
Composable Cachelets:
Protecting Enclaves from Cache Side-Channel Attacks

Daniel Townley
Peraton Labs

Kerem Arıkan
Binghamton University

Yu David Liu
Binghamton University

Dmitry Ponomarev
Binghamton University

Oğuz Ergin
TOBB University of Economics and Technology

Abstract
The security of isolated execution architectures such as Intel
SGX has been significantly threatened by the recent emer-
gence of side-channel attacks. Cache side-channel attacks
allow adversaries to leak secrets stored inside isolated en-
claves without having direct access to the enclave memory.
In some cases, secrets can be leaked even without having the
knowledge of the victim application code or having OS-level
privileges. We propose the concept of Composable Cachelets
(CC), a new scalable strategy to dynamically partition the
last-level cache (LLC) for completely isolating enclaves from
other applications and from each other. CC supports enclave
isolation in caches with the capability to dynamically readjust
the cache capacity as enclaves are created and destroyed. We
present a cache-aware and enclave-aware operational seman-
tics to help rigorously establish security properties of CC, and
we experimentally demonstrate that CC thwarts side-channel
attacks on caches with modest performance and complexity
impact.

1 Introduction
Isolated execution architectures have received significant trac-
tion in the industry, with Intel Software Guard Extension
(SGX) [1, 28, 41] being the most prominent example. Iso-
lated execution relies on dedicated hardware to protect sen-
sitive parts of application code and memory within secure
enclaves that are inaccessible to all outside programs, in-
cluding operating systems and hypervisors. Unlike classical
memory protections enforced by system software, isolated
execution relies exclusively on trusted hardware to enforce
enclave boundaries, ensuring confidentiality and integrity of
sensitive information even if system software is compro-
mised. Despite these benefits, recent research demonstrated
powerful cache side-channel attacks that bypass isolated ex-
ecution [10, 17, 22, 35, 43, 55, 56, 69]. These attacks exploit
the fact that enclaves, like other processes, share cache lines
with potential attackers, who can observe timing differences
caused by collisions of their own accesses with those of a
victim. Moreover, the threat model under isolated execution
greatly amplifies the power of these attacks, as an attacker can
leverage a compromised OS to achieve greater control over

Figure 1: Overview of Partitioning in CC

side-channel measurements [10, 42, 43, 53, 57]. As trusted
computing infrastructure relying on SGX and similar tech-
nologies continues to be rapidly developed and deployed [55],
it is critical to consider system designs that make enclaves
immune to cache side-channel attacks.

Existing cache partitioning schemes [20, 29] successfully
thwart some side-channel attacks, but face limitations that
make them incompatible with SGX and other isolated ex-
ecution proposals. Partitioned caches eliminate cache line
collisions by assigning each process (or security domain) a
disjoint subset of cache lines. Some of partitioning designs,
however, rely on system software to enforce critical protec-
tions [32–34, 38, 52, 70, 74], and therefore do not work with
isolated execution security models where the system software
is not trusted. While some recent designs implement partition-
ing in hardware alone, they often require allocating one or
more cache ways to each partition [20]. Enclaves, which typi-
cally protect small sections of critical data and instructions,
will greatly underutilize these coarse-grained partitions, ex-
cessively degrading performance of non-enclave code. More-
over, the number of enclaves can rapidly exceed the number
of ways available in a typical last level cache (LLC), mak-
ing coarse-grained partitioning impractical, particularly in
multi-tenant cloud settings where enclaves are most likely to
be deployed. These limitations necessitate the development
of new architectures to provide enclaves with efficient and
scalable partitioning, without relying on system software to
enforce isolation.

Another key insight that motivates our work is that there
remains an “impedance mismatch” between software need
and hardware support. Whereas the data protection need from
the application is often fine-grained and dynamically evolves,

1

caches as the epicenter of side channel attacks are often mono-
lithic in the eyes of attackers, and existing partitioning-based
solutions are too rigid in breaking down this monolithic view.
With security as a cross-layer concern, we believe the best
solution is to streamline the hardware-software stack: can we
endow caches with the fine granularity and dynamism that
the application calls for?

To address these challenges, we propose Composable
Cachelets (CC), a novel cache design that provides fine-
grained, flexible cache partitioning without trusting system
software to enforce isolation. CC partitions set-associative
caches at the granularity of cachelets—fine-grained, hardware-
defined cache regions that span continuous ranges of sets
across one or a few cache ways (Figure 1). To support en-
claves with varying memory demands, CC can either assign a
single cachelet to an enclave (as is the case for enclaves 2 and
3 in Figure 1), or chain cachelets together into larger virtual
partitions (such as the one allocated to enclave 1). Inspired
by classic memory paging designs, CC can compose virtual
partitions from arbitrary, non-sequential cachelets. This ap-
proach allows CC to efficiently use available cache lines as
enclaves of various sizes are created and destroyed.

In addition to architectural design, we also provide a for-
mal foundation to study program behavior in the presence of
caches as side channels, and CC as the defense against side
channel attacks. Through a novel cache-aware and enclave-
aware operational semantics, we account for enclave program
behavior in realistic scenarios where enclaves may be dy-
namically managed (created, entered, exited, and destroyed),
cachelets may be dynamically managed (allocated, accessed,
and deallocated), and the attacker may observe different types
of cache events (e.g., hit, miss, resize). As a whole, this formal
foundation serves as a rigorous proof of the security guaran-
tees enjoyed by CC.

In summary, this paper makes the following contributions:

• We describe Composable Cachelets - a novel, fine-
grained, and scalable cache design that efficiently pro-
tects application secrets from side-channel attacks (Sec-
tion 3).

• We present a cache-aware and enclave-aware operational
semantics to rigorously define the behavior of enclave
programs, and establish CC’s security properties (Sec-
tion 4).

• We evaluate performance impact of CC on a variety of
applications, including smaller cryptographic programs,
as well as larger benchmarks such as SPEC and PAR-
SEC. We also evaluate delay, area and power impact of
our design. Our results demonstrate that strong security
properties of CC can be achieved with modest overhead.

Figure 2: CC Overview

2 Threat Model
CC adopts the threat model assumed by Intel SGX. SGX as-
sumes a powerful adversary that can engage the resources
of a compromised OS and/or hypervisor to launch an attack
against an enclave. Established SGX protections are assumed
to be fully implemented in CC. These protections prevent at-
tackers from directly accessing enclave memory and from ex-
tracting information through physical attacks on DRAM and
interconnect. However, an attacker can attempt Prime+Probe
against caches shared with a victim [31, 39]. Such attacks
can be carried out by any number of colluding user and/or
kernel threads. The attacker is also capable of initializing an
arbitrary number of its own enclaves, and we conservatively
assume mutual distrust among all enclaves, including those
belonging to the same process. While the operating system
mediates high-level events in the enclave’s life cycle, such as
enclave creation and destruction, entries and exits to enclave
code, and enclave page faults, SGX hardware ensures that
these operations are performed without exposing or altering
the enclave’s internal data.

While we do not directly address denial-of-service attacks
by malicious enclaves, we limit the LLC space that can be
allocated to enclaves. A malicious enclave can also attempt to
take over the entire cachelet space, causing performance loss
for other enclaves. To prevent this attack, additional quality-
of-service mechanisms can be put in place even within the
enclave partition.

3 Composable Cachelets
Figure 2 describes the high-level design and operation of
CC. To track the allocation of cachelets to various enclaves,
CC assigns each physical cachelet a unique cachelet identifier
comprised of the cachelet’s set and way offsets within the
cache. CC stores the identifier of each unallocated cachelet as
an entry in a global cachelet free list (CFL), a FIFO-like struc-
ture analogous to the free list in register renaming schemes.
When an enclave is created, CC pops one or more entries
from CFL, and adds them to a hardware virtual partition ta-
ble (VPT), which holds a cachelet identifier entry for each
cachelet allocated to the running enclave (a). CC intercepts
memory accesses from enclaves and remaps them to cachelets
defined in the enclave’s VPT. The remapping logic masks the
address so that it indexes to a cachelet set (b), and provides
the slightly modified replacement logic with a way index to

2

ensure that only the cachelet’s ways are evicted on a miss
(c). When the enclave is destroyed, CC gang-invalidates the
enclave’s cachelets and returns VPT entries to CFL. CC also
extends the enclave metadata, which is protected by isolated
execution, to store each enclave’s VPT data during context
switches.

CC allows non-enclave programs to freely access any
cache line that is not contained in a cachelet. The modified
replacement logic prevents non-enclave accesses from evict-
ing lines in any allocated cachelet (d). CC reserves several
ways for non-enclave accesses, ensuring that cache lines are
available for non-enclave programs in every cache set.

3.1 Cachelet Addressing and Allocation

In this section, we describe details of cachelet addressing
and allocation logic, and also provide an example of cachelet
operation.

3.1.1 Address Remapping for Enclaves

Figure 3 shows how CC transparently remaps enclave mem-
ory accesses across multiple, non-consecutive cachelets. In
conventional caching, addresses are mapped to a cache set
using set index bits extracted from the address (Figure 3).
CC uses the high-order bits of the set index to select an en-
try from the VPT. For example, for a set index in the range
of 0000-0011, CC uses the high order bits 00 to select the
first VPT entry in a four-entry VPT. CC uses the selected
VPT entry to remap the original address to a line in a spe-
cific cachelet. The VPT entry specifies a cachelet with two
fields: a set offset and a way offset. To remap the memory
access to a set within this cachelet, CC overwrites a portion
of the original address’ set index with the cachelet set offset,
as shown in Figure 4. Whereas the original set index may
have mapped to any cache set (Figure 4-a), fixing the high
order bits limits the mapping range to sets in the cachelet
(Figure 4-b). For example, to force all addresses to access sets
1000-1011, CC pins the high-order set index bits to 10.

If the number of sets in all enclaves assigned to cachelets
is smaller than the total number of cache sets, CC will remap
addresses with different set indexes to the same set within
an enclave. To disambiguate these references, CC adds the
overwritten index bits to the tag bits used to distinguish ad-
dresses that map to the same cache line. For instance, the

Figure 3: Enclave Set Remapping for CC

Figure 4: CC strategy to remap memory accesses to cachelet
sets

four-cachelet way shown would require two additional tag
bits. Only cache ways designated for use by cachelets need
these additional bits.

To map enclave addresses to cachelet ways, CC adapts
mechanisms from previous, coarse-grained partitioning pro-
posals. Specifically, lightweight hardware described in [34]
masks the bit vector used by the cache replacement logic,
limiting evictions to a designated range of ways. To generate
masking bits for a given cachelet, CC extends the addressing
bus to include the way offset bits retrieved from VPT. Simple
hardware similar to a decoder converts these bits to the way
mask used for the enclave access if a cache miss occurs. Logic
described in [34] also prevents cachelet accesses from updat-
ing replacement bits for ways outside the cachelet boundaries,
eliminating a potential replacement-logic side-channel.

