2021 IEEE International Conference on Cluster Computing (CLUSTER) | 978-1-7281-9666-4/21/$31.00 ©2021 IEEE | DOI: 10.1109/Cluster48925.2021.00054

2021 IEEE International Conference on Cluster Computing (CLUSTER)

O(1) Communication for Distributed SGD through
Two-Level Gradient Averaging

Subhadeep Bhattacharyal Weikuan Yuf
tFlorida State University
{bhattach, yuw, fchowdhu} @cs.fsu.edu

Abstract—Large neural network models present a hefty com-
munication challenge to distributed Stochastic Gradient Descent
(SGD), with a per-iteration communication complexity of O(n)
per worker for a model of n parameters. Many sparsification
and quantization techniques have been proposed to compress
the gradients, some reducing the per-iteration communication
complexity to O(k), where k£ < n. In this paper, we introduce
a strategy called two-level gradient averaging (A2SGD) to con-
solidate all gradients down to merely two local averages per
worker before the computation of two global averages for an
updated model. A2SGD also retains local errors to maintain the
variance for fast convergence. Our analysis shows that A2SGD
converges similar to the default distributed SGD algorithm. Our
evaluation validates the conclusion and demonstrates that A2SGD
significantly reduces the communication traffic per worker, and
improves the overall training time of LSTM-PTB by 3.2x and
23.2x, compared to Top-K and QSGD, respectively. We evaluate
the effectiveness of our approach using two kinds of optimizers,
SGD and Adam. Also, our evaluation with various communica-
tion options demonstrates the strength of our approach both in
terms of communication reduction and convergence. To the best
of our knowledge, A2SGD is the first to achieve O(1) commu-
nication complexity per worker without incurring a significant
accuracy degradation of DNN models while communicating only
two scalars representing gradients per worker for distributed
SGD.

I. INTRODUCTION

Deep learning has found great success in image classification,
speech recognition, and language processing [1], [2], etc. The
demand for more powerful and accurate Deep Neural Networks
(DNNs) leads to large and complex models with more than
1 Billion parameters, such as GPT-2 (1.5B) [3], Transformer
(6B) [4], Turing-NLG (17B) [5], GPT-3 (175B) [6] and recently
Switch-C (1.6T) [7]. Such large-scale models require distributed
Stochastic Gradient Descent (SGD) algorithms for training.
Distributed SGD typically adopts data parallelism, in which
P workers hold the same model w € R™ of n parameters and
train it in parallel through many iterations. At the ¢-th iteration,
weight w is updated as follows based on the learning rate 7
and the gradients g:

P
1
Wit =Wy =5 >dl, (1
p=1
where a worker computes local gradients g7 (of the same size n)
for the model using its fraction of a mini-batch, and exchanges
the gradients across all workers for an updated global model.

Fahim Tahmid Chowdhury®

Kathryn Mohror?
fLawrence Livermore National Lab
mohror1 @IlInl.gov

Such a global exchange and synchronization problem imposes
a hefty requirement on both the latency and bandwidth of
distributed systems, and hampers the scalability of distributed
SGD [8]-[12]. Various strategies have been proposed to tackle
this problem by increasing the mini-batch sizes [13]-[15],
reducing the rounds of communication [16]-[18], or pruning
the neural networks [19]-[22].

Particularly, there exists a fundamental bottleneck, i.e., the
need to transfer O(n) local gradients for each worker. Many
studies have proposed to compress the gradients through
quantization [9], [18], [23]-[26] and/or sparsification [27]—
[30]. Quantization enables lossy compression of gradients by
reducing the precision of their representation to a varying
degree, from 1BitSGD [9], [31] with only a sign bit, Tern-
Grad [23] with three numerical levels {-1, 0, 1}, to QSGD [24]
that supports multiple quantization levels. These quantization
techniques can reduce the magnitude of each gradient during
communication by at most 32 times per iteration, assuming
gradients are single-precision floating-point numbers.

Gradient sparsification can achieve higher compression by
selecting only % out of n gradients to reduce the communication
traffic per worker [28]-[30]. Usually, k is defined as x * d,
where x represents some fraction of gradient density (d). The
selection criteria of k£ can be based on a user-defined threshold
(Top-K) [29], a gaussian-estimated threshold (Gaussian-K)
[28], or simple randomization (Rand-K) [30]. Prior results [27],
[30] have shown that, theoretically, sparsified SGD can con-
verge within the same upper bound as the original distributed
SGD (dense SGD) algorithm, which exchanges full gradients.
In practice, they have different convergence behaviors, for
which Shi et al. [28] have performed a theoretical analysis to
distinguish them.

In this paper, we propose a novel algorithm different
from both sparsification and quantization. Our algorithm
two-level gradient averaging (A2SGD) consolidates all local
gradients down to merely two local means and achieves a per
iteration communication complexity of O(1) per worker. It
then aggregates the local means into two global means across
all workers for an updated model. The key idea behind A2SGD
is not to drop or quantize any gradient but to average all the
positive and negative local gradients layer-wise while recording
the difference between the gradients and the resulting means
locally at each worker. In doing so, A2SGD retains local errors
to maintain the same variance across gradients as dense SGD,

978-1-7281-9666-4/21/$31.00 ©2021 IEEE 332
DOI 10.1109/Cluster48925.2021.00054

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from |IEEE Xplore. Restrictions apply.

avoiding any potential variance blowup or any increase in
the number of iterations. A2SGD does not require complex
sampling or sorting of gradients but only simple calculations
for the two means and their differences with the gradients. Our
analysis shows that A2SGD converges similarly to dense SGD.
Our evaluation validates the conclusion and demonstrates that
A2SGD significantly improves the execution time per iteration
and the overall training time, by 3.2x and 23.2x compared to
Top-K and QSGD, respectively for LSTM-PTB, a big model
with around 66 million parameters. Compared to the default
dense SGD algorithm, A2SGD improves the overall training
time of LSTM-PTB by 1.72x. Besides, A2SGD achieves the
best overall performance in terms of convergence accuracy,
execution time, and scaling efficiency in comparison to other
techniques such as Top-K, Gaussian-K and QSGD.

Our Contributions. In summary, by examining the scalability
challenge of gradient synchronization in distributed SGD and
analyzing its computation and communication complexities,
we have proposed a two-level gradient averaging algorithm,
A2SGD, for distributed workers to exchange only two means
globally. Our analysis and experimental results have confirmed
the convergence of A2SGD, and demonstrated that it achieves
an overall improvement compared to other sparsification and
quantization algorithms [24], [28], [30]. Our results also show
that A2SGD achieves fast computation complexity as discussed
in §IV-C2. To the best of our knowledge, A2SGD is the first
to achieve O(1) per iteration communication complexity per
worker for distributed SGD. Moreover, Our contributions can
be summarized as follows:

« We study different quantization and sparsification ap-
proaches and analyze that the additional computation
introduced by such approach can diminish the benefit
of communication reduction.

o We describe and implement A2SGD using Horovod [32],
PyTorch [33] and MPI [34], which significantly reduces
the communication traffic by exchanging only the positive
and negative mean contribution from all nodes during
allreduce.

