
O(1) Communication for Distributed SGD through
Two-Level Gradient Averaging

Subhadeep Bhattacharya† Weikuan Yu† Fahim Tahmid Chowdhury† Kathryn Mohror‡
†Florida State University ‡Lawrence Livermore National Lab

{bhattach, yuw, fchowdhu}@cs.fsu.edu mohror1@llnl.gov

Abstract—Large neural network models present a hefty com-
munication challenge to distributed Stochastic Gradient Descent
(SGD), with a per-iteration communication complexity of O(n)
per worker for a model of n parameters. Many sparsification
and quantization techniques have been proposed to compress
the gradients, some reducing the per-iteration communication
complexity to O(k), where k � n. In this paper, we introduce
a strategy called two-level gradient averaging (A2SGD) to con-
solidate all gradients down to merely two local averages per
worker before the computation of two global averages for an
updated model. A2SGD also retains local errors to maintain the
variance for fast convergence. Our analysis shows that A2SGD
converges similar to the default distributed SGD algorithm. Our
evaluation validates the conclusion and demonstrates that A2SGD
significantly reduces the communication traffic per worker, and
improves the overall training time of LSTM-PTB by 3.2× and
23.2×, compared to Top-K and QSGD, respectively. We evaluate
the effectiveness of our approach using two kinds of optimizers,
SGD and Adam. Also, our evaluation with various communica-
tion options demonstrates the strength of our approach both in
terms of communication reduction and convergence. To the best
of our knowledge, A2SGD is the first to achieve O(1) commu-
nication complexity per worker without incurring a significant
accuracy degradation of DNN models while communicating only
two scalars representing gradients per worker for distributed
SGD.

I. INTRODUCTION

Deep learning has found great success in image classification,

speech recognition, and language processing [1], [2], etc. The

demand for more powerful and accurate Deep Neural Networks

(DNNs) leads to large and complex models with more than

1 Billion parameters, such as GPT-2 (1.5B) [3], Transformer

(6B) [4], Turing-NLG (17B) [5], GPT-3 (175B) [6] and recently

Switch-C (1.6T) [7]. Such large-scale models require distributed

Stochastic Gradient Descent (SGD) algorithms for training.

Distributed SGD typically adopts data parallelism, in which

P workers hold the same model w ∈ R
n of n parameters and

train it in parallel through many iterations. At the t-th iteration,

weight w is updated as follows based on the learning rate ηt
and the gradients g:

wt+1 = wt − ηt
1

P

P∑

p=1

gpt , (1)

where a worker computes local gradients gpt (of the same size n)

for the model using its fraction of a mini-batch, and exchanges

the gradients across all workers for an updated global model.

Such a global exchange and synchronization problem imposes

a hefty requirement on both the latency and bandwidth of

distributed systems, and hampers the scalability of distributed

SGD [8]–[12]. Various strategies have been proposed to tackle

this problem by increasing the mini-batch sizes [13]–[15],

reducing the rounds of communication [16]–[18], or pruning

the neural networks [19]–[22].

Particularly, there exists a fundamental bottleneck, i.e., the

need to transfer O(n) local gradients for each worker. Many

studies have proposed to compress the gradients through

quantization [9], [18], [23]–[26] and/or sparsification [27]–

[30]. Quantization enables lossy compression of gradients by

reducing the precision of their representation to a varying

degree, from 1BitSGD [9], [31] with only a sign bit, Tern-

Grad [23] with three numerical levels {-1, 0, 1}, to QSGD [24]

that supports multiple quantization levels. These quantization

techniques can reduce the magnitude of each gradient during

communication by at most 32 times per iteration, assuming

gradients are single-precision floating-point numbers.

Gradient sparsification can achieve higher compression by

selecting only k out of n gradients to reduce the communication

traffic per worker [28]–[30]. Usually, k is defined as x ∗ d,

where x represents some fraction of gradient density (d). The

selection criteria of k can be based on a user-defined threshold

(Top-K) [29], a gaussian-estimated threshold (Gaussian-K)

[28], or simple randomization (Rand-K) [30]. Prior results [27],

[30] have shown that, theoretically, sparsified SGD can con-

verge within the same upper bound as the original distributed

SGD (dense SGD) algorithm, which exchanges full gradients.

In practice, they have different convergence behaviors, for

which Shi et al. [28] have performed a theoretical analysis to

distinguish them.

In this paper, we propose a novel algorithm different

from both sparsification and quantization. Our algorithm

two-level gradient averaging (A2SGD) consolidates all local

gradients down to merely two local means and achieves a per
iteration communication complexity of O(1) per worker. It

then aggregates the local means into two global means across

all workers for an updated model. The key idea behind A2SGD

is not to drop or quantize any gradient but to average all the

positive and negative local gradients layer-wise while recording

the difference between the gradients and the resulting means

locally at each worker. In doing so, A2SGD retains local errors

to maintain the same variance across gradients as dense SGD,

332

2021 IEEE International Conference on Cluster Computing (CLUSTER)

978-1-7281-9666-4/21/$31.00 ©2021 IEEE
DOI 10.1109/Cluster48925.2021.00054

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lu
st

er
 C

om
pu

tin
g

(C
LU

ST
ER

) |
 9

78
-1

-7
28

1-
96

66
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
lu

st
er

48
92

5.
20

21
.0

00
54

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from IEEE Xplore. Restrictions apply.

avoiding any potential variance blowup or any increase in

the number of iterations. A2SGD does not require complex

sampling or sorting of gradients but only simple calculations

for the two means and their differences with the gradients. Our

analysis shows that A2SGD converges similarly to dense SGD.

Our evaluation validates the conclusion and demonstrates that

A2SGD significantly improves the execution time per iteration

and the overall training time, by 3.2× and 23.2× compared to

Top-K and QSGD, respectively for LSTM-PTB, a big model

with around 66 million parameters. Compared to the default

dense SGD algorithm, A2SGD improves the overall training

time of LSTM-PTB by 1.72×. Besides, A2SGD achieves the

best overall performance in terms of convergence accuracy,

execution time, and scaling efficiency in comparison to other

techniques such as Top-K, Gaussian-K and QSGD.

