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Abstract. We present PNKH-B, a projected Newton-Krylov method with a low-rank approxi-4
mated Hessian metric for approximately solving large-scale optimization problems with bound con-5
straints. PNKH-B is geared toward situations in which function and gradient evaluations are ex-6
pensive, and the (approximate) Hessian is only available through matrix-vector products. This is7
commonly the case in large-scale parameter estimation, machine learning, and image processing.8
In each iteration, PNKH-B generates a low-rank approximation of the (approximate) Hessian using9
Lanczos tridiagonalization and then solves a quadratic projection problem to update the iterate. The10
key idea is to compute the projection with respect to the norm defined by the low-rank approximation11
plus a shift in the complimentary space of the Krylov subspace. Hence, PNKH-B can be viewed as a12
generalized projected variable metric method. We present an interior point method to solve the qua-13
dratic projection problem efficiently. Since the interior point method effectively exploits the low-rank14
structure, its computational cost only scales linearly with respect to the number of variables, and it15
only adds negligible computational time. We also experiment with variants of PNKH-B that incor-16
porate estimates of the active set into the Hessian approximation. We prove the global convergence17
to a stationary point under standard assumptions. Using three numerical experiments motivated by18
parameter estimation, machine learning, and image reconstruction, we show that the consistent use19
of the Hessian metric in PNKH-B leads to fast convergence, particularly in the first few iterations.20
We provide our MATLAB implementation at https://github.com/EmoryMLIP/PNKH-B.21
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1. Introduction. In this paper, we introduce PNKH-B, a projected Newton-25

Krylov method with a low-rank approximated Hessian metric, for approximately solv-26

ing large-scale optimization problems with bound constraints such as27

(1.1) min
x
f(x) subject to l ≤ x ≤ u.28

Here, f : Rn → R is twice differentiable, the inequalities are applied component-wise,29

and the vectors l,u ∈ Rn ∪ {±∞} with l ≤ u define the box C = [l,u]. While our30

method also applies to small and medium scale problems, we focus in this paper on31

situations in which evaluating f and its gradient is computationally expensive and32

the (approximate) Hessian is only available through matrix-vector products. This is33

common in PDE-constrained optimization [9, 12, 14, 32, 36, 41, 44], image process-34

ing [6, 20, 21, 22, 39, 40, 42], neural networks [7, 15, 16, 17, 35], etc. PNKH-B aims to35

approximately solve the problem using only a few function and gradient evaluations36

and Hessian-vector products.37
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2 KELVIN KAN, SAMY WU FUNG AND LARS RUTHOTTO

As in other projected variable metric methods, the kth PNKH-B iteration reads38

(1.2) xk+1 = Π‖·‖Hk
(yk+1) , with yk+1 = xk − µkH−1k ∇f(xk),39

where Hk is a positive definite matrix, µk is a suitable step size, Π‖·‖Hk
is the projec-40

tion operator onto the box C with the variable metric induced by Hk, that is,41

(1.3) Π‖·‖Hk
(y) = arg min

z

1

2
‖z− y‖2Hk

subject to l ≤ z ≤ u.42

Here, for a vector v ∈ Rn the norm induced by the approximate Hessian is ‖v‖Hk
:=43 √

v>Hkv.44

The projection problem (1.3) is a convex quadratic program, which has no closed-45

form solution in general. Exceptions are projected gradient methods that are obtained46

by using a diagonal Hessian approximation, where the projection simplifies to47

(1.4) Π‖·‖2(y) = max{min{y,u}, l}.48

While being simple and robust, the projected gradient method is not a method of49

choice in our setting due to the large number of iterations needed to obtain a rea-50

sonable solution [11]. Similarly, the convergence of other first-order methods such as51

AdaGrad [10], which uses a diagonal Hessian approximation, is also not fast enough52

for large-scale problems. On the other extreme using a projected Newton step (ob-53

tained using Hk = ∇2f(xk)) is intractable due to the computational cost of solving54

the large-scale quadratic program involved in the projection (1.3).55

In this paper, we propose PNKH-B, an iterative method for large-scale bound-56

constrained optimization. PNKH-B uses the metric obtained from a low-rank approxi-57

mation of the (approximate) Hessian consistently. Since the same metric is used in the58

computation of the search direction and projection, we prove the global convergence of59

our method under mild assumptions. A main contribution is an interior-point method60

for computing the projection step (1.3) that, by exploiting the low-rank structure of61

Hk, only adds negligible computational costs compared to (1.4). Our method can be62

seen as a variable metric projected Newton-Krylov scheme since the Hessian changes63

at each iteration. Moreover, we use Lanczos tridiagonalization [26] to compute a basis64

of the Krylov subspace defined by the (approximate) Hessian and gradient at the kth65

step. Although not shown here, our method can be straightforwardly extended to66

other low-rank representations, e.g., arising in L-BFGS [5]. We demonstrate the ben-67

efits of using the low-rank Hessian metric using three numerical experiments that are68

motivated by PDE parameter estimation, machine learning, and image reconstruction.69

The remainder of this paper is organized as follows. In Section 2, we give an70

overview of the related work. In Section 3, we describe our PNKH-B. In Section 4, we71

provide theoretical guarantees. In Section 5, we present three experimental results to72

illustrate the effectiveness of our method. We conclude with a discussion and future73

outlooks in Section 6.74

2. Related Work. Projected inexact Newton and quasi-Newton schemes are75

among the most effective and commonly used solvers for constrained large-scale opti-76

mization problems such as (1.1). They have been studied and applied extensively in77

the past four decades, e.g., [4, 5, 37, 38]. In this section, we give a brief overview of78

the schemes that bear similarities with our approach.79

One property that can be used to group existing schemes is the metric used to80

determine the search direction and projection. We refer to schemes that use the same81
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Fig. 1: An illustration of the first iterations of different methods on the quadratic
optimization problem (2.1), where H = [1, 1; 1, 2], b = [1; 1], l = [−5; 3], u = [0; 8],
x0 = [−3; 7], y1 = x0 − H−1∇f(x0) = −H−1b = [−1; 0] is the updated variable
before projection, Π‖·‖H(y1) = [−4; 3] is the projection with the Hessian metric and
is the optimal solution, and Π‖·‖2(y1) = [−1; 3] is the projection with the Euclidean
metric. The linear/nonlinear line search arcs for one/two-metric methods are shown.
The one-metric nonlinear arc, which is used in our proposed PNKH-B, is the best
one as it searches along the boundary and gives the optimal solution. The one-metric
linear arc is less natural, does not search along the boundary and gives suboptimal
iterate whenever step size 1 is not used. Finally, the two-metric nonlinear arc searches
for the opposite direction of the one-metric nonlinear arc. It gives a suboptimal iterate
Π‖·‖2(y1) and it will be stuck at Π‖·‖2(y1) even when the exact Hessian is used, i.e.,
it generates Π‖·‖2(yk) = Π‖·‖2(y1) for all k ≥ 2.