« While A2SGD avoids gradient synchronization across all
workers at the end of each iteration, it uses error correction
mechanism and ensure consistent parameter and gradient
across all workers after fixed number of epochs.

« We empirically show that our method achieves significant
communication reduction during allreduce while maintain-
ing quality of the model in terms of Top-1 accuracy and
validation loss.

o« We evaluate the benefit of our method using different
communication options both using Remote Direct Mem-
ory Access (RDMA), TCP and Hierarchical collectives
(HCOLL) [35] while utilizing MPI for Allreduce.

o« We analyze the effectiveness of our method in further
detail by using both SGD and Adam optimizers. It shows
that our method converges within fixed epoch without
significant degradation of the model while comparing
with Dense SGD.

333

Our proposed A2SGD algorithm will have broader impact to
the field of high-performance deep learning through distributed
SGD, particularly on the use of big neural network models and
the deployment of large-scale computer systems and high-speed
networks. With its dramatic reduction on the communication
complexity of gradient synchronization, A2SGD will facilitate
the adoption of big DNN models for a wide variety of
image classification, speech recognition and natural language
processing applications.

II. RELATED WORK

Pos, Neg mean Pos, Neg mean Gradient in Worker-1

Gradient in Worker-Z/l\\ P

@ contribution-2 contribution - 1 [€Y)
Push Push
Update & Error Update & Error
i Correction
Correction e
©) %
Allreduce using 2 scalars representing
positive and negative mean
©)
~ -~
@ @
Push Push
(—— -
Update & Error Update & Error
C“\P;%“"" Pos,Negmean Pos, Negmean Correction
& contribution - 3 contribution - 4 3)

Gradient in Worker-3 Gradient in Worker-4

(a) Allreduce operation in A2SGD

Fig. 1: Design of A2SGD

A. Gradient Quantization.

Gradient quantization takes advantage of the fact that
distributed SGD can still converge with low-precision gradients
instead of 32-bit floating-point representations. A wide variety
of quantization techniques have tried to represent gradients
in 16 bits [36]-[38], 8 bits [39], 2.8 bits [24], 2 bits [40],
or even 1 bit [9], [31]. In addition, Wen et al. [23] have
quantized gradients from workers to the server using ternary
values {-1, 0, 1}. Furthermore, some studies have provided
theoretical analysis on the convergence guarantees of quantiza-
tion techniques [18], [24], [25], [41]-[43]. Notwithstanding the
compulsory cost for quantizing the gradients, quantization is
inherently limited by its optimization scope, i.e., the number of
bits representing the gradients. Thus it can reduce the network
traffic by at most 32x compared to 32-bit numbers while
using the quantization technique alone without any additional
compression. The overall improvement of the time per iteration
or the total training time is further limited for training large-
scale models using distributed SGD.

B. Gradient Sparsification.

Unlike gradient quantization, sparsification examines the
total number (n) of gradients and selectively transfers only a
small number (k) of them while still allowing DNN models to
converge. Because k can be several orders of magnitude smaller
than n, sparsification techniques [9], [18], [27], [29], [30], [44]-
[46] are proved to be much more effective than quantization in

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from |IEEE Xplore. Restrictions apply.

reducing the communication traffic. Several studies [9], [29]
have differentiated gradient values by magnitude and purged
the small ones under a threshold. [44] adopted a number of
optimizations to achieve very high sparsity in the exchanged
gradients and carefully tuned the hyperparameters of DNN
models to avoid any loss of accuracy.

Various recent studies [27], [30], [45] theoretically analyzed
the performance of sparsification and established various
bounds on the convergence rate. Nonetheless, it is imperative for
these techniques to process all gradients, at certain computation
costs, to reach their desired sparsity levels. For example, the
selection procedure of top k number of elements from a given
gradient vector involves additional computation overhead. As an
alternative, Shi et. al. [28] have recently proposed a technique
to remove the additional computation and take advantage of
the gaussian distribution property. They statistically pinpoint
a threshold to select the top k£ gradients at low computation
latency by thresholding the values using GPU in parallel.

III. DESIGN OF DISTRIBUTED SGD WITH TWO-LEVEL
GRADIENT AVERAGING

As mentioned in §I, gradient synchronization imposes a
fundamental scalability challenge for data-parallel distributed
SGD due to the requirement for all workers to exchange
their gradients. While the sparsity and quantization levels
are important to the per-iteration communication complexity
of gradient synchronization, the computation efficiency of
sparsification and quantization can be critical to its scalability
as well. [28] reported that, while Top-K sparsification reduces
the communication traffic, its computation overhead can offset
the overall benefit, resulting in a suboptimal improvement
on the execution time per iteration. On systems with high-
bandwidth communication networks at 100 Gbps or higher, the
computation costs from Top-K sparsification can overshadow
its gains on communication efficiency, as we have observed
in our experimental evaluation (§1V). The same tradeoff
happens to quantization techniques such as QSGD. Shi et.
al. [28] proposed Gaussian-K to avoid costly sorting and
selection of top k elements across all gradient values. Gaussian-
K assumes a gaussian distribution of gradient values and
estimates a statistical threshold for the selection of gradient
values. It has demonstrated the importance of low computation
for sparsification. However, selection of k poses another
challenge on maintaining the desired quality of model which
sometimes requires manual adjustment on density values.
Dynamic densities and careful hyperparameter tuning can
become a primary concern for achieving the desired accuracy
while reducing the communication load in sparsification based
methods. Moreover, Sparsification and quantization can also be
combined and generalized as compression techniques for the
improvement of gradient synchronization [18], [25], [47]. All
these studies have mitigated the computation costs of gradient
while allowing the models to converge. Even so, all of them
require the workers in distributed SGD to exchange some
fraction of their gradients.

334

We propose an alternative to sparsification and quantization
techniques. Instead of selecting a top fraction of gradient values,
we can exchange the mean across the distributed workers. To
avoid over simplification caused by a unified mean, we arrange
the gradient values of each layer into two groups: positive
(> 0) and negative (< 0), and compute their absolute means
accordingly. Then all workers can exchange these two means for
the synchronized global mean values. A global negative mean
is computed by averaging the negative means from all workers;
and a global positive mean by averaging the positive means.
We refer to our algorithm as Two-level Gradient Averaging
(A2SGD). 1t effectively reduces the communication traffic
down to two values, achieving the per iteration communication
complexity of O(1).

Fig 1 shows the distributed training using multiple workers
in the data-parallel model. As shown in Fig. la, in Step 1
of our approach, each worker computes the gradient after
going through the Feed-Forward phase where a mini-batch
of data is fed across all the neural net layers in the forward
direction. After the gradients are generated in each worker,
each worker flattens the multidimensional gradient vector. Then
it contributes the positive and negative mean of the gradients
and participates in allreduce as shown by Step 2 in Fig. la.
After each worker completes the allreduce operation and gets
a synchronized copy of positive-negative contributions, the
error-correction is performed. Finally, each worker continues
with their Back Propagation and iteratively updates the model
parameters, shown as Step 3 in Fig. 1(a).

