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Abstract—Sparse-view CT reconstruction is important in a
wide range of applications due to limitations on cost, acquisition
time, or dosage. However, traditional direct reconstruction meth-
ods such as filtered back-projection (FBP) lead to low-quality
reconstructions in the sub-Nyquist regime. In contrast, deep
neural networks (DNNs) can produce high-quality reconstruc-
tions from sparse and noisy data, e.g. through post-processing of
FBP reconstructions, as can model-based iterative reconstruction
(MBIR), albeit at a higher computational cost.

In this paper, we introduce a direct-reconstruction DNN
method called Recurrent Stacked Back Projection (RSBP) that
uses sequentially-acquired backprojections of individual views
as input to a recurrent convolutional LSTM network. The SBP
structure maintains all information in the sinogram, while the
recurrent processing exploits the correlations between adjacent
views and produces an updated reconstruction after each new
view. We train our network on simulated data and test on both
simulated and real data and demonstrate that RSBP outperforms
both DNN post-processing of FBP images and basic MBIR, with
a lower computational cost than MBIR.

Index Terms—Sparse-view CT, CT reconstruction, deep learn-
ing, Recurrent Stacked Back Projection, LSTM

I. INTRODUCTION

In many applications of computed tomography (CT), the
number of views that can be acquired is limited due to
cost, acquisition time, hardware constraints, or allowable X-
ray dosage. This motivates the challenging problem of re-
constructing high quality images from sparse-view CT data.
Traditional direct reconstruction algorithms such as filtered
back projection (FBP) depend on the assumption of Nyquist
sampling, hence can produce severe artifacts when given
sparse-view data [1]. Iterative reconstruction algorithms such
as model-based iterative reconstruction (MBIR) can dramati-
cally improve the quality of sparse view reconstructions, but
at the cost of higher computation [2]-[4].

More recently, the use of deep neural networks (DNNs) has
emerged as a fundamentally new approach to tomographic
reconstruction [5] with the advantages that a) it can greatly
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reduce computation, and b) given sufficient training data, it can
be trained to incorporate complex prior information [6]. One
way to use DNNs for CT reconstruction is to preprocess sino-
gram data [7]-[9] and then apply a standard reconstruction;
however, this approach does not fully utilize the capabilities
of DNNss in the image domain. A second approach uses DNNs
for post-processing of an image reconstructed using a simple
method such as FBP [10]-[12]; this approach leverages the
capabilities of DNNs in the image domain but does not have
full access to all sinogram data. Finally, direct reconstruction
from the sinogram domain using DNNs as in [6] is very
memory and computationally expensive [13].

In this paper, we introduce a direct-reconstruction DNN
method called Recurrent Stacked Back Projection (RSBP)
that uses single-view backprojections as sequential input to
a recurrent convolutional LSTM network, whose output is
then post-processed by a U-Net. The Stacked Back Projection
(SBP) maintains all information in the sinogram [14], while
the recurrent processing exploits the correlations between
adjacent views and produces an updated reconstruction after
each new view. We train our network on simulated data
and test on both simulated and real data and demonstrate
that RSBP outperforms similar DNN post-processing of FBP
images or SBP tensors and also outperforms basic MBIR, with
a lower computational cost than MBIR.

II. RECURRENT STACKED BACK PROJECTION

In Fig. 1, we illustrate the network architecture of our RSBP
method, in which individual backprojections are stacked in
the image domain and fed sequentially to a convolutional
LSTM, whose image output is then fed to a U-Net for final
reconstruction. In section II-A, we introduce the SBP tensor,
which contains all information from the sparse-view sinogram.
In section II-B, we introduce each component of our proposed
network in more detail.

A. Stacked Back Projection Tensor

We consider a CT reconstruction problem in which an
unknown image x € RN*YN is observed via N detectors
and M views to yield noisy measurements y € RN*M,
Each column vector y; € RN approximates the integral of
attenuation along the line with angle 6; according to the model

Yj :ij—i—wj, (1)
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Fig. 1: Conceptual view of RSBP architecture: a) The
single-view projections Z; are back-projected from a single
projection y;, then collected into a tensor called the Stacked
Back Projection. b) Each single-view back-projection is input
to the LSTM sequentially, then further processed by a U-Net.

where A; is the Radon transform operator with angle 6; = JM”
for j = {O 1,.,M — 1}, and w; € RY represents s1gna1-
dependent noise by w; ~ N(0,diag(5- exp(A;z))), where
Ao is the empty scan photon count.

To obtain the SBP tensor, we first apply single-view FBP
to each measured projection to obtain

Z; = Al(y;), )

where A; is the inverse Radon transform using a single-view
FBP operator with angle ;. As in [14], the images Z; €
RN*N are then stacked to form a rank 3 SBP tensor, in our
case with dimensions N x N x M:

Z ={Zy; Zy; ..; Zu }. 3)

In contrast to an FBP image, the SBP tensor contains all
information from sparse-view CT measurements. But like the
FBP, the SBP converts the complex spatial correlations in the
sinogram back to the image domain, which allows for the
use of efficient processing by convolutional neural networks
(CNNs), as shown in Fig. 2(b).

