

2 *Submission of a perspectives piece to Integrative and Comparative Biology*

3

4 **Resolving the rules of robustness and**
5 **resilience in biology across scales**

6

7

8 **Authors:**

9 ***Erica Crespi**, School of Biological Sciences, Washington State University

10 **Robert Burnap**, Microbiology and Molecular Genetics, Oklahoma State University

11 **Jing Chen**, Department of Biological Sciences, Virginia Polytechnic Institute and State
12 University

13 **Moumita Das**, School of Physics and Astronomy, Rochester Institute of Technology

14 **Natalie Gassman**, Mitchell Cancer Institute, University of South Alabama

15 **Epaminondas Rosa, Jr.** Department of Physics and School of Biological Sciences, Illinois
16 State University

17 **Rebecca Simmons**, Department of Biology, University of North Dakota

18 **Haruka Wada**, Department of Biological Sciences, Auburn University

19 **Zhen Q. Wang**, Department of Biological Sciences, University at Buffalo

20 **Jie Xiao**, Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of
21 Medicine

22 **Bing Yang**, Division of Plant Sciences, University of Missouri

23 **John Yin**, Department of Chemical and Biological Engineering, University of Wisconsin-
24 Madison

25 ***Jared V. Goldstone**, Woods Hole Oceanographic Institution

26

27

28 *Corresponding authors: email: erica.crespi@wsu.edu, phone: 509-335-3833, fax: 509-335-
29 3184; jgoldstone@whoi.edu, phone: 508-289-4823

30

31

32

33

34

35 **Abstract**
36

37 Why do some biological systems and communities persist while others fail? Robustness, a
38 system's stability, and resilience, the ability to return to a stable state, are key concepts that
39 span multiple disciplines within and outside the biological sciences. Discovering and applying
40 common rules that govern the robustness and resilience of biological systems is a critical step
41 toward creating solutions for species survival in the face of climate change, as well as the for
42 the ever-increasing need for food, health, and energy for human populations. We propose that
43 network theory provides a framework for universal scalable mathematical models to describe
44 robustness and resilience and the relationship between them, and hypothesize that resilience at
45 lower organization levels contribute to robust systems. Insightful models of biological systems
46 can be generated by quantifying the mechanisms of redundancy, diversity, and connectivity of
47 networks, from biochemical processes to ecosystems. These models provide pathways towards
48 understanding how evolvability can both contribute to and result from robustness and resilience
49 under dynamic conditions. We now have an abundance of data from model and non-model
50 systems and the technological and computational advances for studying complex systems.
51 Several conceptual and policy advances will allow the research community to elucidate the rules
52 of robustness and resilience. Conceptually, a common language and data structure that can be
53 applied across levels of biological organization needs to be developed. Policy advances such as
54 cross-disciplinary funding mechanisms, access to affordable computational capacity, and the
55 integration of network theory and computer science within the standard biological science
56 curriculum will provide the needed research environments. This new understanding of biological
57 systems will allow us to derive ever more useful forecasts of biological behaviors and
58 revolutionize the engineering of biological systems that can survive changing environments or
59 disease, navigate the deepest oceans, or sustain life throughout the solar system.

60 **1. The Problem**

61 Life on Earth is shaped both by ancient and current events: no environment on Earth is fully
62 invariant. Why particular biological systems, lineages, and communities persist while others fail
63 is a question that spans multiple disciplines within and outside the biological sciences.
64 Understanding how all levels of biological organization respond to perturbation is central to
65 decoding the rules of life. All living systems, including humans, face rapid changes in climate
66 and landscapes that bring significant biotic (e.g., availability and phenology of prey and food
67 items) and abiotic impacts (e.g., frequency/severity of floods, droughts, wildfires; temperature
68 extremes) (König et al. 2020; Wintle et al. 2020). Revealing and applying common rules that
69 govern the robustness and resilience of biological systems is an important and indispensable
70 step toward finding solutions for preventing and curing diseases, for the ever-increasing need
71 for food and energy, as well as for species survival. However, we lack an overarching
72 understanding of the fundamental mechanisms that enable biological systems at various levels
73 to appropriately respond to alterations in their environment and withstand or recover from
74 perturbations. If researchers can decode universal rules of robustness and resilience, we can
75 use these rules to predict how life on Earth will respond to rapidly changing conditions, to
76 develop tools for ecosystem conservation, and to improve human conditions.

77

78 Shifting our conception of the natural world as many nested and interconnected networks (see
79 **Fig. 1**) will transform how we view the minutiae and grandeur of biodiversity, while
80 understanding how biological systems respond to changing conditions over time and space has
81 a multiplicity of broader applications. How biological systems react with current, rapidly
82 changing environmental conditions will affect every living thing on Earth (e.g., Hammerschlag et
83 al. 2019). Outcomes of these efforts have consequences for an array of applications that will
84 improve the quality of life for humans. The study of robustness and resilience at sub-cellular,
85 physiological and tissue levels has medical implications; research in this area can set the stage

86 for advancements in disease biology and cancer treatments (Pienta et al. 2020; Rauter et al.
87 2020). The study of robustness and resilience can also be viewed through the lens of
88 organismal biology and responses to environmental changes; outcomes from this area will
89 influence conservation strategies for species in threatened ecosystems as well as providing a
90 unique view of many potential and realized threats to biodiversity (e.g., Donelan et al. 2019).
91 Finally, understanding resilient and robust biological systems can even facilitate improved
92 design of energy storage/transport, urban transportation systems, and movement of resources
93 across the globe (Tang et al. 2021, Wu et al. 2019, Ma et al. 2015).

94

95 **2. Concepts of Robustness and Resilience**

96 Processes related to robustness and resilience are studied by scientists across biological and
97 physical disciplines, as well as social sciences, computer science and engineering (**Table 1**). At
98 the same time, research into the responses to perturbations is often siloed at molecular, cellular,
99 organismal, and ecological scales or within a discipline. Here we define **robustness** as the
100 ability of a system to remain in or reach the same stable state despite diverse internal and
101 external environments. Robustness underscores the ability of a biological system to maintain
102 the original state even after encountering perturbations. In contrast, **resilience** (or resistance in
103 ecological sciences) is the ability of a biological system to return to a previous state or establish
104 a new state after significant perturbations. For example, a plant is robust and resilient if it grows
105 normally across all different light conditions. A plant is resilient but not robust if it becomes
106 dormant in the dark but restores growth rapidly once the desired light condition is met. A plant is
107 robust but not resilient if it can grow under most light conditions but cannot handle switching
108 between different light conditions. A plant is neither robust nor resilient if it only grows under one
109 specific light condition and dies when that condition is not met. It is important to recognize in
110 these definitions that one needs to carefully define variables into measurable characteristics or
111 properties of a system (operationalize the system) maintaining stability, and identify what

112 processes or mechanisms are conferring the ability to return to the steady state in the context in
113 which each of these terms are used (Brand and Jax 2007, Whitacre 2012, Nijhout et al 2019).

114

115 There are two overarching questions for examining robust and resilient systems: (1) how do
116 biological systems maintain robustness and resilience in a continuously fluctuating and
117 changing environment? (2) are there common rules that govern resilience and robustness
118 across different scales of biological organization, from molecules to ecosystems? These
119 questions can be addressed by examining biology as a multi-scale, nested, hierarchical system
120 and considering how this complex system navigates changing conditions. We can then develop
121 a holistic view of biological organization with more integrative approaches than the more
122 discipline-specific or molecule-specific approach currently used. This approach will allow us to
123 decode the complexity of biological systems and depict the hierarchical and network designs of
124 biological systems more clearly. When we can deduce these rules, strategies, and mechanisms
125 and any necessary variations, we will be better positioned to describe, model, and forecast
126 resilience and robustness in systems across different levels. In addition, we will be able to
127 create tools that allow us to “hack” biological systems, lending solutions to large problems
128 involving disease, climate change, and threats to biodiversity.