While this is different from gradient clipping in prior
studies [23], [25], [44], it would also lead to some distorted
gradients for the workers. Several prior studies [9], [25], [30],
[31], [41] pursued the idea of error-feedback to correct either
the momentum or variance, or both, to improve the convergence
accuracy of training. To limit the impact on variance, we equip
A2SGD with a similar error-feedback mechanism through
a local error vector. Each workers need to perform some
additional tasks in order to efficiently store and handle the
error-feedback mechanism We compute the difference between
the gradients and the two means, and use a local error vector
to store the difference. Moreover, the subtraction operation
takes place for 1) the positive values which are greater than the
positive mean and 2) the negative values which are less than
the negative mean. When the global synchronization completes,
the error vector is added back to the global means, according
to the corresponding positions of the original positive and
negative gradients, to generate the updated gradients. We keep
the values lying in the interval between negative and positive
means as they are. Although, these values remain intact for
the particular iteration, they participate in later phase of the
training and try to converge towards zero.

Figure 2 shows the frequency distribution of gradients and
its progression with an increasing number of iterations, for
two representative models: FNN-3 and ResNet-20. Most of
the values are close to zero on either side, following a normal
distribution. Besides, as the models finish more iterations of the
training, more gradient values converge to the center around

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from |IEEE Xplore. Restrictions apply.

led

3.0 0 3.0
25 - 200 2.5
) - 400

22.0 =m0 2.0
C . 800 c
g15 g15
©1.0 ©1.0
“os5 *05

0.0 0.0

—0.008 0.000 0.008 —0.004 0.000 0.004

Gradient Value Gradient Value

(a) FNN3 (b) ResNet20

Fig. 2: Progression of Gradient Distribution with number of
iterations.

zero. These distribution plots from one representative worker
provide a visualization of the convergence of gradients across
all workers. The distribution of gradients has been previously
studied thoroughly in [48] which supports our results.

2.0{ — TouK
— QSGD
—— GaussianK

© 1.51 — a2sep

()

L

Q 1.0

£

F 0.5

0.0

20 40 60 80 100

of Parameters (Millions)

0

Fig. 3: Comparison of A2SGD computation time with other
algorithms.

For an initial assessment on A2SGD’s computation cost,
we have measured its computation time with an increasing
number of parameters, compared to Top-K, Gaussian-K and
QSGD. A2SGD, Top-K, Gaussian-K use PyTorch [33] APIs
with GPU support, and QSGD is implemented in Numpy [49]
with CPU specific implementation for quantization (see §IV-A
for more details on our experimental setup). Figure 3 shows
that A2SGD and Gaussian-K have much lower computation
latency than QSGD and Top-K. A2SGD has a slightly lower
computation cost than Gaussian-K because Gaussian-K has
to estimate a threshold [28] before gradient selection. We
have elaborated the detailed computation complexity for these
algorithms in §IV-C. These initial results on the computation
time suggest that A2SGD is very promising to support efficient
gradient synchronization because of its significant reduction
on communication traffic at very low computation costs.

335

A. Details of A2SGD

For a gradient vector v = {vy,vs,...,v, } € R", we denote
py(v) = IE{(v;) | v} V v; > 0 as the absolute mean of all
positive values v; in v, and p_(v) = E{|v;| | v} V v; <0,
the absolute mean of all negative values in v. We introduce a
new operator enc below to transform the values of v.

2

where pos(v) and neg(v) € R™ are vectors with values €
{1,0}. The former has 1 in the corresponding positions V v; >
py (V) AV v; > 0,0 € [1,n], and the latter with 1, V v; <
(=1) - p—(v) AV v; < 0,4 € [1,n]. This encoding helps to
keep track of the corresponding indices for both positive and
negative values of the gradient vector during error correction.

Algorithm 1 describes the proposed A2SGD algorithm in
detail. Each worker p starts with a learning rate 79 and an initial
weight wg. At any iteration ¢, worker p computes its stochastic
gradients g by training SGD with its portion of mini-batch
MP (Line 2). It then extracts the means for positive and
negative gradients (Line 3) and subtracts the vector constructed
from the means (Line 4). The errors are stored in a local error
vector €}, All workers call the Allreduce operation to exchange
their local means and get back the global means (Line 5). The
global means are then combined with the errors stored in ¢}
into the new gradients g, and eventually as new g7 (Line 6
and 7). Assume, worker 1 has gradients [+1,+2,-1] and worker
2 [-1,-2,+3], A2SGD will send [1.5, 1] from worker 1 and [3,
1.5] from worker 2 during allreduce. The first one in mean
vector represents the positive contribution while the second one
represents the negative contribution. The value of pos(g?) and
neg(g?) needs to be calculated before performing encoding
for local error calculation. In worker 1, pos(g?) and neg(g¥)
is calculated as [0, 1, 0] and [0, O, 1] respectively. Similarly, in
worker 2, the value of pos(g?’) = [0, 0, 1] and neg(g?) = [0, 1,
0]. The value of enc(g?) becomes [0, +1.5, -1] and [0, -1.5, +3].
Local errors, i.e., Worker-1:[+1, +0.5, 0], Worker-2:[-1,-0.5,0],
are stored in both workers and applied after allreduce. After the
allreduce and error correction is completed, each worker hold
the synchronized mean values [2.25, 1.25] and the updated
gradient vector, Worker 1: [+1, +2.75, -1.25] and Worker 2: [-1,
-1.75, 2.25] For a gradient vector of dim=1 (model with only
one parameter), we replace the missing scalar representing the
mean with zero. Finally, the model weight is updated at Line 8
using the new gradient and the current learning rate. At the
end of the training iterations, one more iteration is performed
to synchronize the model across all workers (Lines 10, 11
and 12).

The gradient generated in data parallel dense SGD can be
expressed as : g; = 5 Zle gt

However, for each iteration of A2SGD, gradient gf subtracts
its own means and then gains back the global means. We
are basically assuming the following properties: (1) Most of
the gradients are located near zero and (2) We can achieve
acceptable accuracies as shown in previous studies [24], [25],
[27], [28], [50] without transferring the entire gradient vector.

enc(v) = pos(v) - i (v) — neg(v) - p—(v)

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 1 Parallel A2SGD Algorithm at Worker p

Input: Initial learning rate 79, weight wy = 0
Output: Learned model consists of weight wy after T*"

1: fort < 1to7T —1 do

2. ¢ « SGD through training with M?