Our Contributions. In summary, by examining the scalability

challenge of gradient synchronization in distributed SGD and

analyzing its computation and communication complexities,

we have proposed a two-level gradient averaging algorithm,

A2SGD, for distributed workers to exchange only two means

globally. Our analysis and experimental results have confirmed

the convergence of A2SGD, and demonstrated that it achieves

an overall improvement compared to other sparsification and

quantization algorithms [24], [28], [30]. Our results also show

that A2SGD achieves fast computation complexity as discussed

in §IV-C2. To the best of our knowledge, A2SGD is the first

to achieve O(1) per iteration communication complexity per

worker for distributed SGD. Moreover, Our contributions can

be summarized as follows:

• We study different quantization and sparsification ap-

proaches and analyze that the additional computation

introduced by such approach can diminish the benefit

of communication reduction.

• We describe and implement A2SGD using Horovod [32],

PyTorch [33] and MPI [34], which significantly reduces

the communication traffic by exchanging only the positive

and negative mean contribution from all nodes during

allreduce.

• While A2SGD avoids gradient synchronization across all

workers at the end of each iteration, it uses error correction

mechanism and ensure consistent parameter and gradient

across all workers after fixed number of epochs.

• We empirically show that our method achieves significant

communication reduction during allreduce while maintain-

ing quality of the model in terms of Top-1 accuracy and

validation loss.

• We evaluate the benefit of our method using different

communication options both using Remote Direct Mem-

ory Access (RDMA), TCP and Hierarchical collectives

(HCOLL) [35] while utilizing MPI for Allreduce.

• We analyze the effectiveness of our method in further

detail by using both SGD and Adam optimizers. It shows

that our method converges within fixed epoch without

significant degradation of the model while comparing

with Dense SGD.

Our proposed A2SGD algorithm will have broader impact to

the field of high-performance deep learning through distributed

SGD, particularly on the use of big neural network models and

the deployment of large-scale computer systems and high-speed

networks. With its dramatic reduction on the communication

complexity of gradient synchronization, A2SGD will facilitate

the adoption of big DNN models for a wide variety of

image classification, speech recognition and natural language

processing applications.

II. RELATED WORK

Allreduce using 2 scalars representing
positive and negative mean

Gradient in Worker-2 Gradient in Worker-1

Gradient in Worker-3 Gradient in Worker-4

Pos, Neg mean
contribution - 2

Pos, Neg mean
contribution - 3

Pos, Neg mean
contribution - 1

Pos, Neg mean
contribution - 4

Push

Push

Push

Push

Update & Error
Correction

Update & Error
Correction

Update & Error
Correction

Update & Error
Correction

1

11

1

3

3 3

3

2

(a) Allreduce operation in A2SGD

Fig. 1: Design of A2SGD

A. Gradient Quantization.

Gradient quantization takes advantage of the fact that

distributed SGD can still converge with low-precision gradients

instead of 32-bit floating-point representations. A wide variety

of quantization techniques have tried to represent gradients

in 16 bits [36]–[38], 8 bits [39], 2.8 bits [24], 2 bits [40],

or even 1 bit [9], [31]. In addition, Wen et al. [23] have

quantized gradients from workers to the server using ternary

values {-1, 0, 1}. Furthermore, some studies have provided

theoretical analysis on the convergence guarantees of quantiza-

tion techniques [18], [24], [25], [41]–[43]. Notwithstanding the

compulsory cost for quantizing the gradients, quantization is

inherently limited by its optimization scope, i.e., the number of

bits representing the gradients. Thus it can reduce the network

traffic by at most 32x compared to 32-bit numbers while

using the quantization technique alone without any additional

compression. The overall improvement of the time per iteration

or the total training time is further limited for training large-

scale models using distributed SGD.

B. Gradient Sparsification.

Unlike gradient quantization, sparsification examines the

total number (n) of gradients and selectively transfers only a

small number (k) of them while still allowing DNN models to

converge. Because k can be several orders of magnitude smaller

than n, sparsification techniques [9], [18], [27], [29], [30], [44]–

[46] are proved to be much more effective than quantization in

333

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from IEEE Xplore. Restrictions apply.

reducing the communication traffic. Several studies [9], [29]

have differentiated gradient values by magnitude and purged

the small ones under a threshold. [44] adopted a number of

optimizations to achieve very high sparsity in the exchanged

gradients and carefully tuned the hyperparameters of DNN

models to avoid any loss of accuracy.

Various recent studies [27], [30], [45] theoretically analyzed

the performance of sparsification and established various

bounds on the convergence rate. Nonetheless, it is imperative for

these techniques to process all gradients, at certain computation

costs, to reach their desired sparsity levels. For example, the

selection procedure of top k number of elements from a given

gradient vector involves additional computation overhead. As an

alternative, Shi et. al. [28] have recently proposed a technique

to remove the additional computation and take advantage of

the gaussian distribution property. They statistically pinpoint

a threshold to select the top k gradients at low computation

latency by thresholding the values using GPU in parallel.

III. DESIGN OF DISTRIBUTED SGD WITH TWO-LEVEL

GRADIENT AVERAGING

As mentioned in §I, gradient synchronization imposes a

fundamental scalability challenge for data-parallel distributed

SGD due to the requirement for all workers to exchange

their gradients. While the sparsity and quantization levels

are important to the per-iteration communication complexity

of gradient synchronization, the computation efficiency of

sparsification and quantization can be critical to its scalability

as well. [28] reported that, while Top-K sparsification reduces

the communication traffic, its computation overhead can offset

the overall benefit, resulting in a suboptimal improvement

on the execution time per iteration. On systems with high-

bandwidth communication networks at 100 Gbps or higher, the

computation costs from Top-K sparsification can overshadow

its gains on communication efficiency, as we have observed

in our experimental evaluation (§IV). The same tradeoff

happens to quantization techniques such as QSGD. Shi et.

al. [28] proposed Gaussian-K to avoid costly sorting and

selection of top k elements across all gradient values. Gaussian-

K assumes a gaussian distribution of gradient values and

estimates a statistical threshold for the selection of gradient

values. It has demonstrated the importance of low computation

for sparsification. However, selection of k poses another

challenge on maintaining the desired quality of model which

sometimes requires manual adjustment on density values.

Dynamic densities and careful hyperparameter tuning can

become a primary concern for achieving the desired accuracy

while reducing the communication load in sparsification based

methods. Moreover, Sparsification and quantization can also be

combined and generalized as compression techniques for the

improvement of gradient synchronization [18], [25], [47]. All

these studies have mitigated the computation costs of gradient

while allowing the models to converge. Even so, all of them

require the workers in distributed SGD to exchange some

fraction of their gradients.

We propose an alternative to sparsification and quantization

techniques. Instead of selecting a top fraction of gradient values,

we can exchange the mean across the distributed workers. To

avoid over simplification caused by a unified mean, we arrange

the gradient values of each layer into two groups: positive

(≥ 0) and negative (< 0), and compute their absolute means

accordingly. Then all workers can exchange these two means for

the synchronized global mean values. A global negative mean

is computed by averaging the negative means from all workers;

and a global positive mean by averaging the positive means.