129

130 Here we propose that concepts from **network theory** provide a framework for universal
131 mathematical models to describe robustness and resilience and their relationship. First, we
132 review properties of networks that confer robustness and resilience and provide examples of
133 systems in which network theory has been applied (review the current state of knowledge). We
134 then identify barriers that need to be overcome before scientific investigation can embrace
135 network theory approaches, and describe ways a reintegration of biology and potential
136 technological advances will allow us to overcome those barriers to advance our understanding
137 of mechanisms underlying robustness in biological systems. Lastly, we suggest open questions

138 and research opportunities that remain to be addressed.

139

140 **3. Review of network theory**

141 **3.1 How network theory relates to the study of robustness and resilience**

142 The study of resilience and robustness is a transdisciplinary field that is amenable to a network
143 science framework across different levels of biological organization. One network at a particular
144 level of biological organization (e.g., within a cell) can become a node in a network at a different
145 scale (e.g., across a cell population). Because networks are universal, scientists in all
146 disciplines such as psychology, anthropology, social science, economics and engineering can
147 benefit from a network-based, unified theory of biological robustness and resilience.

148

149 A network is defined as a collection of nodes and edges, which are abstract and universal to
150 systems of all levels but can also be embodied with specific properties unique to individual
151 systems. Each node in a network could be molecules, genes, cellular transduction pathways,
152 individuals or genotypes in a population, species in a community or trophic levels in an
153 ecosystem. For example, a biological community can be regarded as a network of interacting
154 species within a geographic area. Within each species, different populations can have varying
155 levels of interconnectivity, resulting in gene flow or isolation and constituting a dynamic network
156 over time (Proulx et al. 2005; May 2006). Within each population, such as a colony of eusocial
157 insects, individuals operate in a network to fulfill different functions of the colony (Wild et al.
158 2021). Within the organism, physiological regulatory networks operate to adjust functionality of
159 multiple systems depending on environmental conditions (Cohen et al. 2012; Nijhout et al 2019).
160 Within an embryo, different cell populations connect and operate in a developmental regulatory
161 network to pattern the body plan of an organism (Levine and Davidson, 2005). Within each cell,
162 functions are maintained by metabolic networks and cytoplasmic molecular networks, and in the
163 nucleus, transcriptional networks are modulating cellular function (Gómez-Romero et al. 2020).

164

165 Borrowing from the mathematical theory of networks, we propose that key properties
166 determining the robustness and resilience of biological systems at any organizational level are
167 **redundancy, diversity, and connectivity** (see **Fig. 2**). Below we provide definitions and some
168 examples of the relationship between these network properties and robustness and resilience.

169

170 **Redundancy:** Multiple nodes in a network could have the same or overlapping functions. If
171 one or more nodes lose function, others can compensate. Similarly, there could be multiple
172 routes of communication among nodes that confer the same functionality to a network.

173 Redundancy is widely observed in developmental biology, where essential developmental
174 events are often under the control of many genes that have similar or overlapping functions,
175 and the expression of one gene compensates for the failure of another, up to a certain point.

176 Redundancy is often used to explain how embryos tolerate developmental errors to result in
177 the successful development of canalized body plans and morphogenesis (Lachowiec et al.

178 2018). Genetic knockout studies demonstrate the redundancy of many different molecular
179 pathways (El-Brolosy and Stanier, 2017). Similarly, redundancy of neuroendocrine and
180 genetic mechanisms regulating food intake are characteristics of a system regulating energy
181 balance homeostasis (Schwarz et al. 2000). Lastly, food webs with overlapping ecological
182 niches at different trophic levels are considered to confer stability to the system (Sanders et
183 al. 2018).

184

185 **Connectivity:** We broadly define connectivity as the extent to which nodes communicate
186 with each other, or specifically, the number and types of connections (edges) linking nodes
187 in a network. Connectivity is a universal property of networks, but the specific connectivity
188 depends on the structure of the network and mechanisms of communication and interaction.

189 Networks can be described as distributed, decentralized, or centralized, each having

190 different patterns of connectivity. An important concept is the idea of ‘scale-free’ networks,
191 describable by power law distributions of nodes with increasing connectivity degrees. Scale-
192 free connectivity patterns are more likely to occur in biological systems than in informational
193 or other technological systems (Broido and Clauset 2019), but the idea of universal scale-
194 free network connectivity remains slightly contentious and requires more development
195 (Holme, 2019). Connectivity plays a critical role in determining the robustness and resilience
196 of a network. For example, distributed networks with high levels of edges connecting nodes
197 confer stability, as demonstrated in the stability and persistence of metapopulations linked
198 with migration (Hopf et al. 2019). During gastrulation, sheets of cells are robust against any
199 “weak links” of individual cells in the population to allow for successful differentiation into
200 germ layers. However, they are also resilient -- they can bend in response to external forces,
201 while enabling them to still maintain cohesion and function (Davidson 2012). System
202 feedback (i.e., negative feedback or positive feedback) is an essential part of control theory
203 of dynamic systems. In the context of biological networks, feedback mechanisms are
204 encoded in connectivity. Feedbacks in a network allow upstream nodes to send out signals
205 to downstream nodes in response to signals they receive from the downstream nodes. A
206 network with feedback connections will sense the state it is in, compare the current state to
207 a setpoint or desired state, and then adjust its output to meet the desired state. In the
208 scenario where the original set state cannot be met, a network with the appropriate
209 connectivity could activate different feedbacks to break old connections, make new
210 connections to establish a new stable state. Feedback mechanisms allow a network to
211 correct or repair nodes and links that are perturbed or become dysfunctional under certain
212 conditions. Common examples include negative feedbacks in predator-prey systems that
213 result in population oscillations (Li et al. 2011), gene regulation systems that lead to
214 constant gene expression outputs (Gjusvland et al. 2007, Hensel et al. 2012), or DNA
215 proofreading and repair systems (Ashour & Mosammaparast 2021), and positive feedbacks

216 in excitable organism behaviors (O'Boyle et al. 2020) or memories in gene regulatory
217 networks (Qiao et al. 2020, Fang et al., 2018).

218

219 **Diversity:** Diversity within a network can be regarded as the number, variations, and
220 complexity of nodes of differential identities or functions. While the redundancy of nodes
221 provides 'backups' that can compensate for potential failures in any one node, the diversity
222 within a set of nodes provides variations in responses to heterogenous challenges that can
223 enable the system to function under different conditions. For example, genetic variations or
224 differential gene expression states in microbial populations allow for the survival of resistant
225 and persistent cells that could revive the entire population upon the termination of antibiotic
226 treatment. High viral mutation rates create variants that escape host immune systems,
227 resulting in robust viral infections (Drake 1993; Fitzsimmons et al. 2018). Genetic
228 recombination and non-genetic memory (histone modifications, DNA methylation, prion-
229 based inheritance mechanisms) are critical for adaptation to unexpected environment
230 changes. They provide the molecular ingredients for a heritable response, fixing these
231 changes in phenotype within a population (Payne and Wagner 2019). Animals in
232 unpredictable or highly variable environments produce eggs of various sizes or offspring
233 with diverse phenotypes (or genotypes) so that at least some of the offspring are suited for
234 the environment (bet-hedging) (Olofsson et al., 2009; Morrongiello et al., 2012).
235 Communities with more diverse species composition and larger population sizes are more
236 stable and resistant to invasive species than those with smaller sizes (Hopf et al. 2019).

