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ABSTRACT

Energy resolved neutron imaging (ERNI) is an advanced neu-
tron radiography technique capable of non-destructively ex-
tracting spatial isotopic information within a given material.
Energy-dependent radiography image sequences can be cre-
ated by utilizing neutron time-of-flight techniques. In com-
bination with uniquely characteristic isotopic neutron cross-
section spectra, isotopic areal densities can be determined on
a per-pixel basis, thus resulting in a set of areal density im-
ages for each isotope present in the sample. By preforming
ERNI measurements over several rotational views, an isotope
decomposed 3D computed tomograpy is possible.

We demonstrate a method involving a robust and auto-
mated background estimation based on a linear programming
formulation. The extremely high noise due to low count mea-
surements is overcome using a sparse coding approach. It
allows for a significant computation time improvement, from
weeks to a few hours compared to existing neutron evalua-
tion tools, enabling at the present stage a semi-quantitative,
user-friendly routine application.

Index Terms— neutron imaging, time-of-flight, neutron
computed tomography, material decomposition

1. INTRODUCTION

Since neutrons interact with the nucleus, rather than the
electron shell such as X-rays, protons, or electrons, neutron
radiography can offer complementary information to more
conventional radiography probes. With neutron radiography,
distinctive attenuation cross-sections, that depend both on the
isotopic compositions and incoming neutron energies, can re-
sult in contrast mechanisms and material penetrabilities that
are fundamentally different from x-rays [1]. Moreover, with
the advent of short-pulsed spallation neutron sources capable
of producing intense and wide neutron spectra, and ultra-
fast, pixel dense neutron detectors coming to market [2, 3],
neutron radiographs can be further resolved based on the en-
ergy of the incoming neutrons using neutron time-of-flight
(TOF) techniques [4]. This advanced technique, known as
energy resolved neutron imaging (ERNI), has been devel-
oped at several neutron facilities around the world, such as
ISIS [5], LANSCE [6], and J-PARC [7], with broad appli-
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Fig. 1. From ERNI to material decomposed CT

cations ranging from nuclear fuel development [8] to gas
pressure measurements [9] to 2D temperature mapping [10].
Of particular interest is the application of ERNI with epi-
thermal neutrons, where many neutron absorption resonances
are observed throughout the spectrum. The underlying iso-
topic areal densities can be measured by fitting known cross
section spectra to the measured energy-dependent transmis-
sions on a per-pixel basis. This technique allows for not
only 2D spatial mapping of specific isotopic distributions, but
also 3D reconstruction of the isotopic density distribution by
performing ERNI measurements over many rotational views
and subsequent computed tomograpy (CT) reconstruction.
Compared to dual-energy CT [11] which uses two energies,
in hyperspectral CT hundreds or thousands of energies can be
leveraged to infer material quantities.

To date, the typical analysis process of ERNI measure-
ments have proven to be cumbersome and computationally
intensive, with the use of nuclear reaction codes, such as
SAMMY [12]. With fitting routines taking seconds per trans-
mission spectrum of a single pixel, analysis using SAMMY
is computationally intensive and its application to large scale
CT and radiography can require months, of computation time
to render a single CT data set. Given these challenges, there
is a great need for faster analysis tools that take advantage of
state-of-the-art image enhancement techniques.

In this paper we present an efficient and comprehensive
methodology to compute material decomposed radiographs
and 3D reconstructions from ERNI radiography measure-
ments (see Fig. 1). We demonstrate the method on real data
acquired at Flight Path 5 of the 20 Hz spallation neutron
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source at LANSCE [6] of the Los Alamos National Labora-
tory. Reliable background correction is essential for accurate
computation of the transmission spectra. Although explicit
formulations of the background have been proposed [1], in
practice this task is not performed in a standardized way [8].
We propose a robust, linear programming approach that is
reproducible and scales computationally well with the size
of the CT data set. The reconstruction of the material de-
composed areal density maps is based upon a model-based
iterative approach. Since ERNI measurements typically suf-
fer from extremely poor statistics due to the flux limitations
of even the world’s most intense neutron sources, incorporat-
ing a Poisson counting model and Bayesian formulation in
our approach helps overcome the severe noise.

2. RECONSTRUCTION MODEL

In this section, we derive the basic equations of the physical
measurements taken in the hyperspectral tomographic sys-
tem. In short, we first compute a material decomposition
from the hyperspectral measurements and then compute indi-
vidual, material decomposed volumetric CT reconstructions.
This has the advantage of reducing the dimensionality in a
meaningful way, while reducing the effects of noise.

