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PNKH-B: A PROJECTED NEWTON-KRYLOV METHOD FOR
LARGE-SCALE BOUND-CONSTRAINED OPTIMIZATION*

KELVIN KANT, SAMY WU FUNG#, AND LARS RUTHOTTO?

Abstract. We present PNKH-B, a projected Newton-Krylov method with a low-rank approxi-
mated Hessian metric for approximately solving large-scale optimization problems with bound con-
straints. PNKH-B is geared toward situations in which function and gradient evaluations are ex-
pensive, and the (approximate) Hessian is only available through matrix-vector products. This is
commonly the case in large-scale parameter estimation, machine learning, and image processing.
In each iteration, PNKH-B generates a low-rank approximation of the (approximate) Hessian using
Lanczos tridiagonalization and then solves a quadratic projection problem to update the iterate. The
key idea is to compute the projection with respect to the norm defined by the low-rank approximation
plus a shift in the complimentary space of the Krylov subspace. Hence, PNKH-B can be viewed as a
generalized projected variable metric method. We present an interior point method to solve the qua-
dratic projection problem efficiently. Since the interior point method effectively exploits the low-rank
structure, its computational cost only scales linearly with respect to the number of variables, and it
only adds negligible computational time. We also experiment with variants of PNKH-B that incor-
porate estimates of the active set into the Hessian approximation. We prove the global convergence
to a stationary point under standard assumptions. Using three numerical experiments motivated by
parameter estimation, machine learning, and image reconstruction, we show that the consistent use
of the Hessian metric in PNKH-B leads to fast convergence, particularly in the first few iterations.
We provide our MATLAB implementation at https://github.com/EmoryMLIP/PNKH-B.

Key words. projected Newton-Krylov method, bound-constrained optimization, large-scale
optimization

AMS subject classifications. 49M15, 90C06, 90C25, 90C26, 90C51

1. Introduction. In this paper, we introduce PNKH-B, a projected Newton-
Krylov method with a low-rank approximated Hessian metric, for approximately solv-
ing large-scale optimization problems with bound constraints such as

(1.1) min f(x) subject to 1<x<u.

Here, f : R™ — R is twice differentiable, the inequalities are applied component-wise,
and the vectors L, u € R™" U {£oo} with 1 < u define the box C' = [1,u]. While our
method also applies to small and medium scale problems, we focus in this paper on
situations in which evaluating f and its gradient is computationally expensive and
the (approximate) Hessian is only available through matrix-vector products. This is
common in PDE-constrained optimization [9, 12, 14, 32, 36, 41, 44], image process-
ing [6, 20, 21, 22, 39, 40, 42], neural networks [7, 15, 16, 17, 35], etc. PNKH-B aims to
approximately solve the problem using only a few function and gradient evaluations
and Hessian-vector products.
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2 KELVIN KAN, SAMY WU FUNG AND LARS RUTHOTTO

As in other projected variable metric methods, the kth PNKH-B iteration reads

(1.2) X1 = M, (her),  with  yppn = x — e HE 'V f (%),

where Hy, is a positive definite matrix, py is a suitable step size, HII-HHk is the projec-
tion operator onto the box C with the variable metric induced by Hp, that is,

1 .
(1.3) g, (v) = arg min §Hz —ylf, subjectto 1<z <u

Here, for a vector v € R™ the norm induced by the approximate Hessian is ||v||g, =
vV VTHkV.

The projection problem (1.3) is a convex quadratic program, which has no closed-
form solution in general. Exceptions are projected gradient methods that are obtained
by using a diagonal Hessian approximation, where the projection simplifies to

(1.4) .1, (y) = max{min{y, u},1}.

While being simple and robust, the projected gradient method is not a method of
choice in our setting due to the large number of iterations needed to obtain a rea-
sonable solution [11]. Similarly, the convergence of other first-order methods such as
AdaGrad [10], which uses a diagonal Hessian approximation, is also not fast enough
for large-scale problems. On the other extreme using a projected Newton step (ob-
tained using Hy = V2f(x)) is intractable due to the computational cost of solving
the large-scale quadratic program involved in the projection (1.3).

In this paper, we propose PNKH-B, an iterative method for large-scale bound-
constrained optimization. PNKH-B uses the metric obtained from a low-rank approxi-
mation of the (approximate) Hessian consistently. Since the same metric is used in the
computation of the search direction and projection, we prove the global convergence of
our method under mild assumptions. A main contribution is an interior-point method
for computing the projection step (1.3) that, by exploiting the low-rank structure of
H, only adds negligible computational costs compared to (1.4). Our method can be
seen as a variable metric projected Newton-Krylov scheme since the Hessian changes
at each iteration. Moreover, we use Lanczos tridiagonalization [26] to compute a basis
of the Krylov subspace defined by the (approximate) Hessian and gradient at the kth
step. Although not shown here, our method can be straightforwardly extended to
other low-rank representations, e.g., arising in L-BFGS [5]. We demonstrate the ben-
efits of using the low-rank Hessian metric using three numerical experiments that are
motivated by PDE parameter estimation, machine learning, and image reconstruction.

The remainder of this paper is organized as follows. In Section 2, we give an
overview of the related work. In Section 3, we describe our PNKH-B. In Section 4, we
provide theoretical guarantees. In Section 5, we present three experimental results to
illustrate the effectiveness of our method. We conclude with a discussion and future
outlooks in Section 6.

2. Related Work. Projected inexact Newton and quasi-Newton schemes are
among the most effective and commonly used solvers for constrained large-scale opti-
mization problems such as (1.1). They have been studied and applied extensively in
the past four decades, e.g., [4, 5, 37, 38]. In this section, we give a brief overview of
the schemes that bear similarities with our approach.