3.1.2 Cachelet Allocation

The number of entries in VPT determines the size of the
virtual partition for each enclave in CC. By changing the num-
ber of set bits used to index into VPT, CC defines virtual
partitions ranging in size from a single cachelet, up to the
maximum capacity of VPT. The granularity of indexing is
determined by a VPT index mask register shown in Figure
5, which shifts left to widen the indexing range, as cachelets
are added from CFL in powers of two. When one partition is
present, the register indexes all VPT accesses to 00, forcing
the use of a single cachelet for all enclave addresses. When
another entry is added from CFL, the mask is left-shifted to
allow access to the first two entries. When two additional
cachelets are allocated, the mask shifts again, allowing index-
ing into all VPT entries.

To enforce strict isolation between cachelets, CC must guar-
antee that VPT contents for each enclave are disjoint, with
no single cachelet identifier entry duplicated between differ-
ent enclaves. CC accomplishes this by making CFL global
and coherent relative to the cache that it services. Similar
to the LLC itself, CFL is a unified structure shared by all
cores. Pop requests to CFL from different cores are handled
in order, so that no enclave can use a particular entry until it
has been removed from CFL. This prevents different enclaves
from holding the same entry simultaneously, eliminating the
possibility of overlapping virtual partitions that experience

3

Figure 5: Resizing a virtual partition in CC

information leakage. The use of a global CFL gives CFL pop
operations a latency similar to an LLC cache access. However,
CFL accesses are rare, occurring only during enclave creation,
destruction, and resizing operations.

3.1.3 Optional Partition Sizing

As an optional feature, CC can support the capability to re-
size virtual partitions to accommodate enclaves with different
memory requirements. This can be securely performed in
several ways. One approach is to add a new CCREQ instruc-
tion that allows enclaves to request additional cachelets di-
rectly. CCREQ transfers control to the OS which can use a
new CCGRANT instruction to set a flag that triggers a CFL pop
to the enclave. Similar to page fault handling in SGX, this
interface allows the OS to manage cachelet allocations at a
high level to balance memory resources, without exposing
enclave’s contents.

Newly created enclaves can invoke CCREQ to request a static
enclave assignment for the duration of its execution. CC can
also support dynamic resizing strategies, in which enclaves
request additional cachelets during memory-intensive phases
of execution, and relinquish them when they are no longer
needed. Dynamic resizing can further limit the impact of
partitioning on cache performance, and is secure as long as
the act of resizing does not depend on sensitive data. Such
dependencies are unlikely to occur in practice, and can be
identified and avoided during enclave development.

3.1.4 Securing Replacement Policies

Recent research has documented the vulnerabilities that are
caused by cache replacement policies. Specifically, if care is
not exercised, then simple partitioning schemes can be tar-
geted by attacks on cache replacement logic [11, 68]. The
CC design follows DAWG [34], which described lightweight
logic to prevent these attacks (Section III.J in [34]). The
main idea is to make replacement decisions within a partition
independent of the cache accesses to other partitions, thus
providing metadata isolation. DAWG considered several re-
placement policies, including pseudo-LRU, SRRIP [30], and
NRU. This logic is compatible with CC, and can be readily
integrated into our system with various replacement policies.

Figure 6: Example of CC operation

3.1.5 Example of CC Operation

To illustrate the flexibility of CC’s partitioning policy, Figure 6
shows the operation of CC through the creation, resizing, and
destruction of several enclaves. The cache initially contains a
single cachelet assigned to enclave e1. In the first stage of the
example (Figure 6-a), e1 is not running on the core, and its
VPT state is stored as part of its enclave metadata. When a
new enclave e2 is created, VPT is initialized with the cachelet
identifier entry at the head of CFL. This defines a new 4-set
cachelet for e2 in way 1. In Figure 6-b, CC expands the
virtual partition belonging to e2 by popping three additional
entries from CFL. In Figure 6-c, e1 finishes executing, and
CC reclaims its VPT entries. In addition to popping the entries
used by e1 from VPT and returning them to CFL, CC gang-
invalidates the lines in the cachelet. In Figure 6-d, enclave
e3 is scheduled, and is subsequently scaled to the maximum
virtual partition size. The free list assigns e3 the remaining
entries, including the first entry recovered from e1.

3.2 Replacement Deflection for Non-Enclave
Accesses

To prevent accesses from non-enclave processes from col-
liding with cachelet lines held by any enclave, CC extends
the cache replacement logic with a small table indicating
whether each cachelet position in the cache is occupied. Us-
ing the high order set number bits as an index, incoming
addresses from non-enclave programs are checked against
this table to determine which ways in the accessed set contain
enclaves. On a cache miss, CC augments the cache replace-
ment hardware with additional masking logic that uses the
enclave-assignment vector for the accessed set to prevent the
replacement of enclave ways during evictions.

A commonly used pseudo-least-recently-used (PLRU) pol-
icy illustrates the subtleties of the process of replacement
deflection. In PLRU replacement, selection bits define a bi-
nary tree whose leaf nodes correspond to cache ways. On
a cache miss, PLRU selects the eviction target by descend-
ing the tree along the path indicated by selection bits at the
tree’s inner nodes. In Figure 7, a "zero" indicates that the

4

Figure 7: Modified PLRU Replacement Logic

left sub-tree should be descended, while "one" indicates the
right sub-tree. After a line is replaced, the nodes along the
path to the selected way are then inverted to point away from
the last accessed path, approximating a least-recently-used
replacement algorithm.

In addition to preventing evictions in cachelet ways at the
final branches of the tree, the CC replacement logic must
ensure that the selection path never follows any branch that
does not have non-enclave ways as children. In Figure 7 for
example, the path of replacement must not follow the left edge
from the root node, since the sub-tree in this direction leads
only to enclave ways that should not be victimized. CC must
include logic to divert access down the right edge from the
root node, where it will find ways that can be replaced.

The algorithm in Figure 8-a enforces this policy at each
level of the PLRU replacement tree traversal. For each node
along the traversal path with the selection bit b, the policy
selects a new selection bit, b′, based on the conditions l and r,
which are true, respectively, iff cachelets occupy all the ways
in the node’s left or right subtree. If both sub-trees contain
non-cachelet ways, then the existing replacement bit b is used;
otherwise, b′ is selected to divert the replacement policy away
from subtrees whose ways are entirely occupied by cachelets.
Note that the final case in the algorithm is an invalid state that
is unreachable from the root of the selection tree if at least
one way in the set is available for non-enclaved accesses.

From this algorithm, the PLRU masking hardware can be
easily derived. Figure 8-b shows the truth table corresponding
to the selection algorithm, which can be realized in the gate
structure in Figure 8-c. For a given node, the viability of the
left subtree, l is determined by taking the logical AND of all
the cachelet allocation bits that the subtree leads to.

Figure 8: Path Selection Algorithm for Modified PLRU

Figure 9 shows the gate level implementation of the re-
placement deflection hardware for 8-way PLRU replacement
logic. This hardware can be easily scaled to support different
cache associativities. Section 5.2 describes how this hardware
can be parallelized with existing cache access logic to avoid

Figure 9: Replacement logic with CC deflection hardware

imposing additional delays.

3.3 Secure Cachelet Eviction

Cachelets in CC are finite resources, which can be exhausted
if a large number of enclaves run simultaneously. To prevent
cachelet starvation, CC provides logic to safely evict and re-
assign cachelets allocated to context-switched enclaves. This
mechanism, closely modeled on existing page eviction logic
in Intel SGX, allows an untrusted OS to instigate evictions
through a restricted ISA interface, and performs hardware
check to enforce inter-enclave isolation.

To support cachelet evictions, CC hardware maintains a
table that maps each currently allocated cachelet to the unique
ID of the enclave that currently holds it. To forcibly deallocate
a cachelet in response to an empty CFL exception, CC intro-
duces a new instruction called CSD (Cachelet Shoot-down).
CSD takes a cachelet ID as its argument, looks up the associ-
ated enclave ID from the mapping table, and uses the enclave
ID to access the enclave’s metadata. CC extends the metadata
with a valid bit for each VPT entry, and the bit associated with
the provided cachelet ID is invalidated. CC then adds the
invalidated cachelet to CFL. Each time an enclave is sched-
uled, CC hardware checks the for invalidated VPT entries. If
any are found, CC flushes any invalidated VPT entries and
replaces them with fresh entries from CFL before the enclave
resumes execution, preventing the enclave from accessing
reassigned cachelets. Additionally, CC gang invalidates the
contents of any valid cachelets retained by the enclave.

By immediately replacing reassigned CFL entries and inval-
idating the contents of the entire virtual partition, CC prevents
controlled-channel style attacks from exploiting cachelet evic-
tion. In a classical controlled-channel attack, a malicious op-
erating system deliberately invalidates pages belonging to an
enclave, and uses the resulting page faults to detect which
pages are accessed. If access to a page depends on the value
of sensitive data, the attacker can use the sequence of page
faults to extract that data. Such attacks are a consideration for
CC because because cachelet evictions, like page evictions,

5

are controlled by the untrusted OS. However, by forcing in-
validated cachelets to be replaced from the CFL when an
enclave is re-scheduled (rather than deferring replacement
to the first time the invalid cachelet is accessed), CC makes
cachelet re-assignment independent of the enclave’s memory
accesses, thus preventing data leakage. Additionally, by clear-
ing the contents of the entire virtual partition, rather than only
the invalidated cachelets, CC also prevents an attacker from
localizing accesses to a recently evicted cachelet on the basis
of timing delays.

Though this invalidation strategy is aggressive, three con-
siderations mitigate the impact on enclave performance. First,
a performance-aware, benign operating system can prioritize
for eviction of small or single-cachelet enclaves, which will
quickly re-populate their virtual partitions when rescheduled.
Second, enclaves are likely to be used in multi-tenanted clus-
ters, in which a load balancer could strategically distribute
enclave workloads to limit the occurrence of evictions. Fi-
nally, additional logic could be introduced to detect controlled-
channel style attacks on CC and relax the cachelet replace-
ment rules when no threat exists. This could be accomplished
by adding a simple hardware counter to detect the anoma-
lous rates of cachelet evictions needed to mount a controlled-
channel attack. A CC system with this optimization would
enable the strict invalidation policy described above only if
the counter exceeded the threshold for an effective controlled
channel attack, and would otherwise operate in a mode that
retained the contents of valid cachelets and defer cachelet
reassignment until the invalidated cachelet is accessed.

The cachelet eviction mechanism assumes that the victim
enclave is context-switched when an eviction occurs. Oth-
erwise, a running victim enclave may access lines in a re-
assigned cachelet before the cachelet has been invalidated.
Because the operating system is not trusted, CC must guar-
antee that the targeted enclave is context switched before the
CSD instruction updates CFL. To enforce this requirement,
CC provides a new CTRACK instruction, which must be issued
before the CFL update takes effect. CTRACK causes the hard-
ware to track all processors running the enclave that owns the
specified cachelet, and prevents CSD from completing until the
OS has issued interrupts to evict all of that enclave’s threads.
This mechanism is modeled on the ETRACK that SGX uses to
safeguard enclave page evictions.

