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Abstract—Ptychography is a computational imaging technique
using multiple, overlapping, coherently illuminated snapshots to
achieve nanometer resolution by solving a nonlinear phase-field
recovery problem. Ptychography is vital for imaging of manufac-
tured nanomaterials, but existing algorithms have computational
shortcomings that limit large-scale application.

In this paper, we present the Projected Multi-Agent Consensus
Equilibrium (PMACE) approach for solving the ptychography
inversion problem. This approach extends earlier work on
MACE, which formulates an inversion problem as an equilibrium
among multiple agents, each acting independently to update a
full reconstruction. In PMACE, each agent acts on a portion
(projection) corresponding to one of the snapshots, and these
updates to projections are then combined to give an update to the
full reconstruction. The resulting algorithm is easily parallelized,
with convergence properties inherited from convergence results
associated with MACE. We apply our method on simulated data
and demonstrate that it outperforms competing algorithms in
both reconstruction quality and convergence speed.

Index Terms—Ptychography, Consensus Equilibrium, Coher-
ent Imaging, Phase Retrieval

I. INTRODUCTION

Ptychography is a computational imaging technique in
which a coherent scanning probe is moved across an object
while recording the resulting far-field diffraction pattern [1].
The probe is moved so that each illuminated region has sub-
stantial overlap with neighboring regions; this overlap provides
redundant information that can be used to computationally
retrieve the relative phase of the Fraunhofer diffraction plane.
In this way the full complex transmittance image can be
recovered from the intensity measurements, thus providing a
detailed visualization of the object. Ptychographic methods can
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achieve resolution on the scale of a few nanometers, which
makes them crucial for imaging manufactured nanomaterials.

A variety of numerical methods have been proposed for
iterative phase retrieval from phaseless measurements. One
class of methods uses alternating projections between a con-
straint set in the Fourier domain (to fit measured data) and a
constraint set in the physical domain (to enforce nonnegativity
or other properties). This class of methods includes error
reduction (ER) [2] and several variants, including hybrid input-
output (HIO) [2], difference map (DM) [3], averaged succes-
sive reflections (ASR) [4], and relaxed averaged alternating
reflections (RAAR) [5]. ER alternates projections between
the two constraint sets to update the estimate, while HIO
improves convergence by modifying the projection function
in the Fourier domain. ASR can be interpreted as the Dou-
glas–Rachford algorithm applied to phase retrieval problems
with a nonconvex Fourier constraint. The RAAR algorithm
further improves convergence with a relaxation strategy to
combine the ASR algorithm with the projection operator in
the Fourier domain. Scalable hetereogeneous adaptive real-
time ptychography (SHARP) [6] is a variant of the RAAR
algorithm for ptychographic image reconstructions. Though
these alternating projection methods are parallelizable, they
are not guaranteed to converge to an optimal solution [7].

Another class of algorithms derives from the ptychograph-
ical iterative engine (PIE) [8], as revised for serial pty-
chographic image reconstruction. Algorithms related to this
approach include PIE [8], extended PIE (ePIE) [9], regularized
PIE (rPIE) and mPIE [10]. In each iteration, the PIE-type
algorithms process the intensity measurements one at a time
to revise the estimates in a stochastic gradient approach [10].
The PIE algorithm and its variants have fast convergence rate.
However, the accelerated Wirtinger Flow (AWF) algorithm
[11] has been shown to have faster convergence rate and is
more robust to noise than earlier algorithms [11].
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In this paper, we present the Projected Multi-Agent Con-
sensus Equilibrium (PMACE) approach, which extends earlier
work on the Multi-Agent Consensus Equilibrium (MACE)
framework [12]. The MACE framework formalizes and ex-
tends solutions found by the Plug-and-Play algorithm (PnP)
[13], [14]. MACE formulates the inversion problem as a set
of equilibrium equations that balance the effect of multiple
agents, each with independent updates to a proposed solution.
In PMACE, each agent acts independently on a patch of the
complex transmittance, with each patch corresponding to the
measurements from one probe position. The updates to the
patches are then reconciled by a carefully chosen weighted
average to update the full reconstruction.