3 ppy <+ py(gr) and pp < p(g7)

4 ¢ « gf —enc(g;)

5 (B4, fle,—) < Allreduce((pfw 1y), average)
6: g < € +pos(gy) - fir,+ —neg(gy) - fir,—
g g

8 wp gy wp =g

9: end for

10: wr_1 < Allreduce(w?’._,,average)

11: gr—1 + Allreduce(g._,,average)

120 W <= wr—1 — Nr—1* 97-1

iteration

> training M}, portion of mini-batch for p

> Calculate positive and negative mean in each worker

> Calculate error in €} for error correction after allreduce
> Allreduce in ¢*" iteration using pos and neg means

> Error Correction ¢;

> Assign the error corrected value as new gradient

> Update the model

> Global synchronization with entire gradient vector from all workers

> Global update of the model at last iteration

We assume set(A) as the set of all gradients in a local worker
and we are selecting a subset of them in each iteration
using mean values of positive and negative gradient values
as threshold. Rest of the content in gradient vector are kept
in residual for future error correction. Furthermore, it selects
worker zero as the master node and expects to get a consistent
copy of the model after T*" iteration. Although, our approach
is implemented in a decentralized data parallel way, it can be
easily adopted to Parameter Server setting. We can denote [i;
as the vector composed global means, and the net gain as :

Apy = fi” — enc(gy)

As per our algorithm,

o it = [pos(gy)-piz,+ — neg(gy)-pie,—]

o enc(ge) = [pos(gr).uy 4 — neg(gy)-1y

o Hik = ey iy and ppo = 3Tl
Furthermore- Apu; =

[(pos(gr)-pi,+—neg(gy)-pe,—)—(pos(gy).uy + —neg(gy)-pi,)]
= [pos(gt).-pui,+ —neg(ge)-pe,— —pos(gy)1y 4 +neg(gr)11t |

= pos(gf)[pi+ — 1y 4] — neg(gy) (e — — pp]

The updated gradient in A2SGD approach for each iteration
can be denoted as : g; = g¥ + Ay

Finally, in synchronous data parallel SGD (SSGD), we get
consitent value of gradients across each worker which in turn

denotes the allreduced mean of each coordinate across workers.

However, the Asynchronous version of it claims to converge but
suffers from significant slowdown due to stale update as shown
in [51]. In our approach the view of model is not consistent
across worker till 7" iteration. Hence, we can assume in any
intermediate iteration, gradient in first worker represents the
entire worker vector. However, due to synchronization in the
Tth iteration, we get a final consistent view of the model
parameters.

336

IV. EMPIRICAL RESULTS

In this section, we first describe our experimental setup, then
we present our evaluation results validating the convergence
of A2SGD. In addition, we compare its performance with
dense SGD (Dense in short), two sparsification techniques Top-
K [30] and Gaussian-K [28] and one quantization technique
QSGD [24]. Our performance evaluation covers several aspects,
including convergence accuracy, computation and communi-
cation complexities, scaling efficiency, execution time, and
effectiveness of our approach with Adam optimizer.

A. Experimental Setup

We employ data-parallel SGD for all the experiments with
the data divided among P workers, each maintaining a copy
of entire model to train a portion of the entire dataset. Each
worker also receives a copy of an entire gradient vector for
weight update.

We implement A2SGD on top of PyTorch [33] v1.3.0 with
CUDA [52] v10.1, and utilize Horovod [32] v0.19.1 with
Allreduce [53] for data-parallel implementation of different
models. Top-K and Gaussian-K implementations are adapted
from a GitHub repository [54]. Both implementations use the
PyTorch Tensor API. We adapt the QSGD implementation from
a GitHub implementation [49]. We conduct all our experiments
with varying number of Nvidia V100 GPUs (2 to 16). Each
node in our testbed is equipped with 256 GB CPU memory and
1 V100 GPUs per node with 16 GB GPU memory. Furthermore,
all nodes in the system are connected with a high-bandwidth
100-Gbps InfiniBand network.

In our tests, we employ four different DNN models, including
(1) FNN-3 which is a Feed-forward Neural Network (FNN)
with three hidden fully connected layers; 2) two types of
Convolutional Neural Networks (CNNs), i.e., VGG-16 and
ResNet-20 using CIFAR10 dataset; and 3) LSTM-PTB, i.e., the
Long Short Term Memory (LSTM) model using Penn Treebank
(PTB) dataset. We use LARS [14], Linear Scaling(LS), Gradual
Warmup (GW) and Polynomial Decay (PD) of learning rate

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from |IEEE Xplore. Restrictions apply.

TABLE I: Experimental Setup

Dataset

Model Train Sample Size # Parameters BatchSize/worker LR Policy
FNN-3 60 OOO-%S(IZSS’I]‘ images 199,210 128 0.01 LS(1 x) + GW + PD
VGG-16 50 Oooigziﬁgjoimages 14,728,266 128 0.1 LS(1.5 x) + GW + PD + LARS
CIFAR10
ResNet-20 50,000-[32x32] images 269,722 128 0.1 LS(1 x) + GW + PD
PTB
LSTM-PTB 9.12.344 tokens 66,034,000 128 22 PD
(LR) for the large batch experiments. LARS is used in all TABLE II: Comparison of Gradient Synchronization Complex-
the experiments related to VGG16, including Dense, Top-K, 1ties
Gaussian-k and QSGD. In LS, we increase LR by multiplying it Computation _ Communication
with the number of workers. LR value with a given number of Algorithm Complexity (# bits)
workers is equ2.|1 to (baseLR «xnumW orker xn) if LS (nz) is Dense SGD o) 39n
specified. GW is executed to start from a smaller one and ramp- QSGD om) o8 1 32
up to the base learning rate gradually in first 5 epochs. LR is '
also decayed using the equation ((1 — Epoch)/maz Epochs)? Top-K O(n + klogn) 32k
in case Polynomial Decay(PD) is specified. In all figures, we Gaussian-K O(n) 32k
label Top-K and Gaussian-K without the hyphen for brevity. A2SGD O(n) 64

Table I lists the detailed hyperparameters for these models.
1) Value of Sparsification (k) and Quantization (q) level::
For all the experiments we consider the value of &k as 0.001 xd
for Top-K and Gaussian-K. 0.001 * d represents that only 0.1%
of the entire gradient is used for gradient synchronization of
sparsification methods, i.e, ¥ = 199, 14728, 269 and 66034
for FNN-3, VGG-16, ResNet20, LSTM-PTB. We perform all
the QSGD experiments with quantization level ¢ = 4 as we
compare with the quantization functionality of QSGD without

any additional compression technique.

B. Convergence Accuracy

To demonstrate the convergence of A2SGD, we run all four
models, with 30 epochs for FNN-3, 150 epochs for VGG-16
and ResNet-20, and 100 epochs for LSTM-PTB with a varying
number of workers. We measure the top-1 convergence accuracy
for FNN-3, VGG-16 and ResNet-20, and the perplexity score'
for LSTM. We perform each experiment multiple times for
validation purposes and reported the results with required
epochs to reach convergence.