237

238 **We propose that once the redundancy, connectivity, and diversity of networks at any**
239 **level of biological organization are understood, common rules of robustness and**
240 **resilience will emerge.** Each level of biological organization is conceptualized as a network
241 consisting of nodes and edges, with the emergent collective behavior of the network as a node

242 for the network of the next higher level of organization. With this framework, we can ask
243 interesting questions such as how robustness and resilience are related across scales; i.e., are
244 there microscale to macroscale network dynamics that work together to facilitate robustness?

245

246 One important hypothesis that can be tested is whether resilience at lower levels of organization
247 contributes to increasing robustness at higher spatial and biological scales. For example,
248 ecosystem robustness may be maintained when some populations thrive while others decline
249 during an environment change. Thus the output, e.g. survival or appropriate development of a
250 species or an organism, may be robust to environmental insult by virtue of the resilience of
251 underlying interaction networks (see **Box 1**).

252

253 **3.2 Concept of Evolving Networks**

254 While a network with appropriate levels of redundancy, diversity and connectivity could confer
255 robustness and resilience under set conditions, these networks must also be able to adjust
256 under fluctuating and changing environments and evolve over time. Here, we broadly define
257 **evolvability** as the ability of the system to change functions in response to significant
258 perturbations, either by maintaining the original stable state but with enhanced stability, or by
259 moving to a new stable state with changed properties. An evolved network may have broken or
260 established new connections, or connections that have increased/decreased in strength, or
261 direction relative to the remaining connections. An evolvable network can provide the potential
262 to sustain individual and/or population survival in hostile environments, such as what was shown
263 in signaling networks (e.g., Pimpinelli & Piacentini 2020). This concept is commonly referred to
264 as physiological acclimation, phenotypic plasticity, or evolutionary adaptation depending on the
265 level of biological organization. For an example of how robustness, resilience and evolvability
266 play out in metabolic networks in living cells, see **Fig. 3, Box 2**.

267

268 Evolvability can both contribute to and result from robustness and resilience under dynamic
269 conditions. Variation in ecological niches can also promote the evolution of organismal
270 specialization (Cordeiro et al. 2020). Organismal specialization can involve a gain or loss of a
271 response to particular environmental conditions, depending on the dynamism of the
272 environmental stressor (e.g., Saiz et al. 2021). The frequency, magnitude and type of
273 environmental changes experienced by a lineage contribute to the evolution of robustness-
274 supporting networks. The resilience of a system to environmental change is associated with the
275 introduction of novelties into it, or the systems' adaptive capacity (Allen and Holling 2010).
276 However, ecological, physiological or evolutionary constraints may limit a system's response
277 during exposure to extreme conditions that are significantly different than those previously
278 encountered (Dutta et al. 2021). Even so, there may be biological factors that contribute to a
279 species' population robustness even in the face of rapid human-driven changes (e.g. Reid et al.
280 2016).

281

282 Linking the changes that promote robustness or resilience in a particular environment to a single
283 gene or small set of genes (or a small set of organisms) may artificially limit our understanding
284 of the nature of these emerging properties. Evolutionary history shapes responses to
285 environmental conditions; understanding these changes in broader terms that incorporate
286 network changes or community changes is important. It is also important to note that phenotypic
287 plasticity within a generation that can be transmitted to the next generation via epigenetic or
288 non-genetic changes contribute to gain or loss of robustness in an organism (Payne & Wagner
289 2019). Regardless of whether its origin is genetic or epigenetic, study of flexible networks that
290 occur at different levels of organization is needed to understand generalizable strategies. These
291 strategies can then be modeled across scales to show how robustness or resilience at one level
292 relates to those at another. Evolutionary biologists can help us understand how stability and
293 resilience of systems change in response to selection different pressures or how diverse

294 mechanisms create systems that confer stability and control.

295

296 **3.5 Technological and computational advances enabling a network theory paradigm shift**

297 Now is an opportune time to establish a framework that enables the modeling of complex

298 systems across scales to understand biological robustness and resilience. We have access to

299 many state-of-the-art, enabling technologies that can generate expansive molecular-level data

300 sets, including all of the ‘omics’ at the molecular levels. Population-wide and individual

301 behaviors at the large can be recorded remotely and analyzed in near real-time, through large-

302 scale phenomics systems or satellite images. Most importantly, we are developing better tools

303 for data acquisition, analysis, and transfer that will allow us to bridge data from atomic to stellar

304 scales. We now possess technologies to manipulate, observe, analyze and synthesize our

305 understanding of model and non-model systems in controlled lab environments as well as in the

306 field, even up to the global scale. Much is now known about the mechanisms of life, including

307 the biochemical reactions of information and energy processing within microbial cells, programs

308 that define the development and evolution of multicellular organisms from plants to humans, and

309 interactions among diverse life forms that contribute to ecosystem emergence and dynamics.

310

311 At the molecular scale, we can access large quantities of genomic and transcriptomic

312 information in near real time across phenotypes, populations, species, and lineages through

313 NGS, single-cell sequencing and RNA-seq approaches (Estermann et al. 2020; Iacono et al.

314 2019). Advanced mass spectroscopic techniques provide quantitative proteomic and

315 metabolomic analyses to address a wide range of biological questions. Cryo-electron

316 microscopy and tomography can visualize structures of macromolecular complexes in native or

317 near native environments with atomic resolutions. Super-resolution and single-molecule imaging

318 push the detection of molecules and cellular structures in live cells beyond the diffraction limit of

319 light microscopy. We also possess incredible powers in manipulating organisms through

320 genome editing and targeted perturbations. At the organismal level, it is feasible to build
321 synthetic cells and grow organoids that recapitulate essential features of life, and now even
322 sustain mammalian development in vitro (ZhuAguilera-Castrejon et al. 2021). At the population
323 level, the most advanced tracking technologies are able to monitor the dynamics of large
324 populations of animals and changes in ecosystems (Barnas et al. 2019). Various social media
325 outlets offer new platforms to gather and disseminate information at the societal level. Growing
326 computational and mathematical power, coupled with mechanistic modeling, machine learning
327 and artificial intelligence algorithms, have the potential to describe systems and predicate
328 outcomes at different scales, across different levels of biological organization (molecules to
329 ecosystems), spanning broad time scales (nanoseconds, seconds, minutes, hours), or by some
330 metric of complexity (e.g., reaction, pathway, network, hairball). We have an abundance of in-
331 depth data not only from model systems, but also from diverse, non-lab adapted systems. If
332 coalesced into standardized, user-accessible databases (as exemplified by Pangeo for
333 geoscientific data (<http://pangeo.io>), these data can be used to systems and examine strategies
334 universal to different scales. The substantial amount of historical genetic and ecological data
335 can be integrated with current data to develop algorithms of hindcasts to forecast robustness
336 and resilience of systems.

337

338 **4. Barriers to progress: Challenges to the adoption of a network theory framework**

339 While there are many advances that make this paradigm shift possible at this time, there are
340 also many barriers that need to be overcome before a wide range of scientists are able to
341 embrace applying network theory for robustness and resilience across all biological scales. As
342 described in more detail below, engineers, computer scientists, and biologists in different
343 research communities lack a common language for describing the meaning of robustness or
344 resilience across different levels of biological organization, although the field of systems biology
345 has adapted many of the ideas of network theory for some biological systems, typically focused

346 at the molecular, cellular, and tissue levels (e.g., Goldman et al. 2015). In addition, there are
347 many institutional and structural barriers to be overcome. For a unified theory of robustness and
348 resilience to emerge, meaningful incentives to promote collaborative research must be
349 implemented, and traditional divisional barriers must be bridged.

