complexity of the forward and backward
projection operations also increases with the size of the recon-
structed volumes. Thus, it becomes difficult to obtain real-time
feedback on the success of an experiment because of the long
computational times of MBIR algorithms. Furthermore, tun-
ing of the regularization and other free parameters becomes
tedious in the absence of fast reconstructions. Thus, it is impor-
tant to speed up MBIR algorithms to increase their adoption
for SCT.

One popular approach to speed up MBIR is to use novel
optimization techniques that hasten algorithmic convergence.
The techniques to improve algorithmic convergence are typi-
cally dependent on the choice of the optimization algorithm

used for reconstruction. Multiresolution approaches use
reconstruction at coarser resolution scales to initialize recon-
struction at a finer resolution. Such approaches are typically
used to improve the convergence of iterative coordinate
descent (ICD) algorithms since ICD has poor low-frequency
convergence [4], [15]. Another approach to speed up MBIR
is to use high-performance compute (HPC) clusters for dis-
tributed parallel computing [27]-[29]. This approach relies
on modifications to existing optimization algorithms that
enable distributed computation on supercomputing HPC
clusters. In [4], an approach to distributed parallel 4D CT is
presented in which several 2D slices of each 3D volume over
multiple time frames are reconstructed in parallel. However,
this particular strategy of parallelizing over several 2D slices
provides limited speedup improvements since the reconstruc-
tion of each slice is computationally expensive. Recently,
algorithmic approaches for parallel reconstruction of voxels
within each slice have also been proposed. These large-scale
parallelization approaches have led to a dramatic accelera-
tion of reconstruction times of large volumes by distributing
the computation across thousands of cores—enabling recon-
structions of size 2,160 X 2,560 X 2,560 in about 24 s using
146,880 cores of an HPC cluster [27].

Regularization parameters for MBIR

The eventual goal of SCT scans is either to discover new fea-
tures of scientific relevance (like the appearance of a crack
from a material under stress) or to perform a measurement
(such as the porosity of a manufactured part) from the re-
constructed volumes. The choice of regularization function
and the associated parameters have a significant impact on
the quality (noise and resolution) of reconstructions obtained
using the MBIR approach. Therefore, algorithms to automati-
cally choose the regularization parameters that produce im-
ages that maximize the performance of the end goal will be
impactful. However, because of the diversity of measurement
scenarios, samples scanned, and resolution values, the task
of automatically choosing regularization parameters even for

FIGURE 7. 4D CT of growing dendrites in a slowly cooled Al-Cu alloy measured using synchrotron-based X-ray CT using the TIMBIR method [24]. A few
reconstructed volumes from the 4D reconstruction that contain 3D frames every 1.8 s at a voxel resolution of approximately 1 pm, showing that it

is possible to obtain high spatiotemporal resolution using MBIR approaches.
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a fixed choice of regularization function of the form in (3) is
challenging. Furthermore, the regularization parameters are
often dimensionless quantities that do not have a straightfor-
ward interpretation for end users of SCT instruments, making
them complicated to set in an intuitive manner.

While some general approaches for setting the regulariza-
tion parameters in the context of model-based reconstruction
have been proposed ([30] and references therein), they have
not been widely adapted for SCT. These approaches can be
broadly categorized as methods that require evaluation of
multiple reconstructions (L-curve, generalized cross valida-
tion, and so on), those that set the value based on “balanc-
ing” the data-fidelity and regularization terms, and Bayesian
methods that jointly estimate the regularization parameter
and reconstructions. The previous approaches are not guar-
anteed to produce reconstructions of the best quality matched
to the task for which SCT is being carried out. The extensions
of these methods for applications like 4D CT and hyperspec-
tral CT have also not been explored. Current adaptations of
MBIR for SCT have mainly relied on an empirical choice
of parameters to attain some desirable visual image qual-
ity (a certain level of noise, sharpness of edges, and so on).
Typically, the parameters are varied; a few slices from the 3D
volume are reconstructed to manage the computational com-
plexity, and for each choice of parameters the reconstruction
is evaluated, sometimes based on a predefined metric [31].
In summary, the regularization parameters for SCT applica-
tions have largely been set in an empirical manner, making
the automated choice of these parameters an important future
research direction.

