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SIGNAL PROCESSING FOR ADVANCED MATERIALS

Multiscale 3D characterization is widely used by materials 
scientists to further their understanding of the relationships 
between microscopic structure and macroscopic function. 

Scientific computed tomography (SCT) instruments are one of the 
most popular choices for 3D nondestructive characterization of 
materials at length scales ranging from the angstrom scale to the 
micron scale. These instruments typically have a source of radia-
tion (such as electrons, X-rays, or neutrons) that interacts with the 
sample to be studied and a detector assembly to capture the result 
of this interaction (see Figure 1). A collection of such high-reso-
lution measurements is made by reorienting the sample, which is 
mounted on a specially designed stage/holder after which recon-
struction algorithms are used to produce the final 3D volume of 
interest. The specific choice of which instrument to use depends 
on the desired resolution and properties of the materials being im-
aged. The end goal of SCT scans includes determining the mor-
phology, chemical composition, or dynamic behavior of materials 
when subjected to external stimuli. In summary, SCT instruments 
are powerful tools that enable 3D characterization across multiple 
length scales and play a critical role in furthering the understand-
ing of the structure–function relationships of different materials.

Challenges in SCT
The archetypal form of CT involves illuminating a sample with 
a beam, measuring a projection image corresponding to the 
transmitted or scattered signal, and collecting a set of measure-
ments by rotating the sample (or the source–detector system) 
about a single axis in the 0–180° or 0–360° range followed by 
a reconstruction routine that inherently assumes a linear rela-
tionship between the measured signal (or some preprocessed 
version) and the quantity to be reconstructed. While these types 
of systems are common in medical X-ray CT, there are several 
aspects that make the SCT problem different and challenging. 
These challenges can be grouped into a few broad categories.

Limited-angle measurements 
In applications such as electron tomography (one of the 
most popular methods for angstrom-scale and nanoscale 
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3D imaging), the mechanical limitations of the sample holder 
along with the unique shape of the samples may only allow 
for acquiring data in a limited angular range (+/–60°) [1], 
as illustrated in Figure  2(a). Limited-angle data sets can 
also occur in other SCT modalities when the sample hold-

ers are designed for specialized tasks. An example of this 
type of holder is the diamond anvil cell [2] (used for studying 
the properties of materials under extremely high pressure), 
which strongly attenuates the incident beam in certain 
or ientations [see Figure 2(b)]. In summary, driven by the 
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FIGURE 1. A schematic of common acquisition setups used in SCT systems. (a) The  setup used in parallel-beam and cone-beam X-ray/neutron CT 
systems. (b) The setup used in electron/X-ray microscope-based scanning probe systems. In each case a source is used to illuminate the sample of 
interest, and a detector system (an area detector, a point detector, or an annular detector) captures the result of this interaction. The sample, which 
is mounted on a holder, is reoriented to make a collection of measurements. The archetypal acquisition geometry for SCT instruments is to rotate the 
sample about a single axis perpendicular to the direction of the incident source and make a collection of measurements followed by reconstruction 
using analytic algorithms. 
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FIGURE 2. Some of the challenges in SCT. Because of (a) and (b) the mechanical limitations of the sample holder, (c) the shape of the sample being 
imaged, and (d) poorly calibrated detectors, it can be challenging to obtain accurate 3D reconstructions from the resulting limited-view, sparse, low 
signal-to-noise ratio (SNR) data. Note that a sinogram refers to a particular organization of the measured data from a CT scan, where the vertical axis 
corresponds to the orientation, and the horizontal axis corresponds to a single row of the detector.
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flexibility required to engineer sample holders to perform 
novel experiments, limited-angle data sets can occur in im-
portant SCT applications, making it challenging to obtain 
high-quality reconstructions.

Unconventional measurement geometries
The acquisition geometry used in SCT instruments can be 
different compared to that of the conventional single-axis CT 
setup. The need for new geometries is driven by the require-
ment to measure samples with unique shapes, which may not 
yield sufficient signal-to-noise ratio (SNR) data in certain 
orientations. For example, a technique called laminography 
has been developed to measure samples that are lamellar, 
such as integrated circuit boards. In laminography [3] the 
sample is tilted and rotated about this new tilt axis to measure 
a signal of sufficient strength on the detector [Figure 2(c)]. 
Unlike the case of a conventional single-axis CT, analytic 
reconstruction algorithms for novel geometries are not read-
ily available, thereby impeding the use of novel acquisition 
schemes. In summary, the unique shapes of various samples 
to be scanned dictate a greater degree of flexibility in the 
measurement geometries for SCT instruments and require 
novel reconstruction algorithms.

Sparse, low SNR, and poorly calibrated data
SCT instruments are typically purchased from commercial 
vendors or built at scientific user facilities (SUFs), where a 
source of radiation/particles (e.g., a high flux of neutrons from 
a nuclear reactor or monochromatic X-rays from a synchro-
tron) forms the basis for a unique imaging capability. In both 
situations, SCT instruments are often very expensive and are 
treated as a shared resource, leading to a need for making the 
fewest possible measurements to extract the relevant scientific 
information from the study. As a result, reducing the number 
of measurements (sparse view data) and the duration of each 
measurement (leading to low SNR) can be critical to maxi-
mize the throughput to make SCT instruments available to 
a large number of users. Sparse-view and low-SNR data can 
also occur in the SCT experiments where the sample can suf-
fer radiation damage as with the case of biomaterials. These 
types of data are also common in high-speed time-resolved 
4D-CT experiments [4], where the goal is to image how a 
sample is changing at the microscopic scale when subjected 
to external stimuli.