metric for both steps (e.g., (1.2)) as one-metric schemes and schemes that use different82

metrics for the two steps as two-metric schemes. Another distinguishing feature is83

the order in which projections and line searches are performed. Schemes that project84

each line search iterate (e.g., (1.2)) in general lead to a nonlinear arc, while applying85

the projection only once before the line search yields a linear arc. In the following,86

we will review existing methods according to these choices and provide an example87

to highlight their differences.88

An extensively studied two-metric scheme [4, 13] uses a search direction induced89

by an approximated Hessian norm and a projection with respect to the Euclidean met-90

ric. That is, its formulation in each iteration is given by (1.2) and (1.3) except that the91

projection uses the Euclidean metric as this provides a closed-form to the projection92

problem using (1.4). Its line search induces a nonlinear arc, see Figure 1. However, its93

convergence is not guaranteed in general, see Example 1, [4] and [24, Chapter 5.5.1].94

The global convergence of this approach for convex problems with linear constraints95

was proven by [4, 13] when a variable partitioning scheme is used. It partitions the96

components of the kth iterate into an active set in which the components are at or97

close to the boundary of the feasible set and an inactive set in which the components98

are in the interior of the feasible set. A search direction induced by the Euclidean norm99

is used for the active components and a search direction induced by ‖ · ‖Hk
is used for100

the inactive components. They also prove local superlinear convergence under certain101

conditions. Since then, variable partitioning has become a recurring theme for two-102
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4 KELVIN KAN, SAMY WU FUNG AND LARS RUTHOTTO

metric schemes [14, 19, 25, 27, 28, 29, 38]. Although the projection of the convergent103

two-metric scheme (1.4) can be computed immediately, it requires appropriate scaling104

for the Euclidean norm induced search direction before combining the two search di-105

rections. Moreover, when many constraints are active, two-metric schemes essentially106

become projected gradient methods. A specific drawback in Newton-Krylov schemes107

for large-scale problems is that the partitioning of the variables complicates the design108

of effective preconditioners. Given a preconditioner Mk for the approximate Hessian109

Hk and Pk the projection operator onto the inactive set at the kth step, the most110

natural choice is to precondition P>k HkPk by P>k M−1
k Pk since it is intractable to111

compute (P>k M−1
k Pk)−1. However, (P>k M−1

k Pk)−1 6= P>k MkPk in general.112

Another well-studied approach is the one-metric scheme with linear arc. It is113

generally performed as follows. At the kth iteration, it (approximately) solves (1.2)114

with µk = 1 to obtain a projection. Then it performs a line search along the straight115

line connecting the current iterate xk and the projection; this linear line search is done116

in order to limit the number of solving costly projections. This scheme is studied117

with different approximations of the Hessian, solvers for the projection (1.2) with118

µk = 1 or backtracking schemes to determine the next iterate xk+1. For instance,119

the widely-applied L-BFGS-B [5, 33] uses the limited-memory BFGS matrix for Hk120

and approximately solves the projection (1.2) with µk = 1 without any constraints,121

then it truncates the path toward the solution in order to satisfy the constraints.122

Finally it backtracks along the straight line to obtain xk+1. Other variants of this123

one-metric method with linear arc include [2, 3, 18, 31, 37]. Although the consistent124

choice of metric could generate a better update direction than the two-metric scheme,125

it results in a suboptimal iterate which does not lie in the boundary whenever a step126

size of 1 is not used. Also, because the line search is just simply along the straight127

line connecting the previous iterate xk and the projection, it can result in an inferior128

iterate xk+1 when compared to a more natural line search along a nonlinear arc used129

in our method, see Figure 1.130

Example 1. We illustrate the differences between one-metric and two-metric131

schemes with linear and nonlinear arcs, respectively, using a two-dimensional qua-132

dratic program133

(2.1) min
x

1

2
x>Hx + b>x subject to l ≤ x ≤ u.134

The first iteration before projection of the one-metric method with nonlinear arc reads135

y1(µ) = x0 − µH−1∇f(x0) = (1− µ)x0 − µH−1b,136

where µ is a step size determined by a backtracking line search scheme. The projection137

with the Hessian metric is given by138

Π‖·‖H(y1(µ)) = arg min
l≤z≤u

1

2
z>Hz− (1− µ)z>Hx0 + µb>z.(2.2)139

When µ = 1, i.e., the first step of the backtracking line search, the projection problem140

is equivalent to the original optimization problem. So the backtracking line search stops141

at the first step and the one-metric method with the nonlinear line search converges142

in one iteration. This is because the Hessian metric projection is consistent with143

the steepest descent direction H−1∇f induced by the Hessian metric. If for a non-144

quadratic objective function, the initial step size is not accepted, then the nonlinear and145
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linear arc lead to different iterates; see Figure 1. Solving the projection problem with146

the Euclidean metric leads to a suboptimal projection at which the scheme stagnates147

in the absence of any of the remedies outlined above.148

3. PNKH-B. In this section, we introduce our PNKH-B. In Subsection 3.1, we149

present an outline of the algorithm. At each iteration, each backtracking line search150

requires computing a projection, which is a quadratic program. In Subsection 3.2,151

we present the derivation and implementation of an interior point method to solve152

the quadratic program effectively. In Subsection 3.3, we present two variants of our153

