
ROBOTune: High-Dimensional Configuration Tuning for
Cluster-Based Data Analytics

Md Muhib Khan
Florida State University
Tallahassee, Florida, USA

khan@cs.fsu.edu

Weikuan Yu
Florida State University
Tallahassee, Florida, USA

yuw@cs.fsu.edu

ABSTRACT
Spark is popular for its ability to enable high-performance data
analytics applications on diverse systems. Its great versatility is
achieved through numerous user- and system-level options, result-
ing in an exponential configuration space that, ironically, hinders
data analytics’s optimal performance. The colossal complexity is
caused by two main issues: the high dimensionality of configura-
tion space and the expensive black-box configuration-performance
relationship. In this paper, we design and develop a robust tun-
ing framework called ROBOTune that can tackle both issues and
tune Spark applications quickly for efficient data analytics. Specifi-
cally, it performs parameter selection through a Random Forests
based model to reduce the dimensionality of analytics configuration
space. In addition, ROBOTune employs Bayesian Optimization to
overcome the complex nature of the configuration-performance
relationship and balance exploration and exploitation to efficiently
locate a globally optimal or near-optimal configuration. Further-
more, ROBOTune strengthens Latin Hypercube Sampling with
caching and memoization to enhance the coverage and effective-
ness in the generation of sample configurations. Our evaluation
results demonstrate that ROBOTune finds similar or better perform-
ing configurations than contemporary tuning tools like BestConfig
and Gunther while improving on search cost by 1.59× and 1.53×
on average and up to 2.27× and 1.71×, respectively.

KEYWORDS
Performance Tuning; Bayesian Optimization; Spark Configurations

ACM Reference Format:
Md Muhib Khan and Weikuan Yu. 2021. ROBOTune: High-Dimensional
Configuration Tuning for Cluster-Based Data Analytics. In 50th International
Conference on Parallel Processing (ICPP ’21), August 9–12, 2021, Lemont, IL,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3472456.
3472518

1 INTRODUCTION
Spark [48] has been a popular framework leveraged by many or-
ganizations for interactive and scalable data analytics on system

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00
https://doi.org/10.1145/3472456.3472518

and web logs, social media, graph processing [17, 33], etc. For en-
abling the execution of various types of applications, the number
of parameters in Spark has grown from 20 initially to around 200
in version 2.4 [42, 43]. These parameters form a high-dimensional
configuration space that controls different execution behaviours,
including shuffling, compression, memory, networking and schedul-
ing, etc. Unfortunately, this leads to a problem space of exponential
complexity for users to pinpoint the optimal configuration.

In addition, the performance of analytics applications typically
exhibits a complex black-box relationship [2, 9, 16, 18] with respect
to the choices of configuration parameters. There is not a closed
form function that can directly capture the black-box configuration-
performance relationship, which is also expensive to evaluate [2, 18].
Choosing some settings based on rules-of-thumb recommendations
or trial-and-error can lead to perplexing performance scenarios for
non-expert users. Furthermore, scalable analytics systems are usu-
ally a shared resource in which application performance can vary
due to contentions or noise on the network and storage systems.
Even experts would rather avoid time-consuming explorations to
determine the best configurations for an application.

Together, the high dimensionality of configurations and the ex-
pensive black-box configuration-performance relationship present
an immense challenge for analytics applications to take advantage
of available processors, memory, storage and network resources
from the underlying cluster systems.

There have been two main strategies, learning and searching,
to tune the configuration of cluster-based analytics applications.
Learning-based approaches collect a large number of experimental
runs (e.g., at least 2000) for modeling the behavior of each applica-
tion for a specific cluster [5, 46]. It is not feasible to collect so many
samples for tuning every application inmost real-life situations [49].
In addition, the models created by learning-based approaches are
typically specific to the applications and/or the underlying clusters,
and have to be retrained for new clusters. Instead, searching-based
approaches [4, 25, 49] try to overcome these limitations by using
intelligent sampling and searching algorithms like recursive bound
and search [49] without training any performance models. These
can be muchmore robust to change in the applications or clusters as
they do not rely on creating a model from the data. However, when
the dimensionality of the configuration space is too high, these
approaches may fail to improve over random search [4]. There have
been many other studies on tuning the configuration of different
systems, including pattern search, which can suffer from slow local
(asymptotic) convergence rates [44], and genetic algorithm [22, 26],
which can be robust against local optima [22]. Gunther [25] uses
genetic algorithm to find near-optimal configurations of Hadoop
workloads, but requires a large number of initial executions before
making aggressive selections and mutations.

https://doi.org/10.1145/3472456.3472518
https://doi.org/10.1145/3472456.3472518
https://doi.org/10.1145/3472456.3472518

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Md Muhib Khan and Weikuan Yu

Bayesian Optimization (BO) has been exploited successfully to
tune the performance of storage [9], database [45] and cloud re-
sources [2]. It is exceptionally potent when the objective function
(e.g., execution time) does not have a known closed-form expression
and is costly to evaluate. These features render BO quite suitable to
address the blackbox non-parametric challenge of tuning cluster-
based analytics applications, provided that we can equip it with a
solution for the high dimensionality of the configuration space.

To this end, we design and deveop a robust tuning framework
called ROBOTune (Random FOrests and Bayesian Optimization
based Tune) that can tackle both issues and tune cluster-based data
analytics applications quickly for efficient data analytics. ROBO-
Tune is equipped with three main techniques. First, it trains a Ran-
dom Forests based model for parameter selection and reduces the di-
mensionality of the configuration space. Next, it features a Bayesian
Optimization engine that overcomes the complex configuration-
performance relationship and incrementally searches for an optimal
configuration based on the observations of prior configuration sam-
ples. Particularly, the Hedge method [18] with multiple acquisition
functions is employed to balance exploration and exploitation of the
configuration space, with which ROBOTune can quickly converge
to either an optimal or near-optimal configuration within a given
budget. Furthermore, ROBOTune strengthens Latin Hypercube
Sampling with caching and memoization to enhance the coverage
and effectiveness in the generation of sample configurations.

We have performed an extensive set of tests with applications
on machine learning, web search, and graph computation. Our
evaluation demonstrate that ROBOTune outperforms contemporary
tuning tools like BestConfig and Gunther by 1.14× and 1.15× on
average, and up to 1.3× and 1.28×, respectively. In terms of search
cost, the average improvement over BestConfig and Gunther is
1.59× and 1.53× and up to 2.27× and 1.71×, respectively.

2 BACKGROUND AND MOTIVATION
2.1 Spark Based Data Analytics
Spark is a cluster computing framework that has replacedHadoop as
the de-facto choice for running data analytics workloads. It provides
easy to use APIs in various languages (e.g., Java, Scala, Python, R),
which makes it very attractive to application developers for speedy
development. Spark utilizes in-memory data processing, which
makes it significantly faster than the previous generation of disk-
basedMapReduce frameworks for a range of increasingly important
classes of workloads (e.g., machine learning, graph processing) [39].