3.4 Compatibility of CC with Cache Slicing

Some modern architectures divide the cache into two or more
slices that can be accessed in parallel, and use a hash func-
tion to map memory accesses to alternating slices. Using the
hardware described in Sections 3.1 or 3.2, CC can enforce a
shared cachelet layout accross each cache slice, and apply ad-
dress remapping after the slice has been selected. Because the
cachelet layout is replicated across each slice, each enclave
receives the same number of cache lines as under a simple

Top-Level Structures
Σ ::= 〈κ;µ;ρ;π〉 runtime state
κ ::= 〈F ;V ;C;R〉 composable cache
µ ::= b 7→ D memory
ρ ::= r 7→ v registers
π ::= p 7→ 〈ε; l〉 processes

CC-Related Structures
F ::= c cachelet free list
V ::= e 7→ L VPT
C ::= c 7→ 〈vb; t;D〉 way-set cache
L ::= s→ c remapping list
D ::= o 7→ n data block
c ::= 〈w;s〉 cachelet index
vb ::= {valid;dirty} validity bit
b ∈ BLOCK block index
o ∈OFFSET offset
w ∈WAY way index
s ∈ SET set index
t ∈ TAG cache tag value

PLRU-Related Structures
R ::= s 7→ T set-indexed PLRU
T ::= 〈ς;e;T ;T 〉|A PLRU tree
A ::= 〈w;e〉 PLRU leaf
ς ::= LMRU | RMRU selection bit

Memory/Register-Related Structures
l ∈ ADDR memory address
v ::= ι | n memory value
ι ∈ INST instruction
n ::= /0 | num data
num ∈ UINT number
r ∈ REG register name

Enclave-Related Structures
ε ::= 〈e;E〉 enclave state
E ::= e 7→ 〈l;n〉 enclave memory range
e ::= e | ⊥ enclave ID
e ∈ ENCLAVE raw enclave ID

Figure 10: Runtime Definitions

addressing scheme; the lines are simply distributed across
multiple slices to exploit parallel access.

4 A Formal Security Analysis
CC provides strong security guarantees for enclave programs,
which we rigorously establish in this section. The key results
are cache-aware enclave access isolation (Theorem 4.2) and
immunity from side-channel attacks (Theorem 4.3).

4.1 Structures and Definitions

The runtime state consists of the states of the composable
cache (κ), the memory (µ), the register file (ρ), and multiple

6

name function & argument return value description

CC allocation ⇑n
e κ κ′ allocates n CCs to enclave e in κ, resulting in κ′

CC deallocation ⇓e κ κ′ deallocates CCs for enclave e in κ, resulting in κ′

CC hit read κ ↑ε
c l 〈n;κ′〉 reads data n from location l through CC c held by enclave

ε, resulting in κ′

CC hit write κ ↓ε
c (l,v) κ′ updates CC c held by enclave ε in κ when location l is

updated to v, resulting in κ′

CC miss read (κ,µ) ↑ε
c l 〈n;κ′〉 reads data n from l in memory µ, while updating CC c

held by enclave ε in κ, resulting in κ′

CC miss write (κ,µ) ↓ε
c (l,v) (κ′,µ′) updates cachelet c held by enclave ε in κ when location l

in memory µ is updated to v, resulting in κ′ and µ′

CC resize �e κ κ′ resizes (doubles) the cachelets in e, resulting in κ′

memory read µ{l} n read from location l of memory µ, resulting in n
memory write µ{l 7→ v} µ′ writes v to location l of memory µ, resulting in µ′

memory reinitialization Oeεµ µ′ memory in µ for enclave e in executions ε is reinitialized,
resulting in µ′

enclave creation εµ{e 7→ 〈l;n〉} ε′ adds an enclave e with memory range 〈l;n〉 to enclaves ε

when memory is µ, resulting in enclaves ε′

active enclave update εJ e ε′ updates the active enclave in ε to e, resulting in enclaves
ε′

enclave removal ε− e ε′ removes enclave e from ε, resulting in enclaves ε′

Figure 11: Auxiliary Functions (see definitions in the appendix)

execution sequences (π). The structure of the runtime state Σ

is formally defined in Fig. 10.
Throughout this section, notation X represents a sequence

of X1, . . . ,Xm for some m≥ 0. Sequence in the form of X 7→ Y
is also called a mapping when X are distinct. For any mapping,
we use notations M[X 7→ Y], M\X , dom(M), ran(M) to refer
to the update, restriction, domain, and range of mapping M,
with standard definitions.

Cache Replacement Logic Our formal system is capable
of modeling the behavior of PLRU. The PLRU replacement
logic is indexed by set IDs, where the replacement of ways for
each set is maintained by a PLRU tree, denoted as T , as we
described in § 3.2. For each node in a PLRU tree, selection bit
ς = LMRU (1 in § 3.2) means the left side of the binary tree is
accessed more recently; ς = RMRU (0 in § 3.2) means the right
side is accessed more recently. Occupancy e is the enclave ID
if the entire subtree is occupied by enclave e.

Function replace(T,e) computes the way to be evicted for
enclave e given the current state of the PLRU tree T , defined
as follows:

replace(〈LMRU;e;T1;T2〉,e) = replace(T2,e)
replace(〈RMRU;e;T1;T2〉,e) = replace(T1,e)

replace(〈w;e〉,e) = w
replace(〈ς;e;T1;T2〉,e′) = replace(T1,e′)

if e′ 6= e,e′ @ T1
replace(〈ς;e;T1;T2〉,e′) = replace(T2,e′)

if e′ 6= e,e′ @ T2

where auxiliary function e@ T is a predicate that holds when

enclave e occupies some ways defined in PLRU (sub-)tree T .
It is is defined as:

e′ @ 〈ς;e;T1;T2〉 = (e = e′)∨ (e′ @ T1)∨ (e′ @ T2)
e′ @ 〈w;e〉 = (e = e′)

The replace definition here subsumes non-enclave cache
replacement, when e =⊥. The definition includes the follow-
ing cases: (1) If a PLRU node indicates its entire subtree is
occupied by e and the left subtree is more recently accessed,
the eviction way is in the right subree; (2) If a PLRU node
indicates the entire subtree is occupied by e and the right sub-
tree is more recently accessed, the eviction way is in the left
subree; (3) If the leaf node is currently occupied by enclave e,
the way it represents is to be evicted; (4, 5) If a PLRU node
indicates its subtree is not entirely occupied by e, the eviction
way resides in the subtree that contains nodes/subtrees that
enclave e occupies.

The other operation for the PLRU tree is its update. Func-
tion update(T,w,e) computes the updated tree T ′ given the
current state of the PLRU tree is T , and its way w is going
to be accessed/allocated by/to enclave e. We defer its formal
definition to the appendix.

Cachelets In addition to the cache replacement logic, a
composable cache consists of a free list (F), a virtual parti-
tion table (V) and the way-set cache (C). Each cache block
contains the validity bit vb, the tag t, and the data block itself
D. The cache block is indexed by a pair 〈w;s〉, where w is the
way index and s is the set index. Given a memory block index

7

Multi-Process Reduction

[MULTI] κ,µ,ρ,π[p 7→ 〈ε; l〉] {〈p;ω〉}
====⇒ κ′,µ′,ρ′,π[p 7→ 〈ε′; l +n〉]

if κ,µ,ρ,ε,µ(l) ω−→
n

κ′,µ′,ρ′,ε′

Single-Process Reduction

[LOADHIT] κ,µ,ρ,ε,LOAD l r
H(v,c)−−−→

1
κ′,µ,ρ[r 7→ v],ε

if 〈v;κ′〉= κ ↑ε
c l

[LOADMISS] κ,µ,ρ,ε,LOAD l r
M(v,c)−−−→

1
κ′,µ,ρ[r 7→ v],ε

if 〈v;κ′〉= (κ,µ) ↑ε
c l

[STOREHIT] κ,µ,ρ,ε,STORE r l
H(ρ(r),c)−−−−−→

1
κ ↓ε

c (l,ρ(r)),µ,ρ,ε

[STOREMISS] κ,µ,ρ,ε,STORE r l
M(ρ(r),c)−−−−−→

1
κ′,µ′,ρ,ε

if κ′,µ′ = (κ,µ) ↓ε
c (l,ρ(r))

[RESIZE] κ,µ,ρ,ε,CCREQ R−→
1

�e κ,µ,ρ,ε

if ε = 〈e;E〉
[CREATE] κ,µ,ρ,ε,CREATE r1 r2 r3 r4

>−→
1

⇑ρ(r2)
ρ(r1)

κ,µ,ρ,ε′

if ε′ = εµ{ρ(r1) 7→ 〈ρ(r3);ρ(r4)〉}
[ENTER] κ,µ,ρ,ε,ENTER r >−→

1
κ,µ,ρ,εJ ρ(r)

[EXIT] κ,µ,ρ,ε,EXIT >−→
1

κ,µ,ρ,εJ⊥

[DESTROY] κ,µ,ρ,ε,DESTROY r >−→
1

⇓ε κ,Oρ(r)
ε µ,ρ,ε−ρ(r)

[BRTRUE] κ,µ,ρ,ε,BR r r′ >−−→
ρ(r′)

κ,µ,ρ,ε

if ρ(r) 6= 0

[BRFALSE] κ,µ,ρ,ε,BR r r′ >−→
1

κ,µ,ρ,ε

if ρ(r) = 0

Figure 12: A Core Operational Semantics

b, there is a bijective function β : BLOCK
 SET×TAG
to compute its set index s and tag t in the cache.

The top part of Fig. 11 provides the list of auxiliary func-
tions used for defining the behavior of composable cachelets.
As expected, many functions will be defined through the
replace and update functions of the PLRU logic. To improve
readability, we choose to defer the definitions of these func-
tions to the appendix.

Memory and Registers Memory is block-based, and it is
represented as a mapping from block indices b to data blocks
D. Each data block in turn is a mapping from offsets o to
values (v). Given a memory address l, there is a bijective
function α : ADDR
 BLOCK×OFFSET to compute its
block index b and offset o in the block. Auxiliary functions
related to the lifecycle of memory use are described in Fig. 11.
In addition, we overload operator Σ[l 7→ n] for memory update
in the runtime state, defined as 〈κ;µ{l 7→ n};ρ;π〉 where Σ =
〈κ;µ;ρ;π〉. Both instructions (ι) and memory data (n) are
represented as memory objects in our formal model, denoted
as v.

The register file is a mapping from names (r) to values (v).

Enclaves and Processes We represent executions π as a
mapping from execution (process) IDs to its enclave state
(ε) and its program counter (l). Each enclave state ε is a pair
〈e;E〉, where e indicates the active enclave, i.e., the enclave
in effect for the current execution; E is a mapping for enclave
IDs to their range of enclave-private memory locations. The

latter in turn is indicated by a pair, the beginning memory
location and the length. When no enclave is active, we set
e as ⊥. We further use metavariable ε for this special form
of enclave states. Functions related to the lifecycle of the
enclaves — creation, update, removal — are listed in the
Table in Fig. 11.

4.2 Operational Semantics

We model the behavior of programs with enclave lifecycle in-
structions (CREATE, ENTER, EXIT, DESTROY), memory/cache
access instructions (LOAD and STORE), the branching instruc-
tion (BR), and the resizing instruction (CCREQ). The semantics
of CCGRANT is captured through CREATE.