350

351 **4.1 Language:** There is a lack of a common language for describing robustness or resilience
352 across different levels of biological organization (see Table 1). Terms like “resilience” and
353 “robustness” depend on context (molecular, cellular, multi-cellular, population) and differ
354 depending on scientific training or field (math/systems/engineering versus molecular/cell
355 /biology/ecology). Developing a common language across fields provides an opportunity to
356 identify unifying threads across biological levels and across scientific fields (e.g., Davies 2018).

357 Different fields and training have hypotheses and constructed models of “resilience” or
358 “robustness” for certain systems, but scientists outside the field (or approach) may struggle to
359 adopt these models to novel areas, or they may toil to adapt powerful methods of another field
360 to test hypotheses in their own. Common terms will allow scientists to find relevant concepts
361 and empirical data in other fields through literature searches and increase opportunities to
362 collaborate across fields. We propose that the language of network theory (see above) could
363 take a first step toward unifying how researchers from diverse fields conceptualize and
364 communicate information about complex systems.

365

366 Another general problem when integrating information across subdisciplines in the biological
367 sciences is the use of jargon, such that the same phenomena are studied independently,
368 preventing the integration of these disciplines. For example, we have amazing tools for
369 searching primary literature that combine sources of information across diverse scientific
370 disciplines (e.g., Web of Science), but literature searches are restricted to the terms used.
371 Unless this terminology is standardized, or “smart” searches that translate those terms into

372 others that are known to vary across fields are utilized, relevant information will be forever
373 segregated in the minds of researchers of different fields. For example, evolutionary biologists
374 interested in “transgenerational plasticity” may also be interested in “developmental
375 programing” studies in the biomedical literature or “carry-over effects” in the ecological literature.
376 As shown in Table 1, there are terms of similar meaning related to the concepts of robustness
377 and resilience across fields, although in each case there are specific nuances, connotations or
378 usages that differ among terms. Creating interdisciplinary educational programming will
379 enhance this merging of language and terminology so that discipline-specific jargon will be
380 eased.

381

382 **4.2 Lack of technology and experimental testing:** A process that is altered and returns to a
383 previous state (resilient) may exhibit a robust response at a higher level of temporal, spatial, or
384 organismal integration. Measures need to be relevant both to the physical and temporal scale of
385 perturbation and must subsequently transmit a signal associated with this perturbation to
386 adjacent levels. Despite access to huge sets of molecular, behavior, and population data, the
387 current state-of-the-art techniques generally lack the ability to integrate information across
388 length scales and time scales; how networks are defined and interactions quantified requires
389 more development, including new technologies to measure how networks respond to
390 perturbations across scales. It is also unclear which experimental systems best serve as case
391 studies in which this technology can be tested and optimized.

392

393 **4.3 Logistics:** Even when there is a desire to collaborate across fields, finding potential
394 colleagues with similar interests and willingness to collaborate can be challenging. Most
395 scientific conferences are field-specific; thus, it is challenging for scientists to find opportunities
396 to meet and discuss ideas with others in different fields. Even after finding a collaborator, there
397 are logistical hurdles in carrying out a project such as grant administration and international

398 access to sensitive data. In addition, there are institutional barriers that prevent scientists from
399 gaining access to the physical infrastructure and tools needed to study transdisciplinary
400 robustness and resilience across scales. Often funding opportunities and financial incentives
401 that promote the formation of novel transdisciplinary collaborations are limited. When inter- or
402 transdisciplinary proposals are submitted to traditional funding mechanisms, the small pool of
403 reviewers who have discipline-specific expertise but also appreciate the novelty of
404 transdisciplinary collaborations could limit the funding of such proposals.

405

406 **5. Strategies to overcome barriers to progress**

407 **5.1 Reintegration of biology:** Robustness is a concept that crosses many levels of biological
408 organization; a fuller understanding of this characteristic requires the integration of many
409 different disciplines so that a common language emerges. A multidisciplinary team approach
410 would eliminate the inherent scale and model bias, allowing for broader perspectives into the
411 rules of life. We therefore need platforms for researchers who are interested in understanding
412 robustness and resilience from biophysics, mathematics, molecular biology, physiology,
413 population genetics, and ecosystem biology, etc. who do not otherwise interact to brainstorm
414 ideas. This could be done in workshops resulting in new collaborations and possible research
415 coordination networks. Funding mechanisms that promote the formation of new multidisciplinary
416 research teams will also broaden participation of researchers from different backgrounds and
417 institutional types (e.g., primarily teaching institutions, medical schools, and research-intensive
418 universities). Funding agencies such as the National Science Foundation have acknowledged
419 that they can play a major role in promoting cross-disciplinary training of a new generation of
420 scientists by changing funding schemes, paradigms and training programs. These changes will
421 promote cross-disciplinary training of a new generation of scientists who have the skills to
422 discover and describe the important overarching questions of life on Earth. For example, we
423 might harness existing big data and integrate insights from available models of community and

424 population dynamics that are successfully used for metabolism, viruses, microbiomes and
425 ecosystems (Mathias et al. 2017) to construct mathematical models to elucidate common rules
426 underlying resilience and robustness.

427

428 We can also leverage our understanding of the evolution to advance our understanding of
429 robust and resilient systems. With large-scale, multidimensional networks, comparative analysis
430 of network interactions over time will allow the role of evolutionary pressure to be examined in
431 biological robustness. This analysis would move beyond our current reliance on gene or protein
432 networks, to incorporate communications between nearest neighbors (intra- and inter-habitat)
433 and entire communities over time. Then specific nodes or network strategies to overcome
434 challenges and promote robustness that recur over time could then be used to re-engineer
435 robust and scalable networks from gene to community levels.

436

437 **5.2 Development of new tools:** To overcome technological barriers, we need to develop
438 suitable metrics and tools to measure robustness and resilience (or lack thereof) across space
439 and time scales. Ideally such a tool would measure or provide a measure of the response of a
440 system at one scale and seamlessly measure the propagation of the response across multiple
441 scales. For example, noise in the production of RNA during the activation of gene expression
442 can contribute to cellular heterogeneity, resulting in a robust response to perturbations across a
443 population of cells. It is unclear how heterogeneity that is generated at the cellular level affects
444 higher-order processes. Real-time readouts would enable us to capture events that happen
445 throughout the life of the organism. One method of obtaining this type of data would be using
446 optical methods, requiring the development of stable reporters that are not susceptible to
447 bleaching or degradation biases. Optical or other readouts of behavior, neural status, and
448 molecular reporters could then be integrated across scales to provide networks in context.
449 Eventually, to support the development of full molecular networks in context, real-time molecular

450 sampling of a freely-responding (super)-organism will be necessary.

451

452 At the most ambitious level, advanced technologies would be deployed to generate and analyze
453 network data in real time. These technologies might include real-time analysis of
454 transcriptomes, proteomes, metabolomes, neural readouts, and behavior in an environmental
455 context. Not all of these technologies are ready, but many are very close, enhanced by the
456 current growth in computational power (data analytics), real-time sequencing, and computer
457 vision. Assuming no limitations, we could have all the experimental data possible to build
458 dynamic networks. This will require integrated hypotheses that probe networks and additional
459 strategies to address evolutionary selection, particularly the survival of an individual and a
460 population.