SCT measurements can also be corrupted by different 
signals that are independent of the sample. For example, it is 
common in conventional X-ray micro-CT [5] and neutron-CT 
[3] systems to have spurious radiation strike the detector, lead-
ing to a high-amplitude signal in a few measurements. Fur-
thermore, the detectors used in SCT instruments may not be 
perfectly calibrated. One common example of this phenom-
enon is the observation of correlated “streaks” in the measured 
sinograms (a way of organizing the CT data so that the data 
corresponding to all orientations for a single slice can be eas-
ily visualized) because the gain associated with each detector 
pixel is different [see Figure 2(d)]. These imperfections in the 

data due to outliers and poorly calibrated detectors result in 
reconstructions with streak and ring artifacts when a conven-
tional reconstruction algorithm is directly applied to the data. 
In summary, it is challenging to achieve a higher through-
put, reduce damage to samples by lowering their exposure to 
source radiation, and improve the spatiotemporal resolution of 
4D CT while preserving image fidelity because of the sparse, 
low-SNR, and poorly calibrated measurements.

Large data sets
SCT scans are usually conducted to obtain 3D information 
at high resolutions. With the advent of faster, higher-pixel-
resolution detectors and the need to measure larger samples, 
there has been an explosion in the size of SCT data sets. For 
example, it is common across SCT applications to use detec-
tors that are approximately 2,000 × 2,000 pixels and for the 
corresponding CT reconstructions to have sizes of the order 
of 2,000 × 2,000 × 2,000 voxels. In the case of hyperspectral 
SCT instruments [6], [7], the sizes of the data sets are even 
larger depending on the number of hyperspectral channels. For 
4D CT, this problem is compounded since the number of mea-
surements increases linearly with time. In summary, it can be 
challenging to obtain high-quality reconstructions in reason-
able time frames for SCT applications.

Conventional approaches to SCT
Despite the significant advances made in developing various 
hardware components of SCT instruments (source, lenses, 
sample holders, detectors, and so on), until recently, there 
has been less focus on the development of reconstruction al-
gorithms to deal with the various challenges encountered. A 
common practice has involved measuring a large amount of 
data corresponding to the Nyquist criterion [8] or the maxi-
mum number of measurements at a reasonable SNR that can 
be made in an allocated amount of time in the case of a shared 
instrument at SUFs. Following the acquisition, the measure-
ments are preprocessed (using, e.g., filters to suppress outliers, 
heuristic correction of miscalibrated data, and normalization) 
and reconstructed using analytic algorithms, such as filtered 
backprojection (FBP) [8], gridrec [9], or Feldkamp–Davis–
Kreiss [10] because of their widespread availability and low 
computational complexity. However, the performance of these 
algorithms can be poor when dealing with nonlinearities in 
the measurement, the presence of high levels of noise, and the 
limited number of measurements—which are common in the 
context of SCT applications, as discussed in the section “Chal-
lenges in Scientific CT.” The reliance on the use of analytic 
reconstruction techniques, in turn, limits the characterization 
capability of SCT instruments by resulting in significant arti-
facts from sparse-view, limited, and low-SNR data sets. Addi-
tionally, the reliance on analytic reconstruction algorithms has 
led to an inefficient usage of the instruments by requiring the 
collection of large amounts of data to ensure the reconstructed 
images are of high quality.

In the rest of this article, we will present an overview of 
recent advances in nonlinear reconstruction algorithms that 
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have enabled significant improvements in the performance of 
SCT instruments—enabling faster, more accurate, novel imag-
ing capabilities. We emphasize that, while this article focuses 
on SCT applications where a linear forward model accurately 
describes the physics of image formation (up to pointwise 
normalization), there are important CT applications, such as 
phase-contrast imaging and ptychography, where the underly-
ing physics-based model is significantly more complicated, but 
for which the ideas presented here are equally relevant. 

We will first focus on model-based image reconstruction 
(MBIR) algorithms [11] that formulate the inversion as solv-
ing a high-dimensional optimization problem involving a data-
fidelity term (which includes a physics-based forward model) 
and a regularization term (based on a model for the sample 
to be imaged). By accurately modeling the physics and noise 
statistics of the measurement and combining it with state-of-
the art regularizers, we will highlight how dramatic improve-
ments are being made in the performance of several types of 
SCT instruments. While the development of MBIR methods 
has demonstrated that it is possible to dramatically improve 
the performance of CT instruments, these techniques are com-
putationally expensive for the high-resolution scans encoun-
tered in SCT applications. This bottleneck had led researchers 
to adapt and develop noniterative deep learning (NIDL) 
approaches based on convolutional neural networks [12] to 
attain similar improvements to those of the MBIR methods in 
certain scenarios. In the last part of the article, we will present 
an overview of recent approaches using DL-based algorithms 
for improving SCT instruments. We will summarize different 
approaches developed to address the tomographic inversion—
including data-domain and image-domain learning. The recent 
advances have shown that DL-based methods are a promis-
ing tool to complement MBIR methods because of their rapid 
inference time on large high-resolution SCT data sets while 
enabling similar improvements in image quality, and reduction 
of the scan time.  