We define small-step operational semantics in Figure 12, in-
cluding the multi-execution relation⇒ and single-execution
relation →. Σ

Ω
=⇒ Σ′ says that runtime state Σ reduces to

Σ′ with observations Ω. We use Σ
Ω
=⇒
∗

Σ′ to represent the

reflexive and transitive closure of Ω
=⇒ where Ω is union-

ized. σ, ι
ω−→ σ′ says single-execution state σ reduces to σ′

with instruction ι producing single-execution observation ω.
Single-execution states σ is defined as 〈κ;µ;ρ;ε〉, with single-
execution observation ω including cache hit (H), cache miss
(M), cache resize (R), or none (>). A multi-execution obser-
vation Ω is a pair which consists of both the execution ID and
the single-execution observation. To bridge the two, we de-
fine restriction operator Ω|p as identical to Ω except that any
element 〈p′;ω〉 where p′ 6= p is removed. Program counters
are memory addresses, and we use • to represent the program
counter when the program halts.

As the reduction rules show, our semantics faithfully ac-
count for the behavior of the cache and the enclave, the fo-
cus of this work. [LOADHIT] and [LOADMISS] capture the
memory/cache load behavior in the presence of a cache hit
and a cache miss, respectively. Observe that the two rules
have different observations, H and M respectively. In other
words, our semantics expose the cache hit/miss as observable
states to the attacker, and we show later that even with this
assumption, CC is immune to side channel attacks. Similarly,
memory/cache store behavior is captured by [STOREHIT]
and [STOREMISS], which again produces different obser-
vations. Cachelet resizing is captured by [RESIZE]; in our
model, we assume the attacker may observe the cache resiz-
ing event too. The lifecycle of enclaves are modeled by the
next 4 rules, with [CREATE] for creating an enclave-protected
memory, [DESTROY] for enclave destruction, [ENTER] for
entering an enclaved execution, and [EXIT] for exiting an
enclaved execution. The four parameters of the CREATE in-
struction are the registers that keep the enclave ID, the number
of cachelets requested by the enclave, the starting location of
the enclave-protected memory, and the size of the enclave-
protected memory area. CCs are allocated upon the CREATE

8

instruction, and deallocated upon the DESTROY instruction.
Our execution model for enclaved executions is general, as
it captures the dynamic nature of the enclave lifecyle. Fi-
nally, [BRTRUE] and [BRFALSE] captures the behavior of
the common control flow construct, branching.

4.3 Metatheory
We now establish two important properties of our design,
whose proofs can be found in the Appendix.

We start with an account of the PLRU replacement logic.
First, let us define a tree context T as either a hole [] or
〈ς;e; [];T 〉 or 〈ς;e;T ; []〉.

Lemma 4.1 (PLRU Tree Update Isolation). If T ′ =
update(T,w,e), then for any tree context T such that T =
T[T0] and T0 = 〈ς;e;T1;T2〉 for some ς, T1, T2 and e 6= e then
there exists some tree context T such that T ′ = T′[T0].

The lemma above is simple, but it lays the foundation on
why our system can thwart side channel attacks that rely on
the PLRU tree logic. In other words, a non-enclave access
(e =⊥), or an access from another enclave (e is some enclave
ID but not e, cannot alter the PLRU tree state associated with
enclave e. As the update definition is used by several cachelet
operations, it ultimately ensures cachelet operations cannot
lead to side channels through the PLRU logic.

Theorem 4.2 (Cache Isolation across Multiple Enclave Pro-
grams). Given two executions p1 6= p2 in Σ and Σ

Ω
=⇒ Σ′,

if Ω = {〈p1;ω〉}, then ω 6= M(n,c) and ω 6= H(n,c) and
ω 6= S(n,c) for any c ∈ ran(V (e2)) where Σ = 〈κ;µ;ρ;π〉 and
κ = 〈F ;V ;C;R〉 and π(pi) = 〈〈ei;Ei〉; li〉 for i = 1, 2.

This theorem says that two programs with active enclaves
cannot access the same cachelet. This theorem states how
the software behaves under CC hardware, i.e., each enclave
occupies a unique, non-overlapping virtual cache partition.

Definition 1 (Enclave-Private Location). epriv(l,e, p,Σ) hold
iff Σ = 〈κ;µ;ρ;π〉 and π(p) = 〈ε; l′〉 and ε = 〈e0;E〉 and
E(e) = 〈l0;n0〉 and l0 ≤ l < l0 +n0.

Theorem 4.3 (Immunity to Side Channel Attacks). Given Σ

and some l, e, p s.t. epriv(l,e, p,Σ), some n1 6= n2, p′ 6= p, two

reductions Σ[l 7→ ni]
Ωi=⇒
∗

κi,µi,ρi,πi where πi(p′) = 〈εi;•〉
for i = 1, 2, if R /∈Ω1∪Ω2, then ε1 = ε2, Ω1|p′ = Ω2|p′ .

This important theorem says that the enclave-private value
of a victim p (stored at location l) cannot be inferred by the
attacker p′: the attacker makes identical observations regard-
less of what value the location holds. This is a strong result,
because we do not make any assumption on what the attacker
program is, subsuming both a passive attacker or an active
attacker. Furthermore, it assumes the attacker can take advan-
tage of the (timing) difference of a load miss and a load hit,

can introspect all its program values, and even know what
way-sets in the cache the attacker program has accessed.

The resize-free pre-condition (R /∈ Ω1 ∪Ω2) in the The-
orem is needed because enclave-private data may guard a
branching instruction (BR). If a CCREQ instruction is issued in
one branch but not the other, the impact of CCREQ on cachelet
allocation may influence the behavior of the attacker program
differently (see Section 3.1.3 for details) and thus leak one
bit of information. As cachelet resizing is a low-level system
operation, the common use scenario for CCREQ is to have this
instruction automatically inserted by the compiler, or automat-
ically issued by the runtime. The pre-condition can be easily
satisfied by not inserting/issuing CCREQ when the execution is
within a branch, or inserting/issuing CCREQ in both branches.

The pre-condition only becomes a cause of concern if pro-
grammable cachelet resizing is supported, i.e., CCREQ is ex-
posed to end programmers without any restriction, so that
it becomes a programming construct itself. In this context,
the precondition here demonstrates a trade-off between secu-
rity and performance. For the same program, a performance-
biased execution may follow the semantics we described in
this paper (but may leak a bit), whereas a security-bias exe-
cution may treat CCREQ as a no-op (and thus no leak). Fur-
thermore, the program pattern described above is identical
to implicit information flow [44, 49], a well-studied topic in
program analysis. Thus, a strengthened defense opportunity
exists with software-hardware co-design. For instance, a com-
piler could reject a program where the pre-condition fails
to satisfy, or an automatic compiler instrumentation can be
defined to insert CCREQ in one branch when it appears in the
other branch of a BR instruction.

5 Evaluation of CC
In this section, we present evaluation of CC from the stand-
point of performance, power, area, delay and the design com-
plexity.

5.1 Performance Evaluation
First, we describe our benchmarks and methodology, and then
present the simulation results.

5.1.1 Benchmarks and Methodology

For performance evaluation of CC, we used gem5 [6] full
system simulator configured with three levels of caches and
targeting x86 ISA. The complete configuration of the simu-
lated system is shown in Table 1. Our experimental analysis
is based on three sets of benchmarks. Since the most expected
application of CC is to secure small secrets maintained in-
side an enclave, we first evaluated cryptographic programs,
including three traditional applications (AES, Blowfish and
SHA) taken from MiBench suite [27] and five Post-Quantum
Cryptography (PQC) applications, namely BIG-QUAKE [4],

9

CRYSTAL-KYBER [8], CFPKM [15], Compact LWE [37],
and DAGS [3]. Second, to gauge the impact of isolating
larger applications, we evaluated programs from SPEC 2017
suite [13]. Third, to evaluate the impact on securing paral-
lel applications, we also evaluated CC with PARSEC bench-
marks [5]. We also used selected memory-intensive SPEC
2017 benchmarks to demonstrate the impact of CC on perfor-
mance of non-enclave applications. Depending on the exper-
iment, either the entire program is assumed to be executing
inside an enclave, or it is assumed to be executed in a regular
mode outside an enclave. We present the performance impact
of CC in terms of IPC metric (committed Instructions per
Cycle) normalized to the baseline configuration with non-
partitioned caches.

For SPEC 2017 benchmarks, we fast-forwarded simula-
tions for 1 Billion instructions and simulated for the next 1
Billion instructions. Due to the short setup phase of cryptog-
raphy programs, we simulated 1 Billion instructions for each
of them from the beginning. For PARSEC, we used 2-core
system and bypassed the booting process. We then simulated
until completion.

Hardware Parameters

Core # 1-core (Crypto Programs and SPEC2017) and 2-cores
(PARSEC)

Core Parameters

8-way out-of-order cores, 64k TAGE branch predictor,
4096 BTB entries, 16 RAS entries, 192-entry ROB, 128-
entry LSQ, 64-entry Instruction Queue, 256-entry float
and integer registers

L1i/d Cache
private, 32KB size, 8 ways, 64 sets, PLRU replacement,
64B cache line size, tag/response/data latency 2 cycles
each

L2 Cache
private, 256KB size, 4 ways, 1024 sets, PLRU replacement,
64B cache line size, tag/response/data latency 8 cycles
each

L3 Cache
shared, 8192KB size, 16 ways, 8192 sets, PLRU replace-
ment, 64B cache line size, MESI coherence protocol,
tag/response/data latency 16 cycles each

DRAM 4GB size, 4GB channel capacity, DDR4-2400 x64 channel,
4 devices per rank, 1 rank per channel, 1GB per device,

CC 3-cycle additional L3 latency, 16-entry VPT, 32KB
cachelet size

Software Parameters and Benchmarks
gem5 Version 2.0

Kernel gem5 system emulation (Crypto Programs and SPEC2017)
and VM Linux 4.19.83 (PARSEC)

SPEC 2017 Version 1.0.2 (evaluated 14 benchmarks)

PARSEC Version 3.0-beta-20150206 (evaluated 6 benchmarks with
simdev inputs, ran to completion)

Security benchmarks
3 security benchmarks from MiBench (AES, Blowfish and
SHA), plus 5 PQC applications with optimized implemen-
tations

Table 1: Configuration of the Simulated System

5.1.2 Performance of Cryptographic Programs

Figure 13 shows the IPC values for crypto benchmarks, nor-
malized to the baseline IPC. In addition to the baseline system,
we evaluated 3 configurations of CC: 1-way virtual partition
with 8 cachelets (for the total partition size of 256KB), 2-way
virtual partition with 4 cachelets per way, and 2-way virtual

partition with 8 cachelets per way. Note that since in this work
we apply partitioning only to shared LLC, the total size of
a virtual partition must be at least the size of the L2 cache.
Since the memory demands of crypto applications are modest,
the locality exploitation and thus high performance can be
achieved with minimal partition sizes in most cases, as shown
in Figure 13. One outlier in this set of benchmarks was BIG-
QUAKE (one of the PQC benchmarks) that exhibited 8.4%
performance loss for 8 cachlets with 1 way and around 10%
performance loss for 4 cachelets with 2 ways. When partition
size was increased to 512KB from 256KB, the performance
impact was reduced to 3.7%.

aes

blowfis
h

sha

BIG
 Q

UAKE

CRYSTALS-K
YBER

CFPKM

Compact-L
WE

DAGS
0.8

0.85

0.9

0.95

1

N
o

rm
a

liz
e

d
 I

P
C

1 way 8 cachelets 2 way 4 cachelets 2 way 8 cachelets Baseline

Figure 13: Performance of Cryptographic Programs

5.1.3 Performance on SPEC 2017 Benchmarks

While we envision that a primary application of CC would
be to protect small enclaves from cache-based information
leakage, we also evaluated performance impact of protecting
larger applications, such as SPEC 2017 programs. Figure 14
shows these results as commit IPCs normalized to the baseline
case. The CC configurations in this case included 1-way, 2-
way, 4-way and 8-way virtual partitions. For each of these, we
considered various number of cachelets per way, as indicated
in the graph legend. The total partition size varies between
512KB and 4MB, it is computed as the product of the number
of ways, the number of cachelets per way, and the cachelet
size (32KB).