Training Data

CAD Model :
i = — ﬁ

Training Data

Reference Sample

iy

FIGURE 8. lllustration of approaches used for DL-based SCT. The training data are either generated
from a reference scan of a representative sample or from a CAD-based model when appropriate.
Because of the diversity of samples to be measured using SCT, it is challenging to train a single
general-purpose neural network that works across a wide variety of samples; hence, current research

-. ‘u—b—bﬁ

DL-Driven
Reconstruction

Deep learning (DL)-based CT reconstruction

DL-based algorithms have recently been developed to address
several challenges that occur in the context of CT reconstruc-
tion [32]. These algorithms can be broadly categorized into it-
erative and noniterative approaches [12]. Iterative approaches
to DL are based on explicitly deriving the iterative updates that
result from solutions to the MBIR formulations of the section
“Volumetric CT” and then replacing certain blocks with train-
able deep neural networks (DNNs) to obtain high-quality re-
constructions. By contrast, noniterative approaches are based
on training a DNN to learn to preprocess the measurements
followed by the use of a conventional analytic reconstruction al-
gorithm. Alternately, noniterative deep learning (NIDL)-based
algorithms can be applied in the reconstruction domain by de-
signing a DNN to learn to suppress common artifacts that occur
when using analytic reconstruction algorithms. In the context of
SCT, NIDL-based approaches have garnered significant inter-
est because of their low computational complexity at inference
time and simple portability to GPUs that can enable fast recon-
structions for the large data sets from SCT instruments.

While NIDL-based reconstruction has been widely explored
in the context of applications such as medical X-ray CT, there
are several challenges in adapting these methods for SCT appli-
cations. First, SCT instruments are used to scan a wide variety
of samples; therefore, the training data for DNNs must be cho-
sen carefully. From an algorithm designer’s perspective, it may
be impossible to obtain sufficient data to train a single generic
DNN that can be applied for any sample that has to be imaged
under different measurement scenarios (geometry, number of
views, SNR, and so on). Furthermore, obtaining high-quality
reference data sets to train neural net-
works can be time consuming/expen-
sive; therefore, in SCT applications
we might only be able to make a very
small number of reference measure-
ments. Finally, the central prob-
lems associated with SCT are high
dimensional, involving 3D spatial and
4D spatiotemporal reconstructions.
This leaves open the question of how
to effectively adapt popular DNN
architectures that are designed for
2D imaging applications, such as the
U-Net [33] and DnCNN [34], to the
multidimensional case.

Supervised NIDL algorithms have
been developed for SCT, mainly
in the context of scanning collections
of similar samples, 4D CT, or those
situations for which a 3D model is
available, as shown in Figure 8. If the
goal of an experiment is to acceler-
ate the measurement of a large col-
lection of similar samples (a set of
rocks, additively manufactured parts,

has focused on training neural networks for a specific collection of samples.
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samples can be scanned in a manner such that we can obtain
training data for a DNN that is designed to obtain high-quality
reconstruction from sparse/limited-view/low-SNR data. A
variety of different approaches to obtain training data, choice
of network architecture, and loss functions have been explored
in the context of developing NIDL for SCT. For example, in
[36] an NIDL approach was developed to obtain high-quality
reconstruction from low-dose X-ray CT data. A few pairs of
low-dose and high-dose projection images were measured, fol-
lowed by the use of an encoder—decoder-based DNN trained
using a Wasserstein and perceptual loss function to map
between the low-dose and high-dose projection data. Since the
data are extremely limited, the acquired images were split into
smaller patches and data-augmentation techniques were used
to stably train the DNN, which has a very large number of
parameters. The trained network was then used to obtain high-
quality CT reconstruction by processing new low-dose mea-
surements using the DNN followed by the use of an analytic
reconstruction approach—both steps can be performed rapidly
for the large data sets encountered in this application. Another
NIDL approach for SCT has involved measuring a complete
low-dose and regular-dose CT scan from a reference sample
and reconstructing them using an analytic reconstruction algo-
rithm. These data are used to train a DNN to map between the
low-dose and high-dose 3D reconstruction. One challenge in
such approaches is that there may only be a single 3D volume
pair to train the network. To address
this limited-data challenge, methods
of splitting the 3D volume into smaller
patches combined with data-augmen-
tation methods, such as flipping and
rotation, are used to increase the size
of the training set [37], [38].