One property that can be used to group existing schemes is the metric used to
determine the search direction and projection. We refer to schemes that use the same
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PNKH-B: A PROJECTED NEWTON-KRYLOV METHOD 3
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Fig. 1: An illustration of the first iterations of different methods on the quadratic

optimization problem (2.1), where H = [1,1;1,2], b = [1;1], 1 = [-5;3], u = [0;8],
xo = [=3;7], y1 = xo — H 'V f(xo) = —H 'b = [-1;0] is the updated variable
before projection, I\, (y1) = [—4;3] is the projection with the Hessian metric and
is the optimal solution, and IIj.,(y1) = [~1;3] is the projection with the Euclidean

metric. The linear/nonlinear line search arcs for one/two-metric methods are shown.
The one-metric nonlinear arc, which is used in our proposed PNKH-B, is the best
one as it searches along the boundary and gives the optimal solution. The one-metric
linear arc is less natural, does not search along the boundary and gives suboptimal
iterate whenever step size 1 is not used. Finally, the two-metric nonlinear arc searches
for the opposite direction of the one-metric nonlinear arc. It gives a suboptimal iterate
I}y, (y1) and it will be stuck at ITj.,(y1) even when the exact Hessian is used, i.e.,
it generates IT)., (yx) = I}y, (y1) for all & > 2.

metric for both steps (e.g., (1.2)) as one-metric schemes and schemes that use different
metrics for the two steps as two-metric schemes. Another distinguishing feature is
the order in which projections and line searches are performed. Schemes that project
each line search iterate (e.g., (1.2)) in general lead to a nonlinear arc, while applying
the projection only once before the line search yields a linear arc. In the following,
we will review existing methods according to these choices and provide an example
to highlight their differences.

An extensively studied two-metric scheme [4, 13] uses a search direction induced
by an approximated Hessian norm and a projection with respect to the Euclidean met-
ric. That is, its formulation in each iteration is given by (1.2) and (1.3) except that the
projection uses the Euclidean metric as this provides a closed-form to the projection
problem using (1.4). Its line search induces a nonlinear arc, see Figure 1. However, its
convergence is not guaranteed in general, see Example 1, [4] and [24, Chapter 5.5.1].
The global convergence of this approach for convex problems with linear constraints
was proven by [4, 13] when a variable partitioning scheme is used. It partitions the
components of the kth iterate into an active set in which the components are at or
close to the boundary of the feasible set and an inactive set in which the components
are in the interior of the feasible set. A search direction induced by the Euclidean norm
is used for the active components and a search direction induced by || - ||u, is used for
the inactive components. They also prove local superlinear convergence under certain
conditions. Since then, variable partitioning has become a recurring theme for two-
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4 KELVIN KAN, SAMY WU FUNG AND LARS RUTHOTTO

metric schemes [14, 19, 25, 27, 28, 29, 38]. Although the projection of the convergent
two-metric scheme (1.4) can be computed immediately, it requires appropriate scaling
for the Euclidean norm induced search direction before combining the two search di-
rections. Moreover, when many constraints are active, two-metric schemes essentially
become projected gradient methods. A specific drawback in Newton-Krylov schemes
for large-scale problems is that the partitioning of the variables complicates the design
of effective preconditioners. Given a preconditioner My, for the approximate Hessian
H; and Py the projection operator onto the inactive set at the kth step, the most
natural choice is to precondition P;HkP;C by P,;'—M;Pk since it is intractable to
compute (P} M, 'P)~!. However, (P} M, 'P;)~! # P/ M, P}, in general.

Another well-studied approach is the one-metric scheme with linear arc. It is
generally performed as follows. At the kth iteration, it (approximately) solves (1.2)
with g = 1 to obtain a projection. Then it performs a line search along the straight
line connecting the current iterate x; and the projection; this linear line search is done
in order to limit the number of solving costly projections. This scheme is studied
with different approximations of the Hessian, solvers for the projection (1.2) with
ur = 1 or backtracking schemes to determine the next iterate x;y1. For instance,
the widely-applied L-BFGS-B [5, 33] uses the limited-memory BFGS matrix for Hy,
and approximately solves the projection (1.2) with u = 1 without any constraints,
then it truncates the path toward the solution in order to satisfy the constraints.
Finally it backtracks along the straight line to obtain xj4;. Other variants of this
one-metric method with linear arc include [2, 3, 18, 31, 37]. Although the consistent
choice of metric could generate a better update direction than the two-metric scheme,
it results in a suboptimal iterate which does not lie in the boundary whenever a step
size of 1 is not used. Also, because the line search is just simply along the straight
line connecting the previous iterate x; and the projection, it can result in an inferior
iterate xx41 when compared to a more natural line search along a nonlinear arc used
in our method, see Figure 1.

EXAMPLE 1. We illustrate the differences between one-metric and two-metric
schemes with linear and nonlinear arcs, respectively, using a two-dimensional qua-
dratic program

1
(2.1) min ixTHx +b'x subject to 1 <x < u.
X
The first iteration before projection of the one-metric method with nonlinear arc reads

yi(p) =xo — pH™ 'V f(x0) = (1 — p)xo — pH™'b,

where p is a step size determined by a backtracking line search scheme. The projection
with the Hessian metric is given by

.1
(2.2) ) (Y1 () = alr<g rinn ~z Hz — (1 — p)z"Hxo + pub ' z.

When p =1, i.e., the first step of the backtracking line search, the projection problem
is equivalent to the original optimization problem. So the backtracking line search stops
at the first step and the one-metric method with the nonlinear line search converges
in one iteration. This is because the Hessian metric projection is consistent with
the steepest descent direction H™1V f induced by the Hessian metric. If for a non-
quadratic objective function, the initial step size is not accepted, then the nonlinear and
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PNKH-B: A PROJECTED NEWTON-KRYLOV METHOD 5

linear arc lead to different iterates; see Figure 1. Solving the projection problem with
the Fuclidean metric leads to a suboptimal projection at which the scheme stagnates
in the absence of any of the remedies outlined above.

3. PNKH-B. In this section, we introduce our PNKH-B. In Subsection 3.1, we
present an outline of the algorithm. At each iteration, each backtracking line search
requires computing a projection, which is a quadratic program. In Subsection 3.2,
we present the derivation and implementation of an interior point method to solve
the quadratic program effectively. In Subsection 3.3, we present two variants of our
PNKH-B which incorporate the current estimates of the active set.

