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Abstract
Code Reuse Attacks (CRAs) are dangerous exploitation

strategies that allow attackers to compose malicious programs
out of existing application and library code gadgets, without
requiring code injection. Previously, researchers explored
hardware-assisted protection schemes that track attack signa-
tures to identify malicious behavior. This paper makes two
main contributions. First, we show that previously proposed
signature-based schemes are impractical because they do not
always distinguish attack patterns from the behavior of benign
programs. Second, we demonstrate that instead of tracking
attack signatures, a more robust defense mechanism is to track
legitimate usage of system calls and ABI compliance in hard-
ware, and detect deviations from established conventions as
possible attacks. We propose two specific tracking mecha-
nisms: the setting of arguments for system calls and register
usage across function calls. We demonstrate that our solution
severely hinders practical CRAs and completely stops code-
reuse execution of sensitive system calls like mprotect. Our
solution imposes very low performance overhead and modest
design complexity.

1. Introduction

Code Reuse Attacks (CRAs) are a dangerous exploitation
method in computer systems [7,30,49]. The core idea of
a CRA is to compose a malicious program by stitching to-
gether pieces of existing code, called gadgets, and controlling
transition between the gadgets using indirect branch instruc-
tions. Since no new code is injected by an attacker, defenses
that disallow execution from writable memory, such as Data
Execution Prevention (DEP) [39], are not effective against
CRAs. CRAs come in many forms, ranging in complexity
from basic return-to-libc attacks [52], to Return-oriented Pro-
gramming (ROP) [10, 49] and Jump-oriented Programming
(JOP) [7,15], to more complex Counterfeit Object-Oriented
Programming (COOP) [48], Block-Oriented Programming
(BOP) [28], Function-Oriented Programming (FOP) [25] and
Printf-Oriented Programming (POP) [13]. Recently, CRA at-
tacks that target SGX enclaves have also been proposed [6].
Although Control-Flow Integrity (CFI) [1] is known to be
principled and promising in mitigating control-flow hijacking
attacks, in practice, they are known to be imperfect [34], and
modern attacks can evade them [29,48].

Many different approaches for detecting CRAs have been
proposed. On the one hand, from a policy perspective, the

key question is whether the focus of detection should be: a)
on specific attack patterns (signatures), or b) deviations from
normal program behavior? But on the other hand, from an en-
forcement perspective, one needs to decide whether defenses
must be deployed at the software level or the hardware level
or both. Historically, hardware solutions are known to be
highly effective, robust (e.g., DEP, W ) X) and impose low
performance overhead. They are transparent to the software
layers and provide full-system protection. However, unlike
software-level defenses, they are not easily configurable and
offer deployment challenges. If hardware solutions provide
a high level of flexibility and scalability, they are clearly a
favorite choice.

Several previous works advocated detection of attack signa-
tures, including techniques that use hardware support [31,32].
In particular, these defenses rely on gadget length and the
number of gadgets that are executed consecutively as attack
indicators. In general, there are two potential problems with
such signature-based schemes. First, it is possible that if
the details of the defense are known, the adversary can at-
tempt to modify the attack to bypass the protection. Earlier
work [23] has shown that ad hoc parameter values used in
past defenses [17,43] can be bypassed, and highlighted the
difficulty of choosing the values of these parameters. Second,
and perhaps even more importantly, signature-based schemes
can lead to a large amount of false positives, where legiti-
mate application code will be flagged as an attack. In this
paper, we demonstrate (Section 3) several practical examples
of programs that legitimately experience gadget-like behavior
and are therefore truly indistinguishable from attacks in terms
of consecutive number of gadgets and gadget lengths. False
positives make the defense less practical, as users are likely to
turn off the defense. These results challenge the viability of
signature-based detection schemes. Formally establishing this
conclusion is the first contribution of this paper.

Instead of tracking signatures, we argue that a more effec-
tive approach to CRA detection is to track deviations from
normal program behavior, specifically deviations from execu-
tion conventions of benign programs. Particularly, we make
two key observations: (a) indirect branching is in the heart of
code-reuse attacks and (b) because sensitive system call invo-
cation (e.g., mprotect) is often the goal of CRAs, protecting
system call interface is critical to defense.

With these observations, we propose a novel CRA-centric
system call defense. We observe that in typical benign code,



all (or most) of the system call arguments are set together
right before executing a syscall instruction, usually within the
same basic block. In contrast, in a CRA, system call argu-
ments are set one-at-a-time, each argument in its own separate
gadget. This disparity offers a new detection opportunity by
monitoring the number of indirect branch instructions between
the setting of system call arguments and the invocation of the
syscall instruction. CRA defense based on this observation is
the second contribution of this paper.

We present a light-weight hardware design to track the vio-
lation of system call argument setting. We demonstrate that
our proposed defense is simple and effective. Specifically,
we show that our defense can completely prevent code-reuse
execution of system calls. Our solution incurs minimum per-
formance overhead and incurs about 150 bytes of on-chip
storage (although this number depends on the number of sys-
tem calls tracked). A major advantage of our technique is
that it is program-agnostic and it does not rely on any specific
characteristics of programs. Additionally, because existing
software stack already adheres to the underlying ABI, our
solution requires minimal' changes to the OS, compiler and
the program binary, and thus offers backward compatibility.

The rest of the paper is organized as follows. Section 2
presents the background on code reuse attacks. Section 3
describes the limitations of existing signature-based schemes
and shows (for the first time) specific code patterns in real
programs that would cause signature schemes to generate false
positives. Section 4 presents a high-level overview of our de-
sign, Section 5 describes the system operation and design, and
Section 6 describes microarchitectural support. We present
performance and security evaluation in Section 7, review re-
lated work in Section 8 and offer our concluding remarks in
Section 9.