Figure 4(a-d), Figure 4(e-h) and Figure 4(i-1) show the
convergence performance with 4, 8 and 16 workers, respectively.
These results demonstrate that, for all the cases, A2SGD
achieves the closest top-1 accuracy to dense SGD within the
same number of epochs, and outperforms the other algorithms
in terms of convergence accuracy. Top-K performs the best
overall among the rest of algorithms. A2SGD achieves 97.82%,
87.82%, 88.80% top-1 accuracy, and 135.53 perplexity for
FNN-3, ResNet20, VGG16 and LSTM, respectively with
8 workers. In addition, A2SGD achieves 2.5% and 1.3%
better top-1 accuracies than Top-K for ResNet20 and VGG16,

! Captures the degree of uncertainty a particular model have for predicting
some text. Lower the better.

337

respectively. Furthermore, Top-K, Gaussian-K, and QSGD all
exhibit a varying amount of accuracy drops with more workers.
Moreover, Figure 5a depicts the validation loss of ResNet50
with ImageNet as dataset. We use minibatch size of 128 with
LR 0.1 for this set of experiments with 8 workers. Although
validation loss for TopK and A2SGD is close to Dense SGD,
A2SGD achieves better validation loss with time over Gaussian-
K.

C. Gradient Synchronization Complexities and Scaling Effi-
ciency

As discussed in §III, our A2SGD algorithm is designed to
improve gradient synchronization with reduced communication
traffic without costly computation to process the gradients.
To gain an insight on its impact to computation and commu-
nication in gradient synchronization, we have characterized
the asymptotic computation complexity and the amount of
communication traffic (# bits) per worker for A2SGD, in
comparison to dense SGD, QSGD, Top-K and Gaussian-K.
In data-parallel distributed SGD, each worker hosts a full copy
of the model and gradients after each training iteration. We
assume a model with n parameters, i.e., n gradients.

1) Communication Complexity.: In terms of communication
traffic, it is evident that dense SGD has to transfer all
gradients from each worker, i.e., 32n bits. A2SGD transfers
two means, i.e., 64 bits. Top-K and Gaussian-K both transfer
k gradients, i.e., 32k bits, where k = xd and d represents
density of the gradient vector. [24] reported that QSGD
transfers 2.8n + 32 bits. Thus A2SGD is the only algorithm
that achieves O(1) communication complexity per worker,
which can greatly increase the communication efficiency in the

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from |IEEE Xplore. Restrictions apply.

100

100, I
— 10°
> golf v =
E —— Dense > — QSGD.
3 60 — o £10° =
< — —— GaussianK 2
— 401 — pense A2SGD —— Dense 8 3
! —— TopK — TopK o 10 \
8‘ 20{ — ¥°b \[/\/\ —— QSGD o ¥
—— Gaussianl —— GaussiankK R
= 0 22500 “ A25GD 102 \\&
0 8 16 24 0 30 60 90120 0 30 60 90120 0 25 50 75 100
Epoch Epoch Epoch Epoch
(a) FNN3 - 4 workers (b) VGG16 - 4 workers (c) ResNet20 - 4 workers (d) LSTM-PTB - 4 workers
100 N 100, 100 10° —
S 8o] o . e
5 | — Dense £10° v
5 60 e)
< 4 —— GaussianK E.
- 40 — Dense | A25GD o103
ﬁl)_ —— TopK a
|9 20 : ngsE;ianK V —— GaussianK
0 A25GD ‘ ‘ ‘ ; ‘ ‘ ‘ : AZSGIi) 102
0 8 16 24 0 30 60 90120 0 30 60 90120 0 25 50 75
Epoch Epoch Epoch Epoch
(e) FNN3 - 8 workers (f) VGGI16 - 8 workers (g) ResNet20 - 8 workers (h) LSTM-PTB - 8 workers
100+ _ 100, e 100 105
> R — o=
% 8(), 1 —— QsGD > —— QSGD
5 — Do £10* i rve
g 60/ 3 £
— 40 7] —— Dense E' 103 i
6_ —— TopK i gf Vo
8 20/ — QsGb 1/ / e
— —— GaussianK — Gaussiank e
0 A25GD A25GD 102
0 6 12 18 24 0 30 60 90120 0 30 60 90120 0 20 40 60 80
Epoch Epoch Epoch Epoch

(i) FNN3 - 16 workers (j) VGG16 - 16 workers

(k) ResNet20 - 16 workers (1) LSTM-PTB - 16 workers

Fig. 4: Comparison of Convergence Accuracy with 4, 8, 16 Workers

8 —— Dense
— TopK

6‘ —— GaussianK
—— A25GD

06 20 40 60 80
Epoch

(a) ResNet50 - 8 workers

gradient synchronization of large DNN models. The amount
of communication traffic for these algorithms is shown by

Column 3 of Table II.

2) Computation Complexity.: Dense SGD does not process
local gradients, and has a computation complexity of O(1).
All other algorithms store a local residual or error vector from
the transferred gradients, with a computation complexity of
O(n). A2SGD has an overall computation complexity of O(n)
because, for each model, it traverses all gradients to compute
two separate averages, which is still O(n). Gaussian-K has
a computation complexity of O(n) in its formulation of the
gaussian estimation model as stated in [28]. In addition, it has
an additional overhead to estimate the threshold based on its
gaussian model.

In the Python implementation without GPU support [49],
QSGD computes the second norm (a complexity of O(n)) and
applies quantization for each gradient. Thus its total computa-
tion complexity is O(n). A max heap-based implementation of
Top-K has an overall computation complexity of O(n+ klogn),
where n is the complexity of constructing the max heap and

338

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from |IEEE Xplore. Restrictions apply.

klogn for selecting the largest £ elements. The computation
comparison is shown by Column 2 of Table II. Note that
GPU based implementations can have higher complexity for
the need of GPU parallelization [55], [56]. For both QSGD
and Top-K, the cost to maintain a local error vector does
not change the overall computation complexity. Our analysis
of these algorithms in terms of their asymptotic computation
complexity confirms the superb overall efficiency of A2SGD.
While achieving O(1) communication complexity per worker,
it maintains the minimal asymptotic computation complexity
of O(n), without the overhead for threshold estimation like
Gaussian-K. Furthermore, we evaluate the scaling efficiency
along with the validation loss while using 8 workers for the
training of A2SGD in comparison to the other algorithms. The
reported validation loss in Table III follows the convergence
accuracy, as reported in §IV-B. Our evaluation results show
that A2SGD and Top-K achieve the closest loss to dense
SGD than others. However, for VGG16, ResNet20 and LSTM,
A2SGD achieves the lowest loss after the same number of
epochs. A2SGD outperforms dense SGD by 0.20% and 0.6%
for image classification models VGG16 and ResNet-20.