3.1. Outline of PNKH-B. Our projected Newton-Krylov method with a low-
rank approximated Hessian metric (PNKH-B) is a one-metric method that approx-
imately solves the bound-constrained optimization problem (1.1). At each iteration
PNKH-B is given by (1.2) and (1.3).

The global convergence of PNKH-B is guaranteed under standard assumptions;
see Section 4. We set Hy, as a low-rank approximation of the (approximate) Hessian at
X, generated by Lanczos tridiagonalization [26]. Specifically, the Krylov subspace is
defined by the (approximate) Hessian and gradient at x;. The low-rank approximation
is given by H; = VkaV,;r, where V}, € R™*! has orthonormal columns, T, € R
is tridiagonal and [ is the rank of the low-rank approximation. We slightly abuse
notation and denote the pseudoinverse VkTglV,;r by H,;l in order to be consistent
with the conventional notation used in Newton’s method. The matrix in the norm
I - ||ex,, is shifted by ¢I with ¢ being a small scalar to render it positive definite, and
hence the norm is well-defined. Lanczos tridiagonalization is suitable for large-scale
problems because is does not require the explicit (approximate) Hessian Gy, but only
the function g : y — Gyy. Using the low-rank approximation, we effectively compute
the pseudoinverse H,;l and the projection H\I-\Ink (+), which has to be done once for
each line search. The projection problem is solved using an interior point method,
which exploits the low-rank approximation effectively and scales only linearly with the
number of variables. The interior-point method will be discussed in Subsection 3.2.
The outline of our PNKH-B is summarized in Algorithm 3.2.

3.2. Interior Point Method. In this section, we present the derivation and
effective implementation of the interior point method tailored to exploit the low-rank
structure in (1.3).

Derivation. We use a standard primal-dual interior point method to solve the
projection problem (1.3), which we derive following the outline in [34, Chapter 16.6].
To obtain xj4+1, we re-formulate (1.3) as

1
min szsz — zTHkka subject to Kz —b =w and w > 0,

z,W

where w € R?" is a slack vector and

k[ wa v
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6 KELVIN KAN, SAMY WU FUNG AND LARS RUTHOTTO

From this, we obtain the KKT conditions

(3.1a) H;z — Hyyr1 — K'Ax=o0,
(3.1b) Kz—b-w=0,
(3.1c) wi\; =0, fori=1,...,2n,
(3.1d) w>0, >0,

where A € R?" is a vector of Lagrange multipliers. Since the problem (1.3) is convex
and the interior of the feasible set is non-empty, Slater’s condition is satisfied and
hence the KKT conditions are necessary and sufficient. As usual in interior point
methods, we consider the perturbed KKT conditions

Hyz — Hyyp — KA
(3.2) F(z,w,\;0,8) = Kz—-—b-w =0,
WAe — oée

where W = diag(w), A = diag()\), e € R?" is a vector of ones, o € [0,1] and
¢ =w'A/(2n) is the duality measure. The solutions of (3.2) define the central path
and tend to the solution of (3.1) [34, Section 16.6].

We then apply Newton’s method to find the root of the system (3.2). At the jth
iteration of Newton’s method, the step is obtained by solving

Hk 0 7I<—r AZ]' i
(3.3) K -I 0 Aw;| = —V; ,
0 Aj Wj A)\J —WjAje+a£je

which is obtained by differentiating F in (3.2) and setting

r; = Hyz; — Hiygp — KT,
Vj :KZj —b—Wj.

Here, r; and v; are the dual and primal residuals, respectively. After computing Az;,
Aw; and A\;, the update of the interior point method is

(Zj+1, Wit1, Aj+1) = (25, W), Aj) + B(Azj, Aw;, AXj),
where 8; = min(8P", gfu!) and

AP = max{B € (0,1] : w; + BAW; > (1 — 7)w;},
Bl = max{B € (0,1] : A; + BAN; > (1 — T)A;}.

The parameter 7 € (0, 1] controls the distance to the boundary of the feasible set.
While there are other schemes to determine the step size (see, e.g., [8]), this simple
choice has been effective in our experiments.

Efficient Implementation. The most crucial step of the interior point method is
the computation of the solution of the step in (3.3). Our implementation exploits the
low-rank structure of Hy, to directly solve the linear system with O(ni?) floating point
operations, where [ is the rank of the low-rank approximation; see Algorithm 3.1 for
an overview.
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PNKH-B: A PROJECTED NEWTON-KRYLOV METHOD 7

To compute the update, we first multiply the third equation of (3.3) by A;l and
add it to the second equation of (3.3) and obtain

(3 4) |:Hk 7KT :| |:AZ]'] - |: —I‘j
’ K AIIW] AAJ —Vj — Wj + Ungj_le

Multiplying the second equation of (3.4) by KTW;1Aj and adding it to the first
equation, we obtain

(3.5) (Hy, + K'W;'AjK)Az; = —r; + K p;,

where p; = W;lAj(—vj - w; + A;lofje). In our implementation, we shift Hy
in (3.5) by adding cI to make the projection norm well-defined. Here, ¢ > 0 is a
small scalar. We note that the shift is only applied to Hy in (3.5), i.e. the matrix
of the norm || - ||, , but not the matrix of the search direction H 'V f(xx). This is
because the inverse of the shift ¢~! is large and will dominate the search direction.
The right hand side of (3.5) can be computed explicitly in O(n) operations. Defining
E; =c+ KTW;1AjK and noticing that E; is diagonal and invertible, we can use
the Woodbury matrix identity to invert the left hand side of (3.5). Specifically

(Hy +E;) ' = (Vi Ty V) +E;)!
=E;'—E;'Vi(T,' + V E;'V,)'V/E !