2. Technical Background

2.1. CRA Example

We demonstrate an of example jump-oriented programming at-
tack that was crafted using libc.so.6 as our code base. We used
the gadget discovery algorithm proposed in [7,49] and rewrote
the algorithm for x86-64 using the Capstone library [12]. JOP
attacks use special dispatcher gadgets to connect functional
gadgets without using returns. To search for dispatcher gad-
gets from the gadget pool, we used the dispatcher discovery
algorithm proposed in [31]. One of the dispatcher gadgets
found in libc is shown in Figure 1.

pop rsi

Jjmp gword ptr [rsi + 0x41]

Figure 1: A dispatcher gadget from libc.

'In order to support exception handling, multi-threading and policy con-
figuration.

This dispatcher gadget uses register rsi as the gadget pro-
gram counter (GPC), which holds the starting address of the
next functional gadget. The pop instruction updates and loads
the GPC into the rsi register. The attacker must ensure that
the calculated address rsi + 0x41 points to a location in
their payload that contains the address of the next gadget.

The attack goal is to make a system call with the
sys_execve function, which launches a new shell. Ar-
guments must be passed into this system call as fol-
lows: sys_execve ("/bin/sh", ["/bin/sh"], NULL).
The rdi, rsi, and rdx registers must contain the address of
"/bin/sh", the address of the arguments array ["/bin/sh"]
terminated by a null pointer, and a null pointer, respectively.
The rax register must contain the system call number 0x3b
before executing the syscall instruction.

We used six functional gadgets, all found within the libc
codebase, to implement this attack. We refer to these gadgets
by their corresponding number shown in the leftmost column
of Figure 2.

Gl | pop rcx ; set dispatcher address
sal bl, 1 ; not used
jmp rcx ; return to dispatcher

G2 | pop rax ; set dispatcher address
jmp rcx ; return to dispatcher

G3 | pop rdi ; set address of filename
xor rbx, rbx ; irrelevant instruction
Jmp rax ; return to dispatcher

G4 | pop rcx ; set location of disp. addr
jmp rax ; return to dispatcher

G5 | pop rdx ; set null ptr address
Jmp  [rcx] ; return to dispatcher

G6 | mov eax, 0x3b ; set syscall number
syscall ; call execve

Figure 2: Functional gadgets used in the example attack

To commence the attack, we set a register to the dispatcher
address using gadget G1. Next, register rdi is set to the ad-
dress of the string " /bin/sh". We used gadget G2 to set rax
to the dispatcher address. Then, gadget G3 can be used to set
rdi to the string address.

Register rdx needs to contain the null pointer. We found
a gadget G5 that performed a memory indirect branch with
rcx. Since rcx would not contain the appropriate value for a
memory indirect branch, we overwrite rcx with G4. With G5,
we load the null pointer into rdx. We left rsi and rax toward
the end of the attack because these registers were constantly
overwritten by the dispatcher gadget and the functional gad-
gets. rsi needs to point to an array containing the address of
the string "/bin/sh" followed by a null pointer. We crafted
our payload such that the value loaded into rsi for the final
time was the address of argv []. We also ensured that the cal-
culated address rsi + 0x41 points to a location containing
the address of our final gadget G6. By the time the attacker
branches to G6, register rsi contains the address of argv[].
Finally, gadget G6 loads the system call number into register



rax and completes the attack with the call to execve.
2.2. CFI-Evading Attacks

Control-flow integrity (CFI) is a popular well-studied defense
against code-reuse attacks [1,51,53]. Consider the example in
Figure 3. Since function £2 is invoked using a function pointer,
the compiler can not reason about the target at compile time, as
static control-flow integrity must allow any indirectly invoked
functions whose addresses are referenced as valid targets.
However, a modern CRA in Figure 3 takes advantage of
such an over-approximated CFI policy. By transferring to pos-
sible targets of indirect branches (i.e., entry point of address-
taken functions (gadgets EG1, EG2) and/or locations where
return instructions can return to (e.g., call-preceded CP1 gad-
get), the attacker can achieve subversion by evading CFI.

3. Limitations of the State-of-the-Art Defenses

Signature-based hardware defenses Previous works on
signature-based detection [17,31] view programs with a nar-
row lens of gadget length and gadget count, and flag many
benign applications that exhibit CRA-like execution as attacks.
In Figure 4, we show an example from an application called
BAP [9], which is written in OCaml. This application fre-
quently executes repetitive, short snippets of code that are
separated by indirect branches. Each line of code in Figure 4
shows the indirect branch instruction, and the number of in-
structions that preceded the indirect branch. This benign code
pattern would be flagged as an attack by previous defenses, as
the number of instructions between indirect branches are small
and the number of consecutive gadgets are large. The Figure 5
shows even shorter gadget lengths that naturally occur during
program execution. The instruction trace from Figure 5 was
found in Pandoc [37].

We also found that method overloading implementation in
Objective C (see Figure 6) programs mimic CRA-like behav-
ior. In essence, _objc_msgSend is an Objective C subrou-
tine that is called before every method invocation [2]. The
_objc_msgSend subroutine is a way for Objective C objects
to call its methods. As this subroutine is called very frequently,
it is written in assembly code for minimal performance over-
head [3,55], and thus appears to look like a CRA attack with
a gadget length of 13 instructions. The example in Figure 6
shows that the _objc_msgSend subroutine is called before
the allowsVibrancy method of an NSAppearance object.