PNKH-B which incorporate the current estimates of the active set.154

3.1. Outline of PNKH-B. Our projected Newton-Krylov method with a low-155

rank approximated Hessian metric (PNKH-B) is a one-metric method that approx-156

imately solves the bound-constrained optimization problem (1.1). At each iteration157

PNKH-B is given by (1.2) and (1.3).158

The global convergence of PNKH-B is guaranteed under standard assumptions;159

see Section 4. We set Hk as a low-rank approximation of the (approximate) Hessian at160

xk generated by Lanczos tridiagonalization [26]. Specifically, the Krylov subspace is161

defined by the (approximate) Hessian and gradient at xk. The low-rank approximation162

is given by Hk = VkTkV
>
k , where Vk ∈ Rn×l has orthonormal columns, Tk ∈ Rl×l163

is tridiagonal and l is the rank of the low-rank approximation. We slightly abuse164

notation and denote the pseudoinverse VkT
−1
k V>k by H−1k in order to be consistent165

with the conventional notation used in Newton’s method. The matrix in the norm166

‖ · ‖Hk
is shifted by cI with c being a small scalar to render it positive definite, and167

hence the norm is well-defined. Lanczos tridiagonalization is suitable for large-scale168

problems because is does not require the explicit (approximate) Hessian Gk, but only169

the function gk : y 7→ Gky. Using the low-rank approximation, we effectively compute170

the pseudoinverse H−1k and the projection Π‖·‖Hk
(·), which has to be done once for171

each line search. The projection problem is solved using an interior point method,172

which exploits the low-rank approximation effectively and scales only linearly with the173

number of variables. The interior-point method will be discussed in Subsection 3.2.174

The outline of our PNKH-B is summarized in Algorithm 3.2.175

3.2. Interior Point Method. In this section, we present the derivation and176

effective implementation of the interior point method tailored to exploit the low-rank177

structure in (1.3).178

Derivation. We use a standard primal-dual interior point method to solve the179

projection problem (1.3), which we derive following the outline in [34, Chapter 16.6].180

To obtain xk+1, we re-formulate (1.3) as181

min
z,w

1

2
z>Hkz− z>Hkyk+1 subject to Kz− b = w and w ≥ 0,182

where w ∈ R2n is a slack vector and183

K =

[
I
−I

]
and b =

[
l
−u

]
.184
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6 KELVIN KAN, SAMY WU FUNG AND LARS RUTHOTTO

From this, we obtain the KKT conditions185

Hkz−Hkyk+1 −K>λ = 0,(3.1a)186

Kz− b−w = 0,(3.1b)187

wiλi = 0, for i = 1, ..., 2n,(3.1c)188

w ≥ 0 , λ ≥ 0,(3.1d)189190

where λ ∈ R2n is a vector of Lagrange multipliers. Since the problem (1.3) is convex191

and the interior of the feasible set is non-empty, Slater’s condition is satisfied and192

hence the KKT conditions are necessary and sufficient. As usual in interior point193

methods, we consider the perturbed KKT conditions194

(3.2) F (z,w,λ;σ, ξ) =

Hkz−Hkyk+1 −K>λ
Kz− b−w
WΛe− σξe

 = 0,195

where W = diag(w), Λ = diag(λ), e ∈ R2n is a vector of ones, σ ∈ [0, 1] and196

ξ = w>λ/(2n) is the duality measure. The solutions of (3.2) define the central path197

and tend to the solution of (3.1) [34, Section 16.6].198

We then apply Newton’s method to find the root of the system (3.2). At the jth199

iteration of Newton’s method, the step is obtained by solving200

(3.3)

Hk 0 −K>

K −I 0
0 Λj Wj

∆zj
∆wj

∆λj

 =

 −rj
−vj

−WjΛje + σξje

 ,201

which is obtained by differentiating F in (3.2) and setting202

rj = Hkzj −Hkyk+1 −K>λj ,203

vj = Kzj − b−wj .204205

Here, rj and vj are the dual and primal residuals, respectively. After computing ∆zj ,206

∆wj and ∆λj , the update of the interior point method is207

(zj+1,wj+1,λj+1) = (zj ,wj ,λj) + βj(∆zj ,∆wj ,∆λj),208

where βj = min(βpri
j , βdual

j ) and209

βpri
j = max{β ∈ (0, 1] : wj + β∆wj ≥ (1− τ)wj},210

βdual
j = max{β ∈ (0, 1] : λj + β∆λj ≥ (1− τ)λj}.211212

The parameter τ ∈ (0, 1] controls the distance to the boundary of the feasible set.213

While there are other schemes to determine the step size (see, e.g., [8]), this simple214

choice has been effective in our experiments.215

Efficient Implementation. The most crucial step of the interior point method is216

the computation of the solution of the step in (3.3). Our implementation exploits the217

low-rank structure of Hk to directly solve the linear system with O(nl2) floating point218

operations, where l is the rank of the low-rank approximation; see Algorithm 3.1 for219

an overview.220
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To compute the update, we first multiply the third equation of (3.3) by Λ−1j and221

add it to the second equation of (3.3) and obtain222

(3.4)

[
Hk −K>

K Λ−1j Wj

] [
∆zj
∆λj

]
=

[ −rj
−vj −wj + σξjΛ

−1
j e

]
.223

Multiplying the second equation of (3.4) by K>W−1
j Λj and adding it to the first224

equation, we obtain225

(3.5) (Hk + K>W−1
j ΛjK)∆zj = −rj + K>pj ,226

where pj = W−1
j Λj(−vj − wj + Λ−1j σξje). In our implementation, we shift Hk227

in (3.5) by adding cI to make the projection norm well-defined. Here, c > 0 is a228

small scalar. We note that the shift is only applied to Hk in (3.5), i.e. the matrix229

of the norm ‖ · ‖Hk
, but not the matrix of the search direction H−1k ∇f(xk). This is230

because the inverse of the shift c−1 is large and will dominate the search direction.231

The right hand side of (3.5) can be computed explicitly in O(n) operations. Defining232

Ej = cI + K>W−1
j ΛjK and noticing that Ej is diagonal and invertible, we can use233

the Woodbury matrix identity to invert the left hand side of (3.5). Specifically234