As seen from the results, CC shows a small performance
degradation for multiple benchmarks even with modest virtual
partition sizes. For example, benchmarks such as cactusBSSN,
deepsjeng, exchange2, leela, xalancbmk and xz do not exhibit
any slowdown regardless of the partition size. Specifically,
all these programs have performance degradation lower than
5% for all configurations (0.8%, 0.4%, 0.2%, 3.5%, 1.6%,
and 1.5% was the largest loss recorded, respectively). Not
surprisingly, these applications also feature high L1 and L2
cache hit rates, demonstrating high locality of references and
making them less sensitive to LLC. In these experiments, we
assumed three additional cycles of delay to the LLC due to the
logic required to implement CC. This is a very conservative
estimate, which is justified in Section 5.2.

10

blender cactuBSSN deepsjeng exchange2 gcc imagick leela mcf nab namd omnetpp parest xalancbmk xz avg

SPEC 2017 Benchmarks

0.7

0.75

0.8

0.85

0.9

0.95

1

N
o

rm
a

liz
e

d
 I

P
C

1 way 16 cachelets 2 way 8 cachelets 2 way 16 cachelets 4 way 4 cachelets 4 way 8 cachelets 4 way 16 cachelets 8 way 2 cachelets 8 way 4 cachelets 8 way 8 cachelets 8 way 16 cachelets baseline

Figure 14: Performance Impact of CC on SPEC 2017 Benchmarks

Two benchmarks in our set - gcc and imagick - resulted in
moderate performance losses of 5.4% and 5.8% respectively
with 16 cachelets (512KB) allocated to them. Allocating a
quarter of the LLC for a virtual partition brings performance
losses for these programs to under 1% - this can be achieved
either with 4-way partitions with 16 cachelets per way, or with
8-way partitions with 8 cachelets per way.

Some SPEC benchmarks showed more substantial perfor-
mance impact from CC. For example, the IPC loss for blender,
mcf, omnetpp and parest is 11.7%, 23.5%, 11.4% and 11.5%
respectively for the smallest allocations we considered. As we
increase the partition associativity and the number of cachelets
per way, performance gradually improves. For example for
mcf, performance degradation goes down to 11.6% when 4
ways of the LLC with 16 cachelets per way are allocated.
Similar results are observed when 8 cachelets with 8 ways are
used. If the same configurations are used for omnetpp, per-
formance loss is reduced to below 1%, but it remains at 7%
for blender and 4.7% for parest. On the average across SPEC
benchmarks, the performance degradation for the smallest
allocated partition (512 KB) is 5.9%. It is reduced to 1.45%
for the quarter of the LLC (2MB) and to 0.6% for the largest
allocated partition (4MB).

These results demonstrate that even if one wishes to sup-
port the entire execution of a larger program (such as a SPEC
benchmark) inside an enclave with isolated cache partition,
performance losses are quite modest for the majority of pro-
grams. Furthermore, since benchmarks show different levels
of sensitivity to the allocated LLC space, it is important to
investigate techniques to dynamically provision LLC space to
application in a secure manner - future work can investigate
such mechanisms.

5.1.4 Performance of PARSEC Benchmarks

Parallel shared memory applications (exemplified by PAR-
SEC) can also benefit from cache leakage protection afforded
by CC. In this case, since these applications are generally
more memory intensive, larger partitions are needed to mod-
erate their performance impact. Figure 15 shows the results

for selected PARSEC applications running with quarter of the
LLC size allocated for them where the total virtual partition
has 8 cachelets with 8 ways. As seen from these results, the
average performance loss is 7.8%.

We examined blackscholes, facesim, ferret, fluidanimate,
raytrace and swaptions to completion as our benchmarks
which displayed 6%, 1.4%, 1.5%, 27.7%, 3.2% and 3.4% per-
formance degradation respectively. Of these, the largest loss
by far was observed for fluidanimate, this benchmark can
benefit from larger partitions.

5.1.5 Performance Impact on Non-Enclave Programs

Finally, we evaluated performance impact of CC on non-
enclave applications, where some portion of LLC is taken
away by enclaves. For this experiment, we selected five SPEC
2017 benchmarks that were the most sensitive to the LLC allo-
cations and most susceptible to performance degradation from
CC, as shown in Figure 14: blender, mcf, omnetpp, parest and
xz. Figure 16 shows IPC of these applications executed in
a non-enclave mode normalized to the baseline (baseline is
the rightmost set of bars). The second rightmost set of bars
shows the impact of the 3-cycle additional LLC latency due
to CC. Although it is reasonable to assume that CC can be
implemented with non-enclave accesses incurring no extra
delay (as they do not require remapping), we nevertheless con-
servatively show the results where 3 extra cycles are added
to the LLC latency. The difference between two rightmost
bars is 1.4% on the average - that is the cost of additional
cycles. On top of that, we show the performance for three
different cases - when 14, 12 and 8 ways are allocated to non-
enclave programs, assuming that the rest of the cache space
are occupied by enclaves.

All of the benchmarks exhibited performance loss of un-
der 10%. When 8 ways (half of the LLC) are allocated to
non-enclave programs, mcf show the worst result with 7.1%
performance loss (again, assuming that 3 additional cycles
of latency are present; without that the impact will be much
smaller as can also be seen from this graph). For all other
benchmarks, performance loss is less than 3%. On average,

11

CC provides non-enclave programs shown on this graph with
97.3%, 98.2%, 98.4% and 98.6% of the baseline performance
for 8, 12, 14 and 16 ways allocation respectively, assuming
3-cycle additional latency. Again, these benchmarks are the
ones that were most sensitive to LLC in our previous experi-
ments.

blackscholes facesim ferret fluidanimate raytrace swaptions avg

PARSEC Benchmarks

0.6

0.7

0.8

0.9

1

N
o
rm

a
liz

e
d
 I
P

C

8 way 8 cachelets baseline

Figure 15: Performance Impact on PARSEC Benchmarks

blender mcf omnetpp parest xz avg

SPEC 2017 Benchmarks

0.9

0.92

0.94

0.96

0.98

1

N
o
rm

a
liz

e
d
 I
P

C

8 ways 12 ways 14 ways full LLC with 3 extra cycles baseline

Figure 16: Performance of non-enclave SPEC’17 Benchmarks

5.2 Delay Analysis

First, we examine the complexity of VPT, which is the central
piece of CC logic. The VPT and associated address remap-
ping logic is similar in structure to a register alias table (RAT),
where the RAT has the number of rows equals to the number
of ISA registers, and the number of bits in each row equal
to the log of the number of physical registers. Typically, re-
naming a register takes a single cycle even in multi-ported
RATs that are necessary to implement superscalar cores. With
a single-ported VPT, the access delays will reduce even more.
Therefore, it is reasonable to expect that the address remap-
ping logic in the LLC can be implemented at the cost of
one additional cycle of LLC access latency. However, for
conservative performance estimation, we provisioned three
additional cycles to the LLC latency to support CC, and all
out performance results assume three-cycle latency.

The replacement deflection logic described in 3.2 can be
implemented in parallel with L3 tag checking process to avoid
additional delays. The way replacement is a simple two-step
process that involves 1) looking up the cachelet occupancy
bits for the selected set and 2) applying the masking logic

described in Figure 8. In a design where each cachelet oc-
cupies 1/16 of the sets in its assigned way(s), The first step
requires indexing into a 16-entry table, similar to the VPT.
In a cache with 8 columns of cachelets, the second step re-
quires the five-gate-deep structure shown in Figure 9 to mask
the replacement bits (one additional level of gates would be
needed for each additional column of cachelets). In contrast,
tag matching and hit/miss determination requires: 1) indexing
and reading the set, which is a time consuming operation for
a large LLC, and 2) comparing tags in the selected set against
the tag bits of the address being accessed to determine a hit or
a miss. Because the masked replacement bits are not used un-
til a hit or a miss is determined, the identification of the victim
way proceeds in parallel with the cache access (once the set
is determined through the remapping logic), thus removing
this operation from the critical path. In any case, we provision
three additional cycles to the LLC latency to support CC for
conservative performance estimation.

5.3 Area and Power Analysis

The architectural footprint of CC is limited, arising mostly
from the CFL, VPTs, and additional tag bits required for each
way that is equipped to host cachelets. We used the McPAT
tool [36] to estimate the complexity of these components.
As a reference architecture, we modified one of the baseline
processor descriptions (Intel Xeon) that are provided with
McPAT, and altered the Caches, Register File, TLB, BTB,
LSQ, ROB, and fetch/decode/issue/commit widths to match
the architecture defined in Table 1. The technology parameter
was changed to 22mm. All other defaults were retained.

CFL: The CFL is structurally similar to a register free list.
It consists of n entries, each containing log2n bits where n is
the number of cachelets. For example, a CFL supporting 64
cachelets contains 64 6-bit entries. We estimated the area and
power of a 64-cachelet CFL by simulating a 64-entry register
free list eith McPat. The area overhead was 0.04% relative
to the baseline processor, and the peak and runtime dynamic
were 0.09% and 0.16%, respectively. Because the CFL would
be accessed only when cachelets are allocated, power results
based on the register free list likely overestimate the actual
CFL power consumption.

VPT: To support the largest allocation of cachelets in our
evaluations, each hardware VPT requires 16 six-bit entries,
or 96 D flip-flops, in addition to six 16-1 multiplexers re-
quired for address remapping (We assume a maximum of
16 cachelets per enclave, with a total of 64 cachelets in the
whole system). This structure must be replicated for each
hardware thread sharing the LLC, and is similar in structure
to a standard register alias table (RAT) as we described previ-
ously. To estimate the area and power of a 16-entry VPT, we
modeled a retirement RAT in McPAT that mapped 16 archi-
tectural registers to 64 physical registers. The resulting area
was 0.0004 mm2 for a single table, or 0.008 mm2 for the two

12

VPTs needed by the two-core simulated processor. The two
VPTs represent less than 0.002% of the total processor area.
The runtime dynamic was 0.04% over the baseline processor,
while the peak dynamic was an increase of 0.006% - all are
negligible overheads.

L3 Cache: To support 16 cachelets per enclave, the cache
must be extended with 4 additional tag bits, resulting in a
1.92% increase in LLC area, or a total 0.80% increase in area
for the reference processor. The impact on processor peak and
runtime dynamic are, respectively, 0.29% and 0.33%. Table 2
summarizes the area/power overheads of CC relative to the
reference processor.