2.1. Hyperspectral Model

Let αoi,k and αbi,k be the observed neutron counts of the object
scan (with sample) and blank scan (without sample), respec-
tively, at projection i and TOF bin (or energy bin) k. Then, it
is assumed that the object and blank counts are given by

αoi,k = λoi,k + βoi,k and αbi,k = λbi,k + βbi,k , (1)

where λ denotes signal counts and β the background counts
whose estimation is described in section 2.4. With all these
terms known, the attenuation, Y , is

Yi,k = − log

(
λoi,k
λbi,k

)
= − log

(
αoi,k − βoi,k
αbi,k − βbi,k

)
, (2)

where the transmission is referred to as

Ti,k =
αoi,k − βoi,k
αbi,k − βbi,k

. (3)

Additionaly, the transmission from (3) relates the attenu-
ation density of the sample through Beer’s law,

Ti,k = exp(−
∑
j

Ai,jUj,k +Bi,k) , (4)

where A is the system matrix modeling the tomographic pro-
jection, Ai,j corresponds to ith projection with the jth voxel,
Uj,k is the attenuation density of the jth voxel at the kth TOF
bin, and B is a noise matrix capturing the modified counting
noise. By equating (3) and (4) we can thus relate the mea-
surements to the unknown and desired quantities, Ui,k,

Y = AU +B , (5)

where Y is the matrix of energy-resolved attenuation mea-
surements. B can be modeled as white Gaussian noise but
to justify this consider again (2). As λi,k and βi,k model in-
dependent counting events, we assume independent Poisson
statistics. The variance of the attenuation, Yi,k, given the at-
tenuation density, U , is approximated as

var(Yi,k|U) ≈
αoi,k + βoi,k

(αoi,k − βoi,k)2
+

αbi,k + βbi,k
(αbi,k − βbi,k)2

, (6)

since for any differentiable function, f , and a random vari-
able, X , var(f(X)) ≈ var(X)[∂f(u)/∂u]2|u=X . Note that,
as expected, the uncertainty of the attenuation explodes if the
counts get dominated by background. Let V refer to the in-
verse variance in matrix form, where

Vi,k = 1/var(Yi,k|U) and Vi = diag{Vi,∗} (7)

so that Vi is the inverse covariance matrix of the ith row of
Y given U . Using this model, the conditional negative log-
likelihood of the hyperspectral data, Y , can be derived to be

− log p(Y |U) =
1

2

∑
i

‖Yi −AiU‖2Vi
=

1

2
‖Y −AU‖2�V ,

(8)
where we define the weighted norms ‖y‖2B=

∑
i,j yi Bi,j yj

for a vector, y, and ‖Y ‖2�B=
∑
i,j Y

2
i,jBi,j for a matrix, Y ,

and where Yi = Yi,∗ is the ith row of Y and Ai = Ai,∗ is the
ith row of A.

2.2. Material Decomposed CT Model

Directly optimizing the negative log-likelihood of (8) is not
very practical for several reasons. It is assumed that the num-
ber of energy bins, Ne, is very large (several thousands) and
the measurements are very noisy, thus directly solving for the
hyperspectral attenuation densities, U , would imply comput-
ing a separate noisy CT for each energy which would make
each reconstruction virtually unusable. Instead, assuming
only a small number of relavant isotopes, Nm � Ne, with
distinct cross section spectra present, the dimensionality and
noise properties can be drastically improved.

More specifically, we represent the unknown attenuation
density, U , as a composition of materials using the model

U = XD , (9)

where X is the Nv×Nm matrix representing the material de-
composed reconstruction, Nv is the number of voxels, and D
is the Nm × Ne dictionary of spectral responses (cross sec-
tions) for each isotope. Similarly, the attenuation measure-
ments are modeled as a composition of materials

Y = ZD +B , (10)
where Z = AX is the Np×Nm matrix of areal densities and
Np is the number of projections measured. Combining these
equations, the forward model for our material decomposed
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tomographic data is given by

− log p(Z|X) =
1

2

∑
i

‖Zi −AiX‖2Wi
. (11)

In this case, the inverse covariance matrices, Wi, are not nec-
essarily diagonal and can be approximated from the original
covariance matrices, Vi,

Wi = E
[
(BD+)>(BD+)

]
= (D+)>ViD

+ , (12)

where D+ = D>(DD>)−1 is Ne × Nm Moore–Penrose
pseudo-inverse of D.