In contrast to this approach, a new
neural network architecture—mixed-
scale densenet (MS-DNet)—was
proposed in [35], [39], which has an
order-of-magnitude fewer parameters
than other popular DNN architectures
[33], [34] and a large-receptive field,
making it a strong candidate for the lim-
ited training data encountered in SCT
applications. Furthermore, to exploit
the 3D structure of the data, instead of
training a fully 3D DNN, the works in
[35], [37], and [39] have used a 2.5D
strategy [40], where the input to the
neural network is a collection of adja-
cent slices (modeled as channels), and
the target output is a single image. The
overall approach of using NIDL based
on making one high-quality volumetric
reference has demonstrated that it is pos-
sible to accelerate acquisition and yet
obtain high-quality 3D reconstructions
from extremely sparse-view data (see

Gridrec

approach. (Source: [35].)

(150 Projections)

Figure 9), which can be used to dramatically improve the through-
put of SCT instruments at shared facilities [41]. However, the gen-
eralization ability of different approaches, which drives the need for
measuring new training data sets, remains an open question.
NIDL-based algorithms are also being used when a CAD
of a part to be scanned is available (typical in the case of
additively manufactured objects) [38]. The goal of these stud-
ies is to reduce the measurement time for high-resolution CT
and to obtain high-quality reconstructions from samples that
can potentially introduce nonlinearities, such as beam harden-
ing, into the measurement. For example, in [38] a framework
was developed to generate training data for DNNs by simulat-
ing X-ray CT scans of a specific part in a polyenergetic X-ray
micro-CT system. To obtain realistic data, a simulator was
developed that embeds various defects in the CAD model,
accounts for complex phenomena, such as beam hardening of
the incident X-rays, and generates the sparse, low-SNR data
that occur during an experimental CT scan. Since the ground
truth is known, a 2.5D DNN was trained based on a convention-
al mean-squared loss function to suppress the noise, streaks,
and beam-hardening artifacts that are encountered when using
analytic reconstruction approaches. Once this network was
trained, it was applied to experimental data of samples corre-
sponding to the CAD model, demonstrating promising prelimi-
nary results in obtaining higher-quality reconstructions from
accelerated scans while enhancing the detectability of defects.

MS-DNet
(150 Projections)

Gridrec
(1,500 Projections)

(b)

FIGURE 9. lllustration of the use of DL-based reconstruction for a sparse-view and low-SNR synchro-
tron X-ray CT data set of an aluminum sample. The figure shows a (a) single cross section from a 3D
reconstruction using an analytic reconstruction algorithm (gridrec) and a DL-based reconstruction
based on the MS-DNet including a (b) patch selected from the original cross section to better highlight
the details. Notice that using one-tenth the number of measurements typically made, the DNN-based
approach is able to produce a higher-quality reconstruction compared to the analytic reconstruction
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Finally, self-supervised DL approaches have also been used
for enhancing the quality of SCT reconstructions, especially
when obtaining pairs of matched training data for supervised
learning is not possible. A recent example is [42], where a DNN
was trained from a single low-SNR experimental CT scan by
splitting the acquired data in an effective manner. Specifically,
by obtaining a pair of 3D reconstructions from subsets of the
measured data, a DNN based on the MS-DNet [35] was trained
to map between pairs of these reconstructed slices. Once
trained, the same network can be applied to the entire noisy
measurement to produce a high-fidelity reconstruction. The
method, deemed Noise2Inverse, was further expanded in [43]
and successfully applied to 3D and 4D CT. A substantial reduc-
tion in acquisition time was achieved while reducing noise and
maintaining image quality. This type of self-supervised learn-
ing approach can be particularly useful for SCT applications,
such as neutron CT or lab-based X-ray CT, where obtaining
high-resolution scans is extremely time consuming.

Condlusions

In this article, we presented an overview of how advanced im-
age reconstruction algorithms are enabling improvements in
the performance of SCT instruments. These algorithmic ad-
vances are a powerful complement to the decades of advances
in hardware technologies in being able to obtain high-fidelity
images while enabling a dramatic acceleration of the time re-
quired to make measurements. While the research highlighted
in this article has demonstrated the potential for algorithm-
driven approaches for SCT instruments, there are still several
open questions, including the choice of regularization function
and parameters for MBIR methods, algorithmic- and compu-
tation-driven acceleration for larger data sets, and the further
investigation of the choice of architecture, parameters and loss
functions for DL-based reconstruction. A version of this article
with an extended set of references is available at https:/arxiv
.org/abs/2104.08228.