(Hk + Ej)
−1 = (VkTkV

>
k + Ej)

−1

= E−1j −E−1j Vk(T−1k + V>k E−1j Vk)−1V>k E−1j

= E−1j −E−1j Bk︸ ︷︷ ︸
∈Rn×l

(I + B>k E−1j Bk)−1︸ ︷︷ ︸
∈Rl×l

B>k E−1j︸ ︷︷ ︸
∈Rl×n

,
(3.6)235

236

where Tk = R>k Rk is the Cholesky factorization of Tk, Bk = VkR
>
k , and l is the237

rank of the low-rank approximation. From (3.6), we see that it requires O(nl2) flops238

to compute the solution ∆zj of (3.5).239

After obtaining ∆zj , we substitute ∆zj into (3.3) and (3.4) and obtain240

∆λj = pj −W−1
j ΛjK∆zj , and ∆wj = K∆zj + vj ,241

whose computation require O(n) flops.242

Overall, exploiting the fact that Hk is a rank-l approximation of the Hessian, the243

interior point method requires O(nl2) flops per iteration, where n is the number of244

variables.245

3.3. Incorporating Estimates of the Active Set. We introduce two variants246

of PNKH-B that seek to accelerate the convergence by using estimates of the active247

set. The intuitive idea is to ignore coordinate dimensions associated with constraints248

that are currently active during the construction of the low-rank approximation Hk.249

To this end, we partition xk into active and inactive components. To update the250

inactive coordinates, we exploit curvature information, and to update those active251

coordinates, we use a scaled projected gradient descent step. Our procedure and252

estimation of the active coordinates are essentially the same as in the two-metric253

schemes [4, 14, 38], which crucially rely on this step to ensure convergence. Being a254

one-metric scheme, the convergence theory of PNKH-B applies both with and without255

partitioning. However, in practice it can be advantageous to use estimates of the active256

set.257

At the kth iteration, let Ak ⊂ {1, 2, . . . , n} contain the indices of the components258

that are estimated to be active and let m = |Ak|. We denote with Rk ∈ Rm×n and259
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8 KELVIN KAN, SAMY WU FUNG AND LARS RUTHOTTO

Algorithm 3.1 Interior Point Method for the Projection Problem (1.3)

1: Inputs: low-rank approximation Hk = VkTkV
>
k ≈ ∇2f(xk), point to be pro-

jected yk+1, initial guess z0 ∈ Rn, λ0,w0 ∈ R2n, τ ∈ (0, 1] and tol > 0
2: compute the Cholesky factorization of Tk = R>k Rk

3: compute Bk = VkR
>
k

4: for j = 0, 1, 2, . . . do
5: compute rj = Hkzj −Hkyk+1 −K>λj
6: compute vj = Kzj − b−wj

7: compute pj = W−1
j Λj(−vj −wj + Λ−1j σξje)

8: compute Ej = cI + K>W−1
j ΛjK

9: compute ∆zj =
(
E−1j −E−1j Bk(I + B>k E−1j Bk)−1B>k E−1j

)
(−rj + K>pj)

10: compute ∆λj = pj −W−1
j ΛjK∆zj

11: compute ∆wj = K∆zj + vj
12: compute βj = min(βpri

τ , βdual
τ ), where βpri

τ = max{β ∈ (0, 1] : wj + β∆wj ≥
(1− τ)wj} and βdual

τ = max{β ∈ (0, 1] : λj + β∆λj ≥ (1− τ)λj}
13: update the variables (zj+1,wj+1,λj+1) = (zj ,wj ,λj) + βj(∆zj ,∆wj ,∆λj)
14: if ‖rj‖2 < tol and ‖vj‖2 < tol then
15: break
16: end if
17: end for
18: Output: zj+1 approximate projection of yk+1 onto C

Pk ∈ R(n−m)×n the projection operators onto the active and inactive set, respectively.260

For example, Rk can be constructed by selecting the rows of an identity matrix261

associated with Ak. We shall discuss two common choices for constructing Ak below.262

Given Pk and Rk, the intermediate step in (1.2) is263

(3.7) yk+1 = xk − µk
(
P>k H̃−1k Pk∇f(xk) + ν−1k R>k Rk∇f(xk)

)
.264

Here, H̃k is a rank-l approximation of the projected (approximate) Hessian PkGkP
>
k265

and the constant νk > 0 is used to balance the sizes of both steps. In practice, this266

number is often chosen based on the norm of the step for the inactive components.267

One can verify that this leads to the PNKH-B scheme with the Hessian approximation268

(3.8) Hk =
(
P>k R>k

)(H̃k 0
0 νkIm

)(
Pk

Rk

)
.269

We use the separability introduced by this construction in the projection, which de-270

couples into using (1.4) on the active components and using the interior point method271

on the inactive components.272

We obtain two variants of PNKH-B that differ only by the strategy to estimate273

active and inactive variables.274

PNKH-B (boundary index). Perhaps the most straightforward estimate of the275

active set is to choose the components at which the bound-constraints are active, i.e.,276

(3.9) Abound
k = {i : (xk)i = li or (xk)i = ui}.277

This choice has been used successfully in [14].278
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Algorithm 3.2 Outline of PNKH-B for solving (1.1)

1: Inputs: Initial guess x0 ∈ C, tolerance xtol and gtol, line search parameter α ∈
(0, 1), and the rank of the low-rank approximation l

2: for k = 0, 1, 2, . . . do
3: select estimate of active set, Ak ∈ {∅,Abound

k ,Aεk}, and build projection matri-
ces Pk and Rk.

4: compute f(xk), ∇f(xk) and (approximate) Hessian Gk ≈ ∇2f(xk)
5: compute the Lanczos tridiagonalization H̃k = VkTkV

>
k ≈ PkGkP

>
k with ini-

tial vector −Pk∇f(xk) (use matrix-free implementation)
6: compute the Hessian approximation Hk in (3.8) and the search direction

−H−1k ∇f(xk)
7: set µ = 1
8: for i = 0, 1, 2, . . . do
9: solve the projection xt = Π‖·‖Hk

(xk − µH−1k ∇f(xk)) (see Subsection 3.2)

10: if f(xt) < f(xk) + α∇f(xk)>(xt − xk) then
11: set xk+1 = xt and break
12: else
13: set µ = µ/2
14: end if
15: end for
16: if ‖xk+1 − xk‖2/‖xk‖2 < xtol or norm of projected gradient < gtol then
17: break
18: end if
19: end for
20: Output: approximate solution xk+1 ∈ C.