We also measure the throughput of each algorithm as the
number of images processed per second. Then the scaling
efficiency is calculated as the normalized throughput with
an increasing number of workers. Since there is no gradient
synchronization for only one worker, we use the throughput of
dense SGD with two workers for normalization. Specifically, it
is calculated as Scaling Efficiency = (tg/t5), where t is the
throughput (average images processed per iteration) of dense
SGD with 2 workers, and g is the overall throughput with 8
workers for any specific algorithm. A higher throughput reflects
the better efficiency in processing images. As shown by the
column 2 in Table III, A2SGD and Gaussian-K have better
scaling efficiency than the other three algorithms. The reason
Gaussian-K performs similarly to A2SGD, because it uses
Allgather implementation of gradient exchange as discussed
in §IV-D.

D. Execution Time

Given our understanding on the complexity of A2SGD and
its scaling efficiency, we further evaluate the benefit of A2SGD
to the execution time of DNN training models with fixed
epochs as mentioned in §IV-B. We first measure the average
execution time per iteration for all algorithms with varying
number of workers. Figure 6 shows the comparison across
four different models. For the smaller models, i.e., FNN-3 and
ResNet-20, A2SGD and Gaussian-K perform comparably to
dense SGD, and slightly better than QSGD and Top-K. These
two models have a smaller number of parameters, which lead
to an insignificant difference on the 100-Gbps high-bandwidth
network. The longer execution time per iteration of QSGD and
Top-K is due to their higher computation costs.

For the larger models, i.e., VGG-16 and LSTM-PTB, A2SGD
and Gaussian-K deliver much faster execution time per iteration,
compared to dense SGD, Top-K and QSGD. For the largest
model, Gaussian-K achieves slightly better execution time per

339

iteration than A2SGD. We could not attribute this difference
to the comparisons listed in Table II. By examining the
implementation of Gaussian-K, we realize that this is because
Gaussian-K uses Allgather for exchanging gradients, which
is faster than Allreduce adopted by A2SGD on 100-Gbps
high-bandwidth networks [53], [57] with increasing number
of workers. Furthermore, the execution time per iteration is
always the longest for QSGD compared to dense SGD. The
reason behind this is the overhead from its high computation
domination over the benefit of communication reduction on the
100-Gbps high-bandwidth network. Moreover, all algorithms
exhibit longer execution time per iteration with an increasing
number of workers. This is because of the collective nature of
gradient synchronization, i.e., more communication time for
synchronization across more workers.

We also evaluate the benefit of A2SGD to the total execution
time with an increasing number of workers. Figure 7 shows
the comparison across all algorithms for four different models.
Despite the increasing execution time per iteration, all algo-
rithms deliver faster total execution time with more workers, a
manifestation on the strength of data-parallel distributed SGD
algorithms. Again, for FNN-3 and ResNet-20, A2SGD and
Gaussian-K perform similarly to dense SGD, and slightly better
than QSGD and Top-K, for the same reasons as previously
stated. For the larger models VGG-16 and LSTM-PTB, A2SGD
and Gaussian-K again achieve better performance than dense
SGD, Top-K and QSGD. Gaussian-K is slightly faster than
A2SGD but loses in terms of validation loss and perplexity
score in case of LSTM-PTB. A2SGD is 3.2x and 23.2x faster
compared to Top-K and QSGD in terms of total execution time.
QSGD suffers from its high computation overhead compared
to dense SGD, and its high communication costs compared to
the rest of the models.

1) Slow Interconnect: We further compare the performance
of our proposed A2SGD method with dense SGD while
using slow interconnect. We have observed that, FNN-3
model consists of small number of parameters and ResNet-
20 is considerably computation intensive than the others.
Hence, we select VGG-16 and LSTM-PTB for this set of
experiments as a representative model of image classification
(using CNN) and text processing (using LSTM), respectively.
We use tep as the Byte Transfer Layer(BTL) in IBM Spectrum-
MPI for selecting the slow interconnect. We observe that
there is no further deterioration of accuracy while using
the same hyperparameter configuration as before. However,
A2SGD achieves considerable performance improvement in
speedup and overall execution time compared with the default
dense SGD approach. Figure 10 shows overall performance
improvement in terms of speedup while using A2SGD with
varying number of workers. The performance speedup is 70.6%,
128%, 94.6% and 88.4% for VGG-16 and 4.61x, 7.59x,
10.37x and 8.08 x for LSTM-PTB using 2, 4, 8 and 16 workers
respectively. Again, Fig 9 measures the overall execution time
for A2SGD and dense SGD with varying number of workers.
A2SGD clearly shows huge performance improvements over
dense SGD with around 88.8% less exection time for LSTM-

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from |IEEE Xplore. Restrictions apply.

TABLE III: Comparison of Scaling Efficiency and Validation Loss

Scaling Efficiency (8 Workers) Validation Loss (8 Workers)
(FNN/VGG/ResNet/LSTM) (FNN/VGG/ResNet/LSTM)

Dense SGD (1.83 /2347252 /2.34x%) (0.068 / 0.55 / 0.42 / 4.76%)

Algorithm

QSGD (1.73 7/ 0.66 / 2.34 / 0.26 %) (49.5/7.47 71 0.68 / 5.76%)
Top-K (1.76 / 2.40 / 1.92 / 1.50%) (0.07 7 0.45 / 0.45 / 4.92%)
Gaussian-K (1.79 /297 1 2.40 / 6.58x) (0.88 /2.61 / 1.53 1 6.55%)
A2SGD (1.80 / 3.06 / 2.50 / 6.37%) (0.07 7 0.35/ 0.36 / 4.9%)
Dense EEE GaussianK Dense EEE GaussianK Dense EEE GaussianK Dense EEE GaussianK
E= TopK A25GD E= TopK A2SGD E= TopK A2SGD E= TopK A2SGD
4 QSGD QSGD QSGD QSGD

S

\\

07572 8 16 2 4 8 16 2 4 8 16
Number of Workers Number of Workers Number of Workers Number of Workers
(a) FNN3 (b) VGGI16 (c) ResNet-20 (d) LSTM

Fig. 6: Comparison of Average Execution Time

Dense EEE GaussianK Dense EEE GaussianK Dense EEE GaussianK Dense EEE GaussianK
E= TopK A2SGD E= TopK A2SGD E TopK A2SGD E= TopK A2SGD
QSGD QSGD QSGD QSGD

2 4 8 16

2 4 8 16 2 4 8 16
Number of Workers Number of Workers Number of Workers Number of Workers
(a) FNN3 (b) VGG16 (c) ResNet-20 (d) LSTM

Fig. 7: Comparison of Total Execution Time

PTB which has around 66 Million parameters while running it 5 Dense ®28 A25GD 5 Dense & A25GD
on 16 nodes for same number of epochs. 10 10
o o
@]
Dense B A2SGD Dense B A2SGD w0 (9]
600 600 Py >
5001 o 500 £ £
[} b [
$400{ ¢ & 400
$ 3001 ¢ €300 ; T ST
> 9 : 2 4 8 2 4 8 16
c 200 |<_> 2001 Number of Workers Number of Workers
T 1001} 100 | :
olid UE U A T RE ad R ol (@ VGGI6 (b) LST™M
2 4 8 16 2 4 8 16 - o .
Number of Workers Number of Workers Fig. 9: Total Execution Time with Slow Interconnect
(a) VGG16 (b) LSTM
Fig. 8: Speed with Slow Interconnect 2) Using Hardware Collectives: Since A2SGD has low

communication overhead due to transferring only constant

340

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from |IEEE Xplore. Restrictions apply.

number of representative gradients in each epoch, we achieve
significant performance improvements for A2SGD by changing
the option from the default configuration of Spectrum-MPI to
use hardware based collectives operation using HCOLL. We
evaluate both the dense SGD and A2SGD using HCOLL and
compare them. As described in Fig 10b, we use LSTM-PTB for
this set of experiments as it has a large number of parameters.
The overall speedup is around 1.56x for 16 workers when
compared to dense SGD. Similarly, A2SGD completes the
same number of iteration as Dense SGD with 61% lesser time
than dense SGD while both using HCOLL as illustrated in
Fig 10a.