461

462 To move toward this integrative network-based analysis of robustness, in the next few years we
463 would need to implement model test systems across multiple life scales with scientific teams to
464 develop testable hypotheses that validated network development. understand
465 In addition to the development of new sensing and measurement technologies, we need to
466 develop new data analytics and computational methods to transform current data streams into
467 multidimensional networks. Enormous, affordable computational capacity is needed in hardware
468 for storage, fast CPU/GPU, parallel processing, and freely available open software. With these
469 developments, we could not only test network robustness but analyze redundancy. Exploring
470 redundancy and determining essential nodes for stability and robustness of networks at multiple
471 levels would provide essential insight into robustness that has been inaccessible due to the lack
472 of global monitoring systems capable of collecting data at sufficient scales. Infrastructure will
473 also need to be created to host these databases, enable user contributions and make
474 databases searchable and available to the public, much like NCBI databases.

475

476 **5.3 Education:** In order to realize a reintegration of biology and generate the workforce needed
477 to create the technologies needed to advance network-level study of biological systems, we
478 need to reform science and math education. Critically, science education from K-12 through the
479 post-doctoral level should be designed to foster problem-based scientific thinking not siloed by
480 discipline. Integration of knowledge from different scientific disciplines needs to become a
481 common way of thinking for the next generation of scientists and innovators. In addition,
482 curricula should include requirements that emphasize analytical reasoning and quantitative
483 skills. Network theory and computer science courses could be included as standard biological
484 science curricula in addition to algebra, calculus, and statistics. It is important to impress upon
485 students how mathematical tools applied in modeling and engineering fields can be employed to
486 derive potential solutions to important societal problems (NRC, 2009, **see Box 3**).

487

488 **5.4 Reorganization of institutional funding mechanisms and infrastructure:** To overcome
489 logistical barriers to advancing research on robustness and resilience, it is important for both
490 funding agencies and research institutions to facilitate and incentivize interdisciplinary
491 interactions among scientists. This can be best accomplished with specialized funding
492 mechanisms that call for such interdisciplinary teams, such as the joint National Institutes of
493 Health and National Science Foundation Ecology and Evolution of Infectious Disease
494 mechanism, and the newly established NSF Integrative Research in Biology (IntBIO) and the
495 Biology Integration Institutes mechanisms. However, it is still a challenge for researchers to
496 establish relationships with collaborators, especially biomathematicians and bioinformaticians
497 with allied interests and expertise. Within research institutions, increasing internal funding
498 opportunities to encourage interdisciplinary collaborations, cluster hiring around interdisciplinary
499 research themes, and encouraging young investigators to engage in collaborative research
500 through established (or new) institutional interdisciplinary or transdisciplinary centers could
501 increase research in robustness and resilience.

502

503 **6. Open questions and research opportunities**

504 Studying biological systems within a unifying framework as living and interacting networks will
505 allow us to address some of the most important biological and social questions of our time (see
506 **Table 2**). Understanding the underlying principles of biological robustness and resilience will
507 allow us to model and anticipate consequences of environmental changes across scales and
508 enable controlling of biological systems for most beneficial outcomes. For example, it is
509 desirable to destabilize the state of persistent neural seizures resulting from epilepsy or
510 neurotoxin exposure, in which neural signals are persistently entrained. Similarly, we may want
511 to model or forecast consequences of anthropogenic effects such as an oil spill and develop
512 ways to return ecosystems to its healthy state. Models of robustness and resilience can inform
513 methods to stabilize or destabilize agri- and aquaculture, improving sustainability or reducing
514 the impact of invasive species. They could also provide insight into disease development and
515 progression, either in natural or modified systems. In a world with a rapidly changing climate,
516 such interventions may be essential for organismal survival and to prevent a sixth extinction but
517 will require significant ethical restraint in their applications.

518

519 Collaboration among researchers from experimental, mathematical, computational and
520 engineering fields will allow the application of developed models to improve the health of the
521 ecosystem and human lives. For example, useful experimental datasets, mathematical models,
522 and computational tools for validating and understanding behaviors of complex systems may be
523 generated. New software incorporating improved parameter definitions and modeling
524 techniques could facilitate the investigation and understanding of intra- and inter-level
525 connections of complex biological systems. Synthetic datasets with standardized format could
526 also result from this research to allow downstream applications for other multiscale studies.

527

528 A greater understanding of the theoretical mechanisms of robust or resilient networks will also
529 help develop better computation tools and more reliable artificial intelligence (AI) algorithms. By
530 identifying essential networks and nodes that promote robustness, we can implement them to
531 perform complex AI-driven tasks such as self-driving vehicles, rover navigation undersea, or on
532 Mars, or exploration of oceans and moons. Robustness and resilience theory will provide new
533 algorithms for implementing complex tasks in constantly changing environments. Understanding
534 the role of robustness in evolution will also enable artificial systems to learn how to rapidly
535 navigate new and complex environmental contexts.

536

537 Finding common rules of robustness and resilience across scales in natural systems will
538 accelerate new discoveries and progress on elucidating the rules of life on Earth, transform the
539 way we understand biological systems and revolutionize synthetic biology. We will begin
540 elucidating design and engineering principles of living systems and use them to deploy stable
541 and viable synthetic systems. As biological systems of different organization levels are
542 interconnected across scales, we may be able to forecast how changes at one organization
543 level affect the other levels, contributing to a holistic understanding of all biological systems.

544

545 **Acknowledgements:** This vision paper resulted from participation in the 2020 National Science
546 Foundation Reintegration of Biology initiative. We thank the anonymous reviewers for helpful
547 comments. EJC was supported in part by NSF-DEB 1754474; JVG was supported in part by the
548 Boston University Superfund Center (NIH P42ES007381), and the NHGRI (U24HG003345).

549

550

551 **Literature Cited**

552 Adger, W. N. 2000. Social and ecological resilience: are they related? *Progress in Human*
553 *Geography* 24(3):347-364. doi.org/10.1191/030913200701540465.

554 Aguilera-Castrejon, A., Oldak, B., Shani, T. et al. 2021. *Ex utero* mouse embryogenesis from
555 pre-gastrulation to late organogenesis. *Nature* doi:10.1038/s41586-021-03416-3.

556 Allen, C.R., Holling, C.S. 2010. Novelty, adaptive capacity and resilience. *Ecology and Society*
557 15(3): 24.

558 Ashour, M.E. and Mosammaparast, N. 2021. Mechanisms of damage tolerance and repair
559 during DNA replication. *Nucleic Acids Research*. doi: 10.1093/nar/gkab101.

560 Baez, A. and J. Shiloach. 2014. Effect of elevated concentration on bacteria, yeasts and cells
561 propagated for production of biological compounds. *Microbial Cell Factories* 13: 181.
562 doi.org/10.1186/s12934-014-0181-5.

563 Barkai, N., Leibler, S. 1997. Robustness in simple biochemical networks. *Nature* 387, 913–917.
564 https://doi.org/10.1038/43199.

565 Barnas, A.F., Darby, B.J., Vandeberg, G.S., Rockwell, R.F., Ellis-Felege, S.N. 2019. A
566 comparison of drone imagery and ground-based methods for estimating the extent of habitat
567 destruction by lesser snow geese (*Anser caerulescens caerulescens*) in La Pérouse Bay.
568 *PLoS ONE* 14(8): e0217049. doi: 10.1371/journal. pone.0217049.

569 Basan, M., S. Hui, H. Okano, Z. Zhang, Y. Shen, J.R. Williamson and T. Hwa. 2015. Overflow
570 metabolism in *E. coli* results from efficient proteome allocation. *Nature* 528(7580): 99-104.
571 10.1038/nature15765.

572 Brand, F. S., and K. Jax. 2007. Focusing the meaning(s) of resilience: resilience as a
573 descriptive concept and a boundary object. *Ecology and Society* 12(1): 23. doi:10.5751/ES-
574 02029-120123.