This new model has the immediate benefit of reduced di-
mensionality, but it retains the problem that the covariance
matrices, Wi, are not necessarily diagonal, as opposed to the
Vi’s. However, in many cases the Wi matrices can be ap-
proximated as being diagonal if the dictionary entries of the
cross section matrix, D, are approximately orthogonal. With
this assumption, one can separate the weights into Nm diago-
nal matrices, W (m), where we define (W (m))i,i = (Wi)m,m
such that we get Nm individual conventional CT problems

− log p(Z|X) ≈ 1

2

∑
m

‖Z(m) −AX(m)‖2W (m) , (13)

where X(m) = X∗,m and Z(m) = Z∗,m are the material
decomposed reconstructions and sinograms, respectively. In
this case, each material reconstruction, X(m), derived from
material density map, Z(m), can be computed independently
with the use of a CT reconstruction algorithm minimizing the
log-likelihood of (13) for the unknown, X(m), in conjunction
of an appropriate prior model.

The reconstruction follows a two step approach. In the
first step the areal density maps, Ẑ, are estimated as described
in section 2.3. In the second step the tomographic reconstruc-
tion is estimated using the likelihood model of (13) with the
estimate, Ẑ, in the place of Z.

2.3. Material Decomposition of Neutron Attenuation

Before the tomographic reconstruction is performed, the ma-
terial decomposed sinogram, Ẑ, is estimated from the hyper-
spectral attenuation measurements, Y , given by (10), Y =
ZD + B. This quantity is estimated via a variant of Basis
Pursuit Denoising (BPDN) [13]

Ẑ = arg min
Z≥0

{
‖D>Z> − Y >‖2�V +ρ‖Z>‖1

}
, (14)

where ρ > 0 is a regularization parameter that controls the
strength of the `1 regularization term that promotes a sparse
solution of low noise material maps. Note that this is a cus-
tom form of BPDN with an unconventional data weighting
due to the fact that (D>Z> − Y >) and V are matrices. The
positivity constraint on the areal densities narrows down the
search manifold to the non-negative quadrant. Since the cost
function of (14) is separable across projections, the problem
can be solved independently for each pixel.

Importantly, equation (14) dramatically reduces the di-

Fig. 2. Neutron counts over TOF with background estimate
on a log-log scale. Sample is a 2.54 mm thick tantalum foil

mensionality of the problem. This is because the number of
columns in Z is the number of materials, Nm (6 in our exper-
iment), while the number of columns of Y is the number of
TOF bins, Ne (2290 in our experiment).

2.4. Background Estimation

As (2) describes, the observed neutron counts, αi,k, are mod-
eled as a sum of direct counts, λi,k, and background counts,
βi,k. Fig. 2 shows the neutron count spectrum with a tanta-
lum foil sample. Due to the strong neutron absorption reso-
nances of tantalum, deep dips in the spectrum are visible. For
the deepest of those dips, the direct counts are assumed to be
approximately zero. Further, when displayed in the log-log
domain, as in this figure, it is assumed that the background is
a smooth function within the energy region of interest. The
background estimate is then intuitively the highest, smooth,
lower bound of the neutron counts. We will first describe the
background correction method for a single, low noise neutron
spectrum and later illustrate how to deploy this method for
high noise imaging applications.

More precisely, let α = [αi,1, ..., αi,Ne
]> and β =

[βi,1, ..., βi,Ne
]>be the vectors corresponding to the total and

background counts, respectively, while t = [ti,1, ..., ti,Ne
]>is

the vector of corresponding TOF’s. In the log-log domain,
we define α̃ = logα, β̃ = log β, and t̃ = log t. The back-
ground, β̃, is a smooth function and thus we are choosing a
polynomial of low degree as a functional

β̃ =
∑
n

t̃nxn = G(t̃)x , (15)

where x = [x0, x1, ...]
> are the polynomial coefficients and

Ax is the matrix formulation. To express the area under the
curve in a similar way we have∫ t̃N

t̃1

G(t̃)x dt̃ =
∑
n

xn
t̃i+1
N − t̃i+1

1

i+ 1
= −c>x . (16)