Another weakness of using gadget length and gadget count
thresholds are that the thresholds as defense heuristics may not
be effective to newer applications in the future. This creates
the need to occasionally update the defense parameters. For
example, we tested the CRA defense called SCRAP [31] which
tracks JOP attack signatures using gadget counts and lengths
on the newer SPEC 2017 benchmarks, and found many false
positives under the original proposed thresholds. Loosening
these thresholds to decrease the number of false positives

would consequently make it easier for attackers to execute an
attack [23].

These examples from real programs demonstrate that it
is very difficult, if not impossible, to detect CRAs based on
attack signatures without creating a significant number of false
alarms.

CFI-based defenses Multiple solutions both at software-
and hardware-levels have attempted to enforce CFI as a
defense primitive. Additionally, shadow-stack based de-
fenses have been deployed to prevent return-address corrup-
tion. While these defenses have been effective in handling
simple CRAs, modern attacks such as Control-flow Bend-
ing [14], Block-Oriented Programming [28], COOP [48] and
CCFIR [22] evade CFI-based defenses by operating within
a statically recoverable CFG. They leverage high-level pro-
gram semantics such as the printf format string [14], C++
virtual function dispatch [48] and function trace-level uncer-
tainties [29] that are hard to recover in the hardware.

4. Our Approach

4.1. Threat Model

We address a threat model not unlike other defenses against
code reuse attacks. We assume an execution stack where
the kernel and the hardware are uncompromised and trusted.
Additionally, the underlying system software, i.e., compiler
and the dynamic linker/loader are trusted, and the hardware is
capable of preventing data execution (e.g., NX). Further, we
assume that a potential attacker has access to the application
binary and is able to identify and chain gadgets to construct a
CRA. Although presence of additional defenses (e.g., ASLR,
stack-pointer protections [44,46]) will strengthen the impact
of our defense, they are not necessary.

4.2. Key Observations

Our defense is based on two key observations regarding benign
execution of programs:

O1 Initialization of syscall arguments: Most arguments to

functions in general and system calls in particular are ini-
tialized in one or two basic blocks preceding the call/syscall
instruction. More specifically, it is highly uncommon to find
initialization of different arguments to be separated by indi-
rect branches. However, in the case of CRAs, arguments are
initialized in different gadgets that are necessarily separated
by indirect branches (e.g., indirect jmp instruction in JOP,
ret instruction in ROP).

02 Adherence to Conventions: Programs are compiled using

compilers that subscribe to pre-defined standards and ABIs.
As such, code in programs adhere to calling conventions,
especially the callee- and caller-saved register conventions
as mandated by the ABI. An attack’s gadget chains are
under no obligation to, and often do not adhere to any such
conventions.



; (EGl) function: foo

; (EG2) function:

£2 ; (CP1) function: bar

; type: entry point ; type: entry point ; type: Call-preceded
push rbp #rbp: 10 [~ Push rbp #rbp: 10 push rbp
mov rbp, rsp f#irsp: 10 mov rbp, rsp_  #rsp: 10 mov rbp, rsp
mov rax, rdi #rax: 01 mov rdx, $4 #rdx: 01 push rbx
#rdi: 10 add rax, $132 {#rax: 01 mov rbx, rdi
mov rdi, <addr> mov [rbp+8],rax ;vuln call rbx # £p()
mov rsi, $1024 @@rsi: 01| PoP TbP pop rbx # rbx: 01> P2a
call rax ret ° mov rax, $10 # rax: 01
pop rbp (5) syscall ——— mprotect()

Figure 3: Working example demonstrating enforcement of Calling-Convention policy and System call policy. Gadgets EG1, EG2
and CP1 are used to demonstrate CFl-evading attack presented in CCFIR [22]. The arrows represent control flow.

camlBap_helpers__entry : call rdi # 11 insn

caml_curry2_1 : jmp rdx # 6 insn
camlBap_helpers_ fun_ 323265 : call rdi # 11 insn
caml_curry2_ 1 : jmp rdx # 6 insn

camlBap_visitor___fun_8169 : call rdi # 11 insn

OO0 J N B W=

—_

Figure 4: CRA-like pattern found in BAP, an application written
in OCaml

.text : jmp gword ptr [rbx] # 5 insn
.text : jmp gword ptr [rbx] # 3 insn
.text : jmp qgword ptr [rbp] # 5 insn

.text : jmp gword ptr [rbx-0x1] # 8 insn

.text : jmp gword ptr [rbp] # 3 insn

O O 00 JN N B W=

—_

Figure 5: Repetitive jump pattern found in Pandoc, an applica-
tion written in Haskell

4.3. System-Call Policy

Based on our observation O1, we define the system-call policy
as follows:

P1: Every argument to a system call must be populated at
distance no greater than the threshold distance from the system
call instruction.

Here, distance is measured in terms of the number of indirect
branch instructions between the system call and associated
argument setting. In a nutshell, we monitor writes to system-
call argument registers in the hardware, and associate a counter
with each register. The counter represents distance in P1.
Whenever a write operation occurs to a system-call argument
register, the distance for the register is set to 0, and when
an indirect branch instruction is encountered, the distance
values of all argument registers are incremented. Finally,
when a system call instruction is encountered, the distance
values of each argument register are examined and validated
against the policy. The corresponding algorithm is presented

test rdi, rdi
hint-not-taken Jjz 0x7fff736c4ee8
test dil, Ox1
hint-not-taken jnz O0x7fff736cdef3

_objc_msgSend :
_objc_msgSend :
_objc_msgSend :
_objc_msgSend :

_objc_msgSend : jmp qword ptr [rll+0x8]
— [NSAppearance allowsVibrancy]: push rbp # method
—[NSAppearance allowsVibrancy]: mov rbp, rsp

O 0B W —

Figure 6: The instruction trace of _objc_msgSend prior to the
allowsVibrancy method call.

in Algorithm 1.