The resulting PMACE approach is easily parallelized and
is guaranteed to converge under appropriate hypotheses since
it inherits convergence results associated with the MACE
framework. We compare our method with competing al-
gorithms including AWF [11], SHARP [6], and SHARP+,
which is derived directly from RAAR [5] but which has a
different update function than SHARP. We apply our method
on simulated noise-free and noisy data and demonstrate that
it outperforms competing algorithms in both convergence rate
and reconstruction quality.

II. PROBLEM FORMULATION

In ptychography, an object is illuminated by a coherent x-
ray probe at various positions, and the exit wave from a given
probe position is recorded by a detector at the far-field Fraun-
hofer diffraction plane. The goal is to recover the complex
transmittance of the object from intensity measurements. In
this work, we assume the complex probe profile is known.

Let x ∈ CN1×N2 be the unknown complex transmittance,
and let d ∈ CNp×Np be the known complex probe illumina-
tion. For each probe location indexed by j ∈ {0, . . . , J − 1},
let zj ∈ RNp×Np be the measured data array recorded on a
detector with Np ×Np pixels.

We describe an idealized forward model taking transmit-
tance to measurements by first windowing x to obtain a
patch corresponding to one probe position, multiplying by the
complex illumination, then taking the Fourier transform. We
combine this with a Poisson distribution to model the detector
response as

zj = Pois(|FDPjx|2) , (1)

where F denotes the 2D orthonormal Fourier transform ma-
trix, D = Diag(d) is a diagonal matrix representing the
complex illumination, and Pj : CN1×N2 → CNp×Np is a
projection that extracts one patch from the complex image.
Here and below, the absolute value is applied pointwise.

We convert to amplitude in a patch by defining xj = Pjx
to be the patch corresponding to probe location indexed by
j and yj to be the square root of the measurement zj . This
gives measured amplitudes

yj =
√

Pois(|FDxj |2) . (2)

In our approach, the problem is solved using the maximum
likelihood (ML) estimate, which is given by

x∗ = arg min
x


J−1∑
j=0

fj(xj)

 , (3)

where fj(xj) is a cost function that enforces data fidelity.
Since the square root is an approximate variance-stabilizing
transform for the Poisson distribution, we use squared error as
a rough approximation of negative log-likelihood. This yields

fj (xj) =
1

2σ2
n

‖ yj − |FDxj | ‖2 , (4)

where σ2
n is an estimate of the noise variance in yj .

III. RECONSTRUCTION ALGORITHMS

In this section, we describe PMACE and SHARP+ for the
ptychographic reconstruction problem. The PMACE approach
extends the MACE framework, which formulates the inversion
problem using a set of equilibrium equations. SHARP+ is an
extension of the RAAR algorithm to ptychography.

A. PMACE Approach
To introduce the PMACE formulation for ptychographic

image reconstruction, we begin with the agent in our approach.
Each agent is an operator that updates the current estimate
of a single projection. In this work, we use probe-weighted
proximal maps as agents. The standard proximal map for fj
is

Lj(xj) = arg min
v

{
fj(v) +

1

2σ2
‖v − xj‖2

}
, (5)

which comes from the ADMM algorithm applied to minimize
the sum of the fj . This proximal map is reinterpreted in Plug-
and-Play [14] using a Bayesian framework, with fj as a data-
fitting term and the squared norm as a prior term for a Gaussian
distribution with mean xj and variance σ2/σ2

n.
However, illumination by d introduces uncertainty in the

estimate of xj , so we model the distribution of of v−xj by a
zero-mean Gaussian with variance proportional to |D|−2; we
incorporate this by replacing v − xj with Dv − Dxj inside
the norm. Since the discrete Fourier transform operator F is
orthonormal, we can also include it inside the norm to obtain