We refer to our algorithm as Two-level Gradient Averaging
(A2SGD). It effectively reduces the communication traffic

down to two values, achieving the per iteration communication

complexity of O(1).
Fig 1 shows the distributed training using multiple workers

in the data-parallel model. As shown in Fig. 1a, in Step 1

of our approach, each worker computes the gradient after

going through the Feed-Forward phase where a mini-batch

of data is fed across all the neural net layers in the forward

direction. After the gradients are generated in each worker,

each worker flattens the multidimensional gradient vector. Then

it contributes the positive and negative mean of the gradients

and participates in allreduce as shown by Step 2 in Fig. 1a.

After each worker completes the allreduce operation and gets

a synchronized copy of positive-negative contributions, the

error-correction is performed. Finally, each worker continues

with their Back Propagation and iteratively updates the model

parameters, shown as Step 3 in Fig. 1(a).

While this is different from gradient clipping in prior

studies [23], [25], [44], it would also lead to some distorted

gradients for the workers. Several prior studies [9], [25], [30],

[31], [41] pursued the idea of error-feedback to correct either

the momentum or variance, or both, to improve the convergence

accuracy of training. To limit the impact on variance, we equip

A2SGD with a similar error-feedback mechanism through

a local error vector. Each workers need to perform some

additional tasks in order to efficiently store and handle the

error-feedback mechanism We compute the difference between

the gradients and the two means, and use a local error vector

to store the difference. Moreover, the subtraction operation

takes place for 1) the positive values which are greater than the

positive mean and 2) the negative values which are less than

the negative mean. When the global synchronization completes,

the error vector is added back to the global means, according

to the corresponding positions of the original positive and

negative gradients, to generate the updated gradients. We keep

the values lying in the interval between negative and positive

means as they are. Although, these values remain intact for

the particular iteration, they participate in later phase of the

training and try to converge towards zero.

Figure 2 shows the frequency distribution of gradients and

its progression with an increasing number of iterations, for

two representative models: FNN-3 and ResNet-20. Most of

the values are close to zero on either side, following a normal

distribution. Besides, as the models finish more iterations of the

training, more gradient values converge to the center around

334

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from IEEE Xplore. Restrictions apply.

(a) FNN3 (b) ResNet20

Fig. 2: Progression of Gradient Distribution with number of

iterations.

zero. These distribution plots from one representative worker

provide a visualization of the convergence of gradients across

all workers. The distribution of gradients has been previously

studied thoroughly in [48] which supports our results.

Fig. 3: Comparison of A2SGD computation time with other

algorithms.

For an initial assessment on A2SGD’s computation cost,

we have measured its computation time with an increasing

number of parameters, compared to Top-K, Gaussian-K and

QSGD. A2SGD, Top-K, Gaussian-K use PyTorch [33] APIs

with GPU support, and QSGD is implemented in Numpy [49]

with CPU specific implementation for quantization (see §IV-A

for more details on our experimental setup). Figure 3 shows

that A2SGD and Gaussian-K have much lower computation

latency than QSGD and Top-K. A2SGD has a slightly lower

computation cost than Gaussian-K because Gaussian-K has

to estimate a threshold [28] before gradient selection. We

have elaborated the detailed computation complexity for these

algorithms in §IV-C. These initial results on the computation

time suggest that A2SGD is very promising to support efficient

gradient synchronization because of its significant reduction

on communication traffic at very low computation costs.

A. Details of A2SGD

For a gradient vector v = {v1, v2, ..., vn} ∈ R
n, we denote

μ+(v) = IE{(vi) | v} ∀ vi ≥ 0 as the absolute mean of all

positive values vi in v, and μ−(v) = IE{|vi| | v} ∀ vi < 0,

the absolute mean of all negative values in v. We introduce a

new operator enc below to transform the values of v.

enc(v) = pos(v) · μ+(v)− neg(v) · μ−(v) (2)

where pos(v) and neg(v) ∈ R
n are vectors with values ∈

{1, 0}. The former has 1 in the corresponding positions ∀ vi ≥
μ+(v) ∧ ∀ vi ≥ 0, i ∈ [1, n], and the latter with 1, ∀ vi ≤
(−1) · μ−(v) ∧ ∀ vi < 0, i ∈ [1, n]. This encoding helps to

keep track of the corresponding indices for both positive and

negative values of the gradient vector during error correction.

Algorithm 1 describes the proposed A2SGD algorithm in

detail. Each worker p starts with a learning rate η0 and an initial

weight w0. At any iteration t, worker p computes its stochastic

gradients gpt by training SGD with its portion of mini-batch

Mp
t (Line 2). It then extracts the means for positive and

negative gradients (Line 3) and subtracts the vector constructed

from the means (Line 4). The errors are stored in a local error

vector εpt . All workers call the Allreduce operation to exchange

their local means and get back the global means (Line 5). The

global means are then combined with the errors stored in εpt
into the new gradients g′t and eventually as new gpt (Line 6
and 7). Assume, worker 1 has gradients [+1,+2,-1] and worker

2 [-1,-2,+3], A2SGD will send [1.5, 1] from worker 1 and [3,

1.5] from worker 2 during allreduce. The first one in mean

vector represents the positive contribution while the second one

represents the negative contribution. The value of pos(gpt) and

neg(gpt) needs to be calculated before performing encoding

for local error calculation. In worker 1, pos(gpt) and neg(gpt)
is calculated as [0, 1, 0] and [0, 0, 1] respectively. Similarly, in

worker 2, the value of pos(gpt) = [0, 0, 1] and neg(gpt) = [0, 1,

0]. The value of enc(gpt) becomes [0, +1.5, -1] and [0, -1.5, +3].

Local errors, i.e., Worker-1:[+1, +0.5, 0], Worker-2:[-1,-0.5,0],

are stored in both workers and applied after allreduce. After the

allreduce and error correction is completed, each worker hold

the synchronized mean values [2.25, 1.25] and the updated

gradient vector, Worker 1: [+1, +2.75, -1.25] and Worker 2: [-1,

-1.75, 2.25] For a gradient vector of dim=1 (model with only

one parameter), we replace the missing scalar representing the

mean with zero. Finally, the model weight is updated at Line 8
using the new gradient and the current learning rate. At the

end of the training iterations, one more iteration is performed

to synchronize the model across all workers (Lines 10, 11
and 12).