We examined multiple widely-used programs such as binu-
tils, coreutils, gnome-web, etc. along with SPEC 2017 pro-
grams and empirically found the threshold distance to be 2
in most cases, which is unsurprising since system call invoca-
tions in benign code occur through system call wrappers or
dispatcher functions in 1ibc.

However, as a predominant property of CRAs, arguments
are populated in multiple gadgets that are separated by one
or more indirect branch instructions (indirect call/jmp or
ret). In order for an attack to circumvent P1, it would need to
populate all of the system-call arguments within the threshold
distance, which is extremely hard (see Section 7.2).

Our system call policy P1 has three key advantages. First,
it captures the essence of code-reuse attacks, i.e., indirect
branching, and is therefore extremely effective. Second, from
a practical standpoint, tracking distance in the hardware is
straightforward with fixed storage overhead. Finally, such
a solution is highly portable. System V and MSVC ABIs—
the two most popular ABIs are very similar in the way they
utilize registers (see Figure 7) for argument passing. There-
fore, our solution can port to other environments with little
modification.

4.4. Calling-Convention Policy

Based on observation 02, we define a policy directed at ad-
herence to calling convention. Benign programs adhere to
an underlying ABI that mandates the calling convention that
must be followed during function invocation. The calling
convention dictates rules for saving and restoring registers,



System V ABI: System V ABI: ) System V ABI: )
Linux, FreeBSD,  MS Windows Linux, FreeBSD, MS Windows Linux, FreeBSD, MS Windows
Mac 05 X ABI Mac 0S X ABI Mac 0S X ABI

RBX, RSP,
RBP, R12,

RAX, RCX,
RDX, R8,

RDI, RS,
Rest

R13, R14,

R9, R10,

on

stack R15

(a) Argument passing

(b) Callee-saved registers

R11

(c) Caller-saved registers
(Volatile registers)

Figure 7: Convention for register use across function calls for System V and Microsoft ABIs.

passing arguments to caller and passing return value from a
callee back to the caller. As a key insight, attacks rely on in-
direct call and ret instructions, but semantically, call and
ret instructions indicate entry and exit from functions, and
therefore the expectation is that the calling conventions are
respected across function calls. However, code-reuse attacks
do not follow these conventions. We derive the following rules
from the ABI:

1. Rule for callee-saved registers: A callee-saved register
must be saved by a callee before use. That is, from a
hardware perspective a callee-saved register must be read-
from before being written-to.

2. Rule for caller-saved (or volatile) registers: The ABI offers
no guarantees that the contents of a volatile register or
a caller-saved register will be preserved across function
calls. As such, after a ret instruction in a callee function
is encountered, the caller function must not read from a
volatile register (except while reading the return value)
before first writing into it. Conversely, a callee function
can not read from a non-argument volatile register before
first writing into it.

3. Rule for arguments and return value: After a ret instruc-
tion, the caller function can only read from the return-value
register (RAX) only if the callee function performed a write
to the return-value register before the ret instruction. Sim-
ilarly, after a call instruction, a callee function can not
read-before-write from more number of argument registers
than those that were written to by the caller function. That
is, if the caller function writes to the first two argument reg-
ister, the callee function can not read from third or higher
argument register before first writing into it.

While each of the rules can lead to a separate policy, not all
rules can be effectively enforced in the hardware (see 4.4.1).
In this paper, we focus on the callee-saved register rule. Specif-
ically, we enforce the following policy:

P2: Between successive call and ret instructions, callee-
saved register must be read-from before being written-into.

Given the substantial amount of overlap in calling conven-
tion policies for different environments (see Figure 7), our

approach can be easily ported to most X86-64 environments
(e.g., Mac OS X, UN*X, FreeBST, MS Windows). In a nut-
shell, we intercept instructions in hardware, and we check for
read/write operations on registers between call-ret instruc-
tion pairs. A call-ret pair indicates an entry and exit from
a function, so the read-before-write and write-before-read
primitives will be enforced on callee-saved registers.

4.4.1. Policy Robustness and Compiler Optimizations In
our experience, the callee-saved register policy is the most
robust and conducive for hardware enforcement. Modern com-
pilers employ aggressive optimizations that can relax some of
the ABI convention rules. Since the compiler knows all the
callees of a caller function during compile time, if the com-
piler can reason that a callee is not going to use a caller-saved
volatile register, the compiler can optimize performance of the
caller by not saving/restoring the caller-saved registers. In our
experience, such optimizations for caller-saved registers are
common and do not provide a robust basis for enforcement in
the hardware. Whereas, in the case of callee-saved registers,
it is not possible for a compiler to know all the callers of a
function during compile time, therefore, callee-saved registers
are always saved and restored within a function.

In the case of arguments and return value, return values
can be ignored by the caller, and any write to return register
may be interpreted as initialization of return value (even if the
function does not return a value). In essence, without function
signatures (which are not available in the hardware), reasoning
about return values and arguments are non-trivial and incur
performance overhead.

Therefore, in this paper, we focus on enforcement of the
highly robust callee-saved register policy.

5. System Design

In this section, we provide more details of our tracking mech-
anisms.

5.1. System Call Defense

Policy Configuration We provide an Argument-Specific pol-
icy where we profile each system call to record the maximum



depth for each argument, and generate a System Call Table that
represents the highly granular and argument specific policy.