(3.6)
=E;'-E;'By(I+B,E;'By) 'B/E;",
N—_—— N—_——

E]RTLXZ eRle ERLXTL

where Ty = R,;'—R;€ is the Cholesky factorization of Ty, By = VkR;, and [ is the
rank of the low-rank approximation. From (3.6), we see that it requires O(nl?) flops
to compute the solution Az; of (3.5).

After obtaining Az;, we substitute Az; into (3.3) and (3.4) and obtain

A)\j = pj — Wj_lAjKAZj, and AWj = KAZj —+ Vj,

whose computation require O(n) flops.

Overall, exploiting the fact that Hy, is a rank-I approximation of the Hessian, the
interior point method requires O(ni?) flops per iteration, where n is the number of
variables.

3.3. Incorporating Estimates of the Active Set. We introduce two variants
of PNKH-B that seek to accelerate the convergence by using estimates of the active
set. The intuitive idea is to ignore coordinate dimensions associated with constraints
that are currently active during the construction of the low-rank approximation Hy.
To this end, we partition x; into active and inactive components. To update the
inactive coordinates, we exploit curvature information, and to update those active
coordinates, we use a scaled projected gradient descent step. Our procedure and
estimation of the active coordinates are essentially the same as in the two-metric
schemes [4, 14, 38], which crucially rely on this step to ensure convergence. Being a
one-metric scheme, the convergence theory of PNKH-B applies both with and without
partitioning. However, in practice it can be advantageous to use estimates of the active
set.

At the kth iteration, let A, C {1,2,...,n} contain the indices of the components
that are estimated to be active and let m = |Ag|. We denote with Ry € R™*™ and
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8 KELVIN KAN, SAMY WU FUNG AND LARS RUTHOTTO

Algorithm 3.1 Interior Point Method for the Projection Problem (1.3)

1: Inputs: low-rank approximation Hy = V, Ty V] ~ V2f(x;), point to be pro-
jected yiy1, initial guess zg € R™, Ao, wo € R?", 7 € (0,1] and tol > 0

2: compute the Cholesky factorization of Ty = R;Rk

3: compute By = VkR;—

4: for j=0,1,2,... do

5:  compute r; = Hyz; — Hyyr4q1 — KT)\]-

6: compute v; = Kz; —b —w;

7:  compute p; = Wj_lAj(fvj —-w; + Aj_lafje)

8:  compute E; = cI + KTW;lAjK

9:  compute Az; = (E;1 - E;lBk(I + BgE;lBk)_lB,IEjl)(—rj +KT'p,)
10:  compute AX; = p; — W;lAjKAzj

11:  compute Aw; = KAz; +v;

12:  compute §; = min(BP, gdual) where P = max{B € (0,1] : w; + BAw; >

(1—7)w;} and Bdual = max{B € (0,1] : A; + BAX; > (1 — 7)A;}
13:  update the variables (241, W;11,Aj11) = (25, W, Aj) + B;(Az;, Awj, AXj)
14:  if ||rj]]2 < tol and ||vj]|2 < tol then

15: break
16: end if
17: end for

18: Output: z;4; approximate projection of y;41 onto C

P € R("=™)%" the projection operators onto the active and inactive set, respectively.
For example, R can be constructed by selecting the rows of an identity matrix
associated with Aj. We shall discuss two common choices for constructing Ay, below.
Given Pj and Ry, the intermediate step in (1.2) is

(3.7) Yit1 = Xg — i (P;f{;lPka(xk) + VEIRZRka(Xk)) :

Here, H, is a rank-l approximation of the projected (approximate) Hessian Py, GkPZ
and the constant v > 0 is used to balance the sizes of both steps. In practice, this
number is often chosen based on the norm of the step for the inactive components.
One can verify that this leads to the PNKH-B scheme with the Hessian approximation

(3.8) H, = (P] R]) (I%k V}iﬂ) (Ei)

We use the separability introduced by this construction in the projection, which de-
couples into using (1.4) on the active components and using the interior point method
on the inactive components.

We obtain two variants of PNKH-B that differ only by the strategy to estimate
active and inactive variables.

PNKH-B (boundary index). Perhaps the most straightforward estimate of the
active set is to choose the components at which the bound-constraints are active, i.e.,

(3.9) Abound — £ () =1 or (xg)i = wi).

This choice has been used successfully in [14].
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PNKH-B: A PROJECTED NEWTON-KRYLOV METHOD 9

Algorithm 3.2 Outline of PNKH-B for solving (1.1)

1: Inputs: Initial guess xg € C, tolerance xtol and gtol, line search parameter a €
(0,1), and the rank of the low-rank approximation [

2: for k=0,1,2,... do

3:  select estimate of active set, Ay, € {0, A2°"d, A<}, and build projection matri-
ces P and Ry.
compute f(xx), Vf(xx) and (approximate) Hessian Gy ~ V2 f(xy)

5. compute the Lanczos tridiagonalization I:Ik = VkaV,;r ~ PkaP,I with ini-
tial vector —P;V f(x1) (use matrix-free implementation)

6: compute the Hessian approximation Hy in (3.8) and the search direction

—H; 'V f(xz)
7 setp=1
8 fori=0,1,2,... do
9: solve the projection x; = II|. i,y (X — pH, 'V f(x1)) (see Subsection 3.2)
10 if f(x¢) < f(xx) +aVf(xx)" (x¢ —xx) then
11: set xi4+1 = X¢ and break
12: else
13: set p=p/2
14: end if

15:  end for

16:  if ||xp11 — Xgll2/||xk|l2 < xtol or norm of projected gradient < gtol then
17: break

18:  end if

19: end for

20: Output: approximate solution x;41 € C.

PNKH-B (e indezx). As an alternative active set estimation scheme we use the
one proposed in [4, 38]. Here, for some € > 0, the idea is to use an e margin around
the boundary and also consider the sign of the partial derivative so that curvature
information is used for those constraints predicted to become inactive, i.e.,

(3.10)
=0 [(xe)i <li+eNOif(xg)>0] or [(xk)i >u;—e A 0if(x) <O0]}.