MBIR for SCT instruments
MBIR [11] refers to an umbrella term for joint maximum a pos-
teriori (MAP) estimation [13] or a regularized inversion ap-
proach to solving image reconstruction problems. In the MBIR 
framework, the reconstruction task is formulated as

	 , ( ; , ) ( ; ) ,argminx l y x r x
,x
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where y is a vector containing the measurements, x is a vector 
corresponding to the object to be reconstructed, l is a data-
fidelity function that enforces consistency of the reconstruc-
tion with the measured data based on a physics-based forward 
model, }  is a vector of calibration parameters associated 
with the measurement, X and W  are constraint sets, and r 
is a regularization term with parameters .b  In the context of 
MAP estimation [11], l corresponds to the negative log-like-
lihood function, and r corresponds to the negative log-prior 
function. MBIR approaches have been used for several imag-
ing problems and have enabled significant dose reduction in 

medical X-ray CT and accelerations of magnetic resonance 
imaging scans while preserving image quality compared to 
conventional approaches in the respective fields. The main 
challenges in the design of MBIR methods are the formula-
tion of the cost function of the type in (1) by an appropriate 
choice of the physics-based forward model, noise-dependent 
data-fidelity loss, l, application-dependent regularizer, r, and 
the design of fast optimization algorithms to obtain a mini-
mum of the cost function. In what follows, we will present the 
ways in which different MBIR algorithms have been devel-
oped for 3D and 4D SCT.

Volumetric CT
The goal of volumetric CT is to reconstruct some property of a 
sample, such as the linear attenuation coefficient, scatter coef-
ficient, or complex-valued index of refraction, in three dimen-
sions. The most straightforward adoption of MBIR for SCT 
has been for conventional transmission or scatter-type CT, us-
ing a data-fidelity term of the form
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where W is a diagonal matrix containing the inverse noise vari-
ance in the measurements, A is the tomographic projection op-
erator, and y either contains the log-normalized transmission 
measurements [14] or the measured signal itself [15] from each 
orientation. This model can be derived by assuming that the mea-
surements are corrupted by additive white Gaussian noise or by 
using a quadratic approximation to the log-likelihood function 
based on Poisson statistics [16]. A variety of regularizers has been 
combined with the model in (2), but one popular class is the gener-
alized Markov random field-based (MRF) regularizer [16], which 
includes the popular anisotropic total variation and the q-general-
ized Gaussian MRF [17]. These regularizers are of the form
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where t  is a function that penalizes differences between 
neighboring voxels, sb  is a parameter that adjusts the weight 
assigned to the regularization terms, |  is a set containing all 
pairs of neighboring voxels in three dimensions, and iw j  are 
weights associated with each pair of voxels. MBIR algorithms 
based on combining the models in (2) and (3) have been de-
veloped for parallel-beam electron tomography [14], [15], [18], 
[19], synchrotron-based X-ray CT [2], [5], and neutron tomog-
raphy [20], enabling significantly higher-quality reconstruc-
tions compared to the analytic reconstruction algorithms from 
the sparse, limited-view, and low-SNR data routinely encoun-
tered in these applications. 

The development of MBIR methods has shown that it 
is possible to achieve a similar image quality as that of the 
analytic reconstruction methods using about one-half or even 
one-fourth the typical number of measurements made [2], [20] 
at X-ray and neutron-CT instruments. This potentially enables 
two to four times more samples to be measured at these 
instruments than would have been possible when analytic 
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reconstruction methods were used. Another advantage of using 
the model in (2) is that the W matrix can be used as a simple 
means to adjust the relative weight of each measurement to 
reject subsets of measurements that are corrupted. Prior to the 
development of MBIR methods, the standard practice in sev-
eral SCT applications has been to leave out entire projection 
data sets corresponding to a specific orientation because of the 
corruption of a subset of the data, resulting in an inefficient 
use of the measurements. For example, in [2], the effective use 
of the weight matrix helped suppress streak artifacts due to 
beam blocking caused by the strong attenuation from a dia-
mond anvil cell sample holder [see Figure 2(b)] in a CT study 
about the behavior of materials under extremely high pressure. 
Finally, we note that while the quadratic data-fidelity term in 
(2) has been demonstrated to be useful across several SCT 
applications, alternate models derived by assuming the mea-
surements have a Poisson distribution of the form

	 ( ; ) ( ) ,logl y x Ax y Axi i i
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where M is the total number of measurements, have also been 
used along with regularizers of the form in (3) for low-dose 
SCT applications [6].