575 Broddrick, J. T., Rubin, B. E., Welkie, D. G., Du, N., Mih, N., Diamond, S., Lee, J. J., Golden, S.
576 S., and Palsson, B. O. 2016. Unique attributes of cyanobacterial metabolism revealed by
577 improved genome-scale metabolic modeling and essential gene analysis. *Proc. Natl. Acad.
578 Sci. USA* 113(51): E8344-E8353. doi:10.1073/pnas.1613446113.

579 Broido AD, Clauset A. Scale-free networks are rare. *Nat Commun.* 2019 Mar 4;10(1):1017. doi:
580 10.1038/s41467-019-08746-5.

581 Cannon WB. *The Wisdom of the Body*. New York: W. W. Norton & Company; 1932. pp. 177–
582 201.

583 Carlson, J.M., Doyle, J. 2002. Complexity and robustness. *PNAS* 99: 2538-2545.
584 doi.org/10.1073/pnas.012582499.

585 Cohen, A.A., L.B. Martin, J.C. Wingfield, S.R. McWilliams, J.A. Dunne. 2012. Physiological
586 regulatory networks: ecological roles and evolutionary constraints. *Trends in Ecology &
587 Evolution* 27(8): 429-435. doi: 10.1016/j.tree.2012.04.008.

588 Cordeiro, J., de Oliveira, J.H.F, Schmit, H.J., Vizentin-Bugoni, J. 2020. High niche partitioning
589 promotes highly specialized, modular and non-nested florivore-plant networks across spatial
590 scales and reveals drivers of diversification. *Oikos* 619-629. doi: 10.1111/oik.06866.

591 Cumming, G. S., G. Barnes, S. Perz, M. Schmink, K. E. Sieving, J. Southworth, M. Binford, R.
592 D. Holt, C. Stickler and T. Van Holt. 2005. An exploratory framework for the empirical
593 measurement of resilience. *Ecosystems* 8:975-987. doi.org/10.1007/s10021-005-0129-z.

594 Davidson, L.A. 2012. Epithelial machines that shape the embryo. *Trends Cell Biol* 22:82-87.
595 doi: 10.1016/j.tcb.2011.10.005.

596 Davies, KJA. 2016. Adaptive homeostasis. *Mol Aspects Med.* 49: 1–7.
597 doi:10.1016/j.mam.2016.04.007.

598 Davies, P. 2018. *Demon in the machine: How hidden webs of information are solving the*
599 *mystery of life.* University of Chicago Press, Chicago, IL.
600 doi: 10.7208/chicago/9780226669847.001.0001

601 De Marco L, Sassera D, Epis S, Mastrantonio V, Ferrari M, Ricci I, Comandatore F, Bandi C,
602 Porretta D, Urbanelli S. 2017. The choreography of the chemical defensome response to
603 insecticide stress: insights into the *Anopheles stephensi* transcriptome using RNA-Seq. *Sci
604 Rep.* 7:41312. doi: 10.1038/srep41312.

605 Dodds, P.S., Watts, D.J., Sabel, C.F. 2003. Information exchange and the robustness of
606 organizational networks. *PNAS* 100 (21) 12516-12521. doi.org/10.1073/pnas.1534702100.

607 Donelan, S. C., J. K. Hellman, A. M. Bell, B. Luttbeg, J. L. Orrock, M. J. Sheriff, and A. Sih.
608 2019. Transgenerational plasticity in human-altered environments. *Trends in Ecology and
609 Evolution* 35(2): P115-124. doi.org/10.1016/j.tree.2019.09.003.

610 Drake, J.W. 1993. Rates of spontaneous mutation among RNA viruses. *Proc. Natl. Acad. Sci.
611 USA* 90: 4171-4175. doi:10.1073/pnas.90.9.4171.

612 Dutta, A., Hartmann, F.E., Francisco, C.S., McDonald, B.A., Croll, D. 2021. Mapping the
613 adaptive landscape of a major agricultural pathogen reveals evolutionary constraints across
614 heterogeneous environments. *The ISME Journal.* doi: 10.1038/s41396-020-00859-w.

615 Egeland, R., Carlson, E., Sroufe, L.A. 1993. Resilience as a process. *Development and
616 Psychopathology* 5: 517-528. doi.org/10.1017/S0954579400006131.

617 Elton, C. S. *The Ecology of Invasions by Animals and Plants* (Methuen, London, 1958).

618 Estermann MA, Smith CA. 2020. Applying Single-Cell Analysis to Gonadogenesis and DSDs
619 (Disorders/Differences of Sex Development). *Int J Mol Sci.* 21(18):6614. doi:
620 10.3390/ijms21186614.

621 Falk, D.A., Watts, A.C., Thode, A.E. 2019. Scaling Ecological Resilience. *Ecol. Evol.* 7:275.
622 doi.org/10.3389/fevo.2019.00275.

623 Fitzsimmons, W.J., R.J. Woods, J.T. McCrone, A. Woodman, J.J. Arnold, M. Yennawar, R.
624 Evans, C.E. Cameron, A.S. Lauring. 2018. A speed-fidelity trade-off determines the
625 mutation rate and virulence of an RNA virus. *PLOS Biology* 16(6): e2006459. doi:
626 10.1371/journal.pbio.2006459.

627 Fletcher, D., Sarkar, M. 2013. Psychological resilience: A review and critique of definitions,
628 concepts, and theory. *European Psychologist*, 18(1), 12-23. https://doi.org/10.1027/1016-
629 9040/a000124.

630 Gjuvsland, A.B., Plahte, E., Omholt, S.W. 2007. Threshold-dominant regulation hides genetic
631 variation in gene expression networks. *BMC Systems Biology* 1:57. 0.1186/1752-0509-1-57.

632 Goldman, A.W., Burmeister, Y., Cesnulevicius, K., Herbert, M., Kane, M., Lescheid, D.,
633 McCaffrey, T., Schultz, M., Seilheimer, B., Smit, A., St.Laurent, G., and Berman, B. 2015.
634 Bioregulatory Systems medicine: an innovative approach to integrating the science of
635 molecular networks, inflammation, and systems biology with the patient's autoregulatory
636 capacity? *Front. Physiol.* 6:225. doi: 10.3389/fphys.2015.00225.

637 Goldstone JV, Hamdoun A, Cole BJ, Howard-Ashby M, Nebert DW, Scally M, Dean M, Epel D,
638 Hahn ME, Stegeman JJ. 2006. The chemical defensome: environmental sensing and
639 response genes in the *Strongylocentrotus purpuratus* genome. *Dev Biol.* 300(1):366-84. doi:
640 10.1016/j.ydbio.2006.08.066.

641 Gómez-Romero, L., López-Reyes, K., Hernández-Lemus, E. 2020. The large scale structure of

642 human metabolism reveals resilience via extensive signaling crosstalk. *Front. Physiol.* 11: 643 588012. doi: 10.3389/fphys.2020.588012.

644 Hammerschlag, N., O. J. Schmitz, A. S. Flecker, K. D. Lafferty, A. Sih, T. B. Atwood, A. J. 645 Gallagher, D. J. Irschick, R. Skubel, and D. J. Cooke. 2019. Ecosystem function and 646 services of aquatic predators in the Anthropocene. *Trends in Ecology and Evolution* 34(4): 647 360-383. doi.org/10.1016/j.tree.2019.01.005.

648 Hari, A., and Lobo, D. 2020. Fluxer: a web application to compute, analyze and visualize 649 genome-scale metabolic flux networks. *Nucleic acids research* 48, W427-W435.

650 Hensel, Z., Feng, H., Han, B., Hatem, C., Xiao, J. 2012 Stochastic expression dynamics of a 651 transcription factor revealed by single-molecule noise analysis. *Nat. Struct. Mol. Biol.* 19: 652 797-802. doi: 10.1038/nsmb.2336.