Spark supportsmemory-resident data analytics and fault-tolerance
through amemory abstraction termed Resilient DistributedDatasets
(RDDs) [47]. An RDD is a collection of objects which is partitioned
across the nodes of the cluster. RDDs that are used repeatedly can
be cached in memory to avoid unnecessary recomputation, thus
considerably speeding up iterative workloads. In Spark, a master
node orchestrates the execution of a workload using several worker
nodes. Within these worker nodes, independent JVMs named ex-
ecutors are launched that execute the required tasks.

2.2 Challenges for Parameter Configuration
High-dimensional Configuration Space. The number of param-
eters for data analytics on cluster systems continues to rise. For

example, a large number of configuration parameters have been
introduced to manage different aspects of execution, e.g., runtime
environment, shuffle, data serialization, memory management, net-
working, for these diverse analytics workloads. The total number
of parameters in Spark-2.4 has reached around 200 from its ini-
tial release with about 20 parameters. This translates to roughly
an increase of 10×. These parameters exponentially increase the
complexity of the configuration space.
Costly SampleCollection.Configuration tuning for cluster-based
analytics applications requires sufficient sample points that can
capture the performance impact of different parameters. However,
sample collection is a critical challenge for both dimensionality
reduction and BO initialization. A straightforward approach is ran-
dom sampling of the configuration space. Many studies have noted
the impact of increasing parameters for configuration tuning. For
learning-based approaches like RFHOC [5], the number of required
samples increases as more parameters are added to the consider-
ation (3,300 samples needed as opposed to 2,000 when parameter
count is increased to 34 from 10). McKay et al. [28] stated that ran-
dom sampling requires a large number of points to ensure coverage
of the space. Golovin et al. [16] reported that when the dimension-
ality of the configuration space is sufficiently high (e.g., over 16),
even BO-based approaches can face difficulty in tuning. Collecting
samples is also a costly proposition and thus demands an efficient
method of sample generation.
Suboptimal Manual Configurations. As most data analytics
workloads recur in a cluster [46], reduction of their execution time
can be very beneficial in terms of both time and cost. However,
the default configurations of analytics frameworks are often un-
derperforming compared to near-optimal ones [5, 46, 49]. If an
inexperienced user tries to tune the configuration through trial-
and-error, it will waste valuable cluster resources without possibly
yielding a good configuration. The increasing complexity of the
configuration space and the infeasibility of manual tuning mandate
an automation on the configuration tuning process. However, to
be viable, auto-tuners must find near-optimal configurations in a
fast and efficient manner and within a budget constraint.

2.3 Bayesian Optimization
Bayesian optimization (BO) is a global searching strategy to find the
extrema of objective functions that are non-convex, non-parametric,
or expensive to evaluate [8, 38]. It builds on top of Bayes’ theo-
rem [35] to construct a probabilistic model based on prior obser-
vations of an objective function, and incrementally select the next
sample point to make another observation of the objective function.

Bayesian optimization can effectively avoid local minima and is
very data efficient in its use of sample observations [38].

BO has been used to tune the hyperparameters of deep neural
networks, where training a neural network requires a considerable
amount of time and resources [20, 40]. BO has also shown its poten-
tial in the selection of near-optimal cloud VM instances [2, 19] using
limited search cost, which is a desirable trait in our use-case. Storage
configuration tuning has also seen the application of Bayesian Op-
timization [9]. In the field of DBMS tuning, OtterTune [45] showed
that utilizing knowledge from previous tuning sessions can speed
up the tuning process. All these studies have employed BO for its

ROBOTune ICPP ’21, August 9–12, 2021, Lemont, IL, USA

intelligent reuse of prior configurations to achieve significant reduc-
tion on the cost of tuning. Thus BO is also appealing for searching
near-optimal configurations of data analytics applications within a
given budget.

3 DESIGN
In this section, we provide a design overview for the proposed ROBO-
Tune framework and then elaborate on the design details.

3.1 Problem Formulation and Design Overview
Problem Formulation. Given a data analytics workload and its
input, we aim to find an optimal or near-optimal configuration that
minimizes the cost, i.e., the execution time. Let n denote the number
of tunable parameters. Then a configuration x = {x1, x2, x3, ..., xn }
is a vector of n parameters. Further, let f : Rn → R denote the
objective function. Our goal of finding the optimal configuration
x∗ can be expressed as the following:

x∗ = argmin
x

f (x) (1)

But we do not know a closed-form expression or a definitive con-
figuration to performance relationship for f . Thus f is a black-box
function with a high-dimensional configuration space. As men-
tioned in §2.3, BO provides a good strategy to find x∗ if we can
employ it to search for the global extremum of f . However, because
of the challenges caused by computation and statistical variance
from high-dimensional settings, the efficiency and high accuracy of
BO is limited to low-dimensional objective functions, typically 5 or
less dimensions [30]. Therefore, alongside the adoption of BO for
configuration tuning, we need to provide a dimension reduction
strategy to prune the high-dimensional cluster configuration space.

Design Overview. Given our problem formulation, we have
designed a robust tuning framework called ROBOTune that can
leverage Random FOrests and Bayesian Optimization to Tune the
configuration of cluster-based data analytics applications. Figure 1
provides a design overview of ROBOTune. It features three main
components as described below.

Memoized Sampling leverages Latin Hypercube Sampling
(LHS) to ensure a fair selection of samples from a high-
dimensional space. It also provides a parameter selection
cache and a configuration memoization buffer to speed up
tuning for repeated workloads with different inputs.

Parameter Selection performs dimension reduction through
Random Forests, based on samples from a high-dimensional
configuration space.

Bayesian Optimization (BO) Engine equips ROBOTunewith
a gaussian process (GP) model to estimate the objective func-
tion f (x), and iteratively searches for the optimal configura-
tion through a combination of three acquisition functions
with balanced exploration and exploitation.

As shown in Figure 1, upon the arrival of an workload and a
user-specified tuning budget, Memoized Sampling starts by check-
ing its parameter selection cache. Upon a hit, it identifies a small
selected set of parameters and generates a set of LHS Tuning Sam-
ples through Latin Hypercube Sampling. These tuning samples will
be used as part of the Training Set for BO to search for the optimal
configuration. Besides an output of the optimal configuration from

BO, a few well-tuned configurations are stored at the configuration
memoization buffer. These configurations will be provided as Best
Recent Configs to be included in the training set when we need
to tune the same workload with a different input dataset. Upon
a miss, all the generic parameters will be included as a Generic
Set to designate a high-dimensional configuration space. Through
Latin Hypercube Sampling in this space, a large set of LHS Generic
Samples will be generated. Parameter Selection then performs di-
mension reduction through Random Forests and identifies a small
set of high-impact parameters for the workload. The selected pa-
rameters will be stored in the parameter selection cache to be reused
for the same workload.