PNKH-B (ε index). As an alternative active set estimation scheme we use the279

one proposed in [4, 38]. Here, for some ε > 0, the idea is to use an ε margin around280

the boundary and also consider the sign of the partial derivative so that curvature281

information is used for those constraints predicted to become inactive, i.e.,282

(3.10)
Aεk = {i : [(xk)i ≤ li + ε ∧ ∂if(xk) > 0] or [(xk)i ≥ ui − ε ∧ ∂if(xk) < 0]} .283

284

4. Proof of Global Convergence. In this section, we introduce and prove the285

theorem, which guarantees the global convergence of PNKH-B under mild assump-286

tions. We first state the main theorem.287

Theorem 4.1 (Global Convergence). Suppose288

1. f is twice differentiable, and ∇f is Lipschitz continuous.289

2. infx{f(x)|x ∈ C} is attained, and C is a box.290

3. The norm of projection in our method is induced given by H̃k = Hk +291

cUkU
>
k = VkTkV

>
k + cUkU

>
k , the low-rank approximation of the Hessian292

using Lanczos tridiagonalization plus a positive shift in the complimentary293

space of the Krylov subspace. Hence it is symmetric and uniformly positive294

definite, i.e. H̃k � sI for some s > 0 and for all k ∈ N.295

Then the sequence {xk}k generated by PNKH-B converges to a stationary point of296

(1.1) regardless of the choice of the starting point x0 ∈ C.297

The assumptions hold for PNKH-B with and without variable partitioning. Hence298
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unlike two-metric methods, the convergence of PNKH-B does not hinge upon ac-299

tive/inactive variable partitioning. Moreover by the theorem, our methods globally300

converge to the optimal solution for convex problems. We now begin to prove the301

theorem. The proof follows the approach in [31], which studies proximal Newton-type302

methods. We first state and prove some lemmas, which will be used to prove the303

global convergence.304

Lemma 4.2 (Descent Direction). If f is twice differentiable, Hk = VTV> is305

generated by Lanczos tridiagonalization with initial vector ∇f(xk), the projection306

norm is induced by H̃k = Hk + cUU>, where U contains orthonormal basis vec-307

tors of the complimentary space of the Krylov subspace, and C is a box, then for any308

µk > 0, the update step dk := xk+1 − xk generated by (1.2) and (1.3) satisfies309

(4.1) ∇f(xk)>dk ≤ −
1

µk
d>k H̃kdk.310

Hence the update step dk is a descent direction.311

Proof of Lemma 4.2. By the second projection theorem [1, Chapter 9.3], the it-312

erate xk+1 = Π‖·‖H̃k
(yk+1) if and only if313

(4.2) (yk+1 − xk+1)>H̃k(z− xk+1) ≤ 0 for all z ∈ C.314

Substituting yk+1 = xk − µkH−1k ∇f(xk) and z = xk in (4.2), we obtain315

(xk − µkH−1k ∇f(xk)− xk+1)>H̃k(xk − xk+1) ≤ 0.316

Since the first column of Vk is ∇f(xk)/‖∇f(xk)‖ and it has orthogonal columns, also317

H̃k = VkTkV
>
k + cUU>, we get318

(xk − xk+1)>H̃k(xk − xk+1) + µk∇f(xk)>dk ≤ 0,319

which is equivalent to (4.1).320

Lemma 4.3 (Armijo Line Search Condition). Suppose C is a box, ∇f is Lipschitz321

continuous with constant L > 0, Hk’s are symmetric, and Hk � sI for all k ∈ N and322

for some s > 0, i.e.323

||z||2Hk
≥ s||z||22, for all z and for all k ∈ N.324

For line search parameter α ∈ (0, 1), if step size µk satisfies325

µk ≤ min

(
1,

2s

L
(1− α)

)
,326

then the following sufficient descent condition is satisfied327

(4.3) f(xk+1) ≤ f(xk) + α∇f(xk)>(xk+1 − xk).328

Proof of Lemma 4.3. Since xk,xk+1 ∈ C, by the Lipschitz continuity of ∇f , we329

have330

f(xk+1) ≤ f(xk) +∇f(xk)>(xk+1 − xk) +
L

2
‖xk+1 − xk‖22331

≤ f(xk) + α∇f(xk)>(xk+1 − xk).332333

Here, the first step uses µk ≤ 2s
L (1−α), Hk � sI and (4.1) and in the second step we334

use ∇f(xk)>(xk+1 − xk) ≤ 0; see Lemma 4.2.335
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Lemma 4.4. Suppose the assumptions on f , C and Hk are the same as those in336

Lemma 4.3. Also the backtracking Armijo line search scheme is used. Then x∗ is a337

stationary point of (1.1) if and only if x∗ is a fixed point of our method.338

Proof of Lemma 4.4. The iterate x∗ is a fixed point of our method if and only if339

(4.4) x∗ = Π‖·‖H̃∗

(
x∗ − µ∗H−1∗ ∇f(x∗)

)
,340

where H∗ is the Hessian approximation, H̃∗ is obtained by adding a positive shift in341

the complimentary space of the Krylov subspace to H∗, and µ∗ > 0 is the step size.342

By the second projection theorem again, it is equivalent to343

(x∗ − µ∗H−1∗ ∇f(x∗)− x∗)
>H̃∗(z− x∗) ≤ 0 for all z ∈ C.344

This is simplified to ∇f(x∗)>(z − x∗) ≥ 0 for all z ∈ C, which is true if and only if345

x∗ is a stationary point of the problem.346

Now, we are ready to prove Theorem 4.1, the global convergence of our method.347

Proof of Theorem 4.1. The sequence {f(xk)}k is decreasing because the update348

directions are descent directions (Lemma 4.2) and the backtracking Armijo line search349

scheme guarantees sufficient descent at each step (Lemma 4.3). Since f is closed and350

its infimum in C is attained, the decreasing sequence {f(xk)}k converges to a limit.351