B. Convolutional LSTM Network with SBP

Two problems with the SBP as used in [14] are that it
requires advance knowledge of the number views and requires
that all the single-view backprojections be stored in memory.
That is, post-processing the SBP with a CNN as in Fig. 2(b)
treats each single-view back projection as an independent
channel, like RGB channels in a color image, and processes
these channels simultaneously.

y = rBP }—>{ cnN > x

sinogram Final Recon
(@)

y =—>{_sBp_}—{ onn >

sinogram Final Recon
(b)

1 Recurrent SBP

y —lb[ SBP HLSTMH CNN P> x

smogram Final Recon

Fig. 2: Evolution towards RSBP: a) CNN post-processing
of FBP image; b) simultaneous CNN post-processing of SBP
tensor; c) sequential input of SBP backprojections to convo-
lutional LSTM followed by CNN postprocessing.
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Fig. 3: RSBP architecture: The input SBP is fed sequentially
to a convolutional LSTM, with output then processed by a U-
Net using valid padding. With valid padding, the output image
is smaller than the input image, so we use only the central
region of the corresponding ground truth image to calculate
loss functions and quality metrics.

To address these problems, we introduce a convolutional
LSTM [15] to process these single-view backprojections se-
quentially. Most applications of recurrent networks such as the
LSTM involve time-dependent measurements, such as speech
processing, while most CT reconstruction methods use all
available views simultaneously. However, as shown in Fig. 1,
the SBP not only contains all single-view backprojections
but also is sequentially acquired. This sequential acquisition
process and the two problems identified above lead naturally to
propose a recurrent network. The advantage of a convolutional
LSTM in this context is that it has the spatial invariance of a
CNN and can be trained with sequentially acquired data. We
call this approach recurrent stacked back-projection (RSBP),
as shown in Fig. 2(c).

C. Network architectures

The full RSBP-CNN architecture is illustrated in Fig. 3,
which shows the initial processing by the LSTM followed
by a U-Net [16]. We first reshape the SBP tensor from
(Rows, Columns, Views) to (Views, Rows, Columns, Chan-
nels) and then feed this to the convolutional LSTM layer,
with kernel size 3 x 3 for both the input transformations
and recurrent transformations. From the LSTM we obtain a
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TABLE I: Setup for simulated X-ray data experiment

Projection Geometry:
Number of Views:

Parallel beam geometry
8 or 16 equi-spaced angles in [0, 7]

Pixel Pitch p:  0.186 cm
FOV:  47.616 cm
Water X-ray density p:  0.17 em™1 (~100 keV)
Photon dosage per proj (A\g): 1600

(Rows, Columns, Channels) tensor and pass it to a U-Net. We
use batch renormalization in most of the downsampling and
upsampling blocks for better convergence and stability of the
network [17], [18]. In the final layer, we use convolution with
a 3 x 3 kernel to generate a single output image.

III. IMPLEMENTATION

We implement and train RSBP-CNN using Keras with a
loss function described below. We use previously reconstructed
full-view CT data to serve as ground truth; we use 8 or 16
simulated projection views to serve as input to RSBP. We
evaluate the method on both simulated sinograms and real
sinograms.

A. Dataset Generation

We generate training and testing data using the ALERT Task
Order 4 dataset [19], which consists of 188 full-view sino-
grams and high-quality 3D reconstructions of packed suitcases
using data from an Imatron Scanner. First, we split the data
into 153 3D reconstructions for training and 35 for testing.
From each reconstruction, we randomly select 28 slices to
yield 4284 slices for training and 980 slices for testing. Next,
we generate simulated projections using the scaling and noise
modeling approach described in [20]. For each view angle 0,
we use the forward model

vy = (up) A (3o5) + @

here division by 1000 scales the image from (modified)
Hounsfield units' to units in which water is 1 and air is O,
A; is the raw radon transform for 6;, 1 and p are the water
X-ray density and pixel pitch, respectively, and w; ~ N(0, R)
with R a diagonal matrix with entries w to model
measurement noise. The physical constants are defined in
Table I.

From the scaled simulated sinogram y, we apply single-
view back projection and inverse scaling, then stack as in
Fig. 1 to generate the SBP. This process results in pairs of
ground truth images and corresponding simulated SBP tensors
in Hounsfield units. The SBP tensor is scaled back to units in
which water is 1 before sending to the NN, then scaled back
to Hounsfield units before evaluating the loss function.

B. Loss Function

For reconstructing an X-ray CT image for security applica-
tions, the range from 0 to 2000 Hounsfield units (HU) (air=0

I'We use modified Hounsfield units in which air is 0 and water is 1000.