Acknowledgments

This manuscript has been authored by UT-Battelle, LLC, under
contract DE-AC05-000R22725 with the U.S. Department of En-
ergy (DOE). The U.S. Government and the publisher, by accepting
the article for publication, acknowledge that the U.S. Government
retains a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or al-
low others to do so, for U.S. Government purposes. The U.S. DOE
will provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan (http:/
energy.gov/downloads/doe-public-access-plan). Part of this work
was performed under the auspices of the U.S. DOE by Law-
rence Livermore National Laboratory under contract DE-AC52-
07NA27344 (release number LLNL-JRNL-821781). This work
was partially supported by Oak Ridge National Laboratory via
the Artificial Intelligence Initiative. S.V. Venkatakrishnan was
partially supported by the U.S. DOE Office of Basic Energy Sci-
ence. Amir Koushyar Ziabari was supported by the U.S. DOE,
Office of Energy Efficiency and Renewable Energy, Advanced

Manufacturing Office, under contract DE-AC05-000R22725
with UT-Battelle, LLC. This work was partially supported by
NSF grant number CCF-1763896.

Authors

S.V. Venkatakrishnan (venkatakrisv@ornl.gov) received his
Ph.D. degree from the School of Electrical and Computer
Engineering at Purdue University in 2014. He is currently an
R&D staff member in the Multimodal Sensor Analytics group
at Oak Ridge National Laboratory, Oak Ridge, Tennessee,
37831, USA, developing computational imaging algorithms in
support of the lab’s efforts in ultrasound, X-ray, electron-, and
neutron-based systems. His research interests include compu-
tational imaging, inverse problems, and machine learning. He
is a Senior Member of IEEE, a member of the IEEE
Computational Imaging Technical Committee, and an associ-
ate editor of IEEE Transactions on Computational Imaging
(2018—present).

K. Aditya Mohan (mohan3@]lInl.gov) received his Ph.D.
degree in electrical and computer engineering from Purdue
University in 2017. He is affiliated with the Computational
Engineering Division at Lawrence Livermore National
Laboratory, Livermore, California, 94551, USA. His research
interests include computational imaging, inverse problems,
and machine learning. As a principal investigator, he is also
experienced in leading research projects in these areas. He is a
Senior Member of IEEE.

Amir Koushyar Ziabari (ziabariak @ornl.gov) received his
Ph.D. degree from the Department of Electrical and Computer
Engineering (ECE) at Purdue University in 2016. He is an
R&D staff scientist in the Multimodal Sensor Analytics group
at Oak Ridge National Laboratory (ORNL), Oak Ridge,
Tennessee, 37831, USA. Before joining ORNL, he was a
postdoctoral student in the Integrated Imaging group in the
Department of ECE at Purdue University. In his research on
data science for science, he develops physics, signal process-
ing, and machine/deep learning algorithms to process and ana-
lyze multiscale scientific imaging data. This includes his
research on data analytic, data-driven, and physics-based
image reconstruction and segmentation algorithms for
advanced manufacturing (AM) to improve nondestructive
evaluation and the state of the art in real-time monitoring of
the AM process.

Charles A. Bouman (bouman@purdue.edu) received his
Ph.D. in electrical engineering from Princeton University. He
joined the faculty of the School of Electrical and Computer
Engineering at Purdue University, West Lafayette, Indiana,
47907, USA, in 1989, where he is currently the Showalter
Professor of Electrical and Computer Engineering and
Biomedical Engineering. His research is in the area of compu-
tational imaging and sensing. He is a member of the National
Academy of Inventors, a Fellow of IEEE, and a fellow of the
American Institute for Medical and Biological Engineering,
the Society for Imaging Science and Technology, and the
International Society for Optics and Photonics. He was previ-
ously the editor-in-chief of IEEE Transactions on Image

IEEE SIGNAL PROCESSING MAGAZINE | January 2022 |

Authorized licensed use limited to: Purdue University. Downloaded on May 17,2022 at 13:10:03 UTC from IEEE Xplore. Restrictions apply.



Processing, a distinguished lecturer for the IEEE Signal
Processing Society (SPS), and a vice president of Technical
Activities for the SPS, during which time he led the creation
of IEEE Transactions on Computational Imaging.

References

[1] P. Ercius, O. Alaidi, M. J. Rames, and G. Ren, “Electron tomography: A three-
dimensional analytic tool for hard and soft materials research,” Adv. Mater., vol. 27,
no. 38, pp. 5638-5663, 2015, doi: 10.1002/adma.201501015.