Dense B3 A2SGD Dense B3 A2SGD

1500 400,

— 1200 v 3001
S} [}
& 900 o

> £ 200
£ 600 X
(= 2

300 100+

0 0-

(a) LSTM Exection Time
Fig. 10: Total Execution Time and Speed with HCOLL

(b) LSTM Speedup

E. Performance Evaluation with Adam

While other method employs expensive allreduce with large
number of data, the data needs to be allreduced in our
method consists of only two scalars. We investigate further and
check the impact of our approach while using Adam as our
optimizer instead of SGD. We select ResNet-20 and LSTM as
our representative dataset and incorporate Adam. We set the
batchsize to 128 while keeping the LR at 0.01 and 0.001 for
ResNet-20 and LSTM, respectively. The validation losses and
total execution times are reported in Table IV. Dense SGD
uses Adam optimizer instead of default SGD in this scenario

and is used as baseline for comparison with other approaches.

Validation Loss Total Execution Time (Sec)

Algorithm

(ResNet/LSTM) (ResNet/LSTM)
Dense SGD (0.398/4.92) (3195/2966)
QSGD (0.676/5.81) (3194/8617)
Top-K (0.407/4.82) (3534/2578)
Gaussian-K (1.037/6.29) (3490/825)
A2SGD (0.387/4.75) (3147/796)

TABLE IV: Setup and Validation Loss using Adam Optimizer
with 8 workers

A2SGD helps achieve the loss metric closer to dense SGD
and better than other approaches while taking lowest total
execution time among all. The top-1 accuracies are also reported
in Fig 11. While Gaussian-K has closer total execution time

341

to A2SGD, A2SGD performs far better in terms of Top-1
accuracy also for both ResNet-20 and LSTM-PTB. The reported
validation losses for A2SGD are 0.65 and 1.54 less than
Gaussian-K results after the same number of epochs. While
Top-k achieves Top-1 accuracy and loss closer to A2SGD,
the result also confirms that Top-K has much slower total
execution time than what our approach reported. Moreover,
A2SGD achieves better loss and top-1 accuracy than dense
SGD for both the models with Adam as optimizer.

100

5
L>)‘ 10 —— Dense
c 80 . — oo
S 60 210° =
< @
- 40 8‘103\
8 20 &
= = -
0 10
0 30 60 90120 0 25 50 75 100
Epoch Epoch
(a) ResNet20 (b) LSTM

Fig. 11: Accuracy using Adam Optimizer with 8 workers

V. DISCUSSION

These evaluation results demonstrate that, while achieving
O(1) communication complexity, A2SGD delivers the best
overall performance regarding convergence accuracy, scaling
efficiency and execution time. Also, note that, compared
to Gaussian-K, A2SGD does not have to go through an
initial estimation of the threshold, and its computation cost is
slightly lower. Furthermore, A2SGD is an initial prototype that
can be refined further. Our initial evaluation with different
communication medium and optimizer shows the strength
of A2SGD due to significantly reducing the communication
bit required during distributed training while maintaining the
quality of the models.

VI. CONCLUSION

In this paper, we have examined the scalability challenge
of the gradient synchronization in distributed SGD and
proposed a two-level gradient averaging algorithm, A2SGD,
for distributed workers to exchange only two averages and
achieve O(1) per iteration communication complexity per
worker. Our experimental results have confirmed the conver-
gence of A2SGD and demonstrated that A2SGD achieves
an overall improvement compared to the other sparsification
and quantization algorithms [24], [28], [30]. For all these
algorithms, we systematically analyze the computation and
communication complexities during gradient synchronization
and point out that A2SGD outperforms the other approaches
asymptotically. Moreover, A2SGD shows its portability and
remarkable performance improvement over the rest of the
compression techniques we evaluated.

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from |IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

We would like to thank Ms. Yue Zhu from the Computer
Architecture and SysTems Research Lab (CASTL) of Florida
State University for her help on the initial experimental
setup and valuable suggestions related to this work. This
work used the Extreme Science and Engineering Discovery
Environment (XSEDE [58]), which is supported by National
Science Foundation grant number ACI-1548562.

This work is supported in part by the National Science
Foundation awards 1561041, 1564647, 1744336, 1763547,
and 1952302, and has used the NoleLand facility funded
by the National Science Foundation award CNS-1822737.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do

not

necessarily reflect the views of the National Science

Foundation.

[1]

[2]

3

[4]

[5

[6]

[7]

[8]

9

[11]

=
N

REFERENCES

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich er al., “Going Deeper with Convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Cvpr, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in Deep
Residual Networks,” CoRR, vol. absscaffe,/1603.05027, 2016. [Online].
Available: http://arxiv.org/abs/1603.05027

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAl Blog,
vol. 1, no. 8, p. 9, 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30, 1. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Curran Associates, Inc., 2017, pp. 5998-6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System
optimizations enable training deep learning models with over 100 billion
parameters,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 3505—
3506.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity,” arXiv
preprint arXiv:2101.03961, 2021.

A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimization,’
2011.

N. Strom, “Scalable distributed dnn training using commodity gpu cloud
computing,” in Sixteenth Annual Conference of the International Speech
Communication Association, 2015.

Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gibbons, G. A. Gibson,
G. R. Ganger, and E. P. Xing, “More effective distributed ml via a
stale synchronous parallel parameter server,” in Proceedings of the 26th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’13. Red Hook, NY, USA: Curran Associates Inc.,
2013, p. 1223-1231.

M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI'14. USA: USENIX Association, 2014, p. 583-598.

T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam:
Building an efficient and scalable deep learning training system,” in //th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14). Broomfield, CO: USENIX Association, Oct. 2014, pp.
571-582. [Online]. Available: https://www.usenix.org/conference/osdil4/
technical-sessions/presentation/chilimbi

5

342

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

[25]

[26]

(271

(28]

[29]

(30]

[31]

P. Goyal, P. Dollér, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, Large Minibatch SGD: Training
Imagenet in 1 Hour,” arXiv preprint arXiv:1706.02677, 2017.