3.2 Memoized Sampling
In ROBOTune, it is critical to generate initial sample points for the
BO engine to create a GP model and for the parameter selection
component to select high-impact parameters. In addition, the opti-
mal configuration for a workload can differ for different datasets.
For example, because Spark is heavily reliant on memory, there is a
good chance that the optimal value of parameters related to mem-
ory usage (e.g., spark.memory.fraction) changes when the dataset
size is changed. However, many other parameter values may remain
the same, and the new dataset’s optimal configuration may lie near
the same region of previous high-performance configurations. Thus
it is important to reuse the results from prior sessions to expedite
the tuning of repeated workloads.
Latin Hypercube Sampling. While the needs of Parameter Se-
lection and BO engine are different, we need a sampling strategy
to cover both configuration spaces evenly without generating too
many sample points. Latin Hypercube Sampling (LHS) is a form of
stratified sampling that needs fewer samples than random sampling
to reach a similar conclusion without compromising the quality of
the analysis [28]. LHS is also more stable with fewer samples than
another established stratified sampling method, Monte Carlo [10].
Furthermore, LHS is dimension agnostic, meaning that the number
of samples required is not tied to the dimensionality of the config-
uration space. Considering these advantages, we employ LHS to
generate the samples for BO initialization and parameter selection.
For generatingM samples, the LHS divides every parameter range
intoM equally probable intervals and generates samples such that
only one sample point is taken from each interval [4].
Parameter Selection Cache.We have observed that high-impact
parameters remain the same for a specific workload within a range
of different datasets. Thus, we store the previous selections in a table
as the Parameter Selection Cache. Each row in the table contains
a previously tuned workload and its high-impact parameters. As
shown in Figure 1, a repeated workload will incur a hit in the cache
and directly pull a Selected Set of parameters, which form a low-
dimensional configuration space, for which LHSwill generate a total
of 20 LHS Tuning Samples for the BO engine. We have observed
through experiments that a choice of 20 points works well for
initializing the GP model. An unseen workload will incur a miss
in this cache. In that case, 100 LHS samples on the Generic Set
containing the initial parameters (in our case 44) will be generated
for use by the parameter selection component. We further discuss
the number of samples required for this case in §5.5.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Md Muhib Khan and Weikuan Yu

Figure 1: Design Overview of ROBOTune

Configuration Memoization Buffer. We also find that previ-
ously tuned configurations are beneficial to the BO engine when
tuning the same workload with a different input. Thus we create a
Configuration Memoization Buffer to save a few high-performance
configurations at the completion of each BO tuning session. We
pull 4 Best Recent Configs from the Configuration Memoization
Buffer for a workload that has been tuned before and combine with
16 LHS tuning samples to create the initial training set of 20. For
an unseen workload, the initial training set only contains 20 LHS
tuning samples. By incorporating high-performance configurations
from previous tuning sessions, we can help the GP model identify a
high-performing region in the configuration space for exploitation.

3.3 Parameter Selection
As discussed in §3.1, BO prefers low-dimensionality for efficiency
and accuracy reasons. We propose to leverage machine learning
models to select only the high-impact parameters for tuning, thereby
reducing the complexity of the configuration space.
Choice of Random Forests. Parameter selection can be achieved
by training machine learning models on a set of sample execu-
tions and measuring the strength of the relationship between the
response variable and the configuration parameters. Dimension
reduction techniques like Principal Component Analysis (PCA),
which create linear combinations of the original features to reduce
dimensions, are not applicable in our case, because we need to
keep the original parameters for configuration tuning. Linear Re-
gression models are one of the prevalent methods for computing
feature importances [45]. However, Linear models (e.g., Lasso) re-
quire a sufficiently large sample size; otherwise, they can perform
randomly. Linear models are also quite susceptible to collinearity
between features and perform poorly when the modeled relation-
ship is non-linear. Another way of computing feature importances
is through tree-based estimators. Random Forests (RF) [7] is an en-
semble learning method that utilizes a multitude of decision trees.
It has shown to perform better than linear models given a similar
number of samples for cluster computing frameworks [5] and is
robust against over-fitting. Extremely Randomized Trees (ET) [15]
is another promising tree-based estimator that we consider.

We compare the coefficient of determination (R2) for two linear
and two tree-based models in Figure 2. The coefficient of determina-
tion is a measure of how well observed outcomes are estimated by
the model, based on the proportion of total variation of outcomes
explained by the model [12], where the value ranges from 1.0 to

negative for arbitrarily worse models. We generate 200 LHS con-
figurations and collect the execution times for three input datasets
of PageRank and KMeans workload and use them for training the
considered models for comparison. The five-fold cross-validation
scores for both linear-models (Lasso and ElasticNet) are signifi-
cantly lower than tree-based models (RF and ET). RF performs the
best and explains most of the variance. Note that we only need a
model that identifies the features that are important and not be a
perfect predictor. Considering all these, we decide to use Random
Forests as the model for calculating the importance of parameters.

5M 7.5M 10M

0.0

0.2

0.4

0.6

0.8

R
2

sc
or

e

Lasso ENet RF ET

(a) PageRank.

200M 300M 400M

0.0

0.2

0.4

0.6

0.8

R
2

sc
or

e

Lasso ENet RF ET

(b) KMeans.

Figure 2:R2 scores of examinedmodels for different datasets
of the PageRank and KMeans workload. Higher is better.

Ranking the Parameters. Correctly calculating the feature (pa-
rameter) importance is crucial to our process. Parameter importance
for random forests is commonly calculated using theMean Decrease
in Impurity (MDI) mechanism. However, Strobl et al. [41] states that
the conventional method of utilizing MDI can be unreliable where
potential predictor variables vary in their scale of measurement
or their number of categories, which is true for our case. We thus
consider the Mean Decrease in Accuracy (MDA) method, which is
a bit slower than MDI but more robust [31]. For calculating MDA
importances, we record a baseline using the out-of-bag (OOB) R2
score first. Then each of the feature columns is permuted to see
how much R2 score may decrease. If a feature is not important,
permuting the values of that column should not affect the R2 score.
Using this method of feature importance calculation, we identify
the parameters that impact the workload performance.
Handling Collinearity. Presence of collinearity can hamper fea-
ture importance calculation. There are several dependent parame-
ters in Spark, whose values are only valid when the independent
parameter is active. To avoid issues introduced by collinearity dur-
ing the feature importance calculation, we group the collinear pa-
rameters and permute them together.

ROBOTune ICPP ’21, August 9–12, 2021, Lemont, IL, USA

3.4 Bayesian Optimation Engine
As shown in Figure 1, the BO engine is the pivotal component
in ROBOTune to search for the optimal configuration. We describe
its components in detail below.
Choice of Model. BO requires a multivariate regression model
as a surrogate to estimate the objective function as mentioned
in §3.1. Various models such as Gaussian Process (GP) Regression,
Decision trees, Random Forests, have been previously employed [8].
We choose GP for our purpose because it provides a theoretically
justified way to trade-off exploration and exploitation [21], and has
been applied successfully to real-world systems [2, 24, 45].

GP is a distribution over multivariate functions. It can be com-
pletely specified by its mean functionm and covariance function k :
f (x) ∼ GP(µ,σ2), where µ =m(x), σ2 = k(x, x ′), and x denotes an
arbitrary point, x ′ another point in a stationary pair with x . Instead
of a smooth parametric function, GP provides a statistical model
that returns the mean µ and variance σ2 of a normal distribution
over the possible values of f for x [8]. Statisically, µ represents the
model’s estimation for the objective, σ2 the uncertainty.
Choice ofAcquisition Function.The acquisition function guides
the search for the optimal configuration by progressively evaluating
the possible rewards from candidate points and selecting the best
candidate. The search efficiency in BO, in large part, is dependent
upon the acquisition functions, which must balance between points
that produce lower mean µ (better exploitation) or higher uncer-
tainty σ2 (better exploration), or both. There are three main choices
for a minimization acquisition function [40]: (1) Probability of Im-
provement (PI) that optimizes the probability of improvement over
the current best point x+ [23]; (2) Expected Improvement (EI) that
optimizes the expected improvement with respect to the current
best value [29]; and (3) Lower confidence bound (LCB) that selects
points with the best confidence interval [11].