[2] S. Venkatakrishnan, K. A. Mohan, K. Beattie, J. Correa, E. Dart, J. R.
Deslippe, A. Hexemer, H. Krishnan et al., “Making advanced scientific algorithms
and big scientific data management more accessible,” Electron. Imaging, vol. 2016,
no. 19, pp. 1-7, 2016, doi: 10.2352/ISSN.2470-1173.2016.19.COIMG-155.

[3] S. Venkatakrishnan, E. Cakmak, H. Billheux, P. Bingham, and R. K.
Archibald, “Model-based iterative reconstruction for neutron laminography,” in
Proc. Signals, Syst. Comput., 2017, pp. 1864-1869.

[4] K. Mohan, S. Venkatakrishnan, J. Gibbs, E. Gulsoy, X. Xiao, M. De Graef,
P. Voorhees, and C. Bouman, “TIMBIR: A method for time-space reconstruction
from interlaced views,” IEEE Trans. Comput. Imaging, vol. 1, no. 2, pp. 96111,
June 2015, doi: 10.1109/TCL.2015.2431913.

[5] K. A. Mohan, S. V. Venkatakrishnan, L. F. Drummy, J. Simmons, D. Y.
Parkinson, and C. A. Bouman, “Model-based iterative reconstruction for synchro-
tron X-ray tomography,” in Proc. IEEE ICASSP, 2014.

[6] D. Giirsoy, T. Bicer, A. Lanzirotti, M. G. Newville, and F. D. Carlo,
“Hyperspectral image reconstruction for X-ray fluorescence tomography,” Optics
Express, vol. 23, no. 7, pp. 9014-9023, 2015, doi: 10.1364/0E.23.009014.

[7] S. Venkatakrishnan, Y. Zhang, L. Dessieux, C. Hoffmann, P. Bingham, and
H. Bilheux, “Improved acquisition and reconstruction for wavelength-resolved neutron
tomography,” J. Imaging, vol. 7, no. 1, p. 10, 2021, doi: 10.3390/jimaging7010010.

[8] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging.
Philadephia, PA: Society for Industrial and Applied Mathematics, 2001.

[9] F. Marone and M. Stampanoni, “Regridding reconstruction algorithm for real-
time tomographic imaging,” J. Synchrotron Radiation, vol. 19, no. 6, pp. 1029—
1037, 2012, doi: 10.1107/S0909049512032864.

[10] L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algo-
rithm,” JOSA A, vol. 1, no. 6, pp. 612—619, 1984, doi: 10.1364/JOSAA.1.000612.

[11] C. A. Bouman, “Model based image processing,” 2013. [Online]. Available:
https://engineering.purdue.edu/~bouman/publications/pdf/MBIP-book.pdf

[12] M. T. McCann, K. H. Jin, and M. Unser, “Convolutional neural networks for
inverse problems in imaging: A review,” IEEE Signal Process. Mag., vol. 34, no. 6,
pp. 85-95, 2017, doi: 10.1109/MSP.2017.2739299.

[13] A. Mohammad-Djafari, “Joint estimation of parameters and hyperparameters in
a Bayesian approach of solving inverse problems,” in Proc. Int. Conf. Image
Process., Sept. 1996, vol. 1, pp. 473-476.

[14] S. Venkatakrishnan, L. Drummy, M. Jackson, M. De Graef, J. Simmons, and
C. Bouman, “Model based iterative reconstruction for bright-field electron tomogra-
phy,” IEEE Trans. Comput. Imaging, vol. 1, no. 1, pp. 1-15, Mar. 2015, doi:
10.1109/TCIL.2014.2371751.

[15] S. Venkatakrishnan, L. Drummy, M. Jackson, M. De Graef, J. Simmons, and
C. Bouman, “A model based iterative reconstruction algorithm for high angle annu-
lar dark field - scanning transmission electron microscope (HAADF-STEM) tomog-
raphy,” IEEE Trans. Image Process., vol. 22, no. 11, pp. 4532-4544, Nov. 2013,
doi: 10.1109/TIP.2013.2277784.

[16] K. Sauer and C. Bouman, “Bayesian estimation of transmission tomograms
using segmentation based optimization,” IEEE Trans. Nucl. Sci., vol. 39, no. 4,
pp. 1144-1152, 1992, doi: 10.1109/23.159774.