Fj(xj) = arg min
v

{
fj(v) +

1

2σ2
‖FDv −FDxj‖2

}
. (6)

Introducing new variables u = FDv and wj = FDxj , we
can obtain Fj(xj) from u∗ = FDv∗, where v∗ is the solution
of (6) and we use (4) to rewrite fj to get

u∗ = arg min
u

{
1

2
‖yj − |u|‖2 +

σ2
n

2σ2
‖u− wj‖2

}
. (7)

Since the complex argument/phase of u is not constrained by
yj , it must equal the phase of wj , so we can write u = r� wj

|wj | ,
where r is nonnegative, � is the Hadamard product, and the
fraction is 0 where wj is 0. Using this in (7), we have

r∗ = arg min
r

{
1

2
‖r − yj‖2 +

σ2
n

2σ2
‖r − |wj |‖2

}
. (8)
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Taking α = σ2
n/σ

2, which is a measure of noise-to-signal
ratio, and using the 1st order optimality condition, we obtain
r∗ = (α|wj |+yj)/(α+1). Unwinding the variable definitions
(and omitting � for brevity) gives

Fj(xj) =
αxj +D−1F∗

(
yj
FDxj

|FDxj |

)
1 + α

. (9)

When α = 0, the probe-weighted proximal map simply
matches the current estimate with the corresponding mea-
surement and returns the closest data-fitting point Fj(xj) =

D−1F∗
(
yj
FDxj

|FDxj |

)
. In the limit as α approaches ∞, the

probe-weighted proximal map function returns the current
estimate xj . Hence the agent in (9) interpolates between
the current estimate xj and the closest data-fitting point, the
interpolation being controlled by varying the value of α.

For the MACE formulation, we stack the individual pro-
jections to obtain a vector x = [x0, x1, . . . , xJ−1]t. Then we
define a stacked forward operator F and a consensus operator
G that computes a weighted average of each component and
reallocates the results as

F(x) =

 F0(x0)
...

FJ−1(xJ−1)

 and G (x) =

 x̄0
...

x̄J−1

 . (10)

Here the component vectors in G are determined by weighting
by |D|κ, back-projecting to the full image, then doing a
weighted average of these back-projections. This is given by

x̄j = PjΛ
−1

J−1∑
i=0

P ti |D|κxi , (11)

where Λ =
∑J−1
j=0 P

t
j |D|κ and κ denotes the probe exponent

parameter. Intuitively, the consensus operator projects the
image patches associated with the scan locations back to the
full-size image and normalizes this image with Λ, which uses
the projections and probe weighting so that overlapping areas
are averaged appropriately. The probe exponent parameter
κ can be used to tune the weighted average to match the
uncertainty in xj introduced by measurement uncertainty and
by the probe. The choice of probe exponent parameter can
improve algorithm performance.

To obtain the PMACE solution, we solve the equation
F(x) = G(x). As shown in [12], the solution can be solved
as the fixed point of the map

T = (2G− I)(2F− I), (12)

which can be computed via the Mann iteration

x← (1− ρ)x + ρTx , (13)

where ρ ∈ (0, 1) affects the convergence rate but not the final
result. These iterates are guaranteed to converge to a fixed
point if T is non-expansive and has a fixed point.

Algorithm 1 shows pseudocode for computing the PMACE
solution. The algorithm uses an initial x(0) ∈ RN1×N2 to
construct stacked vectors as above, then uses Mann iterations

to update the estimates of projections. The final reconstruction
result is obtained by taking the weighted average of the
updated estimates of projections. The algorithm parameter ρ
plays a role in adjusting convergence rate.