4. Proof of Global Convergence. In this section, we introduce and prove the
theorem, which guarantees the global convergence of PNKH-B under mild assump-
tions. We first state the main theorem.

THEOREM 4.1 (Global Convergence). Suppose

1. f is twice differentiable, and V f is Lipschitz continuous.

2. infy {f(x)|x € C} is attained, and C is a box.

3. The norm of projection in our method is induced gen by Hy, = Hj +
cUkUkT = VkaV,I + cUkU;, the low-rank approximation of the Hessian
using Lanczos tridiagonalization plus a positive shift in the complimentary
space of the Krylov subspace. Hence it is symmetric and uniformly positive
definite, i.e. Hy, = sI for some s > 0 and for all k € N.

Then the sequence {xi}r generated by PNKH-B converges to a stationary point of
(1.1) regardless of the choice of the starting point xo € C.

The assumptions hold for PNKH-B with and without variable partitioning. Hence
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unlike two-metric methods, the convergence of PNKH-B does not hinge upon ac-
tive/inactive variable partitioning. Moreover by the theorem, our methods globally
converge to the optimal solution for convex problems. We now begin to prove the
theorem. The proof follows the approach in [31], which studies proximal Newton-type
methods. We first state and prove some lemmas, which will be used to prove the
global convergence.

LEMMA 4.2 (Descent Direction). If f is twice differentiable, Hy = VIV is
generated by Lanczos tridiagonalization with initial vector V f(xy), the projection
norm is induced by H, = H, + cUUT, where U contains orthonormal basis vec-
tors of the complimentary space of the Krylov subspace, and C' is a boz, then for any
k> 0, the update step dy := Xp+1 — Xy, generated by (1.2) and (1.3) satisfies

1 -
(4.1) Vixe) dg < —ITdQdek.
k

Hence the update step dy. is a descent direction.

Proof of Lemma 4.2. By the second projection theorem [1, Chapter 9.3], the it-
erate x+1 = I, (yk+1) if and only if
k

(4.2) (Yk—i-l — Xk+1)TI:Ik(Z — Xk+1) < 0 forall ze C.
Substituting yr+1 = xp — ,ukH,;lVf(xk) and z = xy, in (4.2), we obtain

(i — e H 'V f (k) — Xip1) THp (x5 — Xpep1) < 0.

Since the first column of V is V f(xx)/||V f(xx)| and it has orthogonal columns, also
H, = VkaV;— +cUUT, we get

(xk — Xpp1) Hg (X — Xpg1) + 16V f(xx) i <0,
which is equivalent to (4.1). |

LEMMA 4.3 (Armijo Line Search Condition). Suppose C is a box, V f is Lipschitz
continuous with constant L > 0, Hy’s are symmetric, and Hy = sI for all k € N and
for some s >0, i.e.

\|z||31, > sl|zl[3, for all z and for all k € N.

For line search parameter o € (0, 1), if step size uy satisfies

2
225 < min <1a j(l - Oé)> )
L
then the following sufficient descent condition is satisfied

(4.3) f(xpa1) < (k) +aV () T (Rpt1 — %)

Proof of Lemma 4.3. Since xj,Xr4+1 € C, by the Lipschitz continuity of Vf, we
have

FOore) < FO) + V000 T Gonar = 3x0) + 5 ks —
< f(xk) +aVf(xk) T (ki1 — X)-

Here, the first step uses yu, < 22(1—a), Hy, > sI and (4.1) and in the second step we
use Vf(xx) " (Xps1 — Xx) < 0; see Lemma 4.2. O
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LEMMA 4.4. Suppose the assumptions on f, C and Hy, are the same as those in
Lemma 4.3. Also the backtracking Armijo line search scheme is used. Then X, is a
stationary point of (1.1) if and only if X, is a fized point of our method.

Proof of Lemma 4.4. The iterate x, is a fixed point of our method if and only if
(44) Xy = HHHI:I* (X* — M*H*_1Vf(x*)) s

where H, is the Hessian approximation, H. is obtained by adding a positive shift in
the complimentary space of the Krylov subspace to H,, and u, > 0 is the step size.
By the second projection theorem again, it is equivalent to

(%4 — M*H;1Vf(x*) - x*)TI:I*(z —x,) <0 forallzeC.

This is simplified to Vf(x.)" (z — x.) > 0 for all z € C, which is true if and only if
X, is a stationary point of the problem. ]

Now, we are ready to prove Theorem 4.1, the global convergence of our method.

Proof of Theorem 4.1. The sequence {f(xx)}x is decreasing because the update
directions are descent directions (Lemma 4.2) and the backtracking Armijo line search
scheme guarantees sufficient descent at each step (Lemma 4.3). Since f is closed and
its infimum in C is attained, the decreasing sequence { f(xy)}r converges to a limit.

By the sufficient descent condition (4.3), the convergence of {f(xx)}x and a > 0,

VF ()" (ka1 — x)

converges to zero. By Lemma 4.2, one has

(Xp1 — xk) T Hy (X1 — x1) <~V F(xn) T (Xps1 — X).

Hence (X41 —xk)TI-ik(ka —X,) converges to zero. Since I:Ik’s are uniformly positive
definite, x;41 — X, converges to the zero vector.

This implies that the sequence {xj}; converges to a fixed point of our method.
By Lemma 4.4, the sequence converges to a stationary point of the problem. 0

5. Experimental Results. We apply PNKH-B to three large-scale numerical
experiments from applications. We compare its performance with two state-of-the-art
projected Newton-CG (PNCG) methods, which are two-metric schemes. In Subsec-
tion 5.1, we discuss the comparing schemes. In Subsection 5.2, we consider a PDE
parameter estimation problem. In Subsection 5.3, we apply our method to an image
classification problem. In Subsection 5.4, we experiment with an image reconstruction
problem. All these applications require fitting a computational model to data, which
is typically noisy. Therefore, and since the computational models can be expensive,
we seek to use the optimization scheme to obtain a high-quality reconstruction within
only a few iterations. In all three experiments, using the low-rank approximated
Hessian metric during the projection renders PNKH-B competitive with respect to
the optimization performance and reconstruction quality to similar state-of-the-art
two-metric methods.