Component Area (mm2) Peak Dynamic W Runtime Dynamic W
Base CPU 45.18 (100%) 70.07 (100%) 35.12 (100%)
CFL 0.02 (+0.04%) 0.06 (+0.09%) 0.06 (+0.16%)
VPT × 2 <0.001 (+0.002%) 0.004 (+0.006%) 0.013 (+0.04%)
CC tag bits 0.36 (+0.80%) 0.21 (+0.29%) 0.11 (+0.33%)
Total 0.38 (+0.84%) 0.27 (+0.38%) 0.18 (+0.51%)

Table 2: Area/Power estimates for CC components

6 Related Work
Cache partitioning schemes with strictly non-overlapping par-
titions completely eliminate information leakage. However,
existing schemes use way-granularity approaches that do not
scale efficiently to large numbers of small enclaves, or trust
system software to enforce isolation, making them incompati-
ble with the isolated execution security model. For example,
DAWG [34] and CATalyst [38] trust the OS to control parti-
tioning; if the OS is compromised, security guarantees may no
longer be sustained. Furthermore, DAWG has a hard limit on
the number of supported protection domains, limiting its scal-
ability. NoMo caches [20] offer partitioning without software
support, but is not scalable (since the entire cache way gets
allocated) and is thus not suitable for the LLC, especially in
cloud-based systems that can simultaneously run a large num-
ber of enclaves. In addition, as some cache ways are shared in
NoMo, leakage can occur if the victim’s accesses spill into the
shared portion of the cache. Other partitioning schemes like
Intel’s CAT [29] were designed for quality of service, and do
not guarantee isolation between processes occupying different
partitions. Other designs such as [48,51,67] also fall into this
category. Some approaches [9, 18] perform set-partitioning
via page coloring. The limitation is that large regions of data
may need to be moved around in memory when allocating
cache sets, because cache set allocation is bound to physical
addresses. Page coloring is also not readily compatible with
large pages, potentially impacting the TLB reach [34].

HybCache [19] provides soft cache partitions for codes
requiring isolated execution protection. HybCache requires
fully-associative search within the subcache ways - this is
expensive and may not easily scale to large LLCs. In addition,
HybCache does not enforce strict isolation, as normal pro-
grams can still access the entire cache. CURE [2] proposed

a customizable architecture for securing enclaves from side-
channel attacks. However, cache partitioning is also done at
the granularity of ways, unlike fine-grain partitioning in CC.

In a concurrent work, Saileshwar et al. proposed Bespoke
Cache Enclaves - a set-based cache partitioning scheme,
where the cache space is divided into non-overlapping clusters
composed of multiple consecutive sets [50]. The key of this
proposal is flexible indexing mechanism that restricts access
from a particular security domain only to the cache partitions
belonging to that domain. In contrast, CC design offers both
way and set-based partitioning and ties partitioning decisions
to the operations of secure enclaves.

In the space of randomized designs, recent work proposed
obfuscating the cache index [46, 47, 63]. CEASER [46] dy-
namically encrypts the cache index using low-latency encryp-
tion. The original CEASER proposal proved vulnerable to
high-speed key recovery attacks [47], and the revised version
of CEASER proposed in [47] to address this vulnerability was
recently compromised by the Brutus attack proposed in [7].
While stronger address encryption can fortify CEASER, this
will have an impact on access latency. Attacks similar to [47]
can be used to break another randomization mechanism called
SCATTER-CACHE that was proposed in [64]. Another re-
cent work [45] also demonstrated security problems with
randomization-based caches, such as CEASER-S. In general,
partitioning provides fundamentally stronger security guaran-
tees.

In other related efforts, SHARP [70] offers modifications to
the cache replacement policy of the LLC to avoid cross-core
inclusion victims that are determined to be the root cause
of attacks. Similarly, RIC [32], avoids back-invalidations of
read-only data from private caches, which avoids successive
access to the LLC. Both techniques trust the OS to support
critical operations: in RIC, the read-only pages need to be
marked, while SHARP reports suspicious behavior to the
OS (which can choose to ignore the warning), and relies on
a modified clflush instruction. Table 3 compares CC with
previous solutions in terms of scalability, OS involvement and
security.

Design CC DAWG [34]

CATaly
st [38]

NoMo [20]

SecD
CP [61]

PLCach
e [62]

HybCach
e [19]

CEASER [47]

Fine-grained Yes No Yes No No Yes Yes Yes
HW only Yes No No Yes No No Yes Yes

Strict isolation Yes Yes Yes No Yes Yes No No

Table 3: A Comparison of Cache Designs for Security

Designing formal frameworks for side-channel attacks is
an emerging but actively pursued direction. Several formal
frameworks have illustrated the vulnerabilities due to specu-
lation [14, 16, 25, 40], whereas our focus is on cache-based
channels, and more importantly, the defense against such at-
tacks. Formal foundations for programs running on enclaves

13

have also been proposed (e.g., [23, 24, 54]), without focus-
ing on side channel attacks or their defenses. More broadly,
programming language techniques have been proposed for
addressing side-channel attacks, including abstract interpreta-
tion [59, 66], symbolic execution [12, 26, 60], program analy-
sis and transformation [21, 58, 65]. This category of related
work is more distant to ours, in that they propose software
defense whereas ours is hardware-centric. Finally, hardware
description languages have been designed to mitigate timing
channels [71–73].

7 Concluding Remarks

It is important to protect caches from side-channel attacks, par-
ticularly in environments with isolated execution. In these set-
tings, application secrets are shielded from direct access even
by high-privilege software, but can still be leaked through
a side channel. Composable Cachelets (CC) is a new and
scalable dynamically-partitioned last-level cache design that
strongly isolates secure enclaves from other applications and
from each other. CC partitions can be dynamically managed as
enclaves enter and leave the system, thus adjusting the cache
configuration to the system demands. We demonstrate that
CC provides provable protection from cache side-channel at-
tacks through a rigorous security model based on cache-aware
and enclave-aware operational semantics. We demonstrate
that CC can be implemented with minimal area and power
overhead, and many applications can benefit from CC protec-
tion with modest performance cost. These properties make
CC an attractive design choice for SGX-style isolated execu-
tion systems.

8 Acknowledgements

We would like to thank Ms. Atsuko Shimizu for insightful
discussions during the early stages of this work. We would
also like to thank anonymous reviewers for their valuable
feedback. This research was supported in part by NSF Award
CNS-2053391.

Appendix

In this appendix, we provide additional definitions of the
formal system, omitted from the main text of the paper. The
proof for the theorems and lemmas can be found online 1

9 Cache Replacement Logic Definitions

The update function is defined as follows:

1http://www.cs.binghamton.edu/∼davidl/papers/CCProof.pdf

update(〈ς;e;T1;T2〉,w,e) = 〈LMRU;e;T ′1 ;T2〉
if w≺ T1

T ′1 = update(T1,w,e)
update(〈ς;e;T1;T2〉,w,e) = 〈RMRU;e;T1;T ′2〉

if w≺ T2
T ′2 = update(T2,w,e)

update(〈ς;e;T1;T2〉,w,e) = 〈ς;e;T1;T2〉
if ¬w≺ T1,¬w≺ T2

update(〈ς;e;T1;T2〉,w,e′) = 〈ς;T ′1 uT ′2 ;T ′1 ;T ′2〉
if e′ 6= e

T ′i = update(Ti,w,e′)
for i = 1,2

update(〈w;⊥〉,w,e) = 〈w;e〉
update(A,w,e) = A otherwise

where auxiliary function w@ T is a predicate that holds when
way w occupies some leaf in PLRU (sub-)tree T . Furthermore,
operator T uT ′ computes the common enclave that holds all
ways in both T and T ′; when the ways in T and T ′ are held
by more than one enclave (including non-enclave ⊥), the
operator returns ⊥. The two functions are defined as follows:

w≺ 〈ς;e;T1;T2〉 = (w≺ T1)∨ (w≺ T2)
w≺ 〈w′;e〉 = (w = w′)

〈ς;e;T1;T2〉u 〈ς′;e;T ′1 ;T ′2〉 = e
T1 uT2 = ⊥ otherwise

Just as the replace function, the update function here is
also defined into cases depending on whether the PLRU (sub-
)tree is entirely occupied by the enclave of interest. Cases 1, 2,
3 says that if the PLRU (sub-)tree is indeed entirely occupied
by the enclave of interest, the PLRU tree update is defined
according to the PLRU algorithm itself: if its left subtree
is more recently accessed, the selection bit is set to LMRU;
if the right subtree is more recently accessed, the selection
bit set to RMRU. Case 4 says if the PLRU (sub-)tree is not
entirely occupied by the enclave of interest, we will ignore
the selection bit, and only update the PLRU tree (recursively)
for subtrees entiredly occupied by the enclave of interest. Case
5 is a special case that says that if a way (leaf node in the
PLRU tree) is currently not occupied by any enclave, it can
be allocated to the enclave of interest; this case is used for
cachelet allocation. Case 6 says that for all other cases, the
leaf node in the PLRU tree remains unchanged.

This function unifies several use scenarios that involves
the PLRU tree update (and it will be used in definitions that
capture these scenarios):

• When a way is a hit, we need to update the path on the
PLRU tree to make sure the selection bit (i.e., MRU)
indeed reflects this way is the most recently accessed
way.

• When a way is a miss and its content is replaced with
new data, we also need to update the path on the PLRU
tree to make sure the selection bit (i.e., MRU) indeed
reflects this way is the most recently accessed way.

• When a way is newly allocated to an enclave.

Note also that this definition subsumes the non-enclave
access, where the enclave of interest (the third argument of
the function) is set to ⊥.

14

10 Auxiliary Definitions
Cachelet Operators First, let us introduce a covenience
function for gang invalidation. Function inv(C,F) is de-
fined as C[c1 7→ 〈dirty; t1;D1〉] . . . [cn 7→ 〈dirty; tn;Dn〉] where
C(ci) = 〈vbi; ti;Di〉 for i = 1..n and F = c1, . . . ,cn.

The following CC operations are defined, where κ =
〈F ;V ;C;R〉:

• Cachelet Allocation: Operator ⇑n
e κ allocates n

cachelets to e in κ, defined as 〈F ′′;V [e 7→ L];C;R[s1 7→
T ′1] . . . [sn 7→ T ′n]〉 where F = F ′,F ′′, and F ′ = c1, . . . ,cn
and L = 0 7→ c1, . . .n− 1 7→ cn, and ci = 〈wi;si〉 and
R(si) = Ti, T ′i = update(Ti,wi,e) for i = 1..n.

• Cachelet Deallocation: Operator ⇓e κ deal-
locates the cachelets for e in κ, defined as
〈F,F ′;V\e; inv(C,F ′);R[s1 7→ T ′1] . . . [sn 7→ T ′n]〉 where
ran(V (e)) = F ′ and F ′ = c1, . . . ,cn and ci = 〈wi;si〉 and
R(si) = Ti, T ′i = update(Ti,wi,e) for i = 1..n. .

• CC Hit Read: Operator κ ↑ε
c l reads data in lo-

cation l through cachelet c held by enclave ε, de-
fined as 〈D(o);κ′〉 if C(c) = 〈vb; t;D〉, c = 〈w;s′〉 =
V (ε)(s) where α(l) = 〈b;o〉, β(b) = 〈s; t〉 and κ′ = κ =
〈F ;V ;C;R[s′ 7→ T ′]〉 and T ′ = update(R(s′),w,ε).