Among the three, EI and LCB take both exploitation and explo-
ration into account, while PI can be too biased towards exploita-
tion [8]. Some recent research work [2, 13, 45] employ EI because of
its demonstrated performance and ease-of-implementation. But EI
is known to have an issue of under exploration [34]. Furthermore,
it has also been empirically observed that the preferred strategy
can change at various stages of the optimization process [38]. Thus
no acquisition function is guaranteed to perform the best on an
unknown objective function.

We adopt a strategy called Hedge [18] which constructs an adap-
tive portfolio of multiple acquisition functions and, at each iteration,
chooses one probabilistically. The probability of choosing an acqui-
sition function is updated based on the cumulative rewards (gain)
at each step [3]. An adaptive portfolio of multiple functions often
performs substantially better than the best individual function. In
the portfolio, we adapt these acquisition functions to the problem
of minimizing the execution time as follows:

PI(x) = P(f (x) ≤ f (x+) − ξ) = Φ (d/σ (x)) (2)

EI(x) =
{
dΦ(d/σ (x)) + σ (x)ϕ(d/σ (x)) if σ (x) > 0

0 if σ (x) = 0
(3)

LCB(x) = µ(x) − κσ (x) (4)

where d = (f (x+) − µ(x) − ξ), Φ and ϕ are the CDF and PDF of the
standard Normal distribution, respectively, and ξ and κ are knobs
that control the exploration-exploitation tradeoff [23, 27].
Algorithm 1 Bayesian Optimation with GP and Hedge
1: X: m initial configuration samples {x1, x2, ..., xm }.
2: Y: An empty set of expensive evaluations.
3: t: Budget of total allowable evaluations.
4: for i = 1→m do ◃ Evaluate training samples
5: yi ← f (xi)
6: Y ← Y ∪ {yi }
7: end for
8: for i =m → t do
9: GP(µ , σ 2) ← GaussianProcess(X , Y) ◃ Train a GP model
10: xi ← H(GP(µ , σ 2)) ◃ Get optimal xi via Hedдe
11: yi ← f (xi) ◃ Evaluate xi
12: (X , Y) ← (X , Y) ∪ {(xi , yi } ◃ Augument priors (X, Y)
13: Update accumulative gains for PI, EI, LCB in H.
14: end for

Integrating GP and Hedge. Algorithm 1 shows the tuning pro-
cess of our BO Engine with the GP model and the adaptive Hedge
portfolio. With a set ofm initial configurations, it collects a set of
prior observations of our objective function (i.e., execution time)
through expensive evaluations. In a loop (Lines 9-13), the BO en-
gine then (1) trains a GP model (GP) with these priors, (2) selects a
new point using the Hedge-based portfolio function (H) based on
statistics from the GP model, (3) makes another observation of the
objective function, and (4) updates the set of prior observations and
accumulative gains of individual acquisition functions in Hedge.
This process attempts to locate the global minimum of the objective,
or nearly so within a limited budget of t allowed evaluations.

4 IMPLEMENTATION
ROBOTune is implemented in Python utilizing Random Forests
from the popular Scikit-learn library [32] for parameter selection
and Scikit-Optimize [37] for BayesianOptimization. Scikit-Optimize
provides a customizable baseline for sequential model-based opti-
mization. Our customizations include the development of memoized
sampling, custom GP covariance kernel, and automated early stop-
ping. For sample generation, we have used the DOEPY [36] library
as a space-filling LHS implementation. In this section, we provide
some notable implementation details of ROBOTune.
Configuration Encoder. We must encode the sample points (nu-
meric vectors) generated by the LHS sampler and the BO engine
into a workload configuration. The numeric values from the sam-
ple point are converted into different types of suitable parameter
types (e.g., boolean, categorical, size, time) and passed through a
configuration file to the submitted workload.
Guard against bad configurations. During the execution of ini-
tial samples, we use a static threshold to prevent extremely imbal-
anced configurations from running an inordinate amount of time.
In addition, during the search using the BO engine, a configurable
multiple of the median execution time is used as a threshold for
stopping imbalanced configurations.
Parameter Selection. Some configuration parameters exhibit high
collinearity with each other. We group such collinear parame-
ters as a joint parameter during the parameter importance cal-
culation. Besides grouping collinear parameters, we also create

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Md Muhib Khan and Weikuan Yu

joint parameters from our domain knowledge (e.g., executor size by
grouping spark.executor.cores and spark.executor.memory). Creat-
ing these joint parameters enables robust calculation of parameter
importance. To differentiate important parameters from the non-
important ones, we empirically set a drop of at least 0.05 in R2 score
as our threshold, which is configurable. In our experience, the cur-
rent value reliably purges parameters that sometimes gain a bit of
importance due to execution noise. We permute each parameter 10
times and take the average of the drop in accuracy to get a reliable
and stable ranking.
BayesianOptimization.To account for noises in the observations,
we assume them to be i.i.d. following gaussian distribution. The
acquisition functions are optimized using the L-BFGS-B optimizer.
For ξ and κ, we choose a value of 0.01 and 1.96, respectively, as
they perform well in most cases [18]. Furthermore, we choose
the summation of Matérn 5

2 and white noise as the covariance
kernel, which is preferred to model practical functions [2, 40]. The
white noise kernel is used to account for the noise in the objective
evaluation.

Our implementation of the components of ROBOTune is highly
modular. We choose Spark as our tuning target, as it represents
systems that exhibit issues of high-dimensionality and complex
multi-modal configuration-performance relationship. We note that
some modifications are needed in the parameter selection and con-
figuration encoder to apply ROBOTune to other systems, while
other components can be mostly reused.

5 EVALUATION
5.1 Experimental Setup
Cluster Configuration. Our experimental platform consists of six
nodes; one serves as the master, and the other five are workers.
Each of our nodes is equipped with two 16-core 2.1 GHz Intel(R)
Xeon(R) Gold 6130 CPUs, 192 GB of memory, and a 7200-RPM 2
TB Seagate hard disk. A 10-Gigabit Ethernet network connects the
nodes. The experimental platform has a total of 192 cores and 1152
GB memory, which is sufficiently high, considering the testbeds of
similar research work [4, 5, 25, 46, 49]. The tuning is done on top
of Spark 2.4.1, and HDFS 2.7.3 is used for storing data.
Configuration Parameters. Spark has a long list of parameters
that influence performance and some that don’t (e.g., app prop-
erties, UI). We chose to tune a total of 44 performance-related
ones, which is a superset of considered parameters of previous
research work that tuned Spark configurations [4, 46, 49], minus a
few deprecated and unsuitable ones (e.g., streaming parameters).
As discussed earlier (§2.2), an exhaustive search is infeasible due to
the enormity and high-dimensionality of the configuration space.
For example, just considering two parameters spark.executor.cores
and spark.executor.memory with value ranges of (1-32 cores) and
(8-180 GB) leads to a configuration plane of 5,504 possible values.
Comparative Solutions. We have considered several prior work
to compare with ROBOTune. However, as we discussed before
(§1), model-based approaches require at least 2,000 executions of
each workload to train models and are infeasible in most real-life
scenarios. We select search-based solutions that operate within a
user-provided budget, and these are described below.