System Call Register Tracking The goal of system call
register tracking is to track and record the initialization of var-
ious system call argument registers. The Algorithm 1 presents
our technique for depth tracking. Particularly, we maintain a
per-argument-register variable called Depth that records the
distance from the system call instruction that a particular argu-
ment was set. When a write occurs on an argument register,
Depth for that register is reset to 0 whereas when an indi-
rect branch instruction is encountered, the depth of registers
is increased to indicate the increase in distance from syscall
instruction. Finally, before execution of a syscall instruction,
the register depths are validated to ensure that they are in
accordance with the policy.

For example, in Figure 3, writes to argument registers rsi,
rdi, i.e., @ and @ happen in gadget EG1 whereas write to
occurs in EG2. Finally, the system call

number is set in CP1 @ before the syscall instruction @
is invoked. So, the depths for rax is 0 (i.e., the write happens 0
indirect branches away from the syscall instruction), rdx is
1, and rdi and rsi is 2. But as per the policy for mprotect,
the expected depth for all arguments is O (see Figure 10).
Therefore, an attack is inferred.

register rdx, i.e.,

Algorithm 1: System call depth tracking

Data: Instruction insn

if insn = syscall then
| validatePolicy();

else

if insn writes to reg € SysCallArgumentRegister then
| Depthlreg] < 0

end

end

if insn € {indirect jmp,indirect call,ret} then
Vreg € SysCallArgumentRegister
Depth|reg] < Depth|reg] + 1

end

Unequal Depths in Benign Code Although most argu-
ments to system calls are set at depths O or 1, there are some
cases where depths are higher.

Structure dereferencing: We performed a case study of the
read system call that accepts 3 arguments through rdi, rsi,
and rdx registers. The control flow leading up to the __read
wrapper function in libc is as shown in Figure 8.

The rsi and rdx registers are written to when buf and
size are setin I10_file_read. These are directly passed on
to __read, and therefore depth is 1. Whereas, fp—fileno
will cause a write to rdi, which makes the depth 0. More
generally, when arguments leading up to a system call are
initialized in different functions that are invoked via func-
tion pointers (i.e., indirect branching), such unequal depths
are possible. In order to generate the policy, we profiled a

int I0_file_underflow(fp) {

[

I0_file_read(fp, fp->I0_buf_base, fp->I0_buf_end - fp->
IO0_buf_base); /#+---> This is an indirect call */

W

}

int I0_file_read(fp, buf, size) {

NN RNNC VNS

__read(fp->fileno, buf, size);
descriptor #*/

/* fp->fileno is the file

10

Figure 8: The case of read system call.

large corpus of real-world applications to determine maximum
depths (i.e., threshold) for each argument to sensitive system
calls in benign code (see Figure 10). Any execution at runtime
that exceeds the threshold is a perceived attack.

Optional arguments:  Consider the futex system call:
int futex ( int uaddr, int futex_op, int wval, struct
timespec timeout, int uaddr?2, int val3)

Only the uaddr, futex_ op, and val arguments are
mandatory whereas timeout, uaddr2, val3 arguments
are optional and their presence depends on the value of
futex_op. In such cases, the compiler will not populate
optional arguments, and the corresponding argument register
will contain a depth value corresponding to some past unre-
lated write to the corresponding register. Therefore, we only
track mandatory arguments.

In case of optional arguments, the policy reserves a special
bit value to indicate to the hardware that the depth of the
register must be ignored during enforcement.

5.2. Calling-Convention Policy

The policy P2 is extracted from the calling conventions pre-
sented in the X86-64 System V ABI document [38].

Step-by-Step Attack Inference for Running Example

Runtime Tracking We are interested in tracking the first
access (write or read) that happens on a register within each
function frame, i.e., between successive call and ret in the
instruction stream. To this end, we intercept each instruction
and record the read and write register operands of the instruc-
tion and accordingly generate shadow data. For each register,
we maintain information per function frame to record read and
write operations. Particularly, we are interested in identify-
ing a read-before-write or a write-before-read behavior on a
register.

Further, because register reads and writes are tracked per
function frame, we maintain a shadow stack that stores individ-
ual frame-specific shadow data. The data for a frame is pushed
and popped from the stack when call and ret instructions
are encountered respectively.

Special cases: Instructions such as xor rax, raxread and
write from the register at the same time. However, we are
interested in reads that reflect the ‘register saving’ behavior



# | Insn Inference Bit vector after insn . .. | Shadow Stack Policy
rax,rbx,rex,rdx,rbp,rsi,rdi
1 push rbp rbp: 10 00,00,00,00,10,00,00 P2: Pass
2 mov rbp, rsp 00,00,00,00,10,00,00 rsp: exempt
3 | mov rax, rdi rax: 0L, 141 00,00,00,10,00,10
rdi: 10
4 mov rdi, <addr> 01,00,00,00,10,00,10
5 mov rsi, $1024 rsi: 01 01,00,00,00,10,01,10
6 call rax 00,00,00,00,00,00,00 01,00,00,00,10,01,10
7 push rbp rbp: 10 00,00,00,00,10,00,00 01,00,00,00,10,01,10 | P2: Pass
8 mov rbp, rsp 00,00,00,00,10,00,00 01,00,00,00,10,01,10 | rsp: exempt
9 mov rdx, $4 rdx: 01 00,00,00,01,10,00,00 01,00,00,00,10,01,10
10 | addrax, $132 rax: 01 01,00,00,01,10,00,00 01,00,00,00,10,01,10
11 | mov [rbp+8],rax 01,00,00,00,10,01,10
12 | pop rbp 01,00,00,00,10,01,10
13 | ret 01,00,00,00,10,01,10
14 | pop rbx rbx: 01 01,01,00,00,10,01,10 P2: Fail

Table 1: Attack trace in Intel syntax for running example in Figure 3 with register read/write tracking and calling-convention policy.
The value 10’ represents read-before-write and 01’ represents write-before-read.

within a function frame, and as such, we associate a write-
before-read primitive with such instructions. Additionally, we
treat rsp register different from other registers. Although rsp
is a callee-saved register, a write-before-read can occur when
a program is compiled without frame pointer rbp, and stack
space is allocated. Therefore, we exempt stack pointer from
the policy.