By the sufficient descent condition (4.3), the convergence of {f(xk)}k and α > 0,352

∇f(xk)>(xk+1 − xk)353

converges to zero. By Lemma 4.2, one has354

(xk+1 − xk)>H̃k(xk+1 − xk) ≤ −µk∇f(xk)>(xk+1 − xk).355

Hence (xk+1−xk)>H̃k(xk+1−xk) converges to zero. Since H̃k’s are uniformly positive356

definite, xk+1 − xk converges to the zero vector.357

This implies that the sequence {xk}k converges to a fixed point of our method.358

By Lemma 4.4, the sequence converges to a stationary point of the problem.359

5. Experimental Results. We apply PNKH-B to three large-scale numerical360

experiments from applications. We compare its performance with two state-of-the-art361

projected Newton-CG (PNCG) methods, which are two-metric schemes. In Subsec-362

tion 5.1, we discuss the comparing schemes. In Subsection 5.2, we consider a PDE363

parameter estimation problem. In Subsection 5.3, we apply our method to an image364

classification problem. In Subsection 5.4, we experiment with an image reconstruction365

problem. All these applications require fitting a computational model to data, which366

is typically noisy. Therefore, and since the computational models can be expensive,367

we seek to use the optimization scheme to obtain a high-quality reconstruction within368

only a few iterations. In all three experiments, using the low-rank approximated369

Hessian metric during the projection renders PNKH-B competitive with respect to370

the optimization performance and reconstruction quality to similar state-of-the-art371

two-metric methods.372

5.1. Benchmark Methods. We compare PNKH-B to an implementation of the373

two-metric scheme described in [14] and a variant that includes the ε-indexing scheme374

from [4, 38]. We refer to the scheme obtained using Abound
k as PNCG (boundary index)375

and the scheme obtained using Aεk as PNCG (ε index); see Subsection 3.3. The main376
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difference between these schemes and our proposed method is the projection. The377

PNCG schemes use (1.4) to project all the components and are therefore considered378

two-metric schemes. In contrast, our PNKH-B scheme uses the metric induced by379

the low-rank approximated Hessian metric during the projection and is therefore a380

one-metric scheme.381

5.2. Experiment 1: Direct Current Resistivity. We use PNKH-B to solve382

a PDE parameter estimation problem motivated by the Direct Current Resistivity383

(DCR) described in [14, 36]; see also [9, 32, 41, 44] for background and different384

instances of this problem.385

Model Description. The goal of DCR in geophysical imaging is to estimate the386

conductivity of the subsurface by means of indirect measurement obtained on the387

earth’s surface. Specifically, it first uses electrical sources on the surface to generate388

direct currents to create electric potential fields in the subsurface. Measurements of389

these potential fields are then collected on the surface. The parameter estimation aims390

at reconstructing a three-dimensional image of the conductivity in the subsurface that391

is consistent with the measurements; for more details and illustrations of the DCR392

experiment see, e.g., [9, 14, 32, 36].393

To set up the problem instance, we follow the same discretize-then-optimize ap-394

proach described in [14] that is also used in [36, 43]. Using a uniform mesh with Nm395

cells and Nn nodes, we obtain the discrete forward problem396

(5.1) D = P>A(m)−1Q + ε = P>U + ε,397

where A(m) ∈ RNn×Nn is a finite-volume discretization of the Poisson operator for398

the conductivity model m ∈ RNm , P ∈ RNn×Nr is the receiver matrix that maps399

the fields to data, the columns of Q ∈ RNn×Ns are discretized sources, the columns400

of U ∈ RNn×Ns are the potential fields, and ε ∈ RNr×Ns is Gaussian noise. Here401

Nr and Ns are the number of receivers and sources, respectively. Note that with402

suitable discretization and boundary conditions, A is non-singular, which means that403

m 7→ U(m) is well-defined and differentiable.404

Given the measurement data D, sources Q, and receivers P, we estimate the405

corresponding model parameter m by solving the optimization problem406

min
m

1

2
‖P>A(m)−1Q−D‖2F +

γ

2
‖L(m−mref)‖22 subject to ml ≤m ≤mu.407

Here, γ > 0 is a regularization parameter, mref is a given reference model, L is a408

regularization operator, ml and mu are the upper and lower bounds respectively,409

which are used to enforce the physical constraints for the model parameters.410

As common, we use the Gauss-Newton approximate Hessian G given by411

G = J(m)>J(m) + γL>L,412

where the Jacobian of the residual of (5.1) is413

(5.2) J(m) = −P>A(m)−1(∇m(A(m)U))>.414

Note that the dimensions of m are typically very large. Moreover each evaluation of415

the objective function or product with the Jacobian J or its transpose or computing416

the approximate Hessian-vector multiplication y 7→ Gy require inverting the PDE417

operator A (i.e., solving the PDE) min(Nr, Ns) times per source. Hence the compu-418

tations in each outer (Newton-Krylov method) or inner (line search) iterations when419
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solving the DCR model problem are very expensive, especially when there are a lot420

of sources.421

Experimental Results. In this experiment, we solve a 3-dimensional DCR problem422

on a mesh containing 36× 36× 12 cells discretizing the domain Ω = (0, 1)3. The test423

problem features 25 sources and 1,369 receivers located on the top surface. Following424

the finite volume discretization presented in [14], we use a cell-centered discretization425

of the model m and nodal discretizations of the sources, receivers, and fields. We add426

1% noise to the data and enforce smoothness by using a diffusion regularizer with427

regularization parameter α = 10−3. We also use symmetric successive over-relaxation428

(SSOR) as a preconditioner.429

In our setup, we exclude voxels close to the boundary, sources, and receivers from430

the inversion. As a result, our model m is discretized over 30× 30× 10 cells instead;431

in particular, m has size n = 9900. The bounds ml and mu are set as vectors of all432