Y. You, I. Gitman, and B. Ginsburg, “Scaling SGD batch size to 32k for
Imagenet Training,” arXiv preprint arXiv:1708.03888, 2017.

M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient Mini-batch
Training for Stochastic Optimization,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2014, pp. 661-670.

A. Gibiansky and J. Hestness, “Baidu Research, TensorFlow-Allreduce,”
https://github.com/baidu-research/tensorflow-allreduce, 2017.

A. A. Awan, J. Bédorf, C. Chu, H. Subramoni, and D. K. Panda,
“Scalable distributed dnn training using tensorflow and cuda-aware
mpi: Characterization, designs, and performance evaluation,” in 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), May 2019, pp. 498-507.

P. Jiang and G. Agrawal, “A linear speedup analysis of distributed deep
learning with sparse and quantized communication,” in Advances in
Neural Information Processing Systems, 2018, pp. 2525-2536.

Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systems 2, D. S. Touretzky,
Ed. Morgan-Kaufmann, 1990, pp. 598-605. [Online]. Available:
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf

B. Hassibi and D. G. Stork, “Second order derivatives
for network pruning: Optimal brain surgeon,” in Advances
in Neural Information Processing Systems 5, S. J. Hanson,
J. D. Cowan, and C. L. Giles, Eds. Morgan-Kaufmann,
1993, pp. 164-171. [Online]. Available: http://papers.nips.cc/paper/
647-second- order- derivatives-for-network- pruning-optimal- brain- surgeon.
pdf

Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Advances in Neural Information Processing Systems 29, D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran
Associates, Inc., 2016, pp. 1379-1387. [Online]. Available: http://papers.
nips.cc/paper/6165-dynamic-network-surgery-for-efficient-dnns.pdf

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” in 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available:
http://arxiv.org/abs/1510.00149

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Advances in neural information processing systems, 2017, pp. 1509—
1519.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,” in
Advances in Neural Information Processing Systems, 2017, pp. 1709—
1720.

S. P. Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi, “Error feedback
fixes signsgd and other gradient compression schemes,” arXiv preprint
arXiv:1901.09847, 2019.

J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar, “signsgd
with majority vote is communication efficient and fault tolerant,” 2018.
D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The convergence of sparsified gradient methods,” in
Advances in Neural Information Processing Systems, 2018, pp. 5973—
5983.

S. Shi, X. Chu, K. C. Cheung, and S. See, “Understanding top-k sparsi-
fication in distributed deep learning,” arXiv preprint arXiv:1911.08772,
2019.

A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Copenhagen, Denmark:
Association for Computational Linguistics, Sep. 2017, pp. 440-445.
[Online]. Available: https://www.aclweb.org/anthology/D17-1045

S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,”
in Advances in Neural Information Processing Systems, 2018, pp. 4447—
4458.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” in Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from |IEEE Xplore. Restrictions apply.

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

Adam Paszke and Sam Gross and Soumith Chintala and Gregory Chanan,
“Tensors and Dynamic neural networks in Python with strong GPU
acceleration,” https://pytorch.org/.

“IBM Spectrum MPL” https://www.ibm.com/products/spectrum-mpi,
2020.
M. Technologies, “Hierarchical Collectives (HCOLL),”

https://docs.mellanox.com/display/HPCXv27/HCOLL, 2018.

U. Koster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable,
O. Elibol, S. Gray, S. Hall, L. Hornof, A. Khosrowshahi, C. Kloss, R. J.
Pai, and N. Rao, “Flexpoint: An adaptive numerical format for efficient
training of deep neural networks,” in Advances in Neural Information
Processing Systems 30, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates,
Inc., 2017, pp. 1742-1752.

S. Narang, G. Diamos, E. Elsen, P. Micikevicius, J. Alben, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed
precision training,” in Proc. 6th Int. Conf. on Learning Representations
(ICLR), 2018.

X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu et al., “Highly scalable deep learning training system
with mixed-precision: Training imagenet in four minutes,” arXiv preprint
arXiv:1807.11205, 2018.

N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan,
“Training deep neural networks with 8-bit floating point numbers,”
in Advances in Neural Information Processing Systems 31,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018,
pp. 7675-7684. [Online]. Available: http://papers.nips.cc/paper/
7994-training-deep-neural-networks- with-8-bit- floating- point-numbers.
pdf

J. Choi, S. Venkataramani, V. Srinivasan, K. Gopalakrishnan, Z. Wang,
and P. Chuang, “Accurate and efficient 2-bit quantized neural networks,”
in The 2nd SysML Conference, Palo Alto, CA, USA, 2019.

J. Wu, W. Huang, J. Huang, and T. Zhang, “Error compensated quantized
sgd and its applications to large-scale distributed optimization,” arXiv
preprint arXiv:1806.08054, 2018.

H. Tang, X. Lian, T. Zhang, and J. Liu, “Doublesqueeze: Parallel stochas-
tic gradient descent with double-pass error-compensated compression,”
arXiv preprint arXiv:1905.05957, 2019.

F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe, “Trading
redundancy for communication: Speeding up distributed sgd for non-
convex optimization,” in International Conference on Machine Learning,
2019, pp. 2545-2554.

Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv preprint arXiv:1712.01887, 2017.

J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for
communication-efficient distributed optimization,” in Advances in Neural
Information Processing Systems, 2018, pp. 1299-1309.

S. Shi, K. Zhao, Q. Wang, Z. Tang, and X. Chu, “A convergence analysis
of distributed sgd with communication-efficient gradient sparsification,”
in Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, 1JCAI-19, 2019, pp. 3411-3417.

C. Renggli, S. Ashkboos, M. Aghagolzadeh, D. Alistarh, and T. Hoefler,
“Sparcml: High-performance sparse communication for machine learning,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3295500.3356222

X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010,
pp. 249-256.

“QSGD,” https://github.com/epfml/sparsifiedSGD/blob/master/qsgd.py,
2018.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtérik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” arXiv preprint arXiv:1604.00981, 2016.
“CUDA,” https://developer.nvidia.com/cuda- 10.1-download-archive-base,
2019.

343

[53]

[54

[55]

[56]

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” The International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49-66, 2005.
“Understanding top-k sparsification in distributed deep learning,” https:
//github.com/hclhkbu/GaussianK-SGD, 2019.

“K-selection implementation of torch topk,” https://github.com/torch/
torch7/pull/496, 2016.

A. Shanbhag, H. Pirk, and S. Madden, “Efficient top-k query processing
on massively parallel hardware,” in Proceedings of the 2018 International
Conference on Management of Data, ser. SIGMOD *18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 1557-1570.
[Online]. Available: https://doi.org/10.1145/3183713.3183735

T. Ben-Nun, “Torsten hoe er. 2018. demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” arXiv preprint
arXiv:1802.09941, 2018.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson et al., “Xsede:
accelerating scientific discovery,” Computing in science & engineering,
vol. 16, no. 5, pp. 62-74, 2014.

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from |IEEE Xplore. Restrictions apply.