The MBIR approach using the models in (2) and (3) has also 
been developed for novel CT geometries. One such example is 
for laminography, where the sample is rotated about a tilted axis 
instead of the conventional perpendicular axis [see Figure 2(c)] 
to image samples that might otherwise heavily attenuate the 
beam and thereby require a very long scan time. The authors in 
[3] have developed an MBIR technique based on a new forward 
model term that incorporates the new acquisition geometry into 
the A matrix in (2). In addition to the benefits of enabling high-
quality reconstructions from sparse-view and low-SNR data, 
MBIR approaches are useful for such novel geometries because 

analytic reconstruction algorithms may not be readily available 
or can result in significant artifacts in the reconstructed images. 

Similar MBIR approaches have also been recently devel-
oped for single-particle cryoelectron microscopy [21], a widely 
used angstrom-scale 3D bioimaging technique in which the 
reconstruction involves inverting ultralow-dose data from par-
allel-beam projection images corresponding to arbitrary orien-
tations of the sample defined by a set of Euler angles. This line 
of research has demonstrated that it is possible to obtain high-
quality 3D reconstructions by using MBIR techniques despite 
the complicated geometry of acquisition associated with the 
SCT instrument, thereby allowing scientists to be able to have 
an additional control variable for their experimental acquisition.

Another powerful advantage of using MBIR methods for 
SCT is the ability to account for unknown calibration param-
eters associated with the measurement. In cases where the 
measurements are impacted by poorly calibrated detectors, 
conventional algorithms can produce reconstructions with 
significant artifacts. To address poorly calibrated data, the 
authors in [5] and [15] modified the forward model in (2) to 
account for parameters such as detector gains and offsets. For 
example, in dark-field electron tomography [15], the gains and 
offsets of the detector are typically not measured. To address 
this challenge, a forward model of the form

	 ( ; , , )l y x I d y I Ax d
2
1

W
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was proposed, where I is a diagonal matrix containing the un-
known gain associated with the detected signal at each pro-
jection orientation, and d is a vector containing the unknown 
offsets. Using this model along with constraints on I resulted 
in an algorithm that significantly improved the image qual-
ity compared to the traditional FBP method that was widely 
used in the field (see Figure 3). A similar approach [5] was 

MBIR Volume Rendering FBP (Analytic Reconstruction) MBIR
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FIGURE 3. A comparison of MBIR with FBP on an experimental high-angle annular dark-field electron tomography data set of titanium dioxide nanoparticles. 
The illustration includes (a) a 3D MBIR volume rendering and a single cross section from a 3D reconstruction obtained using the (b) FBP and the (c) MBIR 
approach. The data set contained 60 projection images of size 1,024 × 1,024 pixels measured in an angular range of ± 60º. In spite of the low SNR, sparse, 
limited-view data with unknown calibration parameters, the MBIR method significantly suppresses artifacts compared to the FBP method. This highlights 
how the use of powerful reconstruction algorithms can improve the imaging capability of SCT instruments. (Source: [15]; adapted with permission.) 
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used to address the challenge of poorly calibrated detectors, 
where each pixel in the detector has a different gain [as shown 
in Figure 2(d)], by modeling the unknown detector gains into 
the MBIR framework, leading to reconstructions that signifi-
cantly suppress the ring artifacts that commonly result from 
such miscalibrations (see Figure 4).

Finally, new forward models have also been formulated to 
address the challenge of outliers due to gamma/X-ray/neutron 
strikes and spurious scatter due to Bragg diffraction when 
imaging samples that contain single-crystal domains. Because 
it is complicated to explicitly develop a physics-based model 
for such data, researchers have used new data-fidelity terms 
based on heavy-tailed distributions for the l in (1) including the 
generalized Huber function [5], [14] and the Student t function 
[22] (see Figure 5) in the MBIR framework. Specifically, new 
forward models of the form

	 ( ; ) ( ) ,l y x y Ax W
2
1 C= -^ h � (6)

where : , ( ) ( ),R R e ei
MM

i1" cC C R= =  and c  is of the form 
shown in Figure 5, have been used in [5], [14], and [22]. 
While it is more complicated to find a minimum of the 

resulting cost function, such an algorithm can further 
improve image quality compared to baseline MBIR algo-
rithms based on quadratic data-fidelity and analytic recon-
struction algorithms.

Time-resolved CT
SCT is also used to image the temporal dynamics of an ob-
ject that is undergoing change in response to external stimuli, 
such as varying temperature and pressure. This mode of im-
aging, commonly known as 4D CT, is used to image the evo-
lution of samples in three dimensions with respect to time. 
In materials science, 4D CT is used to study dynamic phe-
nomena, such as solidification, phase transformations, crack 
formation, and battery degradation. 4D CT is performed us-
ing a variety of radiation sources that include X-rays, elec-
trons, and neutrons, at resolutions ranging from nanometer- 
to micron-length scales mostly using the setup of the type 
in Figure 1(a). 