[17] J.-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh, “A three-dimensional statis-
tical approach to improved image quality for multislice helical CT,” Med. Phys., vol.
34, no. 11, pp. 4526-4544, 2007, doi: 10.1118/1.2789499.

[18] Z. H. Levine, A. J. Kearsley, and J. G. Hagedorn, “Bayesian tomography for
projections with an arbitrary transmission function with an application in electron
microscopy,” J. Res. Nat. Inst. Standards Technol., vol. 111, no. 6, pp. 411-417,
Nov. 2006, doi: 10.6028/jres.111.031.

[19] Z. Saghi and P. A. Midgley, “Electron tomography in the (S)TEM: From
nanoscale morphological analysis to 3D atomic imaging,” Annu. Rev. Mater. Res.,
vol. 42, no. 1, pp. 59-79, 2012, doi: 10.1146/annurev-matsci-070511-155019.

[20] M. Abir, E. Islam, D. Wachs, and H.-K. Lee, “Sparse-view neutron CT recon-
struction of irradiated fuel assembly using total variation minimization with poisson
statistics,” J. Radioanalytical Nucl. Chem., vol. 307, no. 3, pp. 1967-1979, 2016,
doi: 10.1007/s10967-015-4542-2.

[21] L. Donati, M. Nilchian, C. O. S. Sorzano, and M. Unser, “Fast multiscale
reconstruction for Cryo-EM,” J. Struct. Biol., vol. 204, no. 3, pp. 543-554, 2018,
doi: 10.1016/j.jsb.2018.09.008.

[22] D. Kazantsev, F. Bleichrodt, T. van Leeuwen, A. Kaestner, P. J. Withers, K. J.
Batenburg, and P. D. Lee, “A novel tomographic reconstruction method based on the
robust student’s ¢ function for suppressing data outliers,” IEEE Trans. Comput.
Imaging, vol. 3, no. 4, pp. 682-693, 2017, doi: 10.1109/TCL.2017.2694607.

[23] S. M. Walker, D. A. Schwyn, R. Mokso, M. Wicklein, T. Miiller, M. Doube,
M. Stampanoni, H. G. Krapp et al., “In vivo time-resolved microtomography
reveals the mechanics of the blowfly flight motor,” PLoS Biol., vol. 12, no. 3,
p- €1001823, 2014, doi: 10.1371/journal.pbio.1001823.

[24] J. W. Gibbs, K. A. Mohan, E. B. Gulsoy, A. J. Shahani, X. Xiao, C. A.
Bouman, M. De Graef, and P. W. Voorhees, “The three-dimensional morphology of
growing dendrites,” Sci. Rep., vol. 5, no. 1, p. 11824, 2015, doi: 10.1038/srep11824.

[25] A. P. Kaestner, B. Munch, and P. Trtik, “Spatiotemporal computed tomography
of dynamic processes,” Opt. Eng., vol. 50, no. 12, p. 123201, 2011.

[26] G. Zang, R. Idoughi, R. Tao, G. Lubineau, P. Wonka, and W. Heidrich,
“Space-time tomography for continuously deforming objects,” vol. 37, no. 4, 2018,
doi: 10.1145/3197517.3201298.

[27] X. Wang, A. Sabne, P. Sakdhnagool, S. J. Kisner, C. A. Bouman, and S. P.
Midkiff, “Massively parallel 3D image reconstruction,” in Proc. Int. Conf. High
Performance Comput., Netw., Storage Anal., 2017, pp. 1-12.

[28] T. Bicer, D. Gursoy, R. Kettimuthu, F. De Carlo, G. Agrawal, and I. T. Foster,
“Rapid tomographic image reconstruction via large-scale parallelization,” in Euro-
Par 2015: Parallel Processing, J. L. Triff, S. Hunold, and F. Versaci, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 289-302.

[29] X. Wang, A. Sabne, S. Kisner, A. Raghunathan, C. Bouman, and S. Midkiff,
“High performance model based image reconstruction,” in Proc. 21st ACM
SIGPLAN Symp. Principles Practice Parallel Programming (PPoPP ‘16), 2016,
doi: 10.1145/2851141.2851163.

[30] S. Ramani, T. Blu, and M. Unser, “Monte-Carlo SURE: A black-box optimiza-
tion of regularization parameters for general denoising algorithms,” IEEE Trans.
Image Process., vol. 17, no. 9, pp. 1540-1554, 2008, doi: 10.1109/TTP.2008.2001404.