5.1. Benchmark Methods. We compare PNKH-B to an implementation of the
two-metric scheme described in [14] and a variant that includes the e-indexing scheme
from [4, 38]. We refer to the scheme obtained using .A?°"4 as PNCG (boundary index)
and the scheme obtained using Aj, as PNCG (e index); see Subsection 3.3. The main
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difference between these schemes and our proposed method is the projection. The
PNCG schemes use (1.4) to project all the components and are therefore considered
two-metric schemes. In contrast, our PNKH-B scheme uses the metric induced by
the low-rank approximated Hessian metric during the projection and is therefore a
one-metric scheme.

5.2. Experiment 1: Direct Current Resistivity. We use PNKH-B to solve
a PDE parameter estimation problem motivated by the Direct Current Resistivity
(DCR) described in [14, 36]; see also [9, 32, 41, 44] for background and different
instances of this problem.

Model Description. The goal of DCR in geophysical imaging is to estimate the
conductivity of the subsurface by means of indirect measurement obtained on the
earth’s surface. Specifically, it first uses electrical sources on the surface to generate
direct currents to create electric potential fields in the subsurface. Measurements of
these potential fields are then collected on the surface. The parameter estimation aims
at reconstructing a three-dimensional image of the conductivity in the subsurface that
is consistent with the measurements; for more details and illustrations of the DCR
experiment see, e.g., [9, 14, 32, 36].

To set up the problem instance, we follow the same discretize-then-optimize ap-
proach described in [14] that is also used in [36, 43]. Using a uniform mesh with N,
cells and N,, nodes, we obtain the discrete forward problem

(5.1) D=P'A(m)'Q+e=P'U+eg,

where A(m) € RN»*Nne ig a finite-volume discretization of the Poisson operator for
the conductivity model m € RN=, P € RN¥»*Nr is the receiver matrix that maps
the fields to data, the columns of Q € R¥»*Ns are discretized sources, the columns
of U € RM*Ns are the potential fields, and € € RN*Ns is Gaussian noise. Here
N, and N, are the number of receivers and sources, respectively. Note that with
suitable discretization and boundary conditions, A is non-singular, which means that
m — U(m) is well-defined and differentiable.

Given the measurement data D, sources Q, and receivers P, we estimate the
corresponding model parameter m by solving the optimization problem

1
min 7[PTA(m)"'Q - D} + %HL(m —my)|2 subject to m; < m < my,.

Here, v > 0 is a regularization parameter, m,.s is a given reference model, L is a
regularization operator, m; and m, are the upper and lower bounds respectively,
which are used to enforce the physical constraints for the model parameters.

As common, we use the Gauss-Newton approximate Hessian G given by

G=J(m) " J(m)+~L"L,
where the Jacobian of the residual of (5.1) is
(5.2) Jm) = -PTAm) H(Vn(Am)U))' .

Note that the dimensions of m are typically very large. Moreover each evaluation of
the objective function or product with the Jacobian J or its transpose or computing
the approximate Hessian-vector multiplication y — Gy require inverting the PDE
operator A (i.e., solving the PDE) min(NV,., Ny) times per source. Hence the compu-
tations in each outer (Newton-Krylov method) or inner (line search) iterations when
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solving the DCR, model problem are very expensive, especially when there are a lot
of sources.

Experimental Results. In this experiment, we solve a 3-dimensional DCR, problem
on a mesh containing 36 x 36 x 12 cells discretizing the domain Q = (0,1)3. The test
problem features 25 sources and 1,369 receivers located on the top surface. Following
the finite volume discretization presented in [14], we use a cell-centered discretization
of the model m and nodal discretizations of the sources, receivers, and fields. We add
1% noise to the data and enforce smoothness by using a diffusion regularizer with
regularization parameter o = 1073. We also use symmetric successive over-relaxation
(SSOR) as a preconditioner.

In our setup, we exclude voxels close to the boundary, sources, and receivers from
the inversion. As a result, our model m is discretized over 30 x 30 x 10 cells instead;
in particular, m has size n = 9900. The bounds m; and m, are set as vectors of all
-4.6’s and -1’s, respectively. The upper bound is purposely set as smaller than some
pixel values of the ground truth to test the ability of the methods to identify the
active variables. The main cost of the parameter estimation is the large number of
discrete PDE solves to evaluate the objective function, its gradient, and matrix-vector
products with J and JT. Therefore, we limit the number of CG/Lanczos to five in all
instances.

The experimental results for the DCR problem are shown in Figures 2 to 4. In
Figure 2(a)-(b), the proposed methods have a significant boost in the initial conver-
gence on the objective function value and the norm of the projected gradient. This
is particularly evident in the early iterations as can be seen, e.g., by a one-order re-
duction of the objective function and projected gradient in the second iteration and
the visual quality of the parameter estimate at the third iteration; see Figure 3. At
this iteration, we see that the proposed PNKH-B and PNKH-B (e index)’s results are
closer to the ground truth and appear smoother. While the results obtained using
all methods are similar at the final iteration, we note that the PNCG scheme with
boundary indices leads to a non-smooth reconstruction; see Figure 4. Since PNCG
is a two-metric scheme, the loss of the smoothness might be due to suboptimal scal-
ing of the gradient step in (3.7) or the inconsistency of the preconditioner caused
by the indexing. The proposed methods also have slightly smaller objective values
after 20 iterations. Table 1 shows that all five methods require a comparable runtime.
We highlight that the added costs of the interior point method used to compute the
projection is only between 1.2% and 5% and took on average between 0.1 and 0.3
seconds. While the Lanczos tridiagonalization in PNKH-B takes longer on average
than the conjugate gradient method in PNCG, PNKH-B required fewer backtracking
line search iterations and hence PDE solves.

5.3. Experiment 2: Image Classification. We compare the performance of
PNKH-B and PNCG for a multinomial logistic regression (MLR) arising in the su-
pervised classification of hand-written digits in the MNIST dataset [30].