Written this way it matches the linear programming form,

x̂ = arg min
x, G(t̃)x≤α̃

{
c>x

}
, (17)

where the solution for the background is β = exp(G(t̃)x̂).
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This method solves the background estimation for a sin-
gle, low noise spectrum, however, to work by itself for the
whole 2D radiograph the count measurements in a TOF neu-
tron imaging facility are usually too noisy and possibly lack
the presence of totally opaque resonances. Thus, for the 2D
radiographs it is assumed that a single background estimate,
β∗ can be obtained from a reference measurement, α∗, or ref-
erence region and that the background for individual projec-
tions, i, is proportional to the reference background

βi,∗ = riβ
∗ and ri =

∑
k∈Ω αi,k∑
k∈Ω α

∗
k

. (18)

The scale factor, ri, is computed as the ratio of neutron counts
in TOF regions, Ω, that are assumed to be transparent to neu-
trons and the low noise α∗ and β∗ are the reference total
counts and background counts, respectively.

3. EXPERIMENTAL RESULTS

To demonstrate our approach we use ERNI measurements
from LANSCE’s [6] neutron source, a neutron sensitive MCP
detector [2], in conjunction with four Timepix readout chips
with 55×55 µm2 pitch [3]. For the CT measurement with
100 views, 2290 TOF bins each with a bin width of 320 ns
was used over an energy range of approximately 1 eV to 60
keV. The sample consists of UPuZr transmutation fuel slugs,
in a double-walled cylindrical steel container, with resonant
isotopes in that energy region assumed to be 237Np, 238U,
239Pu, 240Pu, 241Am; and a 1H isotope placeholder capturing
all non-resonant isotopes that might be present (e.g. Zr). The
material decomposition of (14), reconstructed areal density
maps, Ẑ, of a single view are shown in Fig. 3. The BPDN
problem is optimized using an ADMM [14] formulation and
the SPORCO [15] Python package.

Fig. 3. Areal density maps (Z) of a single radiograph

The fast, model-based parallel beam reconstruction soft-
ware, SVMBIR [16] was used for the CT reconstruction, op-
timizing the log-likelihood from (13) with a q-GGMRF prior
model serving as regularization term [17] for each isotope in-
dependently as in (13). In addition, an average attenuation
sinogram can by computed by averaging Y across the ener-
gies. The CT reconstruction (axial slices) for the average at-
tenuation, the non-resonant group, and for the 241Am isotope

12/14/20Los Alamos National Laboratory 4
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Fig. 4. Material decomposed CT Reconstruction (X)

Table 1. Computation time comparison of the material
decomposition. (*: interpolated, **: extrapolated)

Compuation Time SAMMY [12] Proposed

Time per pixel spectrum 1.72 s 2.18 ms*
Time per CT data set 248.8 days** 7.58 h

are shown in Fig. 4. With this reconstruction, it is clearly visi-
ble that both the fuel core and the steel container contain non-
resonant isotopes, presumably Zr and Fe, whereas the 241Am
only shows up in the center of the fuel slug. Also, as a void
in the 7 o’clock segment off the center shows up in all isotope
maps, it can be assumed that this is a void.

The computation time is dominated by the material de-
composition from (14) and for the data set consisting of 504×
248 × 2290 × 100 data points (pixel, pixel, TOF bins, view
angles) only approximately 7.58 hours on a 8-core 2.4 GHz
machine was required. We estimate (by extrapolating from
a single-spectum analysis) that it would have taken approxi-
mately 8.3 months to solve the same problem using SAMMY
(see Tab. 1). The estimated densities from a single low noise

Table 2. Estimated Areal densities for a single spectrum in
[atoms / 1000 barn]. (* SAMMY did not converge using 1H)

Areal Densities SAMMY [12] Proposed
237Np 0.471 0.577

238U 10.665 1.163
239Pu 1.930 2.284
240Pu 0.540 0.001

241Am 0.493 0.727
1H equivalent N/A* 0.031

spectrum are shown in Tab. 2. Although most isotopes have
been estimated relatively similar to the SAMMY benchmark,
both 238U and 240Pu show large deviations. This is attributed
to the fact that those isotopes show very few but very in-
tense resonances which cause the signal to reach into the noise
floor. Thus, to call the proposed tool truly quantitative, an ex-
tensive comparison and evaluation is necessary, however we
believe that the so far extreme speed benefits are providing
a very promising tool for qualitative analysis with possibly
future quantitative verification.
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