[31] S. Allner, A. Gustschin, A. Fehringer, P. B. Noél, and F. Pfeiffer, “Metric-
guided regularisation parameter selection for statistical iterative reconstruction in
computed tomography,” Sci. Rep., vol. 9, no. 1, pp. 1-10, 2019, doi: 10.1038/
s41598-019-40837-7.

[32] G. Wang, J. C. Ye, and B. De Man, “Deep learning for tomographic image
reconstruction,” Nature Mach. Intell., vol. 2, no. 12, pp. 737-748, 2020, doi:
10.1038/542256-020-00273-z.

[33] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Proc. Int. Conf. Medical Image Comput.
Comput.-assisted Intervention. Berlin: Springer-Verlag, 2015, pp. 234-241.

[34] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep CNN for image denoising,” IEEE Trans. Image
Process., vol. 26, no. 7, pp. 3142-3155, 2017, doi: 10.1109/TIP.2017.2662206.

[35] D. M. Pelt, K. J. Batenburg, and J. A. Sethian, “Improving tomographic recon-
struction from limited data using mixed-scale dense convolutional neural networks,”
J. Imaging, vol. 4, no. 11, pp. 128, 2018, doi: 10.3390/jimaging4110128.

[36] X. Yang, V. De Andrade, W. Scullin, E. L. Dyer, N. Kasthuri, F. D. Carlo, and
D. Giirsoy, “Low-dose X-ray tomography through a deep convolutional neural net-
work,” Sci. Rep., vol. 8, no. 1, pp. 1-13, 2018, doi: 10.1038/s41598-018-19426-7.

[37] Z. Liu, T. Bicer, R. Kettimuthu, D. Gursoy, F. D. Carlo, and I. Foster,
“TomoGAN: Low-dose synchrotron X-ray tomography with generative adversarial
networks: Discussion,” JOSA A, vol. 37, no. 3, pp. 422-434, 2020, doi: 10.1364/
JOSAA.375595.

[38] A. Ziabari, S. Venkatakrishnan, M. Kirka, P. Brackman, R. Dehoff,
P. Bingham, and V. Paquit, “Beam hardening artifact reduction in X-Ray CT
reconstruction of 3D printed metal parts leveraging deep learning and CAD
models,” in Proc. ASME Int. Mech. Eng. Congr. Expo., 2020, vol. 84492,
p. VO2BT02A043.

[39] D. M. Pelt and J. A. Sethian, “A mixed-scale dense convolutional neural net-
work for image analysis,” Proc. Nat. Acad. Sci., vol. 115, no. 2, pp. 254-259, 2018,
doi: 10.1073/pnas.1715832114.

[40] A. Ziabari, D. H. Ye, S. Srivastava, K. D. Sauer, J.-B. Thibault, and C. A.
Bouman, “2.5D deep learning for CT image reconstruction using a multi-GPU
implementation,” in Proc. 52nd Asilomar Conf. Signals, Syst. Comput., 2018,
pp. 2044-2049, doi: 10.1109/ACSSC.2018.8645364.

[41] S. V. Venkatakrishnan, A. Ziabari, J. Hinkle, A. W. Needham, J. M. Warren,
and H. Z. Bilheux, “Convolutional neural network based non-iterative reconstruc-
tion for accelerating neutron tomography,” Mach. Learning: Sci. Technol., 2020.

[42] A. A. Hendriksen, D. M. Pelt, and K. J. Batenburg, “Noise2inverse: Self-
supervised deep convolutional denoising for tomography,” IEEE Trans. Comput.
Imag., vol. 6, pp. 1320-1335, 2020, doi: 10.1109/TCIL.2020.3019647.

[43] A. A. Hendriksen, M. Biihrer, L. Leone, M. Merlini, N. Vigano, D. M. Pelt, F.
Marone, M. di Michiel et al., “Deep denoising for multi-dimensional synchrotron
x-ray tomography without high-quality reference data,” Sci. Rep., vol. 11, no. 1,
pp. 1-13, 2021, doi: 10.1038/s41598-021-91084-8. m

IEEE SIGNAL PROCESSING MAGAZINE | January 2022 |

Authorized licensed use limited to: Purdue University. Downloaded on May 17,2022 at 13:10:03 UTC from IEEE Xplore. Restrictions apply.

43