• CC Miss Read: Operator (κ,µ) ↑ε
c l reads data in loca-

tion l and updates cachelet c held by enclave ε in κ when
location l in memory µ is updated, defined as 〈D′(o);κ′〉
such that

κ′ = 〈F ;V [ε 7→V (ε)[s 7→ c]];C[c 7→
〈valid; t;µ(b)〉];R[s′ 7→ T ′]〉

if α(l) = 〈b;o〉, β(b) = 〈s; t〉, c′ = 〈w′;s′〉 = V (ε)(s),
C(c′) = 〈vb′; t ′;D′〉, t ′ 6= t, w′′ = replace(R(s′),ε),
C(〈w′′;s′〉) = 〈vb; t ′′;D〉, and T ′ = update(R(s′),w′′,ε).

• CC Hit Write: Operator κ ↓ε
c (l,v) updates cachelet c

held by enclave ε in κ when location l is updated, defined
as 〈F ;V ;C[c 7→ 〈dirty;D[o 7→ v];R[s′ 7→ T ′]〉]〉 if C(c) =
〈vb; t;D〉, c = 〈w;s′〉 = V (ε)(s) where α(l) = 〈b;o〉,
β(b) = 〈s; t〉, c = 〈w;s;〉, and T ′ = update(R(s′),w,ε).

• CC Miss Write: Operator (κ,µ) ↓ε
c (l,v) updates

cachelet c held by enclave ε in κ when location l in
memory µ is updated, defined as 〈κ′;µ′〉 such that

κ′ = 〈F ;V [ε 7→V (ε)[s 7→ c]];C[c 7→ 〈dirty; t;µ(b)[o 7→
v]〉];R[s′ 7→ T ′]〉
µ′ = µ[b′ 7→ D]

if α(l) = 〈b;o〉, β(b) = 〈s; t〉, c′ = 〈w′;s′〉 = V (ε)(s),
C(c′) = 〈vb′; t ′;D′〉, t ′ 6= t, w′′ = replace(R(s′),ε),
C(〈w′′;s′〉) = 〈vb; t ′′;D〉, β(b′) = 〈s; t ′′〉 and and T ′ =
update(R(s′),w′′,ε).

• CC Resize: Operator �e κ resizes (doubles) the
cachelets in e, defined as 〈F2;V [e 7→ L3,L1];C;R〉 if
F = F1,F2, V (e) = L3 and |F1| = |L3| = n. and L1 =
n−1 7→ c1, . . . ,2×n−1 7→ cn and F1 = c1, . . . ,cn.

Enclave Operators The key operators of enclaves are de-
fined as follows:

• Enclave Creation: Operator εµ{e 7→ 〈l;n〉} is defined
as 〈e;E[e 7→ 〈l;n〉]〉 where ε = 〈e;E〉, defined only when
e /∈ dom(E), µ{l}= µ{l +1} . . .µ{l +n−1}= 0.

• Active Enclave Update: Operator 〈e′;E〉J e is defined
as 〈e;E〉, defined only if e ∈ dom(E)∪{⊥}.

• Enclave Elimination: Operator 〈e;E〉− e is defined as
〈e;E\e〉.

Memory Operators For memory, we use µ{l} to refer to
µ(b)(o) where α(l) = 〈b;o〉. We use µ{l 7→ v} to refer to
µ[b 7→ D′] and D′ = D[o 7→ v] where α(l) = 〈b;o〉. Operator
Oe

εµ says memory µ for enclave e in executions ε is reinitial-
ized, defined as µ{l 7→ 0} . . .{l+n−1 7→ 0} where ε = 〈e;E〉
and E(e) = 〈l;n〉.

References
[1] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative

technology for cpu based attestation and sealing,” in Proceed-
ings of the 2nd international workshop on hardware and archi-
tectural support for security and privacy, vol. 13. ACM New
York, NY, USA, 2013.

[2] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek,
A.-R. Sadeghi, and E. Stapf, “{CURE}: A security architecture
with customizable and resilient enclaves,” in 30th {USENIX}
Security Symposium ({USENIX} Security 21), 2021.

[3] G. Banegas, P. S. Barreto, B. O. Boidje, P.-L. Cayrel, G. N.
Dione, K. Gaj, C. T. Gueye, R. Haeussler, J. B. Klamti,
O. N’diaye, D. T. Nguyen, E. Persichetti, and J. E. Ricardini,
“Dags: Key encapsulation using dyadic gs codes,” Journal of
Mathematical Cryptology, vol. 12, no. 4, pp. 221–239, 2018.
[Online]. Available: https://doi.org/10.1515/jmc-2018-0027

[4] M. Bardet, E. Barelli, O. Blazy, R. Canto–Torres, A. Couvreur,
P. Gaborit, A. Otmani, N. Sendrier, and J.-P. Tillich, “Big quake
(binary goppa quasi-cyclic key encapsulation).” [Online].
Available: https://bigquake.inria.fr/

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec bench-
mark suite: Characterization and architectural implications,”
Princeton University, Tech. Rep. TR-811-08, January 2008.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti
et al., “The gem5 simulator,” ACM SIGARCH computer archi-
tecture news, vol. 39, no. 2, pp. 1–7, 2011.

[7] R. Bodduna, V. Ganesan, P. Slpsk, C. Rebeiro, and V. Kamakoti,
“Brutus: Refuting the security claims of the cache timing ran-
domization countermeasure proposed in ceaser,” IEEE Com-
puter Architecture Letters, 2020.

15

https://doi.org/10.1515/jmc-2018-0027
https://bigquake.inria.fr/

[8] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehle, “Crystals - ky-
ber: A cca-secure module-lattice-based kem,” in 2018 IEEE
European Symposium on Security and Privacy (EuroS P), 2018,
pp. 353–367.

[9] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, S. Devadas et al.,
“Mi6: Secure enclaves in a speculative out-of-order processor,”
in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2019, pp. 42–56.

[10] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Cap-
kun, and A.-R. Sadeghi, “Software grand exposure: Sgx cache
attacks are practical,” arXiv preprint arXiv:1702.07521, p. 33,
2017.

[11] S. Briongos, P. Malagón, J. M. Moya, and T. Eisenbarth,
“Reload+ refresh: Abusing cache replacement policies to per-
form stealthy cache attacks,” in 29th {USENIX} Security Sym-
posium ({USENIX} Security 20), 2020.

[12] R. L. Brotzman, S. L. Liu, D. Zhang, G. Tan, and M. T. Kan-
demir, “Casym: Cache aware symbolic execution for side chan-
nel detection and mitigation,” in IEEE S&P 2019, 2018.

[13] J. Bucek, K.-D. Lange, and J. V. Kistowski, “Spec cpu2017:
Next-generation compute benchmark,” ICPE: ACM/SPEC In-
ternational Conference on Performance Engineering, pp. 41–
42, 2018.

[14] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen,
D. Stefan, T. Rezk, and G. Barthe, “Constant-time foundations
for the new spectre era,” in Proceedings of the 41st ACM SIG-
PLAN International Conference on Programming Language
Design and Implementation, PLDI 2020, London, UK, June
15-20, 2020. ACM, 2020, pp. 913–926.

[15] O. Chakraborty, J.-C. Faugère, and L. Perret, “CFPKM : A Key
Encapsulation Mechanism based on Solving System of non-
linear multivariate Polynomials,” UPMC - Paris 6 Sorbonne
Universités ; INRIA Paris ; CNRS, Research Report, Dec.
2017. [Online]. Available: https://hal.inria.fr/hal-01662175

[16] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan,
“A formal approach to secure speculation,” in Proceedings of
the Computer Security Foundations Symposium (CSF), 2019.

[17] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai,
“Sgxpectre attacks: Leaking enclave secrets via speculative
execution,” arXiv preprint arXiv:1802.09085, 2018.

[18] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal
hardware extensions for strong software isolation,” in 25th
{USENIX} Security Symposium ({USENIX} Security 16),
2016, pp. 857–874.

[19] G. Dessouky, T. Frassetto, and A.-R. Sadeghi, “Hybcache: Hy-
brid side-channel-resilient caches for trusted execution envi-
ronments,” 2020.

[20] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and
D. Ponomarev, “Non-monopolizable caches: Low-complexity
mitigation of cache side channel attacks,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 8, no. 4,
p. 35, 2012.

[21] G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and
J. Reineke, “Cacheaudit: A tool for the static analysis of
cache side channels,” in Proceedings of the 22Nd USENIX
Conference on Security, ser. SEC’13. Berkeley, CA, USA:
USENIX Association, 2013, pp. 431–446. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2534766.2534804

[22] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, D. Ponomarev
et al., “Branchscope: A new side-channel attack on directional
branch predictor,” in Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2018, pp. 693–707.

[23] C. Fournet and J. Planul, “Compiling information-flow
security to minimal trusted computing bases,” in Programming
Languages and Systems - 20th European Symposium on
Programming, ESOP 2011, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2011,
Saarbrücken, Germany, March 26-April 3, 2011. Proceedings,
ser. Lecture Notes in Computer Science, G. Barthe, Ed., vol.
6602. Springer, 2011, pp. 216–235. [Online]. Available:
https://doi.org/10.1007/978-3-642-19718-5_12

[24] A. Gollamudi and S. Chong, “Automatic enforcement of
expressive security policies using enclaves,” in Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The
Netherlands, October 30 - November 4, 2016, E. Visser and
Y. Smaragdakis, Eds. ACM, 2016, pp. 494–513. [Online].
Available: https://doi.org/10.1145/2983990.2984002

[25] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and
A. Sánchez, “SPECTECTOR: principled detection of
speculative information flows,” CoRR, vol. abs/1812.08639,
2018. [Online]. Available: http://arxiv.org/abs/1812.08639

[26] S. Guo, M. Wu, and C. Wang, “Adversarial symbolic execu-
tion for detecting concurrency-related cache timing leaks,” in
ESEC/SIGSOFT FSE. ACM, 2018, pp. 377–388.

[27] M. Guthaus, T. Austin, D. Ernst, R. Brown, T. Mudge, and
J. Ringenberg, “Mibench: A free, commercially representative
embedded benchmark suite,” in Workload Characterization,
Annual IEEE International Workshop. Los Alamitos, CA,
USA: IEEE Computer Society, dec 2001, pp. 3–14. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/WWC.
2001.15

[28] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo, “Using innovative instructions to create trust-
worthy software solutions.” HASP@ ISCA, vol. 11, 2013.

[29] C. Intel, “Improving real-time performance by utilizing cache
allocation technology,” Intel Corporation, April, 2015.

[30] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High
performance cache replacement using re-reference interval pre-
diction (rrip),” ACM SIGARCH Computer Architecture News,
vol. 38, no. 3, pp. 60–71, 2010.

[31] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel,
“A high-resolution side-channel attack on last-level cache,” in
Proceedings of the 53rd Annual Design Automation Confer-
ence. ACM, 2016, p. 72.