The gradient generated in data parallel dense SGD can be

expressed as : gt =
1
P

∑P
p=1 g

p
t

However, for each iteration of A2SGD, gradient gpt subtracts

its own means and then gains back the global means. We

are basically assuming the following properties: (1) Most of

the gradients are located near zero and (2) We can achieve

acceptable accuracies as shown in previous studies [24], [25],

[27], [28], [50] without transferring the entire gradient vector.

335

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Parallel A2SGD Algorithm at Worker p

Input: Initial learning rate η0, weight w0 = �0
Output: Learned model consists of weight wT after T th iteration

1: for t ← 1 to T − 1 do
2: gpt ← SGD through training with Mp

t � training Mp
t , portion of mini-batch for p

3: μp
t,+ ← μ+(g

p
t) and μp

t,− ← μ−(g
p
t) � Calculate positive and negative mean in each worker

4: εpt ← gpt − enc(gpt) � Calculate error in εpt for error correction after allreduce

5: (μ̄t,+, μ̄t,−) ← Allreduce((μp
t,+, μ

p
t,−), average) � Allreduce in tth iteration using pos and neg means

6: g′t ← εpt + pos(gpt) · μ̄t,+ − neg(gpt) · μ̄t,− � Error Correction εt
7: gpt ← g′t � Assign the error corrected value as new gradient

8: wp
t+1 ← wp

t − ηt · gpt � Update the model

9: end for
10: wT−1 ← Allreduce(wp

T−1, average)
11: gT−1 ← Allreduce(gpT−1, average) � Global synchronization with entire gradient vector from all workers

12: wT ← wT−1 − ηT−1 · gT−1 � Global update of the model at last iteration

We assume set(A) as the set of all gradients in a local worker

and we are selecting a subset of them in each iteration

using mean values of positive and negative gradient values

as threshold. Rest of the content in gradient vector are kept

in residual for future error correction. Furthermore, it selects

worker zero as the master node and expects to get a consistent

copy of the model after T th iteration. Although, our approach

is implemented in a decentralized data parallel way, it can be

easily adopted to Parameter Server setting. We can denote μ̄t

as the vector composed global means, and the net gain as :

Δμt = μ̄t
p − enc(gpt)

As per our algorithm,

• μ̄t = [pos(gpt). ¯μt,+ − neg(gpt). ¯μt,−]
• enc(gt) = [pos(gpt).μ

p
t,+ − neg(gpt).μ

p
t,−]

• ¯μt,+ = 1
P

∑P
p=1 μ

p
t,+ and ¯μt,− = 1

P

∑P
p=1 μ

p
t,−

Furthermore- Δμt =

[(pos(gpt). ¯μt,+−neg(gpt). ¯μt,−)−(pos(gpt).μ
p
t,+−neg(gpt).μ

p
t,−)]

= [pos(gt). ¯μt,+−neg(gt). ¯μt,−−pos(gpt).μ
p
t,++neg(gpt).μ

p
t,−]

= pos(gpt)[¯μt,+ − μp
t,+]− neg(gpt)[¯μt,− − μp

t,−]

The updated gradient in A2SGD approach for each iteration

can be denoted as : g′t = gpt +Δμt

Finally, in synchronous data parallel SGD (SSGD), we get

consitent value of gradients across each worker which in turn

denotes the allreduced mean of each coordinate across workers.

However, the Asynchronous version of it claims to converge but

suffers from significant slowdown due to stale update as shown

in [51]. In our approach the view of model is not consistent

across worker till T th iteration. Hence, we can assume in any

intermediate iteration, gradient in first worker represents the

entire worker vector. However, due to synchronization in the

T th iteration, we get a final consistent view of the model

parameters.

IV. EMPIRICAL RESULTS

In this section, we first describe our experimental setup, then

we present our evaluation results validating the convergence

of A2SGD. In addition, we compare its performance with

dense SGD (Dense in short), two sparsification techniques Top-

K [30] and Gaussian-K [28] and one quantization technique

QSGD [24]. Our performance evaluation covers several aspects,

including convergence accuracy, computation and communi-

cation complexities, scaling efficiency, execution time, and

effectiveness of our approach with Adam optimizer.

A. Experimental Setup

We employ data-parallel SGD for all the experiments with

the data divided among P workers, each maintaining a copy

of entire model to train a portion of the entire dataset. Each

worker also receives a copy of an entire gradient vector for

weight update.

We implement A2SGD on top of PyTorch [33] v1.3.0 with

CUDA [52] v10.1, and utilize Horovod [32] v0.19.1 with

Allreduce [53] for data-parallel implementation of different

models. Top-K and Gaussian-K implementations are adapted

from a GitHub repository [54]. Both implementations use the

PyTorch Tensor API. We adapt the QSGD implementation from

a GitHub implementation [49]. We conduct all our experiments

with varying number of Nvidia V100 GPUs (2 to 16). Each

node in our testbed is equipped with 256 GB CPU memory and

1 V100 GPUs per node with 16 GB GPU memory. Furthermore,

all nodes in the system are connected with a high-bandwidth

100-Gbps InfiniBand network.

In our tests, we employ four different DNN models, including

(1) FNN-3 which is a Feed-forward Neural Network (FNN)

with three hidden fully connected layers; 2) two types of

Convolutional Neural Networks (CNNs), i.e., VGG-16 and

ResNet-20 using CIFAR10 dataset; and 3) LSTM-PTB, i.e., the

Long Short Term Memory (LSTM) model using Penn Treebank

(PTB) dataset. We use LARS [14], Linear Scaling(LS), Gradual

Warmup (GW) and Polynomial Decay (PD) of learning rate

336

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Experimental Setup

Model
Dataset

Train Sample Size
Parameters BatchSize/worker LR Policy

FNN-3
MNIST

60,000-[28x28] images
199,210 128 0.01 LS(1 x) + GW + PD

VGG-16
CIFAR10

50,000-[32x32] images
14,728,266 128 0.1 LS(1.5 x) + GW + PD + LARS

ResNet-20
CIFAR10

50,000-[32x32] images
269,722 128 0.1 LS(1 x) + GW + PD

LSTM-PTB
PTB

9,12,344 tokens
66,034,000 128 22 PD

(LR) for the large batch experiments. LARS is used in all

the experiments related to VGG16, including Dense, Top-K,

Gaussian-k and QSGD. In LS, we increase LR by multiplying it

with the number of workers. LR value with a given number of

workers is equal to (baseLR∗numWorker ∗n) if LS (nx) is

specified. GW is executed to start from a smaller one and ramp-

up to the base learning rate gradually in first 5 epochs. LR is

also decayed using the equation ((1−Epoch)/maxEpochs)2

in case Polynomial Decay(PD) is specified. In all figures, we

label Top-K and Gaussian-K without the hyphen for brevity.