One way in which 4D CT has been performed is by 
subjecting the material to the desired stimuli (like a cer-
tain pressure), acquiring a conventional CT for that spe-
cific stimulus point and repeating the process for different 
stimuli. The measurements corresponding to each CT scan 
are then reconstructed into a single 3D volume of the 4D 
reconstruction. Indeed, the 3D MBIR methods of the section 
“Volumetric CT” can be directly applied to these scenarios 
to reduce the time required to collect the data for a single 
reconstruction. However, if the goal of the study is to per-
form in situ imaging of the dynamics of rapidly changing 
material properties, then the overall problem becomes sig-
nificantly more challenging.

Figure 6 illustrates a data-acquisition scheme for 4D CT 
of a sample that is changing continuously in the course of the 
measurement. To conduct in situ 4D CT, the sample is rotat-
ed continuously about a single axis, and the projection data 
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FIGURE 4. A single (cropped) cross section from a 3D reconstructed 
volume of a carbon fiber data set acquired using a synchrotron X-ray 
instrument. (a) Because of miscalibrated detectors, direct use of the 
analytic algorithm results in a reconstruction with ring artifacts. (b) How-
ever, the use of a specially designed MBIR method suppresses the ring 
artifacts while preserving detail and reducing noise. (Source: [5]; adapted 
with permission.) 
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FIGURE 5. Penalty functions used for robust MBIR. In several SCT appli-
cations, the measurements can be corrupted by outliers due to strong dif-
fraction from crystalline samples, and gamma-ray/X-ray/neutron strikes 
on the detector in addition to detector noise. By using penalty functions 
based on heavy-tailed probability density functions, such as the general-
ized Huber function or the Student t function instead of the conventional 
quadratic function (dotted line) for the data-fidelity term, it is possible to 
obtain high-quality reconstructions with minimal pre/postprocessing.
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are measured using a low-exposure setting on the detector 
to reduce motion blur. Each measurement corresponds to the 
projection of the sample at a certain time and orientation with 
respect to the incident beam. Obtaining a 3D reconstruction 
corresponding to each time point is not possible because we 
only have a single projection image corresponding to that state 
of the sample. Therefore, algorithms designed for 4D CT of 
continuously varying samples have used different strategies to 
acquire and process the data. The most common approach is 
to group the data corresponding to a few orientations (see Fig-
ure 6) and perform a 3D-CT reconstruction for each set with 
the implicit assumption that the sample does not change in the 
time window corresponding to each set. However, because of 
the widespread use of analytic reconstruction algorithms, there 
has been a tendency to believe that each set needs to contain 
measurements that cover a full angular range (typically 180°) 
and that a large number of such measurements (of the order of 
a few thousand for typical detectors) is required to obtain high-
fidelity reconstructions. 

While some of these challenges can be overcome in spe-
cific situations (for example, the imaging of samples that are 
exhibiting a periodic motion [23]), the overall use of analytic 
reconstruction approaches has limited the application of 4D 
CT to the imaging of relatively slow processes. To address the 
challenge of obtaining high-fidelity in situ 4D CT, research-
ers have adapted the MBIR methods discussed in the section 
“Volumetric CT” combined with synergistic changes in the 
way the data are acquired [25]. One prominent approach is the 
time-interlaced MBIR (TIMBIR) [4] method, in which the data 
are acquired such that the orientation angles ( ii  in Figure 6) 

corresponding to each set are sparsely spaced over an angular 
range of 180° and interlaced with the angles in the other sets. 
This interlacing offers increased measurement diversity com-
pared to a standard accelerated/sparse-view system in which 
the collection of ii  in each set is the same. Using a forward 
model that is similar to (6) for the data-fidelity term in (1), the 
authors proposed a regularizer of the form
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where sb  and tb  are the regularization parameters for spatial 
and temporal regularization, respectively, xl  corresponds to the 
3D reconstruction for set l, s|  and t|  represent the sets for the 
pairs of voxel neighbors across space and time, respectively, and 

iw j  and ,wmn  are weights associated with voxel pairs, which are 
set to be inversely proportional to the distance/time between the 
neighbors. Using the TIMBIR algorithm, it has been demon-
strated (see Figure 7) that it is possible to obtain high-fidelity 
4D reconstructions while accelerating the scan by a factor of 32 
compared to what would have been possible if the traditional 
protocol were used [4].

The use of regularizers that exploit local spatiotemporal cor-
relations to improve reconstruction fidelity [similar to (7)] has 
been widely studied in the research literature. While the regular-
izer (7) that exploits local spatiotemporal correlations is useful, 
researchers have also developed more sophisticated regular-
izers based on deformation fields or motion models [26],  

y 1
, θ

1,
 t 1

y2, θ2, t2 . . .

yn, θn, tn

. . .

. . .

. . .

. . .