HU, water=1000 HU) is critical. Therefore, we use a modified
MSE loss to train our models:

fF@)3, (5)

where x4 1S the ground truth (cropped to the valid region
as described in Fig. 3), & is the reconstructed image, f(z) =
and both x4, and = are in Hounsfield units.

LMSE = Hf(xtrue) -

oz
[«[+2000°
C. Training Process

We implemented all NN models in Tensorflow Keras and
used one NVIDIA Tesla V100 GPU for training. In order to
reduce memory requirements and increase batch size during
training [21], we used randomly cropped patches of size 128 x
128 from the SBP tensors (original image size 320 x 320) as
input and calculated the loss between the output (64 x 64) and
the center of the corresponding patches from the ground truth
images. In inference mode, we applied the trained model on
full image slices. We used the Adam optimizer with learning
rate = 0.0002. For each model, we trained for 120 epochs and
shuffled the training dataset after each epoch.

IV. EXPERIMENTS

We compare our proposed RSBP-CNN model with several
alternatives, including (a) MBIR [22] using the QGGMRF
prior, (b) FBP-CNN, and (c) SBP-CNN. FBP-CNN and SBP-
CNN, illustrated in Fig. 2, both use the architecture in Fig. 3
with a convolutional layer in place of the LSTM; we train
them with the same strategy use for RSBP.

We examine reconstructions using either 8 views or 16
views. In each of these cases we trained each of FBP-CNN,
SBP-CNN, and RSBP-CNN for a total of 6 trained networks.
We tested these DNN methods and MBIR on simulated data
as described above and on real sinogram data of 9 different
3D objects from the ALERT Task Order 3 dataset [23].

Since we apply the raw inverse radon transform on real
sinogram data, we apply inverse scaling to the SBP as before.
The parameters are the same as in Table I except that now u
is 0.159 em ™! (~130 keV).

In each reconstruction, we computed NRMSE (normalized
root mean square error) between reconstruction and ground
truth using

||xtrue - i’”Q

NRMSFE =
||mtrue||2

(6)
For results using real sinogram data, we use an MBIR recon-
struction with 720 views as ground truth.

Fig. 4 shows reconstructions with each of the 4 methods
using each of 8-view and 16-view sinogram data. The images
and NRMSE show that RSBP-CNN improves over SBP-
CNN, which improves over FBP-CNN, in both cases for both
8-view and 16-view sinogram data. RSBP-CNN eliminates
most of the streak artifacts seen in the MBIR and FBP-CNN
reconstructions and preserves more details than SBP-CNN.

The improvement from using SBP is consistent with results
of [14] and the fact that the SBP includes all sinogram data,
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Fig. 4. Comparisons of multiple reconstruction algorithms with simulated sinogram: Left 2 panels: Ground truth image
used to generate simulated sinogram data and a cropped detail used for display comparisons. Right panels: Reconstructions
using MBIR, FBP-CNN, SBP-CNN and RSBP-CNN. The top row uses 8 views and the bottom row uses 16 views. The
NRMSE is for the full image rather than the displayed cropped image. The display range is from 0 (air) to 2000 Hounsfield
units (HU). The RSBP-CNN reconstruction has more detail and lower NRMSE relative to the other methods.

which is not true of the FBP. The improvement from SBP-
CNN to RSBP-CNN is more subtle; in principle SBP-CNN
has all the information need to perform as well as RSBP-
CNN. We hypothesize that sequential processing of individual
backprojections promotes better use of correlations between
adjacent views; in addition, there may also be interactions
between our training scheme and the reduced memory require-
ments of RSBP relative to simultaneous processing of the SBP.

Fig. 5 repeats the experiment of Fig. 4 using real sinogram
data. In this case we use a full-view MBIR reconstruction as
ground truth to compute the NRMSE. Once again we see that
RSBP improves over SBP, which improves over FBP.

In Table II, we see that the performance gains from using
RSBP and SBP are consistent across multiple trials. That table
shows the mean and standard deviation of NRMSE over the
simulated test data (980 scans) and the real data (900 scans).
In all cases, there is a signifcant drop in NRMSE when going
from FBP-CNN to SBP-CNN and again from SBP-CNN to
RSBP-CNN. Hence RSBP shows real promise for truly sparse-
view reconstruction.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel, direct, deep learning
algorithm RSBP-CNN that combines SBP, LSTM, and U-Net
to reconstruct CT images from 8 or 16 view sinogram data.
Our method couples the representational efficiency of the SBP
as input with the computational and inferential efficiency of a
convolutional LSTM. The use of an LSTM brings the ability
to learn embedded order information from the sequentially-
acquired SBP, thus enabling better reconstruction than the

same network with a CNN in the first layer; LSTM also yields
a reduction in memory requirements due to the sequential
processing of back projections in the SBP. Our proposed
RSBP-CNN outperforms other methods in terms of visual
and metric comparisons on both simulated and real sinogram
data. Future work will investigate modifications to promote
the ability of a single RSBP-CNN to produce reconstructions
without specifying in advance the number of views.
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