-4.6’s and -1’s, respectively. The upper bound is purposely set as smaller than some433

pixel values of the ground truth to test the ability of the methods to identify the434

active variables. The main cost of the parameter estimation is the large number of435

discrete PDE solves to evaluate the objective function, its gradient, and matrix-vector436

products with J and J>. Therefore, we limit the number of CG/Lanczos to five in all437

instances.438

The experimental results for the DCR problem are shown in Figures 2 to 4. In439

Figure 2(a)-(b), the proposed methods have a significant boost in the initial conver-440

gence on the objective function value and the norm of the projected gradient. This441

is particularly evident in the early iterations as can be seen, e.g., by a one-order re-442

duction of the objective function and projected gradient in the second iteration and443

the visual quality of the parameter estimate at the third iteration; see Figure 3. At444

this iteration, we see that the proposed PNKH-B and PNKH-B (ε index)’s results are445

closer to the ground truth and appear smoother. While the results obtained using446

all methods are similar at the final iteration, we note that the PNCG scheme with447

boundary indices leads to a non-smooth reconstruction; see Figure 4. Since PNCG448

is a two-metric scheme, the loss of the smoothness might be due to suboptimal scal-449

ing of the gradient step in (3.7) or the inconsistency of the preconditioner caused450

by the indexing. The proposed methods also have slightly smaller objective values451

after 20 iterations. Table 1 shows that all five methods require a comparable runtime.452

We highlight that the added costs of the interior point method used to compute the453

projection is only between 1.2% and 5% and took on average between 0.1 and 0.3454

seconds. While the Lanczos tridiagonalization in PNKH-B takes longer on average455

than the conjugate gradient method in PNCG, PNKH-B required fewer backtracking456

line search iterations and hence PDE solves.457

5.3. Experiment 2: Image Classification. We compare the performance of458

PNKH-B and PNCG for a multinomial logistic regression (MLR) arising in the su-459

pervised classification of hand-written digits in the MNIST dataset [30].460

Model Description. Let nf denote the number of features, nc the number of461

classes, and ∆nc be the unit simplex in Rnc . Given training data {(bj , cj)}Nj=1 ⊂462

Rnf×∆nc
, the supervised classification problem aims at training a hypothesis function463

hX : Rnf → ∆nc
that accurately approximates the input-output relationship for new464

examples, i.e.,465

(5.3) hX(dtest
i ) ≈ ctesti , for i = 1, . . . ,M.466
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Fig. 2: Comparison of the convergence of two PNCG methods and three variants of
PNKH-B for the direct current resistivity experiment in Subsection 5.2. (a): Relative
reduction of objective function. (b): Norm of the projected gradient.

Here, X are parameters of the hypothesis function and {dtest
i , ctesti }Mi=1 is a test467

dataset, which is not used during training.468

A common strategy for finding the hypothesis function is by solving the MLR469

problem470

(5.4) min
Xl≤X≤Xu

1

N

N∑
j=1

−c>j log
(
hX(dj)

)
where hX(dj) =

exp (Xdj)

e>nc
exp (Xdj)

.471

Here, the hypothesis function is a linear model followed by a softmax transformation,472

which ensures that hX(d) ∈ ∆nc and the objective is to minimize the cross-entropy473

between the predicted probability distribution and the label. In the formulation474

above, we use Xl,Xu ∈ Rnc×nf to model lower and upper bounds on the entries of475

X, respectively, with the goal to regularize the problem and improve generalization,476

which means improving the performance on the test data set. Since the MLR problem477

is a smooth convex optimization problem, we use G = ∇2f(X).478

In our experiment, we use the MNIST dataset [30], which consists of 60, 000479

28 × 28 grey-scale hand-written images of digits ranging from 0 to 9 that are split480

into N = 50, 000 training images and M = 10, 000 validation images. Applying the481

hypothesis function to the (vectorized) images directly provides suboptimal perfor-482
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colorbar
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PNCG (boundary index)

PNCG (augmented index)

PNKH-B

PNKH-B (boundary index)
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Fig. 3: Results after the third iteration on DCR generated by the five methods. The
upper bound is purposely set to be mu = −1, which is smaller than some pixel values
in the ground truth to test the ability of the methods to identify active variables.

PNCG (b. index) PNCG (a. index) PNKH-B PNKH-B (b. index) PNKH-B (a. index)

Fig. 4: First slice of the final results on DCR generated by the five methods. There
are noticeable artifacts in the final results of PNCG.

This manuscript is for review purposes only.



16 KELVIN KAN, SAMY WU FUNG AND LARS RUTHOTTO

Table 1: Comparison of runtime of the five methods and the interior point method
(IPM) on the three experiments. The sizes of variables of experiment 1, 2 and 3 are
9900, 40010 and 8192, respectively. The total number of iterations is 20. The tests
are run on a laptop computer with an Intel Core i5-7200U CPU, 8 GB RAM, and the
software platform is MATLAB R2018b.

Runtime (s)
PNCG

(b. index)
PNCG

(ε index)
PNKH-B

PNKH-B
(b. index)

PNKH-B
(ε index)

Experiment 1 173.4 170.2 176.9 168.7 167.4
IPM (mean) 8.1 (0.31) 2.1 (0.10) 2.3 (0.11)
Experiment 2 795.1 767.7 777.4 783.5 753.0
IPM (mean) 16.1 (0.52) 9.0 (0.31) 10.4 (0.35)
Experiment 3 29.8 28.5 39.1 33.7 34.0
IPM (mean) 10.8 (0.36) 5.1 (0.19) 5.1 (0.20)

mance. Therefore, we follow the approach in [23] and apply a single layer neural483

network to obtain feature vectors nf = 4001-dimensional space. Here, the last com-484

ponent is equal to 1 for all images to model a bias term and the other components485

are obtained using a random affine transformation and a tanh activation function.486

Experimental Results. We use a fixed number of 20 inexact Newton steps with 20487