First Set Second Set Lth Set

150

100

50

0

150

100

50

0

2 4 6 8 10 12 14 16
Projection Index (n)

2 4 6 8 10 12 14 16
Projection Index (n)

V
ie

w
s 

(°
)

V
ie

w
s 

(°
)

In
te

rla
ce

d 
S

ca
n

C
on

ve
nt

io
na

l S
ca

n

2 4 6 8 10 12 14 16

(a) (b)

FIGURE 6. An illustration of the principle underlying 4D CT of samples that are varying continuously based on the geometry of Figure 1(a). (a) In this 
case, each measured projection image ( )yi  corresponds to a specific orientation ( )ii  and duration of time depending on the exposure and frame rate of 
the detector. (b) The projections can be acquired by gradually orienting the sample in a 180° range or by using an interlaced scan, as shown in the plots. 
In theory, each projection corresponds to a different state of the underlying 3D object. However, in practice, reconstruction algorithms are designed by 
assuming small variations, grouping collections of projection images, and obtaining a 3D reconstruction corresponding to each collection.  
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demonstrating that it is possible to further improve the quality of 
the MBIR approaches for 4D CT. Other approaches that enforce 
spatiotemporal sparsity by relying on the similarity between 
nonlocal image patches have also been explored. In summary, 
the key advantage of using MBIR approaches is that the mea-
sured data can be grouped in several different ways (each set 
potentially corresponding to sparse, low-SNR, and limited-view 
sets) and jointly used for reconstruction, thereby enabling high-
fidelity images at unprecedented temporal resolutions.

Accelerating MBIR for large data sets
While methods to accelerate MBIR depend on the specifics of 
the forward model, much of the recent research is focused on 
conventional parallel-beam CT using models of the form (2) 
and (3) because of its widespread use across SCT applications. 
Broadly, the solutions to the MBIR cost function based on (2) 
and (3) for conventional CT can be categorized into parallel 
update methods (like gradient descent) and sequential update 
methods (like coordinate descent [16]). In either case, such al-
gorithms are computationally expensive since they involve a 
large number of forward projection (multiplication by A) and 
backprojection (multiplication )At  operations, which are typi-
cal in any iterative solution to the cost-function minimization. 
For 4D CT, this problem is compounded since the number of 
views can be an order of magnitude larger than for 3D CT. 
The computational complexity of the forward and backward 
projection operations also increases with the size of the recon-
structed volumes. Thus, it becomes difficult to obtain real-time 
feedback on the success of an experiment because of the long 
computational times of MBIR algorithms. Furthermore, tun-
ing of the regularization and other free parameters becomes 
tedious in the absence of fast reconstructions. Thus, it is impor-
tant to speed up MBIR algorithms to increase their adoption 
for SCT.

One popular approach to speed up MBIR is to use novel 
optimization techniques that hasten algorithmic convergence. 
The techniques to improve algorithmic convergence are typi-
cally dependent on the choice of the optimization algorithm 

used for reconstruction. Multiresolution approaches use 
reconstruction at coarser resolution scales to initialize recon-
struction at a finer resolution. Such approaches are typically 
used to improve the convergence of iterative coordinate 
descent (ICD) algorithms since ICD has poor low-frequency 
convergence [4], [15]. Another approach to speed up MBIR 
is to use high-performance compute (HPC) clusters for dis-
tributed parallel computing [27]–[29]. This approach relies 
on modifications to existing optimization algorithms that 
enable distributed computation on supercomputing HPC 
clusters. In [4], an approach to distributed parallel 4D CT is 
presented in which several 2D slices of each 3D volume over 
multiple time frames are reconstructed in parallel. However, 
this particular strategy of parallelizing over several 2D slices 
provides limited speedup improvements since the reconstruc-
tion of each slice is computationally expensive. Recently, 
algorithmic approaches for parallel reconstruction of voxels 
within each slice have also been proposed. These large-scale 
parallelization approaches have led to a dramatic accelera-
tion of reconstruction times of large volumes by distributing 
the computation across thousands of cores—enabling recon-
structions of size 2,160 # 2,560 # 2,560 in about 24 s using 
146,880 cores of an HPC cluster [27].

Regularization parameters for MBIR
The eventual goal of SCT scans is either to discover new fea-
tures of scientific relevance (like the appearance of a crack 
from a material under stress) or to perform a measurement 
(such as the porosity of a manufactured part) from the re-
constructed volumes. The choice of regularization function 
and the associated parameters have a significant impact on 
the quality (noise and resolution) of reconstructions obtained 
using the MBIR approach. Therefore, algorithms to automati-
cally choose the regularization parameters that produce im-
ages that maximize the performance of the end goal will be 
impactful. However, because of the diversity of measurement 
scenarios, samples scanned, and resolution values, the task 
of automatically choosing regularization parameters even for 
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FIGURE 7. 4D CT of growing dendrites in a slowly cooled Al–Cu alloy measured using synchrotron-based X-ray CT using the TIMBIR method [24]. A few 
reconstructed volumes from the 4D reconstruction that contain 3D frames every 1.8 s at a voxel resolution of approximately 1 μm, showing that it 
is possible to obtain high spatiotemporal resolution using MBIR approaches. 

Authorized licensed use limited to: Purdue University. Downloaded on May 17,2022 at 13:10:03 UTC from IEEE Xplore.  Restrictions apply. 



40 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2022   |

a fixed choice of regularization function of the form in (3) is 
challenging. Furthermore, the regularization parameters are 
often dimensionless quantities that do not have a straightfor-
ward interpretation for end users of SCT instruments, making 
them complicated to set in an intuitive manner.