653 Holling, C. S. 1973. Resilience and stability of ecological systems. *Ann. Rev. Ecol. Sys.* 4, 1–23. 654 doi: 10.1146/annurev.es.04.110173.000245

655 Holme P. 2019. Rare and everywhere: Perspectives on scale-free networks. *Nat Commun.* 656 10(1):1016. doi: 10.1038/s41467-019-09038-8.

657 Hopf, J.K., G.P. Jones, D.H. Williamson, and S.R. Connolly. 2019. Marine reserves stabilize fish 658 populations and fisheries yields in distributed coral reef systems. *Ecological Applications* 659 29(5): e01905. doi.org/10.1002/eap.1905.

660 Iacono G, Massoni-Badosa R, Heyn H. 2019. Single-cell transcriptomics unveils gene regulatory 661 network plasticity. *Genome Biol.* 20(1):110. doi: 10.1186/s13059-019-1713-4.

662 Kim, P.J., D.Y. Lee, T.Y. Kim, K.H. Lee, H. Jeong, S.Y. Lee, S. Park. 2007. Metabolite 663 essentiality elucidates robustness of *Escherichia coli* metabolism. *Proc. Natl. Acad. Sci.* 664 USA 104(34): 13638-13642. doi: 10.1073/pnas.0703262104.

665 Kitano, H. 2004. Biological robustness. *Nat Rev Genet* 5, 826–837. 666 <https://doi.org/10.1038/nrg1471>

667 König, H.J., Kiffner, C., Kramer-Schadt, S., Fürst, C., Keuling, O., Ford, A.T. 2020. Human- 668 wildlife coexistence in a changing world. *Cons. Biol.* 34(4): 786-794. doi: 669 10.1111/cobi.13513.

670 La Rosa, R., H.K. Johansen, S. Molin. 2018. Convergent metabolic specialization through 671 distinct evolutionary paths in *Pseudomonas aeruginosa*. *mBio* 9: e00269-18. doi.org 672 10.1128/mBio.00269-18.

673 Lachhwiec, J., G.A. Mason, K. Schultz, and C. Queitsch. 2018. Redundancy, feedback and 674 robustness in *Arabidopsis thaliana* BZR/BEH gene family. *Front. Genet.* 9: article 523. 675 doi:10.3389/fgene.2018.00523.

676 Lafuente, E., Beldade, P. 2019. Genomics of developmental plasticity in animals. *Front. Genet.* 677 <https://doi.org/10.3389/fgene.2019.00720>

678 Lesne, A. 2008. Robustness: confronting lessons from physics and biology. *Biological Reviews* 679 83(4): 509-532. doi.org/10.1111/j.1469-185X.2008.00052.x

680 Li, C., Wang, E., Wang, J. 2011. Potential landscape and probabilistic flux of a predator-prey 681 network. *PLoS ONE* 6(3): e17888. doi: 10.1371/journal.pone.0017888.

682 Liang, F. and P. Lindblad. 2016. Effects of overexpressing photosynthetic carbon flux control 683 enzymes in the cyanobacterium *Synechocystis* PCC 6803. *Metabolic Engineering* 38: 56-64. 684 doi:10.1016/j.ymben.2016.06.005.

685 Ma, X., Yu, H., Wang, Y., Wang, Y. 2015. Large-scale transportation network congestion 686 revolution prediction using deep learning theory. *PLoS ONE* 10(3): 0119044. doi:

687 10.1371/journal.pone.0119044.

688 Mareya CR, Tugizimana F, Piater LA, Madala NE, Steenkamp PA, Dubery IA. 2019. Untargeted
689 Metabolomics Reveal Defensome-Related Metabolic Reprogramming in Sorghum bicolor
690 against Infection by Burkholderia andropogonis. *Metabolites*. 9(1):8.

691 Mathias, M., M.D. Flavia, L.G. Rafael, P.P. Coltri, S.I. Perez, D.R. Barneche, D.Y.C. Brandt, K.
692 Nunes, F.G. Daura-Jorge, S.R. Floeter, and P.R. Guimarães. 2017. Nestedness across
693 biological scales. *PLOS ONE* 12(2): e0171691. doi.org/10.1371/journal.pone.0171691.

694 May, R.M. 2006. Network structure and the biology of populations. *Trends in Ecology and*
695 *Evolution* 21(7): 394-399. doi: 10.1016/j.tree.2006.03.013.

696 McEwen, B.S. 2008. Central effects of stress hormones in health and disease: Understanding
697 the protective and damaging effects of stress and stress mediators. *European Journal of*
698 *Pharmacology* 583 (2008) 174–185.

699 Milesi P, Weill M, Lenormand T, LabbÃ© P. Heterogeneous gene duplications can be adaptive
700 because they permanently associate overdominant alleles. *Evol Lett*. 2017 Jul 21;1(3):169-
701 180. doi: 10.1002/evl3.17.

702 Morrongiello, J. R., Bond, N. R., Crook, D. A. and Wong, B. B. 2012. Spatial variation in egg
703 size and egg number reflects trade-offs and bet-hedging in a freshwater fish. *J Anim Ecol*
704 81, 806-17.

705 National Research Council. 2009. Vision and Change: A new biology for the 21st century.
706 National Academies Press.

707 Nielsen, J. 2017. Systems biology of metabolism. *Annual Review of Biochemistry* 86: 245-275.
708 doi 10.1146/annurev-biochem-061516-044757.

709 Nijhout HF, Best JA, Reed MC. Systems biology of robustness and homeostatic mechanisms.
710 Wiley Interdiscip Rev Syst Biol Med. 2019 May;11(3):e1440. doi: 10.1002/wsbm.1440

711 O'Boyle, N., Turner, N.C.A., Roe, A.J., Connolly, J.P.R 2020. Plastic circuits: Regulatory
712 flexibility in fine tuning pathogen circuits. *Trends in Microbiology* 28(5): 360-371. doi:
713 10.1016/j.tim.2020.01.002.

714 Olofsson, H., Ripa, J. and Jonzen, N. 2009. Bet-hedging as an evolutionary game: the trade-off
715 between egg size and number. *Proc Biol Sci* 276, 2963-9.

716 Orth, J.D., I. Thiele, B.Ø. Palsson. 2010 What is flux balance analysis? *Nature Biotechnology*
717 28: 245-248. 10.1038/nbt.1614.

718 Payne, J.L. and Wagner, A. 2019. The causes of evolvability and their evolution. *Nature* 20: 24-
719 39. doi: 10.1038/s41576-018-0069-z.

720 Pienta, K.J, Hammarlund, E.U., Axelrod, R., Brown, J.S., Amend, S.R. 2020. Poly-aneuploid
721 cancer cells promote evolvability, generating lethal cancer. *Evol. Appl.* 13: 1626-1634. doi:
722 10.1111/eva.12929

723 Pimpinelli, S. and Piacentini, L. 2020. Environmental change and the evolution of genomes:
724 Transposable elements as translators of phenotypic plasticity *Functional Ecology* 34: 428-
725 441. doi: 10.1111/1365-2435.13497.

726 Proulx, S.R., Promislow, D.E.L., Phillips, P.C. 2005. Network thinking in ecology and evolution.
727 *TREE* 20(6): 345-353. doi: 10.1016/j.tree.2005.04.004.

728 Qiao, Y., Yan, H., Duan, L., Miao, J. 2020. Finite-time synchronization of fractional-order gene
729 regulatory networks with time delay. *Neural Networks* 126: 1-10. doi:
730 10.1016/j.neunet.2020.02.004.