CG/Lanczos iterations per step for all five methods and manually tune the bounds488

on X so that the trained hypothesis function performs well on the validation data. In489

our case, we choose the entries of Xl and Xu to be -0.05 and 0.05, respectively. The490

performance of the optimization schemes and the accuracy of the hypothesis function491

can be seen in Figure 5. In particular, in Figure 5(a)-(c), the three PNKH-B methods492

boost the initial convergence and outperform the PNCG methods with respect to the493

objective function value, norm of the projected gradient, and training error by some494

margin. The comparison for the validation data is overall comparable, but the PNCG495

schemes achieve slightly lower error rates; see Figure 5(d). Despite the more expensive496

projection step, the PNKH-B variants require a similar runtime in this experiment;497

see Table 1.498

5.4. Experiment 3: Spectral Computed Tomography. We consider an im-499

age reconstruction problem arising in energy-windowed spectral computed tomogra-500

phy (CT). The goal is to identify the material composition of an object from measure-501

ments taken with x-rays at different energy levels and from different projection angles.502

Our experimental setup follows [20, 21] which also provide an excellent description503

and derivation of the problem.504

Model Description. As a forward model, we consider the discretized energy-505

windowed spectral CT model506

(5.5) y = (S> ⊗ I)exp{−(C⊗A)w}+ ε,507

where I ∈ R(Nd·Np)×(Nd·Np) is the identity matrix, S ∈ RNe×Nb contains the spectrum508

energy of each energy window, C ∈ RNe×Nm contains the attenuation coefficients509

of each material at each energy level, A ∈ R(Nd·Np)×Nv contains the lengths of the510

x-ray beams, y ∈ RNd·Np·Nb is the observed data containing the x-ray photons of each511

energy window, w ∈ RNv·Nm represents the weights of the materials of each pixel512

(and is the unknown variable), and ε ∈ RNd·Np·Nb is the measurement noise. Here,513
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Fig. 5: Comparison of the convergence of two PNCG methods and three variants
of PNKH-B for the image classification problem in Subsection 5.3. (a): Relative
reduction of objective function. (b): Norm of the projected gradient. (c): Training
errors (d): Validation errors

Np is the number of angles of the x-ray beams, Nb is the number of detectors and514

each of them detects a specific energy window, Nm is the number of materials, Ne is515

the number of energy levels of the emitted x-ray beams, Nd and Nv are related to the516

number of pixels of the image. In particular, for an image of size n× n, Nd = n and517

Nv = n2.518
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The goal of the energy-windowed spectral CT model is to estimate the weights of519

materials w given the other variables except the noise in (5.5). Hence we formulate520

the following optimization problem521

min
0≤w≤wu

1

2
‖y − (S> ⊗ I)exp{−(C⊗A)w}‖22 +

γ1
2
‖Dw1:Nv‖22 + γ2

2Nv∑
i=Nv+1

wi.522

Here, the bound constraints are used to enforce physical bounds, where the weights523

cannot be negative and cannot exceed the upper bound wh. The second and third524

terms are the regularization terms also used in [21]. The second term involves the525

discrete gradient operator D and enforces smoothness of the first material and the last526

term promotes sparsity of the second material. As common in nonlinear least-squares527

problems, we use the Gauss-Newton approximation of the Hessian, i.e.,528

G = J(w)>J(w) + γ1D
>D,529

where D is a discrete differential operator acting on the first Nv entries.530

Experimental Results. The size of the variables of this problem is n = 8192. Since531

the Kronecker products are implemented effectively, the CT model problem is the least532

intense among the three testing problems in terms of computational cost. Therefore,533

we set the number of CG/Lanczos iterations to 60 for all five methods. Moreover,534

we purposely choose a tight bound wu = [1.5, 1.5, ..., 1.5]> to test the ability of the535

methods to compute a solution with many active entries, specifically some entries in536

the ground truth are outside of this bound. The experimental results of the CT model537

problem are shown in Figures 6 and 7. The proposed methods converge faster initially538

and all schemes achieve comparable results. In the second iteration of Figure 6(a),539

the iterate of the three proposed methods achieve 25 times smaller objective function540

values than the comparing methods. This also leads to a considerable improvement541

in the reconstruction quality; see Figure 7. In Figure 6(b), PNKH-B with boundary542

index and ε index give competitive performance in terms of the norm of the projected543

gradient. PNCG with ε index generates the best final norm of projection gradient.544

In this example, the overhead of the PNKH-B is around 15% due to the higher ratio545

between the costs of the projection and the forward model, which is less expensive546

compared to the other experiments; see Table 1.547

6. Conclusion. We present PNKH-B, a Projected Newton-Krylov method for548

bound-constrained minimization whose search direction and projection rely on a low-549

rank approximation of the (approximate) Hessian. Our method can be seen as a gen-550

eralization of Newton-CG methods to bound-constrained problems since we compute551

the low-rank approximation of the Hessian using a few steps of Lanczos tridiagonaliza-552

tion. The novelty of our method is the use of the metric induced by this approximation553

in the projection step. We contribute an interior point method that effectively exploits554

the low-rank approximation to achieve a complexity that is linear with respect to the555

number of variables. The consistent use of the metric leads to a simpler algorithm556

compared to two-metric schemes that require partitioning into active and inactive vari-557

ables to ensure convergence. We also propose two variants of the framework, which558

incorporate the current knowledge of the active/inactive variables; this improved the559

convergence in some cases. The experimental results on PDE parameter estimation,560

machine learning and image reconstruction show that the proposed methods lead to561

faster initial convergence with moderate runtime overhead compared to the existing562

state-of-the-art projected Newton-CG methods. Our methods are also competitive in563
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Fig. 6: Comparison of the convergence of two PNCG methods and three variants
of PNKH-B for the energy-windowed spectral CT problem in Subsection 5.4. (a):
Relative reduction of objective function. (b): Norm of the projected gradient.

ground truth PNCG (b. index) PNCG (a. index) PNKH-B PNKH-B (b. index) PNKH-B (a. index)

Fig. 7: Reconstructed images after the second iteration generated by the five methods
on CT. The top and bottom images are the estimated composition of the two mate-
rials. The upper bound is purposely set to be wu = 1.5, which is smaller than some
pixel values in the ground truth, to test the ability of the methods to identify active
variables.
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the final objective value, norm of the projected gradient and reconstruction quality.564

We provide our MATLAB code at https://github.com/EmoryMLIP/PNKH-B.565
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