While some general approaches for setting the regulariza-
tion parameters in the context of model-based reconstruction 
have been proposed ([30] and references therein), they have 
not been widely adapted for SCT. These approaches can be 
broadly categorized as methods that require evaluation of 
multiple reconstructions (L-curve, generalized cross valida-
tion, and so on), those that set the value based on “balanc-
ing” the data-fidelity and regularization terms, and Bayesian 
methods that jointly estimate the regularization parameter 
and reconstructions. The previous approaches are not guar-
anteed to produce reconstructions of the best quality matched 
to the task for which SCT is being carried out. The extensions 
of these methods for applications like 4D CT and hyperspec-
tral CT have also not been explored. Current adaptations of 
MBIR for SCT have mainly relied on an empirical choice 
of parameters to attain some desirable visual image qual-
ity (a certain level of noise, sharpness of edges, and so on). 
Typically, the parameters are varied; a few slices from the 3D 
volume are reconstructed to manage the computational com-
plexity, and for each choice of parameters the reconstruction 
is evaluated, sometimes based on a predefined metric [31]. 
In summary, the regularization parameters for SCT applica-
tions have largely been set in an empirical manner, making 
the automated choice of these parameters an important future 
research direction.

Deep learning (DL)-based CT reconstruction
DL-based algorithms have recently been developed to address 
several challenges that occur in the context of CT reconstruc-
tion [32]. These algorithms can be broadly categorized into it-
erative and noniterative approaches [12]. Iterative approaches 
to DL are based on explicitly deriving the iterative updates that 
result from solutions to the MBIR formulations of the section 
“Volumetric CT” and then replacing certain blocks with train-
able deep neural networks (DNNs) to obtain high-quality re-
constructions. By contrast, noniterative approaches are based 
on training a DNN to learn to preprocess the measurements 
followed by the use of a conventional analytic reconstruction al-
gorithm. Alternately, noniterative deep learning (NIDL)-based 
algorithms can be applied in the reconstruction domain by de-
signing a DNN to learn to suppress common artifacts that occur 
when using analytic reconstruction algorithms. In the context of 
SCT, NIDL-based approaches have garnered significant inter-
est because of their low computational complexity at inference 
time and simple portability to GPUs that can enable fast recon-
structions for the large data sets from SCT instruments.

While NIDL-based reconstruction has been widely explored 
in the context of applications such as medical X-ray CT, there 
are several challenges in adapting these methods for SCT appli-
cations. First, SCT instruments are used to scan a wide variety 
of samples; therefore, the training data for DNNs must be cho-
sen carefully. From an algorithm designer’s perspective, it may 
be impossible to obtain sufficient data to train a single generic 
DNN that can be applied for any sample that has to be imaged 
under different measurement scenarios (geometry, number of 
views, SNR, and so on). Furthermore, obtaining high-quality 

reference data sets to train neural net-
works can be time consuming/expen-
sive; therefore, in SCT applications 
we might only be able to make a very 
small number of reference measure-
ments. Finally, the central prob-
lems associated with SCT are high 
dimensional, involving 3D spatial and 
4D spatiotemporal reconstructions. 
This leaves open the question of how 
to effectively adapt popular DNN 
architectures that are designed for 
2D imaging applications, such as the 
U-Net [33] and DnCNN [34], to the 
multidimensional case.

Supervised NIDL algorithms have 
been developed for SCT, mainly 
in the context of scanning collections 
of similar samples, 4D CT, or those 
situations for which a 3D model is 
available, as shown in Figure 8. If the 
goal of an experiment is to acceler-
ate the measurement of a large col-
lection of similar samples (a set of 
rocks, additively manufactured parts, 
and so on), then one or more of the 
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FIGURE 8. Illustration of approaches used for DL-based SCT. The training data are either generated 
from a reference scan of a representative sample or from a CAD-based model when appropriate. 
Because of the diversity of samples to be measured using SCT, it is challenging to train a single 
general-purpose neural network that works across a wide variety of samples; hence, current research 
has focused on training neural networks for a specific collection of samples. 
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samples can be scanned in a manner such that we can obtain 
training data for a DNN that is designed to obtain high-quality 
reconstruction from sparse/limited-view/low-SNR data. A 
variety of different approaches to obtain training data, choice 
of network architecture, and loss functions have been explored 
in the context of developing NIDL for SCT. For example, in 
[36] an NIDL approach was developed to obtain high-quality 
reconstruction from low-dose X-ray CT data. A few pairs of 
low-dose and high-dose projection images were measured, fol-
lowed by the use of an encoder–decoder-based DNN trained 
using a Wasserstein and perceptual loss function to map 
between the low-dose and high-dose projection data. Since the 
data are extremely limited, the acquired images were split into 
smaller patches and data-augmentation techniques were used 
to stably train the DNN, which has a very large number of 
parameters. The trained network was then used to obtain high-
quality CT reconstruction by processing new low-dose mea-
surements using the DNN followed by the use of an analytic 
reconstruction approach—both steps can be performed rapidly 
for the large data sets encountered in this application. Another 
NIDL approach for SCT has involved measuring a complete 
low-dose and regular-dose CT scan from a reference sample 
and reconstructing them using an analytic reconstruction algo-
rithm. These data are used to train a DNN to map between the 
low-dose and high-dose 3D reconstruction. One challenge in 
such approaches is that there may only be a single 3D volume 
pair to train the network. To address 
this limited-data challenge, methods 
of splitting the 3D volume into smaller 
patches combined with data-augmen-
tation methods, such as flipping and 
rotation, are used to increase the size 
of the training set [37], [38]. 