Model Description. Let n; denote the number of features, n. the number of
classes, and A, be the unit simplex in R"*. Given training data {(b;,c;)}, C
R™ x A,,,, the supervised classification problem aims at training a hypothesis function
hx : R™ — A, that accurately approximates the input-output relationship for new
examples, i.e.,

(5.3) hx (di*t) ~ct™t  for i=1,..., M.

K2
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Fig. 2: Comparison of the convergence of two PNCG methods and three variants of
PNKH-B for the direct current resistivity experiment in Subsection 5.2. (a): Relative
reduction of objective function. (b): Norm of the projected gradient.

Here, X are parameters of the hypothesis function and {di*st ct*'}M  is a test
dataset, which is not used during training.

A common strategy for finding the hypothesis function is by solving the MLR
problem

) 1 < - exp (Xd;)

(5.4) N 2 —c; log (hx(d;)) where hx(d;) = m.
Here, the hypothesis function is a linear model followed by a softmax transformation,
which ensures that hx(d) € A,,, and the objective is to minimize the cross-entropy
between the predicted probability distribution and the label. In the formulation
above, we use X;, X, € R™*"/ to model lower and upper bounds on the entries of
X, respectively, with the goal to regularize the problem and improve generalization,
which means improving the performance on the test data set. Since the MLR, problem
is a smooth convex optimization problem, we use G = V2 f(X).

In our experiment, we use the MNIST dataset [30], which consists of 60,000
28 x 28 grey-scale hand-written images of digits ranging from 0 to 9 that are split
into N = 50,000 training images and M = 10,000 validation images. Applying the
hypothesis function to the (vectorized) images directly provides suboptimal perfor-
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o 05 4 15 2 25 3 35 4 45
e ——— ]
ground truth

===
=

PNCG (boundary index)

PNCG (augmented index)

PNKH-B

PNKH-B (boundary index)

PNKH-B (augmented index)

Fig. 3: Results after the third iteration on DCR, generated by the five methods. The
upper bound is purposely set to be m,, = —1, which is smaller than some pixel values
in the ground truth to test the ability of the methods to identify active variables.

PNCG (b. index) PNCG (a. index) PNKH-B PNKH-B (b. index)| |PNKH-B (a. index)

Fig. 4: First slice of the final results on DCR generated by the five methods. There
are noticeable artifacts in the final results of PNCG.
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Table 1: Comparison of runtime of the five methods and the interior point method
(IPM) on the three experiments. The sizes of variables of experiment 1, 2 and 3 are
9900, 40010 and 8192, respectively. The total number of iterations is 20. The tests
are run on a laptop computer with an Intel Core i5-7200U CPU, 8 GB RAM, and the
software platform is MATLAB R2018b.

. PNCG PNCG PNKH-B | PNKH-B
Runtime (s) (b. index) | (e index) PNKH-B (b. index) | (e index)
Experiment 1 173.4 170.2 176.9 168.7 167.4
IPM (mean) 8.1(0.31) | 2.1 (0.10) | 2.3 (0.11)
Experiment 2 795.1 767.7 777.4 783.5 753.0
IPM (mean) 16.1 (0.52) | 9.0 (0.31) | 10.4 (0.35)
Experiment 3 29.8 28.5 39.1 33.7 34.0
IPM (mean) 10.8 (0.36) | 5.1 (0.19) | 5.1 (0.20)

mance. Therefore, we follow the approach in [23] and apply a single layer neural
network to obtain feature vectors ny = 4001-dimensional space. Here, the last com-
ponent is equal to 1 for all images to model a bias term and the other components
are obtained using a random affine transformation and a tanh activation function.

Experimental Results. We use a fixed number of 20 inexact Newton steps with 20
CG/Lanczos iterations per step for all five methods and manually tune the bounds
on X so that the trained hypothesis function performs well on the validation data. In
our case, we choose the entries of X; and X, to be -0.05 and 0.05, respectively. The
performance of the optimization schemes and the accuracy of the hypothesis function
can be seen in Figure 5. In particular, in Figure 5(a)-(c), the three PNKH-B methods
boost the initial convergence and outperform the PNCG methods with respect to the
objective function value, norm of the projected gradient, and training error by some
margin. The comparison for the validation data is overall comparable, but the PNCG
schemes achieve slightly lower error rates; see Figure 5(d). Despite the more expensive
projection step, the PNKH-B variants require a similar runtime in this experiment;
see Table 1.

5.4. Experiment 3: Spectral Computed Tomography. We consider an im-
age reconstruction problem arising in energy-windowed spectral computed tomogra-
phy (CT). The goal is to identify the material composition of an object from measure-
ments taken with x-rays at different energy levels and from different projection angles.
Our experimental setup follows [20, 21] which also provide an excellent description
and derivation of the problem.

Model Description. As a forward model, we consider the discretized energy-
windowed spectral CT model

(5.5) y = (ST @ Dexp{—(C® A)w} +¢,

where I € R(WNa'Np)x(Na'Np) ig the identity matrix, S € RNe*No contains the spectrum
energy of each energy window, C € RM<XNm contains the attenuation coefficients
of each material at each energy level, A € R(Ne-Np)XNu contains the lengths of the
x-ray beams, y € RV No"No ig the observed data containing the x-ray photons of each
energy window, w € R™v"Nm represents the weights of the materials of each pixel
(and is the unknown variable), and € € RNaNe-No i the measurement noise. Here,

This manuscript is for review purposes only.