BestConfig is a search-based tuning approach that uses divide-
and-diverge sampling and recursive bound-and-search to find near-
optimal configurations [49]. BestConfig is open-sourced1, and we
implement the necessary scripts to integrate it into our cluster.

Gunther is a configuration tuner for Hadoop, which utilizes ge-
netic optimization with aggressive selection and mutation steps for
searching near-optimal configurationswithin a resource-budget [25].
We implement Gunther for Spark, utilizing the DEAP [14] library.

Random Search (RS) [6] is a simple search-based tuning ap-
proach where parameter value ranges are explored uniformly at
random. It has been shown to be well-performing when the search
space is high-dimensional in tuning hyper-parameters and config-
uring data analytics frameworks [4, 6].

ROBOTune and BestConfig both have a stopping mechanism to
guard against long-running bad configurations. To make the search
cost of tuning comparable across tuners, we augment Gunther and
RS with a static threshold-based mechanism to stop imbalanced
configurations from running too long.
Workloads. Five representative workloads (Table 1) are selected
from SparkBench [1]. These include popular machine-learning
(KMeans and Logistic Regression), graph-computation (PageRank
andConnectedComponents), andmicro-benchmark (TeraSort) work-
loads. The corresponding datasets are generated using Sparkbench.
For each workload, we use three different datasets (D1, D2, D3 as
listed in Table 1) and run each tuner 15 times, five for each dataset.
We use a budget constraint of 100 executions for all tuners and set
the time limit of evaluating each configuration to 480s.
Objective. We minimize the workload’s execution time as the ob-
jective, as similar work target this metric in their evaluation. It
should be noted that by modifying or replacing the objective func-
tion, ROBOTune can be easily adapted for optimizing other metrics.

Table 1: Workloads and their datasets
Workload Input Datasets (D1, D2, D3)

PageRank (PR) 5, 7.5, 10 (Million Pages)
KMeans (KM) 200, 300, 400 (Million Points)

ConnectedComponents (CC) 5, 7.5, 10 (Million Pages)
LogisticRegression (LR) 100, 200, 300 (Million Examples)

TeraSort (TS) 20, 30, 40 (GB)

5.2 Performance of Optimal Configurations
Comparison with other tuners.We scale the execution time of
the best performing configurations of ROBOTune, BestConfig and
Gunther by the ones found by RS. Figure 3 shows the results for
different workloads and datasets. ROBOTune outperforms BestCon-
fig by 1.14× on average and up to 1.3×. Similarly, it beats Gunther
by 1.15× on average and up to 1.28×. For RS, the speedup is 1.15×
on average and up to 1.27×. These results demonstrate that ROBO-
Tune finds better configurations under the same budget constraints.
Across all the cases, ROBOTune is more beneficial for workloads
like PR, CC, and LR, which benefit from fine-tuning through ex-
ploitation and likely have small high-performing configuration
regions. For TS, the improvement is mediocre (∼1.1×). For KM, all
tuners find configurations with similar performance (difference of
less than 10%). We believe that, for KM and TS workloads, the high-
performing configuration regions are sufficiently large and can be
1https://github.com/zhuyuqing/bestconf

ROBOTune ICPP ’21, August 9–12, 2021, Lemont, IL, USA

found just through exploration, and further fine tuning by exploita-
tion is not required. Thus all four tuners are capable of finding these
regions and identifying the (near) optimal configurations.

We find that the search-based tuners (i.e., BestConfig and Gun-
ther) perform very similar to RS, as they lean heavily towards
exploration and do very little exploitation. BestConfig suggests a
sampling set size of 100 with a single round, which leads to only di-
vide & diverge sampling (exploration) with no recursive bound and
search (exploitation). Gunther’s initial configurations are generated
randomly and comprise a significant portion of the allocated budget,
leading to a lack of balance between exploration and exploitation.
Comparisonwith the default.We also compare the performance
of tuned configurations to the default one. It was reported that the
default configuration performs poorly for large inputs [46]. For our
cluster and evaluated dataset sizes, the problem is more pronounced
as the default value of spark.executor.memory being only 1024 MB
is too low and leads to Out-Of-Memory (OOM) errors in resource-
intensive workloads like PR and CC. For KM and LR, the speedup
over the default is 27.1× and 2.17× on average. For TS, the speedup
over the default configuration for 20GB input is 4.16×, while for
the other two larger datasets, TS encounters runtime errors.

5.3 Search Cost
We evaluate all four tuners on the cost of searching the optimal
configurations. Here we define the search cost as the total time to
generate and evaluate configurations during each tuner’s search
for optimal configurations. For ROBOTune, we do not include the
initial cost of evaluating sample configurations for parameter selec-
tion, because it is a one-time cost for a new workload. This initial
cost is later discussed in §5.5. Figure 4 shows the search cost of
the tuners scaled to RS. ROBOTune outperforms other approaches
significantly in terms of search cost. ROBOTune outperforms Best-
Config by 1.59× on average and up to 2.27×. The improvement
over Gunther is 1.53× on average and up to 1.71×. Similarly, RS
is outperformed by 1.6× on average and up to 1.93×. Because of
the significant reduction in cost, ROBOTune is very attractive for
workloads where dataset sizes change and require retuning.

We further examine the reason of different search costs for these
tuners under the same tuning budget of 100 executions. We plot the
distribution of execution time of the sampled configurations for two
representative workloads (Figure 5), PR and KM, where ROBOTune
finds better and similar configurations compared to other tuners,
respectively. We observe that BestConfig, Gunther, and RS execute
many low-performing configurations, resulting in much higher
search costs. For ROBOTune, the distribution of execution time
centers around a low median, with only a few poor configurations.
For PR and KM, themedian of execution time for BestConfig is 1.53×
and 1.42× that of ROBOTune, respectively. For Gunther, the median
is 1.52× and 1.35× of ROBOTune, for PR and KM, respectively. We
observe similar results for RS, where the median is 1.53× and 1.35×
of ROBOTune. KM especially shows a long tail on the distribution,
where at the 90th percentile, the execution time for BestConfig,
Gunther, and RS is 4.21× ,3.42×, and 3.5× that of ROBOTune. As
KM caches all RDDs in memory, configurations that cause RDD
evictions take significantly more time. ROBOTune can infer this
using BO and avoid the execution of such configurations.

Table 2: Avg. number of iteration needed to reach within a
certain percentage of the avg. best achieved time.

Workload Within 1% Within 5% Within 10%
PageRank 83 33 26
KMeans 57 17 12

ConnectedComponents 70 32 21
LogisticRegression 42 20 20

TeraSort 86 37 19

We notice a significant similarity between the execution time
distribution of Gunther and RS, which can be attributed to the
randomly generated initial samples of Gunther. Both benefit from
the introduction of a threshold-based stopping mechanism, which
reduces their search cost. The stoppage of imbalanced or invalid
configurations manifests as an increase of samples at the tail end of
the execution time distributions. We also observe that even though
we provide the same configuration execution time limit for all
tuners, BestConfig’s distribution shows a bigger range due to its
policy of modifying the threshold during runtime.