In contrast to this approach, a new 
neural network architecture—mixed-
scale densenet (MS-DNet)—was 
proposed in [35], [39], which has an 
order-of-magnitude fewer parameters 
than other popular DNN architectures 
[33], [34] and a large-receptive field, 
making it a strong candidate for the lim-
ited training data encountered in SCT 
applications. Furthermore, to exploit 
the 3D structure of the data, instead of 
training a fully 3D DNN, the works in 
[35], [37], and [39] have used a 2.5D 
strategy [40], where the input to the 
neural network is a collection of adja-
cent slices (modeled as channels), and 
the target output is a single image. The 
overall approach of using NIDL based 
on making one high-quality volumetric 
reference has demonstrated that it is pos-
sible to accelerate acquisition and yet 
obtain high-quality 3D reconstructions 
from extremely sparse-view data (see 

Figure 9), which can be used to dramatically improve the through-
put of SCT instruments at shared facilities [41]. However, the gen-
eralization ability of different approaches, which drives the need for 
measuring new training data sets, remains an open question.

NIDL-based algorithms are also being used when a CAD 
of a part to be scanned is available (typical in the case of 
additively manufactured objects) [38]. The goal of these stud-
ies is to reduce the measurement time for high-resolution CT 
and to obtain high-quality reconstructions from samples that 
can potentially introduce nonlinearities, such as beam harden-
ing, into the measurement. For example, in [38] a framework 
was developed to generate training data for DNNs by simulat-
ing X-ray CT scans of a specific part in a polyenergetic X-ray 
micro-CT system. To obtain realistic data, a simulator was 
developed that embeds various defects in the CAD model, 
accounts for complex phenomena, such as beam hardening of 
the incident X-rays, and generates the sparse, low-SNR data 
that occur during an experimental CT scan. Since the ground 
truth is known, a 2.5D DNN was trained based on a convention-
al mean-squared loss function to suppress the noise, streaks, 
and beam-hardening artifacts that are encountered when using 
analytic reconstruction approaches. Once this network was 
trained, it was applied to experimental data of samples corre-
sponding to the CAD model, demonstrating promising prelimi-
nary results in obtaining higher-quality reconstructions from 
accelerated scans while enhancing the detectability of defects.

Gridrec
(150 Projections)

Gridrec
(1,500 Projections)

MS-DNet
(150 Projections)

300 µm

30 µm

(a)

(b)

FIGURE 9. Illustration of the use of DL-based reconstruction for a sparse-view and low-SNR synchro-
tron X-ray CT data set of an aluminum sample. The figure shows a (a) single cross section from a 3D 
reconstruction using an analytic reconstruction algorithm (gridrec) and a DL-based reconstruction 
based on the MS-DNet including a (b) patch selected from the original cross section to better highlight 
the details. Notice that using one-tenth the number of measurements typically made, the DNN-based 
approach is able to produce a higher-quality reconstruction compared to the analytic reconstruction 
approach. (Source: [35].) 
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Finally, self-supervised DL approaches have also been used 
for enhancing the quality of SCT reconstructions, especially 
when obtaining pairs of matched training data for supervised 
learning is not possible. A recent example is [42], where a DNN 
was trained from a single low-SNR experimental CT scan by 
splitting the acquired data in an effective manner. Specifically, 
by obtaining a pair of 3D reconstructions from subsets of the 
measured data, a DNN based on the MS-DNet [35] was trained 
to map between pairs of these reconstructed slices. Once 
trained, the same network can be applied to the entire noisy 
measurement to produce a high-fidelity reconstruction. The 
method, deemed Noise2Inverse, was further expanded in [43] 
and successfully applied to 3D and 4D CT. A substantial reduc-
tion in acquisition time was achieved while reducing noise and 
maintaining image quality. This type of self-supervised learn-
ing approach can be particularly useful for SCT applications, 
such as neutron CT or lab-based X-ray CT, where obtaining 
high-resolution scans is extremely time consuming.

Conclusions
In this article, we presented an overview of how advanced im-
age reconstruction algorithms are enabling improvements in 
the performance of SCT instruments. These algorithmic ad-
vances are a powerful complement to the decades of advances 
in hardware technologies in being able to obtain high-fidelity 
images while enabling a dramatic acceleration of the time re-
quired to make measurements. While the research highlighted 
in this article has demonstrated the potential for algorithm-
driven approaches for SCT instruments, there are still several 
open questions, including the choice of regularization function 
and parameters for MBIR methods, algorithmic- and compu-
tation-driven acceleration for larger data sets, and the further 
investigation of the choice of architecture, parameters and loss 
functions for DL-based reconstruction. A version of this article 
with an extended set of references is available at https://arxiv 
.org/abs/2104.08228. 
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