Table I lists the detailed hyperparameters for these models.

1) Value of Sparsification (k) and Quantization (q) level::
For all the experiments we consider the value of k as 0.001∗d
for Top-K and Gaussian-K. 0.001∗d represents that only 0.1%
of the entire gradient is used for gradient synchronization of

sparsification methods, i.e, k = 199, 14728, 269 and 66034
for FNN-3, VGG-16, ResNet20, LSTM-PTB. We perform all

the QSGD experiments with quantization level q = 4 as we

compare with the quantization functionality of QSGD without

any additional compression technique.

B. Convergence Accuracy

To demonstrate the convergence of A2SGD, we run all four

models, with 30 epochs for FNN-3, 150 epochs for VGG-16

and ResNet-20, and 100 epochs for LSTM-PTB with a varying

number of workers. We measure the top-1 convergence accuracy

for FNN-3, VGG-16 and ResNet-20, and the perplexity score1

for LSTM. We perform each experiment multiple times for

validation purposes and reported the results with required

epochs to reach convergence.

Figure 4(a-d), Figure 4(e-h) and Figure 4(i-l) show the

convergence performance with 4, 8 and 16 workers, respectively.

These results demonstrate that, for all the cases, A2SGD

achieves the closest top-1 accuracy to dense SGD within the

same number of epochs, and outperforms the other algorithms

in terms of convergence accuracy. Top-K performs the best

overall among the rest of algorithms. A2SGD achieves 97.82%,

87.82%, 88.80% top-1 accuracy, and 135.53 perplexity for

FNN-3, ResNet20, VGG16 and LSTM, respectively with

8 workers. In addition, A2SGD achieves 2.5% and 1.3%

better top-1 accuracies than Top-K for ResNet20 and VGG16,

1Captures the degree of uncertainty a particular model have for predicting
some text. Lower the better.

TABLE II: Comparison of Gradient Synchronization Complex-

ities

Algorithm
Computation
Complexity

Communication
(# bits)

Dense SGD O(1) 32n

QSGD O(n) 2.8n+ 32

Top-K O(n+ klogn) 32k

Gaussian-K O(n) 32k

A2SGD O(n) 64

respectively. Furthermore, Top-K, Gaussian-K, and QSGD all

exhibit a varying amount of accuracy drops with more workers.

Moreover, Figure 5a depicts the validation loss of ResNet50

with ImageNet as dataset. We use minibatch size of 128 with

LR 0.1 for this set of experiments with 8 workers. Although

validation loss for TopK and A2SGD is close to Dense SGD,

A2SGD achieves better validation loss with time over Gaussian-

K.

C. Gradient Synchronization Complexities and Scaling Effi-
ciency

As discussed in §III, our A2SGD algorithm is designed to

improve gradient synchronization with reduced communication

traffic without costly computation to process the gradients.

To gain an insight on its impact to computation and commu-

nication in gradient synchronization, we have characterized

the asymptotic computation complexity and the amount of

communication traffic (# bits) per worker for A2SGD, in

comparison to dense SGD, QSGD, Top-K and Gaussian-K.

In data-parallel distributed SGD, each worker hosts a full copy

of the model and gradients after each training iteration. We

assume a model with n parameters, i.e., n gradients.

1) Communication Complexity.: In terms of communication

traffic, it is evident that dense SGD has to transfer all

gradients from each worker, i.e., 32n bits. A2SGD transfers

two means, i.e., 64 bits. Top-K and Gaussian-K both transfer

k gradients, i.e., 32k bits, where k = xd and d represents

density of the gradient vector. [24] reported that QSGD

transfers 2.8n+ 32 bits. Thus A2SGD is the only algorithm

that achieves O(1) communication complexity per worker,

which can greatly increase the communication efficiency in the

337

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from IEEE Xplore. Restrictions apply.

(a) FNN3 - 4 workers (b) VGG16 - 4 workers (c) ResNet20 - 4 workers (d) LSTM-PTB - 4 workers

(e) FNN3 - 8 workers (f) VGG16 - 8 workers (g) ResNet20 - 8 workers (h) LSTM-PTB - 8 workers

(i) FNN3 - 16 workers (j) VGG16 - 16 workers (k) ResNet20 - 16 workers (l) LSTM-PTB - 16 workers

Fig. 4: Comparison of Convergence Accuracy with 4, 8, 16 Workers

(a) ResNet50 - 8 workers

gradient synchronization of large DNN models. The amount

of communication traffic for these algorithms is shown by

Column 3 of Table II.

2) Computation Complexity.: Dense SGD does not process

local gradients, and has a computation complexity of O(1).
All other algorithms store a local residual or error vector from

the transferred gradients, with a computation complexity of

O(n). A2SGD has an overall computation complexity of O(n)
because, for each model, it traverses all gradients to compute

two separate averages, which is still O(n). Gaussian-K has

a computation complexity of O(n) in its formulation of the

gaussian estimation model as stated in [28]. In addition, it has

an additional overhead to estimate the threshold based on its

gaussian model.

In the Python implementation without GPU support [49],

QSGD computes the second norm (a complexity of O(n)) and

applies quantization for each gradient. Thus its total computa-

tion complexity is O(n). A max heap-based implementation of

Top-K has an overall computation complexity of O(n+klogn),
where n is the complexity of constructing the max heap and

338

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from IEEE Xplore. Restrictions apply.

klogn for selecting the largest k elements. The computation

comparison is shown by Column 2 of Table II. Note that

GPU based implementations can have higher complexity for

the need of GPU parallelization [55], [56]. For both QSGD

and Top-K, the cost to maintain a local error vector does

not change the overall computation complexity. Our analysis

of these algorithms in terms of their asymptotic computation

complexity confirms the superb overall efficiency of A2SGD.

While achieving O(1) communication complexity per worker,

it maintains the minimal asymptotic computation complexity

of O(n), without the overhead for threshold estimation like

Gaussian-K. Furthermore, we evaluate the scaling efficiency

along with the validation loss while using 8 workers for the

training of A2SGD in comparison to the other algorithms. The

reported validation loss in Table III follows the convergence

accuracy, as reported in §IV-B. Our evaluation results show

that A2SGD and Top-K achieve the closest loss to dense

SGD than others. However, for VGG16, ResNet20 and LSTM,

A2SGD achieves the lowest loss after the same number of

epochs. A2SGD outperforms dense SGD by 0.20% and 0.6%

for image classification models VGG16 and ResNet-20.