5.4 Search Speed
A primary advantage of BO is that it requires a limited number of
samples to reach optimal configurations. We evaluate the number
of iterations needed by ROBOTune to get within a few percent-
ages of the best execution time. We refer to this as the search speed
of ROBOTune. Table 2 provides the search speed, i.e., the number
of iterations for ROBOTune to reach within 1%, 5% and 10% of the
best performing configuration. It is evident that ROBOTune quickly
finds configurations within 5% of the best. In our experience, we
observe that memoized sampling helps find well-performing con-
figurations very early in the search. We show an example of search
speedup due to memoized sampling in Figure 6, which shows the
minimum execution time of tuners at each iteration for two datasets
of the PR workload. When no memoized configurations are avail-
able (PR-D1), ROBOTune needs 58 iterations to reach within 5% of
the observed minimum. However, with well-performing memoized
configurations in the initial set, only 21 iterations on average are re-
quired for PR-D3. In general, using well-performing configurations
from previous tuning sessions gets ROBOTune within ∼10% of the
best observed time, and from there, the BO-engine further improves
the performance. We can also observe that ROBOTune performs
better than other tuners at all steps after the initial iterations.

5.5 Minimizing Selection Overhead
For a new workload, we train a Random Forests model using a set of
Generic LHS samples to detect the performance-critical parameters.
A large number of samples is desirable to increase model accuracy,
but it can drive up parameter selection cost in ROBOTune. Even
though it is a one-time cost per workload, it is essential to minimize
the number of samples while still identifying all critical parameters.

As discussed in §3.3, we rank and select the parameters based
on their impact on the R2 score. We take the performance-critical
parameters identified by a model trained with 200 Generic LHS
samples as the ground truth. To determine the minimal number of
samples required to identify the same parameters, we calculate the
recall score while decreasing the number of Generic LHS samples
used to train the model. The recall or sensitivity score is measured

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Md Muhib Khan and Weikuan Yu

PR-D1 PR-D2 PR-D3
0.0

0.5

1.0

Sc
al

ed
 e

xe
cu

tio
n

tim
e PageRank

KM-D1 KM-D2 KM-D3

KMeans

CC-D1 CC-D2 CC-D3

ConnectedComponents

LR-D1 LR-D2 LR-D3

LogisticRegression
ROBOTune BestConfig Gunther

TS-D1 TS-D2 TS-D3

Terasort

Figure 3: Execution time (lower is better) of suggested configurations scaled to Random Search. Datasets (D1, D2, D3) for each
workload correspond to the order listed from left to right in Table 1.

PR-D1 PR-D2 PR-D3
0.0

0.5

1.0

1.5

Sc
al

ed
 to

ta
l s

ea
rc

h
tim

e PageRank

KM-D1 KM-D2 KM-D3

KMeans

CC-D1 CC-D2 CC-D3

ConnectedComponents

LR-D1 LR-D2 LR-D3

LogisticRegression
ROBOTune BestConfig Gunther

TS-D1 TS-D2 TS-D3

Terasort

Figure 4: Comparison of search cost (lower is better) scaled to Random Search. The D1, D2, D3 of each workload correspond
to the input datasets listed from the left to the right in Table 1.

ROBOTuneBestConfig Gunther Random
0

200

400

600

800

E
xe

cu
tio

n
tim

e(
s)

(a) Distribution for PR-D3

ROBOTuneBestConfig Gunther Random
0

200

400

600

800

E
xe

cu
tio

n
tim

e(
s)

(b) Distribution for KM-D3

Figure 5: Distribution of execution time for PR and KM.

0 25 50 75 100
Iteration Number

60

80

100

M
in

 e
xe

cu
tio

n
tim

e(
s) ROBOTune

BestConfig
Gunther
Random

(a) PR-D1

0 25 50 75 100
Iteration Number

120

140

160

180

M
in

 e
xe

cu
tio

n
tim

e(
s) ROBOTune

BestConfig
Gunther
Random

(b) PR-D3

Figure 6: Minimum Execution time at each iteration for two
datasets of the PageRank workload.

as the true positive rate, i.e., the fraction of parameters correctly
identified compared to the ground truth set. A recall score of 1
means that none is missed. Figure 7 shows that the average recall
score stays 1 until the sample count goes below 100. Thus in all our
tests, we use a total of 100 Generic LHS samples in the parameter
selection phase. Parameter selection is only required for unseen
workloads, once for a range of datasets. ROBOTune is preferable
in terms of cost when multiple datasets (e.g. two or more) of a
workload are tuned, as the parameter selection cost is amortized
across tuning sessions.

5.6 Exploration-vs-Exploitation Trade-off
We examine the exploration and exploitation behavior of ROBO-
Tune compared to the other tuners. We show our results using
PR as a representative workload and visualize the sampled config-
urations of each tuner for a tuning session of the PR-D3 dataset
in Figure 8. We take the configuration plane formed by two pa-
rameters: spark.executor.(cores, memory), because, these two are
common in the selected set of high-impact parameters of all the

50100150200
Number of Samples

0.4

0.6

0.8

1.0

R
ec

al
l

PR
KM
CC
LR
TS

Figure 7: Recall scores with a decreasing number of samples
for parameter selection of different workloads.

tested workloads. A configuration with an imbalance between cores
and memory performs poorly, especially for complex workloads
like PR. One very noticeable distinction is that ROBOTune sam-
ples more points in a specific area while also sampling points from
different regions of the configuration plane. On the other hand,
the alternative tuners explore different sample points without any
discernible pattern, showing little to no sign of exploitation.

We further examine how different regions are sampled by ROBO-
Tune in Figure 9. We generate the perceived response surface of the
cores-vs-memory configuration plane of the GP model at different
iterations in the tuning process. As shown in Figure 9, ROBOTune
has identified promising high-performing regions (in lighter color)
even at iteration 25. This is due to the combined effects from the GP
model, the acquisition function and a good set of training samples
covering different regions of the configuration space. ROBOTune
balances the need of exploration across the entire plane and the
need of exploitation in high-performing regions (light-color areas
with densely-populated points).

6 RELATEDWORK
There is a large body of literature on auto-tuning the configurations
of computer systems. DAC [46] is a learning-based auto-tuner that
aims to find the optimal workload configuration for Spark using
a combination of supervised machine learning (i.e., hierarchical
model) and optimization techniques (i.e., genetic algorithm). Bei et
al. [5] propose a similar line of research for tuning Hadoop named
RFHOC, where Random Forest is used as the predictive model.

ROBOTune ICPP ’21, August 9–12, 2021, Lemont, IL, USA

0 10 20 30
spark.executor.cores

0

50

100

150

sp
ar

k.
ex

ec
ut

or
.m

em
or

y

ROBOTune

0 10 20 30
spark.executor.cores

BestConfig

0 10 20 30
spark.executor.cores

Gunther

0 10 20 30
spark.executor.cores

Random

Figure 8: Sampling behavior of different tuners in the cores-vs-memory configuration plane.