[S1 BG e
IS

ot
[ T
~

PNKH-B: A PROJECTED NEWTON-KRYLOV METHOD

(a) Objective Value
T T T T T T T
©- MATLAB fmincon
VIATUAB fmincon 142 10-* | %= PNCG (boundary index)
PEC ) £ |6 PNCG (augmented inde)

100 [ PreHe » 3.50 x 1072 PNKH-B 4
PAKIE (oo 7o % 10-2 | k= PNKH-B (boundary index)
~= PNKH (augmented index)

I . I I | I | h
0 100 200 300 400 500 600 700 800

(c) Training Error

900 1,0001,1001,200 ¢

17

‘(b) Norm of Projected Gradient‘

1072 F

Final value:
M

ATLAB fmincon: 7.48 x 1072
PNCG (boundary index): 1.80 x 1071
PNCG (augmented index): 113 x 107!
PNKH-B: 4.96 x 1073 i
PNKH-B (boundary index): 2.30 x 1072
PNKH-B (augmented index): ~ 2.11 x 10~2

I I
100 200

. . . . . . . | .
300 400 500 600 700 800 900 1,0001,1001,200
(d) Validation Error

107 T T T T T T T T T T T 10%— T T T T T T T
Final error:
Final error; . MATLAB fmincon: 4.81%
AL o PNCG (boundary index): 3.96%
PNCG (augmented index) 0.45% PNCG (augmented index): 4.10%
PNKH-B: 0.19% .
10! & PNKH-B (boundary index):  0.25% 1 PNKH-B: . 3.70%
PNKH-B (augmented index):  0.26% PNKH-B (boundary index): 3.86%
PNKH-B (augmented index): 3.73%

107

10!

I I ! I | I I I
400 500 600 700 800 900 1,0001,1001

(e) Active Percentage

0.6 T T T T 7 7

I I |
0 100 200 300

200

L L I °
0 100 200 300 400 500

%
600 700 800 900 1,0001,1001,200

(f) CG/Lanczos Error

10° T T

0

Fig. 5: Comparison of the convergence of two PNCG methods and three variants

of PNKH-B for the image classification problem in Subsection 5.3.

Relative

(a):

reduction of objective function. (b): Norm of the projected gradient. (c): Training

errors (d): Validation errors

N, is the number of angles of the x-ray beams, IV}, is the number of detectors and
each of them detects a specific energy window, IV,,, is the number of materials, IV, is
the number of energy levels of the emitted x-ray beams, Ny and N, are related to the
number of pixels of the image. In particular, for an image of size n x n, Ny = n and

N, = n2.
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18 KELVIN KAN, SAMY WU FUNG AND LARS RUTHOTTO

The goal of the energy-windowed spectral CT model is to estimate the weights of
materials w given the other variables except the noise in (5.5). Hence we formulate
the following optimization problem

2N,

. 1 71
o, 5ly = (87 @ Dexpl~(Co ApwHE + FDwinE+2 3w

Here, the bound constraints are used to enforce physical bounds, where the weights
cannot be negative and cannot exceed the upper bound wy,. The second and third
terms are the regularization terms also used in [21]. The second term involves the
discrete gradient operator D and enforces smoothness of the first material and the last
term promotes sparsity of the second material. As common in nonlinear least-squares
problems, we use the Gauss-Newton approximation of the Hessian, i.e.,

G=J(w) J(w)+71D'D,

where D is a discrete differential operator acting on the first N, entries.

Ezxperimental Results. The size of the variables of this problem is n = 8192. Since
the Kronecker products are implemented effectively, the CT model problem is the least
intense among the three testing problems in terms of computational cost. Therefore,
we set the number of CG/Lanczos iterations to 60 for all five methods. Moreover,
we purposely choose a tight bound w,, = [1.5,1.5,...,1.5]T to test the ability of the
methods to compute a solution with many active entries, specifically some entries in
the ground truth are outside of this bound. The experimental results of the CT model
problem are shown in Figures 6 and 7. The proposed methods converge faster initially
and all schemes achieve comparable results. In the second iteration of Figure 6(a),
the iterate of the three proposed methods achieve 25 times smaller objective function
values than the comparing methods. This also leads to a considerable improvement
in the reconstruction quality; see Figure 7. In Figure 6(b), PNKH-B with boundary
index and e index give competitive performance in terms of the norm of the projected
gradient. PNCG with € index generates the best final norm of projection gradient.
In this example, the overhead of the PNKH-B is around 15% due to the higher ratio
between the costs of the projection and the forward model, which is less expensive
compared to the other experiments; see Table 1.

6. Conclusion. We present PNKH-B, a Projected Newton-Krylov method for
bound-constrained minimization whose search direction and projection rely on a low-
rank approximation of the (approximate) Hessian. Our method can be seen as a gen-
eralization of Newton-CG methods to bound-constrained problems since we compute
the low-rank approximation of the Hessian using a few steps of Lanczos tridiagonaliza-
tion. The novelty of our method is the use of the metric induced by this approximation
in the projection step. We contribute an interior point method that effectively exploits
the low-rank approximation to achieve a complexity that is linear with respect to the
number of variables. The consistent use of the metric leads to a simpler algorithm
compared to two-metric schemes that require partitioning into active and inactive vari-
ables to ensure convergence. We also propose two variants of the framework, which
incorporate the current knowledge of the active/inactive variables; this improved the
convergence in some cases. The experimental results on PDE parameter estimation,
machine learning and image reconstruction show that the proposed methods lead to
faster initial convergence with moderate runtime overhead compared to the existing
state-of-the-art projected Newton-CG methods. Our methods are also competitive in
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Fig. 6: Comparison of the convergence of two PNCG methods and three variants

of PNKH-B for the energy-windowed spectral CT problem in Subsection 5.4. (a):
Relative reduction of objective function. (b): Norm of the projected gradient.

-

ground truth - PNKH-B (b. index)

Fig. 7: Reconstructed images after the second iteration generated by the five methods
on CT. The top and bottom images are the estimated composition of the two mate-
rials. The upper bound is purposely set to be w,, = 1.5, which is smaller than some
pixel values in the ground truth, to test the ability of the methods to identify active
variables.
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the final objective value, norm of the projected gradient and reconstruction quality.
We provide our MATLAB code at https://github.com/EmoryMLIP /PNKH-B.

Acknowledgments. The authors would like to thank Yunyi Larry Hu and James
Nagy for sharing the data and code for the computer tomography experiment.
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