We also measure the throughput of each algorithm as the

number of images processed per second. Then the scaling

efficiency is calculated as the normalized throughput with

an increasing number of workers. Since there is no gradient

synchronization for only one worker, we use the throughput of

dense SGD with two workers for normalization. Specifically, it

is calculated as Scaling Efficiency = (t8/t
D
2), where tD2 is the

throughput (average images processed per iteration) of dense

SGD with 2 workers, and t8 is the overall throughput with 8

workers for any specific algorithm. A higher throughput reflects

the better efficiency in processing images. As shown by the

column 2 in Table III, A2SGD and Gaussian-K have better

scaling efficiency than the other three algorithms. The reason

Gaussian-K performs similarly to A2SGD, because it uses

Allgather implementation of gradient exchange as discussed

in §IV-D.

D. Execution Time

Given our understanding on the complexity of A2SGD and

its scaling efficiency, we further evaluate the benefit of A2SGD

to the execution time of DNN training models with fixed

epochs as mentioned in §IV-B. We first measure the average

execution time per iteration for all algorithms with varying

number of workers. Figure 6 shows the comparison across

four different models. For the smaller models, i.e., FNN-3 and

ResNet-20, A2SGD and Gaussian-K perform comparably to

dense SGD, and slightly better than QSGD and Top-K. These

two models have a smaller number of parameters, which lead

to an insignificant difference on the 100-Gbps high-bandwidth

network. The longer execution time per iteration of QSGD and

Top-K is due to their higher computation costs.

For the larger models, i.e., VGG-16 and LSTM-PTB, A2SGD

and Gaussian-K deliver much faster execution time per iteration,

compared to dense SGD, Top-K and QSGD. For the largest

model, Gaussian-K achieves slightly better execution time per

iteration than A2SGD. We could not attribute this difference

to the comparisons listed in Table II. By examining the

implementation of Gaussian-K, we realize that this is because

Gaussian-K uses Allgather for exchanging gradients, which

is faster than Allreduce adopted by A2SGD on 100-Gbps

high-bandwidth networks [53], [57] with increasing number

of workers. Furthermore, the execution time per iteration is

always the longest for QSGD compared to dense SGD. The

reason behind this is the overhead from its high computation

domination over the benefit of communication reduction on the

100-Gbps high-bandwidth network. Moreover, all algorithms

exhibit longer execution time per iteration with an increasing

number of workers. This is because of the collective nature of

gradient synchronization, i.e., more communication time for

synchronization across more workers.

We also evaluate the benefit of A2SGD to the total execution

time with an increasing number of workers. Figure 7 shows

the comparison across all algorithms for four different models.

Despite the increasing execution time per iteration, all algo-

rithms deliver faster total execution time with more workers, a

manifestation on the strength of data-parallel distributed SGD

algorithms. Again, for FNN-3 and ResNet-20, A2SGD and

Gaussian-K perform similarly to dense SGD, and slightly better

than QSGD and Top-K, for the same reasons as previously

stated. For the larger models VGG-16 and LSTM-PTB, A2SGD

and Gaussian-K again achieve better performance than dense

SGD, Top-K and QSGD. Gaussian-K is slightly faster than

A2SGD but loses in terms of validation loss and perplexity

score in case of LSTM-PTB. A2SGD is 3.2× and 23.2× faster

compared to Top-K and QSGD in terms of total execution time.

QSGD suffers from its high computation overhead compared

to dense SGD, and its high communication costs compared to

the rest of the models.

1) Slow Interconnect: We further compare the performance

of our proposed A2SGD method with dense SGD while

using slow interconnect. We have observed that, FNN-3

model consists of small number of parameters and ResNet-

20 is considerably computation intensive than the others.

Hence, we select VGG-16 and LSTM-PTB for this set of

experiments as a representative model of image classification

(using CNN) and text processing (using LSTM), respectively.

We use tcp as the Byte Transfer Layer(BTL) in IBM Spectrum-

MPI for selecting the slow interconnect. We observe that

there is no further deterioration of accuracy while using

the same hyperparameter configuration as before. However,

A2SGD achieves considerable performance improvement in

speedup and overall execution time compared with the default

dense SGD approach. Figure 10 shows overall performance

improvement in terms of speedup while using A2SGD with

varying number of workers. The performance speedup is 70.6%,

128%, 94.6% and 88.4% for VGG-16 and 4.61×, 7.59×,

10.37× and 8.08× for LSTM-PTB using 2, 4, 8 and 16 workers

respectively. Again, Fig 9 measures the overall execution time

for A2SGD and dense SGD with varying number of workers.

A2SGD clearly shows huge performance improvements over

dense SGD with around 88.8% less exection time for LSTM-

339

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Comparison of Scaling Efficiency and Validation Loss

Algorithm
Scaling Efficiency (8 Workers)

(FNN/VGG/ResNet/LSTM)
Validation Loss (8 Workers)
(FNN/VGG/ResNet/LSTM)

Dense SGD (1.83 / 2.34 / 2.52 / 2.34×) (0.068 / 0.55 / 0.42 / 4.76%)

QSGD (1.73 / 0.66 / 2.34 / 0.26×) (49.5 / 7.47 / 0.68 / 5.76%)

Top-K (1.76 / 2.40 / 1.92 / 1.50×) (0.07 / 0.45 / 0.45 / 4.92%)

Gaussian-K (1.79 / 2.97 / 2.40 / 6.58×) (0.88 / 2.61 / 1.53 / 6.55%)

A2SGD (1.80 / 3.06 / 2.50 / 6.37×) (0.07 / 0.35 / 0.36 / 4.9%)

(a) FNN3 (b) VGG16 (c) ResNet-20 (d) LSTM

Fig. 6: Comparison of Average Execution Time

(a) FNN3 (b) VGG16 (c) ResNet-20 (d) LSTM

Fig. 7: Comparison of Total Execution Time

PTB which has around 66 Million parameters while running it

on 16 nodes for same number of epochs.

(a) VGG16 (b) LSTM

Fig. 8: Speed with Slow Interconnect

(a) VGG16 (b) LSTM

Fig. 9: Total Execution Time with Slow Interconnect

2) Using Hardware Collectives: Since A2SGD has low

communication overhead due to transferring only constant

340

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from IEEE Xplore. Restrictions apply.

number of representative gradients in each epoch, we achieve

significant performance improvements for A2SGD by changing

the option from the default configuration of Spectrum-MPI to

use hardware based collectives operation using HCOLL. We

evaluate both the dense SGD and A2SGD using HCOLL and

compare them. As described in Fig 10b, we use LSTM-PTB for

this set of experiments as it has a large number of parameters.