10 20 30
spark.executor.cores

50

100

150

sp
ar

k.
ex

ec
ut

or
.m

em
or

y

(a) Iteration 25.

10 20 30
spark.executor.cores

50

100

150

sp
ar

k.
ex

ec
ut

or
.m

em
or

y

(b) Iteration 50.

10 20 30
spark.executor.cores

50

100

150

sp
ar

k.
ex

ec
ut

or
.m

em
or

y

(c) Iteration 75.

10 20 30
spark.executor.cores

50

100

150

sp
ar

k.
ex

ec
ut

or
.m

em
or

y

(d) Iteration 100

Figure 9: Response surface of PR at different tuning iterations. Lighter color denotes better execution time. ROBOTune exploits
more in the promising regions while exploring unknown regions.

Unlike DAC and RFHOC, which require many samples, ROBOTune
aims to minimize sample collection to reduce tuning costs.

Several studies propose tuning system configurations using dif-
ferent searching algorithms. BestConfig [49] is a research work
that aims to provide a framework-agnostic auto-tuning mechanism.
The strategy is based on finding the best configuration within a
resource limit by using divide and diverge sampling, and recursive
bound and search algorithm. Unlike ROBOTune, BestConfig does
not tackle the challenging issue of high-dimensional configuration
space and, consequently, fails to improvemuch over Random Search.
AutoTune [4] proposes an algorithm for creating a smaller-scale
testbed to collect more samples within a limited time and utilizes a
combination of learning and search-based approach. AutoTune only
considers 13 configuration parameters, where ROBOTune automat-
ically selects and tunes from a list of 44 parameters. Gunther [25]
uses a genetic algorithm to search for optimal configurations of
Hadoop workloads. Gunther only tunes six hand-picked parameters
and the number of random configurations for initialization increase
by two for each new parameter.

OtterTune [45] and iTuned [13] are research work that employ
BO with GP to search for an optimal DBMS configuration. Otter-
Tune uses supervised and unsupervised machine learning to reduce
the configuration space and map unseen workloads to known ones.
Metis [24] is an auto-tuning service that uses customized BO to re-
duce tail latencies of cloud systems. Google Vizier [16] is an internal
service for black-box optimization within Google. CherryPick [2]
and Arrow [19] uses BO with GP and Extra Trees respectively for
recommending cloud VMs. While the concept of using BO to re-
duce search cost is similar, the cloud VM sub-space selected by
the authors is orders of magnitude smaller than cluster computing
configuration spaces. ROBOTune also differs from them in its reuse
of knowledge and the use of a portfolio of acquisition functions. Be-
sides OtterTune and ROBOTune, these approaches do not deal with
the configuration space’s high-dimensionality. However, OtterTune

requires a large corpus of previous tuning sessions (∼30k samples)
to initialize the system, which is not necessary for ROBOTune.

7 CONCLUSION
To cope with the challenging issues of high-dimensionality and
complex multi-modal configuration-performance relationship faced
by the configuration tuning of cluster-based data analytics ap-
plications, we have designed and developed a tuning framework
called ROBOTune. Our framework features Random Forests for
parameter selection and Bayesian Optimization for balanced explo-
ration and exploitation of the configuration space. ROBOTune is
also equipped with memoization and caching to leverage previous
tuning results for fast parameter selection and configuration tun-
ing. Our evaluation with an extensive set of analytics workloads on
machine learning, web search, and graph computation demonstrate
that ROBOTune finds configurations that perform better on average
while achieving a significant improvement in terms of both search
cost and search speed.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.
This work is supported in part by the National Science Foundation
awards 1561041, 1564647, 1744336, 1763547, and 1952302, and has
used the NoleLand facility funded by the National Science Founda-
tion award CNS-1822737. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES
[1] [n.d.]. Spark-Bench. https://github.com/SparkTC/spark-bench
[2] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,

Minlan Yu, and Ming Zhang. 2017. CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 469–482.

https://github.com/SparkTC/spark-bench

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Md Muhib Khan and Weikuan Yu

[3] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. 1995. Gambling in a
rigged casino: The adversarial multi-armed bandit problem. In Proceedings of
IEEE 36th Annual Foundations of Computer Science. 322–331.

[4] L. Bao, X. Liu, and W. Chen. 2018. Learning-based Automatic Parameter Tuning
for Big Data Analytics Frameworks. In 2018 IEEE International Conference on Big
Data (Big Data). 181–190. https://doi.org/10.1109/BigData.2018.8622018

[5] Z. Bei, Z. Yu, H. Zhang, W. Xiong, C. Xu, L. Eeckhout, and S. Feng. 2016. RFHOC:
A Random-Forest Approach to Auto-Tuning Hadoop’s Configuration. IEEE
Transactions on Parallel and Distributed Systems 27, 5 (May 2016), 1470–1483.

[6] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter
Optimization. J. Mach. Learn. Res. 13, null (Feb. 2012), 281–305.

[7] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (Oct. 2001), 5–32. https:
//doi.org/10.1023/A:1010933404324

[8] Eric Brochu, Vlad M Cora, and Nando de Freitas. 2010. A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active User Modeling
and Hierarchical Reinforcement Learning. eprint arXiv:1012.2599. arXiv.org.

[9] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. 2018. Towards Better
Understanding of Black-box Auto-Tuning: A Comparative Analysis for Storage
Systems. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 893–907.

[10] Liu Chu, Eduardo Souza de Cursi, Abdelkhalak El Hami, and Mohamed Eid. 2015.
Reliability Based Optimization with Metaheuristic Algorithms and Latin Hyper-
cube Sampling Based Surrogate Models. Applied and Computational Mathematics
4, 6 (2015), 462–468.

[11] Dennis D. Cox and Susan John. 1997. SDO: A Statistical Method for Global
Optimization. In in Multidisciplinary Design Optimization: State-of-the-Art. 315–
329.

[12] N. R. Draper and H. Smith. 1998. Applied Regression Analysis (3rd ed.). John
Wiley & Sons, Inc., New York, NY, USA.

[13] SongyunDuan, Vamsidhar Thummala, and Shivnath Babu. 2009. TuningDatabase
Configuration Parameters with iTuned. PVLDB 2, 1 (2009), 1246–1257.

[14] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy.
Journal of Machine Learning Research 13 (jul 2012), 2171–2175.

[15] Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006. Extremely Randomized
Trees. Mach. Learn. 63, 1 (April 2006), 3–42.

[16] Daniel Golovin, Benjamin Solnik, SubhodeepMoitra, Greg Kochanski, John Karro,
and D. Sculley. 2017. Google Vizier: A Service for Black-Box Optimization. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Halifax, NS, Canada) (KDD ’17). ACM, New York,
NY, USA, 1487–1495. https://doi.org/10.1145/3097983.3098043

[17] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). USENIX Association, Broomfield, CO, 599–613.

[18] Matthew Hoffman, Eric Brochu, and Nando de Freitas. 2011. Portfolio Allocation
for Bayesian Optimization. In Proceedings of the Twenty-Seventh Conference on
Uncertainty in Artificial Intelligence (Barcelona, Spain) (UAI’11). AUAI Press,
Arlington, Virginia, USA, 327–336.