Algorithm 1 Mann iteration for computing PMACE solution

Input: Initialization: x(0) ∈ CN1×N2

Output: Final Reconstruction: x̂ ∈ CN1×N2

1: w = v = [x
(0)
0 , . . . , x

(0)
J−1]t, where x(0)j = Pjx

(0)

2: while not converged do
3: w← F(v)
4: z← G(2w − v)
5: v← v + 2ρ(z−w)
6: end while
7: return x̂ = Λ−1

∑J−1
j=0 P

t
j |D|κvj

B. SHARP+ Algorithm

The SHARP algorithm [6] is an implementation of the
RAAR phase retrieval algorithm for ptychography. It operates
on images formed by probe illumination; each image is called
a frame, defined as sj = DPjx, where Pj is the same
projection operator defined above. SHARP defines an operator
Pa that ensures the frame data sj matches the phaseless mea-
surement yj and an operator PQ that ensures the overlapping
frame data is consistent. These operators are given by stacking
the per-patch operators defined by

Pa,j(sj) = F∗
(
yj
Fsj
|Fsj |

)
(14)

PQ,j(sj) = DPj

(∑
k

P tk|D|2
)−1∑

i

P tiD
∗si . (15)

SHARP uses the update rule in [5] with the operators Pa and
PQ to update the estimate of sj . However, the implementation
in [6] has a sign change relative to [5]. In SHARP+, we use
the update from [5], as in line 3 of Algorithm 2.

Note that the SHARP+ operators (14) and (15) are similar
to the PMACE operators (9) and (11), respectively. Some
differences are (i) PMACE updates operate on image patches
rather than frames, which are image patches times probe; (ii)
the averaging in (9) takes the place of a relaxation in the
update rule of SHARP+ (β in Algorithm 2); (iii) the weighted
averaging in (11) is tuned to match data statistics rather than
fixed as the square of the probe as in (15).

Algorithm 2 SHARP+ algorithm

Input: Initialization: x(0) ∈ CN1×N2

Output: Final Reconstruction: x̂ ∈ CN1×N2

1: s = [s0, . . . , sJ−1]t, where sj = DPjx
(0)

2: while not converged do
3: s← [2βPQPa + (1− 2β)Pa − β(PQ − I)] s
4: end while
5: return x̂ =

(∑
k P

t
k|D|2

)−1∑
j P

t
jD
∗sj
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IV. EXPERIMENTAL RESULTS

In this section, we explain our data simulation method and
show reconstruction results for synthetic data using PMACE,
SHARP+, SHARP, and accelerated Wirtinger flow (AWF).

(a) (b) (c) (d)
Fig. 1. Complex image and probe used for generating synthetic data. (a)
magnitude and (b) phase of ground truth image; (c) magnitude and (d) phase
of complex probe.

We generate data using the test images shown in Figure 1.
The complex transmittance image has size 660 × 660 pixels,
and the complex probe function has size 256 × 256 pixels.
The probe locations form an 8 × 8 grid with all side lengths
equal to 56 pixels; this grid is centered inside the full image.
To simulate the measured diffraction pattern, we extract the
projection of the transmittance image at each probe location
and multiply by the complex probe function. Then we compute
the 2D Discrete Fourier Transform to obtain the noise-free
synthetic data. For the noisy synthetic case, we let rp denote
the peak photon rate and use this to scale the mean of a Poisson
distribution to obtain simulated measurements

ŷj ←

√
Pois

(
|FDxj |2

max(|FDxj |2)
× rp

)
, (16)

where max(·) denotes taking the maximum value of its argu-
ment. As rp increases, the signal-to-noise ratio also increases.
We take rp = 105 for our simulated noisy diffraction patterns.
Figure 2 shows the noisy synthetic data in decibels.

Fig. 2. Noisy diffraction pattern for reconstruction in dB.