The overall speedup is around 1.56× for 16 workers when

compared to dense SGD. Similarly, A2SGD completes the

same number of iteration as Dense SGD with 61% lesser time

than dense SGD while both using HCOLL as illustrated in

Fig 10a.

(a) LSTM Exection Time (b) LSTM Speedup

Fig. 10: Total Execution Time and Speed with HCOLL

E. Performance Evaluation with Adam

While other method employs expensive allreduce with large

number of data, the data needs to be allreduced in our

method consists of only two scalars. We investigate further and

check the impact of our approach while using Adam as our

optimizer instead of SGD. We select ResNet-20 and LSTM as

our representative dataset and incorporate Adam. We set the

batchsize to 128 while keeping the LR at 0.01 and 0.001 for

ResNet-20 and LSTM, respectively. The validation losses and

total execution times are reported in Table IV. Dense SGD

uses Adam optimizer instead of default SGD in this scenario

and is used as baseline for comparison with other approaches.

Algorithm
Validation Loss
(ResNet/LSTM)

Total Execution Time (Sec)
(ResNet/LSTM)

Dense SGD (0.398/4.92) (3195/2966)

QSGD (0.676/5.81) (3194/8617)

Top-K (0.407/4.82) (3534/2578)

Gaussian-K (1.037/6.29) (3490/825)

A2SGD (0.387/4.75) (3147/796)

TABLE IV: Setup and Validation Loss using Adam Optimizer

with 8 workers

A2SGD helps achieve the loss metric closer to dense SGD

and better than other approaches while taking lowest total

execution time among all. The top-1 accuracies are also reported

in Fig 11. While Gaussian-K has closer total execution time

to A2SGD, A2SGD performs far better in terms of Top-1

accuracy also for both ResNet-20 and LSTM-PTB. The reported

validation losses for A2SGD are 0.65 and 1.54 less than

Gaussian-K results after the same number of epochs. While

Top-k achieves Top-1 accuracy and loss closer to A2SGD,

the result also confirms that Top-K has much slower total

execution time than what our approach reported. Moreover,

A2SGD achieves better loss and top-1 accuracy than dense

SGD for both the models with Adam as optimizer.

(a) ResNet20 (b) LSTM

Fig. 11: Accuracy using Adam Optimizer with 8 workers

V. DISCUSSION

These evaluation results demonstrate that, while achieving

O(1) communication complexity, A2SGD delivers the best

overall performance regarding convergence accuracy, scaling

efficiency and execution time. Also, note that, compared

to Gaussian-K, A2SGD does not have to go through an

initial estimation of the threshold, and its computation cost is

slightly lower. Furthermore, A2SGD is an initial prototype that

can be refined further. Our initial evaluation with different

communication medium and optimizer shows the strength

of A2SGD due to significantly reducing the communication

bit required during distributed training while maintaining the

quality of the models.

VI. CONCLUSION

In this paper, we have examined the scalability challenge

of the gradient synchronization in distributed SGD and

proposed a two-level gradient averaging algorithm, A2SGD,

for distributed workers to exchange only two averages and

achieve O(1) per iteration communication complexity per

worker. Our experimental results have confirmed the conver-

gence of A2SGD and demonstrated that A2SGD achieves

an overall improvement compared to the other sparsification

and quantization algorithms [24], [28], [30]. For all these

algorithms, we systematically analyze the computation and

communication complexities during gradient synchronization

and point out that A2SGD outperforms the other approaches

asymptotically. Moreover, A2SGD shows its portability and

remarkable performance improvement over the rest of the

compression techniques we evaluated.

341

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

We would like to thank Ms. Yue Zhu from the Computer

Architecture and SysTems Research Lab (CASTL) of Florida

State University for her help on the initial experimental

setup and valuable suggestions related to this work. This

work used the Extreme Science and Engineering Discovery

Environment (XSEDE [58]), which is supported by National

Science Foundation grant number ACI-1548562.

This work is supported in part by the National Science

Foundation awards 1561041, 1564647, 1744336, 1763547,

and 1952302, and has used the NoleLand facility funded

by the National Science Foundation award CNS-1822737.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do

not necessarily reflect the views of the National Science

Foundation.

REFERENCES

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich et al., “Going Deeper with Convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Cvpr, 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in Deep
Residual Networks,” CoRR, vol. absscaffe,/1603.05027, 2016. [Online].
Available: http://arxiv.org/abs/1603.05027

[3] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI Blog,
vol. 1, no. 8, p. 9, 2019.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Curran Associates, Inc., 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

[5] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System
optimizations enable training deep learning models with over 100 billion
parameters,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 3505–
3506.

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[7] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity,” arXiv
preprint arXiv:2101.03961, 2021.

[8] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimization,”
2011.

[9] N. Strom, “Scalable distributed dnn training using commodity gpu cloud
computing,” in Sixteenth Annual Conference of the International Speech
Communication Association, 2015.

[10] Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gibbons, G. A. Gibson,
G. R. Ganger, and E. P. Xing, “More effective distributed ml via a
stale synchronous parallel parameter server,” in Proceedings of the 26th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’13. Red Hook, NY, USA: Curran Associates Inc.,
2013, p. 1223–1231.

[11] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’14. USA: USENIX Association, 2014, p. 583–598.

[12] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam:
Building an efficient and scalable deep learning training system,” in 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14). Broomfield, CO: USENIX Association, Oct. 2014, pp.
571–582. [Online]. Available: https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/chilimbi

[13] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, Large Minibatch SGD: Training
Imagenet in 1 Hour,” arXiv preprint arXiv:1706.02677, 2017.

[14] Y. You, I. Gitman, and B. Ginsburg, “Scaling SGD batch size to 32k for
Imagenet Training,” arXiv preprint arXiv:1708.03888, 2017.

[15] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient Mini-batch
Training for Stochastic Optimization,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2014, pp. 661–670.

[16] A. Gibiansky and J. Hestness, “Baidu Research, TensorFlow-Allreduce,”
https://github.com/baidu-research/tensorflow-allreduce, 2017.

[17] A. A. Awan, J. Bédorf, C. Chu, H. Subramoni, and D. K. Panda,
“Scalable distributed dnn training using tensorflow and cuda-aware
mpi: Characterization, designs, and performance evaluation,” in 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), May 2019, pp. 498–507.