Policy Enforcement When an instruction is encountered,
the register reads and writes are evaluated to test for compli-
ance with calling-convention policies in Section 4.4.

An instruction-by-instruction inference and stack contents
for the running example in Figure 3 is presented in Table 1.
The read/write inferences are made after each instruction, and
finally, when the pop rbx instruction is encountered in gadget
CP1, it is inferred as a write-before-read for a callee-saved
register rbx, which triggers a policy violation per P2.

5.3. Multi-Threading and Multi-Process Support

Although we do not explore multi-threading and multi-process
support in this work, we believe our solution can be easily
extended to support multiple threads and processes including.
Specifically, the thread control block (TCB) and process con-
trol block (PCB) can be modified to save the bit vector and
shadow stack as a part of the context information, so that the
enforcement states can be saved and restored across multiple
threads and/or processes. Appropriate changes to runtime and
OS will be necessary.

5.4. Handling Exceptional Flows and Hand-Written As-
sembly

During exceptional flows like set jmp/longjmp, a large set
of registers are read from (during set jmp) and are restored

(during longjmp) without regard to conventional norms. A
similar case manifests in the case of hand-written assembly. In
totality, such code instances are extremely small and typically
well defined (e.g., low-level kernel routines). We propose to
profile them before-hand and generate a signature that is made
available to the hardware for exclusion.

6. Hardware and Microarchitectural Support
and Considerations

In this section, we describe simple microarchitectural changes
required to implement our approach. As we demonstrate, the
amount of hardware needed is modest.

6.1. Tracking Argument Depths for System Calls

For the system call tracking approach, the complexity depends
on the number of system calls that are tracked by the detection
system. As shown in Figure 9, the key structure to support
our syscall tracking is a table that is maintained at the commit
stage of the pipeline, we call it System Call Table (SCT). The
number of rows in SCT equals to the number of supported sys-
tem calls, and the number of columns equals to the number of
registers used as system call arguments, plus a column to store
a system call number to use as a search tag for the system call.
Previous research published in security community established
most security-critical system calls to be relatively few [17,24,
53] (specifically: execve, write, mprotect, munmap,
clone, fork, open, close, exit_group, read), SO
that most attacks can be successfully prevented if only a few
system calls are tracked. SCT forms the policy that provides
expected argument depth values (i.e., threshold) for each mon-
itored system call.

While the size of SCT can be configured to cover different
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number of system calls, for our calculations we assume that a
16-entry SCT is used. Inside each entry, we store a system call
number and system call arguments. In x86-64 architecture,
the arguments are stored in registers rdi, rsi, rdx, r10, r8, and
19, so we assume six register depths are stored for each system
call in that order. If each depth value requires 4 bits to express
the depth, plus 9 bits are needed to record the system call
number (assuming 512 system calls), then each SCT entry will
require 33 bits of storage (which can be rounded to five bytes
resulting in 80 bytes of storage for a 16-entry SCT). SCT
can be organized as a fully-associative or a set-associative
structure. For the small size of 16 entries we use a fully
associative search on the system call number. SCT is loaded
only once for each execution environment (for example, when
OS boots) and it provides reference information against which
the register depth counters collected at runtime are compared
to make security decisions.

At runtime, we also need to track the depth of every reg-
ister used as a system call argument. Our tracking captures
the depth of each register between consecutive system calls.
Each ISA register is associated with its own depth counter.
There are 4-bit long saturating counters. After a system call
instruction is committed, all depth counters are reset to zero.
Whenever a write to a register occurs, its depth counter is also
set to zero. Whenever an indirect jump, an indirect call or
a return instruction commits, the depth counters of all reg-
isters are incremented by one. At the commit time of the

next system call (the one that is being tracked), we read depth
counters corresponding to the system call arguments from the
depth counters and compare them from the information for
this syscall in SCT. Since all system calls use standard con-
ventions for register usage, the same ISA registers are always
checked. If a particular register is not used for a given system
call (because the number of arguments is smaller or the argu-
ment is optional), this is indicated by a reserved bit-sequence
for that register in SCT (4 bit value 1111 or OxF). A variety
of policies can be implemented based on the values of the
counters, ranging from simple to more complicated ones.

Note that these additional hardware resources are manipu-
lated at the commit stage of the instruction pipeline. Since all
accesses occur at the commit stage, these accesses are off the
critical schedule-to-execute timing path. The table can be con-
figured and sized to be accessed within a single cycle. Even if
an additional cycle or two are needed, the commit stage can be
pipelined into several stages without impacting the number of
instructions committed per cycle, as this does not lengthen the
critical fetch-to-execute loop and does not impact the branch
misprediction penalty [8]. To reduce the size of the system
call table, one can track only the most security-critical system
calls. This will simplify the logic, but still significantly reduce
the attack surface.

The above scheme only tracks and detects CRAs based on
non-speculative gadgets. If speculative gadgets need to be
considered to protect from some forms of transient execution
attacks, our support can be easily extended by moving the
monitoring logic to the front-end of the pipeline (decode stage)
and making appropriate adjustments to the depth counters on
branch misspeculations (similar, in principle, to how a rename
table and a free list of physical registers is recovered on branch
misspeculation). Note that SCT does not need to be adjusted,
since this is not a writable structure during normal execution.