[19] C. Hsu, V. Nair, V. W. Freeh, and T. Menzies. 2018. Arrow: Low-Level Aug-
mented Bayesian Optimization for Finding the Best Cloud VM. In 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS). 660–670.

[20] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.
2017. Fast Bayesian hyperparameter optimization on large datasets. Electron. J.
Statist. 11, 2 (2017), 4945–4968. https://doi.org/10.1214/17-EJS1335SI

[21] Andreas Krause and Cheng S. Ong. 2011. Contextual Gaussian Process Bandit
Optimization. In Advances in Neural Information Processing Systems 24, J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger (Eds.). Curran
Associates, Inc., 2447–2455.

[22] Manoj Kumar, Mohd Husain, Naveen Upreti, and Deepti Gupta. 2010. Genetic
Algorithm: Review and Application. Journal of Information & Knowledge Man-
agement 2 (12 2010), 451–454.

[23] Harold J. Kushner. 1964. A New Method of Locating the Maximum Point of an
Arbitrary Multipeak Curve in the Presence of Noise. Journal of Basic Engineering
86 (1964), 97–106.

[24] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He, Lianjie Zhu, Wenjun Dai, Jin
Jiang, and Guangzhong Sun. 2018. Metis: Robustly Tuning Tail Latencies of Cloud
Systems. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 981–992.

[25] Guangdeng Liao, Kushal Datta, and Theodore L. Willke. 2013. Gunther: Search-
Based Auto-Tuning of MapReduce. In Euro-Par 2013 Parallel Processing, Felix
Wolf, Bernd Mohr, and Dieter an Mey (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 406–419.

[26] Luo Lie. 2010. Heuristic Artificial Intelligent Algorithm for Genetic Algorithm.
In Advanced Measurement and Test X (Key Engineering Materials, Vol. 439). Trans
Tech Publications Ltd, 516–521.

[27] Daniel James Lizotte. 2008. Practical Bayesian Optimization. Ph.D. Dissertation.
CAN. AAINR46365.

[28] M. D. McKay, R. J. Beckman, and W. J. Conover. 1979. Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from a
Computer Code. Technometrics 21, 2 (1979), 239–245.

[29] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. 1978. The application
of Bayesian methods for seeking the extremum. Towards global optimization 2,
117-129 (1978), 2.

[30] Mojmír Mutný and Andreas Krause. 2018. Efficient High Dimensional Bayesian
Optimization with Additivity and Quadrature Fourier Features. In Proceedings of
the 32nd International Conference on Neural Information Processing Systems (Mon-
tréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY, USA, 9019–9030.

[31] Kristin K. Nicodemus. 2011. Letter to the Editor: On the stability and ranking
of predictors from random forest variable importance measures. Briefings in
Bioinformatics 12, 4 (04 2011), 369–373. https://doi.org/10.1093/bib/bbr016

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[33] Michal Podhoranyi and Lukas Vojacek. 2019. Social Media Data Processing
Infrastructure by Using Apache Spark Big Data Platform: Twitter Data Analy-
sis. In Proceedings of the 2019 4th International Conference on Cloud Computing
and Internet of Things (Tokyo, Japan) (CCIOT 2019). Association for Computing
Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/3361821.3361825

[34] Carl Edward Rasmussen and Christopher K. I. Williams. 2005. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). The MIT
Press.

[35] J.A. Rice. 2006. Mathematical Statistics and Data Analysis. Number p. 3 in
Advanced series. Cengage Learning.

[36] Tirthajyoti Sarkar. [n.d.]. Design of Experiment Generator in Python. https:
//github.com/tirthajyoti/doepy

[37] Scikit-Optimize. [n.d.]. Scikit-Optimize. https://scikit-optimize.github.io/
[38] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. 2016. Taking

the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 104,
1 (2016), 148–175.

[39] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang, Berthold
Reinwald, and Fatma Özcan. 2015. Clash of the Titans: MapReduce vs. Spark for
Large Scale Data Analytics. Proc. VLDB Endow. 8, 13 (Sept. 2015), 2110–2121.

[40] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian Opti-
mization of Machine Learning Algorithms. In Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 2 (Lake Tahoe,
Nevada) (NIPS’12). Curran Associates Inc., Red Hook, NY, USA, 2951–2959.

[41] Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn. 2007.
Bias in random forest variable importance measures: Illustrations, sources and a
solution. BMC Bioinformatics 8, 1 (jan 2007). https://doi.org/10.1186/1471-2105-
8-25

[42] Aparch Spark Team. 2012. Spark 0.6.0 Confguration. Retrieved June 2, 2020
from https://spark.apache.org/docs/0.6.0/configuration.html

[43] Aparch Spark Team. 2019. Spark 2.4.1 Confguration. Retrieved June 2, 2020
from https://spark.apache.org/docs/2.4.1/configuration.html

[44] Virginia Torczon and Michael W. Trosset. 1998. From Evolutionary Operation to
Parallel Direct Search: Pattern Search Algorithms for Numerical Optimization.
Computing Science and Statistics 29 (1998), 396–401.

[45] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (SIGMOD ’17). 1009–1024.

[46] Zhibin Yu, Zhendong Bei, and Xuehai Qian. 2018. Datasize-Aware High Dimen-
sional Configurations Auto-Tuning of In-Memory Cluster Computing. In Proceed-
ings of the Twenty-Third International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Williamsburg, VA, USA) (ASPLOS
’18). ACM, New York, NY, USA, 564–577. https://doi.org/10.1145/3173162.3173187

[47] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient distributed datasets: a fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX conference on Networked Systems De-
sign and Implementation (San Jose, CA) (NSDI’12). USENIX Association, Berkeley,
CA, USA, 2–2. http://dl.acm.org/citation.cfm?id=2228298.2228301

[48] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (Oct.
2016), 56–65. https://doi.org/10.1145/2934664

[49] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. BestConfig: Tapping the Perfor-
mance Potential of Systems via Automatic Configuration Tuning. In Proceedings
of the 2017 Symposium on Cloud Computing (Santa Clara, California) (SoCC ’17).
ACM, New York, NY, USA, 338–350. https://doi.org/10.1145/3127479.3128605

https://doi.org/10.1109/BigData.2018.8622018
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1214/17-EJS1335SI
https://doi.org/10.1093/bib/bbr016
https://doi.org/10.1145/3361821.3361825
https://github.com/tirthajyoti/doepy
https://github.com/tirthajyoti/doepy
https://scikit-optimize.github.io/
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1186/1471-2105-8-25
https://spark.apache.org/docs/0.6.0/configuration.html
https://spark.apache.org/docs/2.4.1/configuration.html
https://doi.org/10.1145/3173162.3173187
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://doi.org/10.1145/2934664
https://doi.org/10.1145/3127479.3128605

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Spark Based Data Analytics
	2.2 Challenges for Parameter Configuration
	2.3 Bayesian Optimization

	3 Design
	3.1 Problem Formulation and Design Overview
	3.2 Memoized Sampling
	3.3 Parameter Selection
	3.4 Bayesian Optimation Engine

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance of Optimal Configurations
	5.3 Search Cost
	5.4 Search Speed
	5.5 Minimizing Selection Overhead
	5.6 Exploration-vs-Exploitation Trade-off

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