[18] P. Jiang and G. Agrawal, “A linear speedup analysis of distributed deep
learning with sparse and quantized communication,” in Advances in
Neural Information Processing Systems, 2018, pp. 2525–2536.

[19] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systems 2, D. S. Touretzky,
Ed. Morgan-Kaufmann, 1990, pp. 598–605. [Online]. Available:
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf

[20] B. Hassibi and D. G. Stork, “Second order derivatives
for network pruning: Optimal brain surgeon,” in Advances
in Neural Information Processing Systems 5, S. J. Hanson,
J. D. Cowan, and C. L. Giles, Eds. Morgan-Kaufmann,
1993, pp. 164–171. [Online]. Available: http://papers.nips.cc/paper/
647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon.
pdf

[21] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Advances in Neural Information Processing Systems 29, D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran
Associates, Inc., 2016, pp. 1379–1387. [Online]. Available: http://papers.
nips.cc/paper/6165-dynamic-network-surgery-for-efficient-dnns.pdf

[22] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” in 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available:
http://arxiv.org/abs/1510.00149

[23] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Advances in neural information processing systems, 2017, pp. 1509–
1519.

[24] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,” in
Advances in Neural Information Processing Systems, 2017, pp. 1709–
1720.

[25] S. P. Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi, “Error feedback
fixes signsgd and other gradient compression schemes,” arXiv preprint
arXiv:1901.09847, 2019.

[26] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar, “signsgd
with majority vote is communication efficient and fault tolerant,” 2018.

[27] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The convergence of sparsified gradient methods,” in
Advances in Neural Information Processing Systems, 2018, pp. 5973–
5983.

[28] S. Shi, X. Chu, K. C. Cheung, and S. See, “Understanding top-k sparsi-
fication in distributed deep learning,” arXiv preprint arXiv:1911.08772,
2019.

[29] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Copenhagen, Denmark:
Association for Computational Linguistics, Sep. 2017, pp. 440–445.
[Online]. Available: https://www.aclweb.org/anthology/D17-1045

[30] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,”
in Advances in Neural Information Processing Systems, 2018, pp. 4447–
4458.

[31] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” in Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

342

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from IEEE Xplore. Restrictions apply.

[32] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[33] Adam Paszke and Sam Gross and Soumith Chintala and Gregory Chanan,
“Tensors and Dynamic neural networks in Python with strong GPU
acceleration,” https://pytorch.org/.

[34] “IBM Spectrum MPI,” https://www.ibm.com/products/spectrum-mpi,
2020.

[35] M. Technologies, “Hierarchical Collectives (HCOLL),”
https://docs.mellanox.com/display/HPCXv27/HCOLL, 2018.

[36] U. Köster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable,
O. Elibol, S. Gray, S. Hall, L. Hornof, A. Khosrowshahi, C. Kloss, R. J.
Pai, and N. Rao, “Flexpoint: An adaptive numerical format for efficient
training of deep neural networks,” in Advances in Neural Information
Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates,
Inc., 2017, pp. 1742–1752.

[37] S. Narang, G. Diamos, E. Elsen, P. Micikevicius, J. Alben, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed
precision training,” in Proc. 6th Int. Conf. on Learning Representations
(ICLR), 2018.

[38] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu et al., “Highly scalable deep learning training system
with mixed-precision: Training imagenet in four minutes,” arXiv preprint
arXiv:1807.11205, 2018.

[39] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan,
“Training deep neural networks with 8-bit floating point numbers,”
in Advances in Neural Information Processing Systems 31,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018,
pp. 7675–7684. [Online]. Available: http://papers.nips.cc/paper/
7994-training-deep-neural-networks-with-8-bit-floating-point-numbers.
pdf

[40] J. Choi, S. Venkataramani, V. Srinivasan, K. Gopalakrishnan, Z. Wang,
and P. Chuang, “Accurate and efficient 2-bit quantized neural networks,”
in The 2nd SysML Conference, Palo Alto, CA, USA, 2019.

[41] J. Wu, W. Huang, J. Huang, and T. Zhang, “Error compensated quantized
sgd and its applications to large-scale distributed optimization,” arXiv
preprint arXiv:1806.08054, 2018.

[42] H. Tang, X. Lian, T. Zhang, and J. Liu, “Doublesqueeze: Parallel stochas-
tic gradient descent with double-pass error-compensated compression,”
arXiv preprint arXiv:1905.05957, 2019.

[43] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe, “Trading
redundancy for communication: Speeding up distributed sgd for non-
convex optimization,” in International Conference on Machine Learning,
2019, pp. 2545–2554.

[44] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv preprint arXiv:1712.01887, 2017.

[45] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for
communication-efficient distributed optimization,” in Advances in Neural
Information Processing Systems, 2018, pp. 1299–1309.

[46] S. Shi, K. Zhao, Q. Wang, Z. Tang, and X. Chu, “A convergence analysis
of distributed sgd with communication-efficient gradient sparsification,”
in Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, 2019, pp. 3411–3417.

[47] C. Renggli, S. Ashkboos, M. Aghagolzadeh, D. Alistarh, and T. Hoefler,
“Sparcml: High-performance sparse communication for machine learning,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3295500.3356222

[48] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010,
pp. 249–256.

[49] “QSGD,” https://github.com/epfml/sparsifiedSGD/blob/master/qsgd.py,
2018.

[50] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[51] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” arXiv preprint arXiv:1604.00981, 2016.

[52] “CUDA,” https://developer.nvidia.com/cuda-10.1-download-archive-base,
2019.

[53] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” The International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[54] “Understanding top-k sparsification in distributed deep learning,” https:
//github.com/hclhkbu/GaussianK-SGD, 2019.

[55] “K-selection implementation of torch topk,” https://github.com/torch/
torch7/pull/496, 2016.

[56] A. Shanbhag, H. Pirk, and S. Madden, “Efficient top-k query processing
on massively parallel hardware,” in Proceedings of the 2018 International
Conference on Management of Data, ser. SIGMOD ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 1557–1570.
[Online]. Available: https://doi.org/10.1145/3183713.3183735

[57] T. Ben-Nun, “Torsten hoe er. 2018. demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” arXiv preprint
arXiv:1802.09941, 2018.

[58] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson et al., “Xsede:
accelerating scientific discovery,” Computing in science & engineering,
vol. 16, no. 5, pp. 62–74, 2014.

343

Authorized licensed use limited to: Florida State University. Downloaded on May 17,2022 at 17:37:32 UTC from IEEE Xplore. Restrictions apply.