6.2. On-Chip Storage Overhead

For P1 system-call specific policy, the overhead scales with the
number of system calls monitored. As described above, with
80 bytes of storage we can implement support for 16 most
critical system calls. As the number of system calls increases,
so does the storage requirement for SCT.

6.3. Software Configuration

We allow software configuration of SCT. For example, SCT
contents can be set differently for various operating systems
at system boot time. Furthermore, a more fine-grain reconfig-
uration using privileged system call interface is also possible.
This is no different than any other system with configurable
hardware parameters.

7. Evaluation

In this section, we present the performance, complexity, and
security evaluation.



7.1. Performance Analysis

The performance overhead of tracking ABI conventions stems
from misses from the hardware shadow stack. To estimate the
additional number of cycles incurred by such accesses, we sim-
ulated our system using Pin binary instrumentation tool [27].
We ran each SPEC 2017 benchmark through the Pin tool for 1
billion instructions. For each benchmark, we simulated with
hardware stack of 2, 4, 8, and 16 entries, and we kept the
cache configuration consistent. We used a 64kB L1 data and
instruction cache, a 512kB L2 cache, and a 2MB L3 cache. The
assumed access latencies for different memory levels were:
1 cycle for L1 cache, 20 cycles for L2 cache, 35 cycles for
L3 cache, and 200 cycles for DRAM. To calculate the total
cycle penalty, we observed how often the ABI enforcement
mechanism misses into the hardware stack, and from which
level of memory the misses were serviced.

The Table 2 shows that the overhead due to hardware
shadow stack misses had negligible impact on the aver-
age memory access time (AMAT) of the system. The
most significant difference in performance was seen for the
520 .omnetpp_r benchmark for a shadow stack size of 2 en-
tries which resulted in the AMAT increasing by 0.35% when
compared to the baseline. These results can be attributed to
the low recursion depth as a result of which there are fewer
entries in the stack. The fewer entries result in a larger number
of stack accesses serviced by the hardware shadow stack and
L1 cache. As one would expect, a hardware stack size of 16
entries resulted in the best AMAT, with the worst performing
benchmark, 520.omnetpp_r facing an AMAT increase of
just 6.2e-05% when compared to the baseline.

As the ABI compliance check utilizes the stack to store the
state of register accesses across function calls, benchmarks ex-
hibiting deep non-tail-recursive calls result in greater memory
usage. These exceptional benchmarks however, only manage
to cause insignificant losses in cache performance.

Additionally, the memory overhead incurred by use of
shadow stack is presented in Figure 13. For most programs in
Spec 2017, the burden was less than 1KB.

7.2. Security Analysis

We analyze the impact of our defense on the overall security
of the system. Particularly, we examine the reduction in attack
surface due to incorporation of System Call Depth (i.e., P1)
and ABI Compliance (i.e., P2) policies. We analyze the feasi-
bility of execution of system calls in a code-reuse paradigm.
To this end, we examine the system calls in Linux and evalu-
ate how much harder it will be for an attacker to accomplish
an attack—i.e., execute the system calls through code-reuse
attacks—in the presence of our defenses.

Methodology For a given program, we first compute the
total possible gadget chains in the program’s address space
that can be used invoke each system call. We follow these
steps:

AMAT INCREASE DUE TO SHADOW STACK

Program Number of Shadow Stack Entries

2 4 8 16
specl7
blender 0.000335 O 0 0
bwaves 3e-05 0 0 0
cactusBSsN  0.000107  4.5e-05 1.3e-05 4e-06
cam4 0 0 0 0
cpugcc 0.00588 0.000278 0 0
cpuxalan 0.005586  0.00061 0.000114 0
deepsjeng 0 0 0 0
exchange? 0 0 0 0
fotonik3d 0 0 0 0
imagick 0 0 0 0
1bm le-06 1e-06 0 0
leela 2.2e-05 0 0 0
mcf 2.5e-05 2.2e-05 0 0
nab 2.5e-05 1e-06 0 0
namd 0 0 0 0
omnetpp 0.35306 0.24711 0.005459  6.2e-05
parest 6e-05 6e-06 4e-06 0
perlbench 0.002193  0.00026 0 0
povray 0.028826  1e-06 0 0
roms 2e-06 0 0 0
wrf 0 0 0 0
x264 2.4e-05 2.2e-05 0 0
xz 0.002067  0.000522 0 0

Table 2: Performance impact of the ABI Compliance Check on
AMAT

* We start with a set of all the gadgets in all the libraries in
a process’ memory (%¢). This includes all the gadgets in
all the libraries in the process memory plus the program
executable.

* We identify the set of syscall gadgets (Gs C ¢) that can
be used to invoke a system call, i.e., the last instruction in
the gadget is the syscall instruction. For any successful
system call invocation, dg; € Gy where g; is the last gadget
in the gadget chain.

* We then identify a set of gadgets (Grax C %) that must
either load an arbitrary value into the r/eax register, or load
a fixed value corresponding to a valid system call number.
If a fixed value is loaded, then the gadget is only usable to
invoke the system call whose number is loaded into r/eax.

» Similarly, we assemble argument-register sets of gadgets
(Grpo1,Grst; Grpx> Grio,Grs,; Gro C ¢) that can load a
value into the system call argument registers. That is, rdi,
rsi, rdx, r10, r8 and 19 registers, or rax, rbx, rcx, rsi, rdi
and rbp for legacy X86 system calls that use int 0x80 as
their system call instruction. Finally, we identify a chain
of smallest number of gadgets that can be used to initialize
system call arguments depending on how many arguments
the given system call accepts.