We use Normalized Root-Mean-Square Error (NRMSE) to
evaluate the reconstruction results. Since the measured data is
independent of a constant phase shift in the full transmittance
image, we incorporate this phase shift in NRMSE between the
reconstructed complex image x̂ and the ground truth image x
to obtain

e =
‖x̂− eiθx‖
‖x‖

, (17)

where θ ∈ [0, 2π) is chosen to minimize the numerator.
We apply PMACE with fixed probe exponent κ = 1.25

and Mann averaging parameter ρ = 0.5. We do a grid search
to optimize the noise-to-signal parameter, α, of PMACE and
the algorithmic parameters of AWF, SHARP, and SHARP+
algorithms. Then we compare the reconstruction results after
100 iterations of each algorithm.

The upper plots of Figure 3 show the reconstructed ampli-
tudes from AWF, SHARP, SHARP+ and PMACE using noise-
free data. The bottom plots show the corresponding amplitude
errors (the amplitude of the difference between a complex
reconstruction and the ground truth image) plus the NRMSE
values. Figure 4 shows the reconstructed phases from each
algorithm and the phase errors. Figure 5 shows NRMSE as a
function of number of iterations in the noise-free case.

(a) AWF (b) SHARP (c) SHARP+ (d) PMACE

(e) e=0.1586 (f) e=0.1445 (g) e=0.0033 (h) e=0.0002
Fig. 3. Reconstructed amplitudes from noiseless data. Top row shows the
amplitude images of AWF, SHARP, SHARP+, and PMACE reconstructions.
Bottom row shows amplitude of the difference between each complex recon-
struction and ground truth along with the final NRMSE.

(a) AWF (b) SHARP (c) SHARP+ (d) PMACE

(e) e=0.1586 (f) e=0.1445 (g) e=0.0033 (h) e=0.0002
Fig. 4. Reconstructed phases from noiseless data. Top row shows the phase
images for AWF, SHARP, SHARP+, and PMACE reconstructions. Bottom
row shows the phase difference between each complex reconstruction and
ground truth.

Fig. 5. Convergence plots for reconstruction on noiseless data.

We observe that the PMACE approach exhibits much better
image quality when compared with AWF and SHARP and
somewhat better quality than SHARP+. The convergence plots
in Figure 5 show that PMACE has very fast convergence
relative to these other methods.
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Figures 6 and 7 show the corresponding amplitudes and
phases of each approach in the noisy synthetic case. Note that
the images reconstructed using PMACE contain the fewest
artifacts. The convergence plot for the noisy case, shown in
Figure 8, again shows that PMACE exhibits faster convergence
than other algorithms, although in this case, SHARP+ is a
close competitor.

(a) AWF (b) SHARP (c) SHARP+ (d) PMACE

(e) e=0.1655 (f) e=0.1385 (g) e=0.0272 (h) e=0.0210
Fig. 6. Reconstructed amplitudes from noisy data. Top row shows the
amplitude images for AWF, SHARP, SHARP+, and PMACE reconstructions.
Bottom row shows amplitude of the difference between each complex recon-
struction and ground truth along with the final NRMSE.

(a) AWF (b) SHARP (c) SHARP+ (d) PMACE

(e) e=0.1655 (f) e=0.1385 (g) e=0.0272 (h) e=0.0210
Fig. 7. Reconstructed phases from noisy data. Top row shows the phase
images for AWF, SHARP, SHARP+, and PMACE reconstructions. Bottom
row shows the phase difference between each complex reconstruction and
ground truth.

Fig. 8. Convergence plots for reconstruction on noiseless data.

V. CONCLUSION

We described the PMACE approach for ptychographic
image reconstruction. This approach builds on the MACE
framework for describing inverse problems and uses a novel
weighting scheme based on the probe amplitude for both
the data-fidelity agents and the consensus averaging operator.

PMACE is easily parallelized with guaranteed convergence
under appropriate hypotheses. We also described SHARP+ as a
faster-converging variant of the SHARP algorithm. Simulation
results from synthetic data indicate that PMACE outperforms
competing algorithms in terms of both convergence speed and
reconstruction quality, with SHARP+ a close second in the
case of noisy data.
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