16

https://hal.inria.fr/hal-01662175
http://dl.acm.org/citation.cfm?id=2534766.2534804
https://doi.org/10.1007/978-3-642-19718-5_12
https://doi.org/10.1145/2983990.2984002
http://arxiv.org/abs/1812.08639
https://doi.ieeecomputersociety.org/10.1109/WWC.2001.15
https://doi.ieeecomputersociety.org/10.1109/WWC.2001.15

[32] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell,
N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel, “Ric: re-
laxed inclusion caches for mitigating llc side-channel at-
tacks,” in Design Automation Conference (DAC), 2017 54th
ACM/EDAC/IEEE. IEEE, 2017, pp. 1–6.

[33] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem:
System-level protection against cache-based side channel
attacks in the cloud,” in Proceedings of the 21st USENIX Con-
ference on Security Symposium, ser. Security’12. Berkeley,
CA, USA: USENIX Association, 2012, pp. 11–11. [Online].
Available: http://dl.acm.org/citation.cfm?id=2362793.2362804

[34] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and
J. Emer, “Dawg: A defense against cache timing attacks in
speculative execution processors,” Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2018.

[35] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-
Ghazaleh, “Spectre returns! speculation attacks using the re-
turn stack buffer,” in 12th {USENIX}Workshop on Offensive
Technologies ({WOOT} 18), 2018.

[36] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “Mcpat: An integrated power,
area, and timing modeling framework for multicore and
manycore architectures,” in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO 42. New York, NY, USA: Association for
Computing Machinery, 2009, p. 469–480. [Online]. Available:
https://doi.org/10.1145/1669112.1669172

[37] D. Liu and S. Nepal, “Compact-lwe-mq: Public key encryption
without hardness assumptions,” Cryptology ePrint Archive,
Report 2020/974, 2020, https://ia.cr/2020/974.

[38] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and
R. B. Lee, “Catalyst: Defeating last-level cache side channel
attacks in cloud computing,” in High Performance Computer
Architecture (HPCA), 2016 IEEE International Symposium on.
IEEE, 2016, pp. 406–418.

[39] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level
cache side-channel attacks are practical,” in 2015 IEEE Sym-
posium on Security and Privacy, 2015, pp. 605–622.

[40] R. McIlroy, J. Sevcík, T. Tebbi, B. L. Titzer, and T. Verwaest,
“Spectre is here to stay: An analysis of side-channels and spec-
ulative execution,” CoRR, vol. abs/1902.05178, 2019.

[41] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar, “Innova-
tive instructions and software model for isolated execution.”
HASP@ ISCA, vol. 10, 2013.

[42] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How
sgx amplifies the power of cache attacks,” in International Con-
ference on Cryptographic Hardware and Embedded Systems.
Springer, 2017, pp. 69–90.

[43] D. Moghimi, J. Van Bulck, N. Heninger, F. Piessens, and
B. Sunar, “Copycat: Controlled instruction-level attacks on
enclaves,” in 29th {USENIX} Security Symposium ({USENIX}
Security 20), 2020, pp. 469–486.

[44] A. C. Myers, “Jflow: Practical mostly-static information flow
control,” in Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser.
POPL ’99, 1999, p. 228–241.

[45] A. Purnal, G. Lukas, D. Gruss, and I. Verbauwhede, “System-
atic analysis of randomization-based protected cache architec-
tures,” in IEEE Symposium on Security and Privacy, 2021, pp.
469–486.

[46] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache at-
tacks via encrypted-address and remapping,” 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 775–787, 2018.

[47] M. K. Qureshi, “New attacks and defense for encrypted-
address cache,” in Proceedings of the 46th International
Symposium on Computer Architecture, ser. ISCA ’19. New
York, NY, USA: ACM, 2019, pp. 360–371. [Online]. Available:
http://doi.acm.org/10.1145/3307650.3322246

[48] M. K. Qureshi and Y. N. Patt, “Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches,” in Proceedings
of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 39. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 423–432. [Online].
Available: https://doi.org/10.1109/MICRO.2006.49

[49] A. Sabelfeld and A. C. Myers, “Language-based information-
flow security,” IEEE J.Sel. A. Commun., vol. 21, no. 1, p. 5–19,
Sep. 2006. [Online]. Available: https://doi.org/10.1109/JSAC.
2002.806121

[50] G. Saileshwar, S. Kariyappa, and M. Qureshi, “Bespoke cache
enclaves: Fine-grained and scalable isolation from cache side-
channels via flexible set-partitioning,” in 2021 International
Symposium on Secure and Private Execution Environment
Design (SEED). IEEE, 2021, pp. 37–49.

[51] D. Sanchez and C. Kozyrakis, “Vantage: scalable and efficient
fine-grain cache partitioning,” in ACM SIGARCH Computer
Architecture News, vol. 39. ACM, 2011, pp. 57–68.

[52] J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-
based side-channel in multi-tenant cloud using dynamic
page coloring,” in Proceedings of the 2011 IEEE/IFIP
41st International Conference on Dependable Systems and
Networks Workshops, ser. DSNW ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 194–199. [Online].
Available: http://dx.doi.org/10.1109/DSNW.2011.5958812

[53] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas,
and C. W. Fletcher, “Microscope: enabling microarchitectural
replay attacks,” in Proceedings of the 46th International Sym-
posium on Computer Architecture, 2019, pp. 318–331.

[54] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and
S. A. Seshia, “A formal foundation for secure remote
execution of enclaves,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 2435–2450. [Online].
Available: https://doi.org/10.1145/3133956.3134098

17

http://dl.acm.org/citation.cfm?id=2362793.2362804
https://doi.org/10.1145/1669112.1669172
https://ia.cr/2020/974
http://doi.acm.org/10.1145/3307650.3322246
https://doi.org/10.1109/MICRO.2006.49
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1109/DSNW.2011.5958812
https://doi.org/10.1145/3133956.3134098

[55] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the keys to the intel
{SGX} kingdom with transient out-of-order execution,” in
27th {USENIX} Security Symposium ({USENIX} Security 18),
2018, pp. 991–1008.

[56] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens,
“LVI: Hijacking Transient Execution through Microarchitec-
tural Load Value Injection,” in 41th IEEE Symposium on Secu-
rity and Privacy (S&P’20), 2020.

[57] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying
microarchitectural timing leaks in rudimentary cpu interrupt
logic,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2018, pp.
178–195.

[58] J. Wang, C. Sung, and C. Wang, “Mitigating power side chan-
nels during compilation,” in ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE’19), 02 2019.

[59] S. Wang, Y. Bao, X. Liu, P. Wang, D. Zhang, and D. Wu, “Iden-
tifying cache-based side channels through secret-augmented
abstract interpretation,” in NDSS, 05 2019.

[60] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “Cached:
Identifying cache-based timing channels in production soft-
ware,” in 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017., 2017, pp.
235–252.

[61] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E.
Suh, “Secdcp: Secure dynamic cache partitioning for efficient
timing channel protection,” in Proceedings of the 53rd Annual
Design Automation Conference, ser. DAC ’16. New York,
NY, USA: ACM, 2016, pp. 74:1–74:6. [Online]. Available:
http://doi.acm.org/10.1145/2897937.2898086

[62] Z. Wang and R. B. Lee, “New cache designs for thwarting
software cache-based side channel attacks,” in ACM SIGARCH
Computer Architecture News, vol. 35. ACM, 2007, pp. 494–
505.

[63] Z. Wang and R. B. Lee, “A novel cache architecture with en-
hanced performance and security,” in Proceedings of the 41st
annual IEEE/ACM International Symposium on Microarchi-
tecture. IEEE Computer Society, 2008, pp. 83–93.

[64] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss,
and S. Mangard, “Scattercache: thwarting cache attacks via
cache set randomization,” in 28th {USENIX} Security Sympo-
sium ({USENIX} Security 19), 2019, pp. 675–692.

[65] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating
timing side-channel leaks using program repair,” in ISSTA.
ACM, 2018, pp. 15–26.

[66] M. Wu and C. Wang, “Abstract interpretation under
speculative execution,” in Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI 2019. New York, NY,
USA: ACM, 2019, pp. 802–815. [Online]. Available:
http://doi.acm.org/10.1145/3314221.3314647

[67] Y. Xie and G. H. Loh, “Pipp: Promotion/insertion pseudo-
partitioning of multi-core shared caches,” in Proceedings
of the 36th Annual International Symposium on Computer
Architecture, ser. ISCA ’09. New York, NY, USA:
ACM, 2009, pp. 174–183. [Online]. Available: http:
//doi.acm.org/10.1145/1555754.1555778

[68] W. Xiong and J. Szefer, “Leaking information through cache
lru states,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2020,
pp. 139–152.

[69] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,”
in Security and Privacy (SP), 2015 IEEE Symposium on.
IEEE, 2015, pp. 640–656.

[70] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure
hierarchy-aware cache replacement policy (sharp): Defending
against cache-based side channel atacks,” SIGARCH Comput.
Archit. News, vol. 45, no. 2, pp. 347–360, Jun. 2017. [Online].
Available: http://doi.acm.org/10.1145/3140659.3080222

[71] D. Zagieboylo, G. E. Suh, and A. C. Myers, “Using
information flow to design an isa that controls timing
channels,” in 32nd IEEE Computer Security Foundations
Symp. (CSF), June 2019. [Online]. Available: http://www.cs.
cornell.edu/andru/papers/hyperisa

[72] D. Zhang, A. Askarov, and A. C. Myers, “Language-based
control and mitigation of timing channels,” in ACM SIGPLAN
Conf. on Programming Language Design and Implementation
(PLDI), June 2012, p. 99–110. [Online]. Available: https:
//www.cs.cornell.edu/andru/papers/pltiming.html

[73] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A
hardware design language for timing-sensitive information-
flow security,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’15. New
York, NY, USA: ACM, 2015, pp. 503–516. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694372

[74] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to
defeating side channels in last-level caches,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York,
NY, USA: ACM, 2016, pp. 871–882. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978324

18

http://doi.acm.org/10.1145/2897937.2898086
http://doi.acm.org/10.1145/3314221.3314647
http://doi.acm.org/10.1145/1555754.1555778
http://doi.acm.org/10.1145/1555754.1555778
http://doi.acm.org/10.1145/3140659.3080222
http://www.cs.cornell.edu/andru/papers/hyperisa
http://www.cs.cornell.edu/andru/papers/hyperisa
https://www.cs.cornell.edu/andru/papers/pltiming.html
https://www.cs.cornell.edu/andru/papers/pltiming.html
http://doi.acm.org/10.1145/2694344.2694372
http://doi.acm.org/10.1145/2976749.2978324

	Introduction
	Threat Model
	Composable Cachelets
	Cachelet Addressing and Allocation
	Address Remapping for Enclaves
	Cachelet Allocation
	Optional Partition Sizing
	Securing Replacement Policies
	Example of CC Operation

	Replacement Deflection for Non-Enclave Accesses
	Secure Cachelet Eviction
	Compatibility of CC with Cache Slicing

	A Formal Security Analysis
	Structures and Definitions
	Operational Semantics
	Metatheory

	Evaluation of CC
	Performance Evaluation
	Benchmarks and Methodology
	Performance of Cryptographic Programs
	Performance on SPEC 2017 Benchmarks
	Performance of PARSEC Benchmarks
	Performance Impact on Non-Enclave Programs

	Delay Analysis
	Area and Power Analysis

	Related Work
	Concluding Remarks
	Acknowledgements
	Cache Replacement Logic Definitions
	Auxiliary Definitions