Target Programs: The SPEC benchmark is not best suited
for security evaluation, as such we picked real-world programs
mysql and Firefox, wherein we tested all loaded libraries along
with Firefox and mysql executables. Our analysis recreates the
exploitation environment an attacker would encounter while
exploiting mysql or Firefox. Additionally, our solution has
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Figure 11: Max System Call Argument Depth for SPEC 2017 benchmark programs.

been tested on libraries used by perl and python.

Attack surface reduction We followed the steps above to
compute the individual gadget sets for all the libraries used by
mysqgl database program and computed the smallest possible
gadget chains with and without the presence of our defenses.
Next, we computed the chain lengths for execution of system
calls with O through 6 arguments using ROP and JOP. Be-
cause system call depths are typically no more than 3 (see
Figures 10 and 11), we restricted to depth of 3. Our findings
are presented in the logarithmic graph in Figure 12. Without
P1, P2 defenses, the number of gadget chains possible are
2.56 x 10* and 1.03 x 10'7 for ROP and JOP attacks respec-
tively. These are nothing but the product of cardinalities of
Gror; Grsi; Grox > Grio, Grs; Gro-
Key finding: The number of possible gadget chains with
P1 + P2 for both ROP and JOP at depth O drops to 1, which
corresponds to the system call wrapper function in libc. Given
that most system calls set arguments at depth 0, this finding
suggests that our solution entirely prevents execution of most
system calls using CRAs.

Additionally, we examined the impact of P2 on reduction of
number of usable gadgets that write to callee-saved registers
in the Firefox browser. Our findings are tabulated in Table 3.
We see that just by application of P2 we can eliminate 88.7%
and 99.3% of gadget chains that operate on callee-saved rbx
and rbp registers respectively. Note that although rbx and
rbp registers are not directly involved in argument passing to
a system call, they are often read-from or written-to as a side-
effect in gadgets that are useful for argument initialization.

Enforcement of additional policies is only expected to further
reduce attack surface. Further, it should be noted that the
mentioned gadgets can be used for system calls that use int
0x80 as their system call instructions.

Comparison against Intel’s CET and Hurdle Intel

CET [26] focuses on source-target mappings for correct con-
trol flow, whereas our solution relies on conventions, which is

robust and fundamentally different (yet orthogonal) to CET’s
approach. Unlike Hurdle [20], our approach can defend
against all types of CRAs (return-, jump- and call-oriented
programming) without any modifications to the binary, thereby
providing full backward compatibility. Also, Hurdle is unable
to protect against data-only code-reuse attacks whereas our
solution through enforcement of P2 can stop such attacks.

Firefox RBX RBX RBP RBP
(no defense) (with P2)  (no defense) (with P2)

libc 1031 111 616 2

libdl 45 12 21 0
libgee_s 96 0 75 0
libstde++ 674 139 419 5

libm 565 7 324 2
libpthread 96 15 83 0

Total 2507 284 1538 9

Table 3: Gadget reduction for callee-saved registers with P2
enforcement.
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Figure 13: Memory Requirements of the Shadow Stack
8. Related Work

Previous signature-based defenses that target ROP attacks,
[17,19,33,43], look for inherent ROP behaviors that deviate
from benign execution. Since JOP attacks do not rely on the
return instructions, such attacks are capable of bypassing ROP
defenses [7, 16] and require alternative defenses.

JOP-alarm [54] introduced the concept of a score value to
detect a potentially malicious behavior representing a JOP
attack. The score value is dynamically adjusted based on the
gadget lengths and indirect jump distances. While being a
promising concept, the score-based approach does not com-
pletely eliminate false positives. In contrast, our technique
avoids false positive alarms by design. Tiny Jump-oriented
programming (Tiny JOP) [47] performs JOP with very few
gadgets, bypassing gadget thresholds in selected defenses.
However, Tiny JOP is very specific to 32-bit x86 systems and
is only capable of performing system calls that have the sys-
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tem call number encoded in the final gadget. Block-oriented
programming attacks [28] construct the attacks using basic
blocks as gadgets but violate P1 and are therefore vulnerable
to our approach.

Control-Flow Integrity (CFI) [1, 11, 45] is another way
to prevent malicious control-flow changes by ensuring that
the program execution adheres to its control flow graph
(CFG). CFGs have been used to enforce CFI in various solu-
tions [4, 18,36,51,53]. In theory, CFI offers perfect control-
flow protection, however in practice, CFI implementations are
known to be inadequate [34]. The limitations of CFI have
been documented in [14,35]. In addition, unintended instruc-
tions would not be included during static analysis, even though
most gadgets are unintentional [30]. Other defenses also re-
quire recompilation [5,30,42], which increases the code size
and makes protecting legacy binaries more difficult. Memory
bounds checking [21,40,41] is another comprehensive and
fairly complex technique for protecting systems from buffer
overflows.

Prior works also addressed system call checking for secu-
rity purposes. Seccomp (Secure Computing) module performs
system call checking in Linux implementations. The goal is
to limit the range of system calls and arguments that a given
process can invoke during execution. Software checks of Sec-
comp involve significant performance overhead, so hardware-
supported checking acceleration has been recently proposed
to address performance issues [50]. This type of system call
checking is orthogonal to our approach.

9. Concluding Remarks

We demonstrated, through concrete examples, that signature-
based detection schemes are not effective against code reuse
attacks, because benign programs sometimes exhibit gadget-
like behavior which is indistinguishable from attacks. Instead
of tracking attack signatures, we showed that a more sound
and effective detection approach is to track deviations from
established execution conventions that govern the execution
of regular programs. Specifically, we considered two forms
of such tracking: system call argument depth, and compli-
ance with ABI calling conventions. We showed that the attack
surface can be significantly reduced with modest modest per-
formance overhead and about 80 bytes of on-chip storage if
16 most security-critical system calls are tracked.
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