731 Rauter, T., Burgstaller, S., Gottschalk, B., Ramandi-Muja, J., Bischof, H., Hay, J.C., Graier,

732 W.F., Walli, R. 2020. ER-to-Golgi transport in HeLa cells displays high resistance to Ca²⁺
733 and energy stresses. *Cells* 9(10): 2311. doi: 10.1111/eva.12929.

734 Reid, R.S., Nkedianye, D., Said, M.Y., Kaelo, D., Neselle, M., Makui, O., Onetu, L., Kiruswa, S.,
735 Ole Kamuaro, N., Kristjanson, P., Ongutu, J., BurnSilver, S.B., Goldman, M.J., Boone, R.B.,
736 Galvin, K.A., Dickson, N.M., Clark, W.C. 2016. Evolution of models to support community
737 and policy action with science: Balancing pastoral livelihoods and wildlife conservation in
738 savannas of East Africa. *PNAS* 113(17): 4579-4584. doi:10.1073/pnas.0900313106.

739 Romero, L. M., Dickens, M. J. and Cyr, N. E. (2009). The reactive scope model -- A new model
740 integrating homeostasis, allostasis, and stress. *Hormones and Behavior* 55, 375-389.

741 Saiz, H., Dainese, M., Chiarucci, A., Nascimbene, J. 2021. Networks of epiphytic lichens and
742 host trees along elevation gradients: Climate change implications in mountain ranges. *J.
743 Ecol.* 109: 1122-1132. doi: 10.1111/1365-2745.13538.

744 Sanders et al. 2018. Trophic redundancy reduces vulnerability to extinction cascades. *PNAS*.
745 115 (10) 2419-2424. doi: 10.1073/pnas.1716825115.

746 Sauer, U. 2006. Metabolic networks in motion: ¹³C- based flux analysis. *Molecular Systems
747 Biology* 2: 62. 10.1038/msb4100109.

748 Schwartz, M. W., Woods, S. C., Porte, D., Seeley, R. J., & Baskin, D. G. (2000). Central
749 nervous system control of food intake. *Nature*., 404(6778), 661–671. doi:
750 10.1038/35007534.

751 Selye, H. 1973. Homeostasis and Heterostasis. *Perspectives in Biology and Medicine*, 16, 441-
752 445.

753 Sgro, C.M, Low, A.J., Hoffman, A.A. 2011. Building evolutionary resilience for conserving
754 biodiversity under climate change. *Evol. Appl.* 4(2): 326-337. doi: 10.1111/j.1752-
755 4571.2010.00157.x

756 Sieriebriennikov, B. and Sommer, R. J. (2018). Developmental Plasticity and Robustness of a
757 Nematode Mouth-Form Polyphenism. *Front Genet* 9, 382.

758 Stenuit, B., Agathos, S.N. 2015. Deciphering microbial community robustness through synthetic
759 ecology and molecular systems synecology. *Curr. Opin. Biotechnology* 33: 305-317.
760 doi.org/10.1016/j.copbio.2015.03.012.

761 Sterling, P., Eyer, J., 1988. Allostasis, a new paradigm to explain arousal pathology. In: Fisher,
762 S., Reason, J. (Eds.), *Handbook of Life Stress, Cognition and Health*. John Wiley & Sons,
763 New York, pp. 629–649.

764 Sutherland, J. P. 1990. Perturbations, resistance, and alternative views of the existence of
765 multiple stable points in nature. *Am. Natural.*136, 270–275. doi: 10.1086/285097.

766 Tang, M., Hong, J., Guo, S., Liu, G., Shen, G.Q. 2021. A bibliometric review of urban energy
767 metabolism: Evolutionary trends and the application of network analytical methods. *J.
768 Cleaner Production* 279(10): 123403. doi: 10.1016/j.jclepro.2020.123403.

769 Tayyrov A, Stanley CE, Azevedo S, Künzler M. 2019. Combining microfluidics and RNA-
770 sequencing to assess the inducible defensome of a mushroom against nematodes. *BMC
771 Genomics.* 25;20(1):243. doi: 10.1186/s12864-019-5607-3.

772 Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, Li B, Arden K, Ren B, Nathanson
773 DA, Kornblum HI, Taylor MD, Kaushal S, Cavenee WK, Wechsler-Reya R, Furnari FB,
774 Vandenberg SR, Rao PN, Wahl GM, Bafna V, Mischel PS. 2017. Extrachromosomal
775 oncogene amplification drives tumour evolution and genetic heterogeneity. *Nature*.
776 543(7643):122-125. doi: 10.1038/nature21356.

777 Ukrainseva, S., Yashin, A. I. and Arbeev, K. G. (2016) Resilience versus robustness in aging. *J*

778 Gerontol A Biol Sci Med Sci 71, 1533-1534.

779 Varadhan, R., J.D. Walston, K. Bandeen-Roche. 2018. Can physical resilience and frailty in
780 older adults be linked by the study of dynamical systems? *J. Am. Geriatr. Soc.* 66(8): 1455-
781 1458. doi: 10.1111/jgs.15409.

782 Wada, H. 2019. Damage-Fitness Model: the missing piece in integrative stress models. *Stress*
783 22, 548-562. doi.org/10.1080/10253890.2019.1614556.

784 Wagner, Andreas. 2005. Robustness and evolvability in living systems. Princeton, NJ: Princeton
785 Univ. Press.

786 Walker, B.; Holling, C. S.; Carpenter, S. R. Kinzig, A. 2004. Resilience, adaptability and
787 transformability in social-ecological systems. *Ecology and Society*. 9 (2): 5. doi:10.5751/ES-
788 00650-090205.

789 Weetman D, Djogbenou LS, Lucas E. 2018. Copy number variation (CNV) and insecticide
790 resistance in mosquitoes: evolving knowledge or an evolving problem? *Curr Opin Insect Sci.*
791 27:82-88. doi: 10.1016/j.cois.2018.04.005.

792 Whitacre, J. M. (2012). Biological robustness: paradigms, mechanisms, and systems principles.
793 *Front. Genet.* 3:67. doi: 10.3389/fgene.2012.00067.

794 Wild, B., Dormagen, D.M., Zachariae, A., Smith, M.L., Traynor, K.S., Brockmann, D., Couzin,
795 I.D., Landgraf, T. 2021. Social networks predict the life and death of honey bees. *Nature
796 Communications* 12, 1110. doi: 10.1038/s41467-021-21212-5.

797 Wintle, B.A., Legge, S., Woinariski, J.C.Z. 2020. After the megafires: what next for Australian
798 wildlife? *TREE* 35(9): 753-757. doi: 10.1016/j.tree.2020.06.009.

799 Wu, D., Wang, N., Wu, N. 2019. Vulnerability analysis of global container shipping linear
800 network based on main channel disruption. *Maritime Policy and Management* 46(4): 394-
801 409. doi: 10.1080/03088839.2019.1571643.

802 Xiuong, W., J. A. Morgan, J. Ungerer, B. Wang, P.C. Maness and J. Yu. 2015. The plasticity of
803 cyanobacterial metabolism supports direct CO₂ conversion to ethylene. *Nature Plants* 1:
804 15053. 10.1038/nplants.2015.53.

805 Zhang, D., Iyer, L.M., Burroughs, A.M., Aravind, L. 2014. Resilience of biochemical activity in
806 protein domains in the face of structural divergence. *Curr. Opin. Struct. Biol.* 26: 92-103. doi:
807 [10.1016/j.sbi.2014.05.008](https://doi.org/10.1016/j.sbi.2014.05.008)

808 Zhu, H., Zhang, P., Zhong, Z., Xia, J., Rich, J. Mai, J., Su, X., Tian, Z., Bachman, H., Rufo, J.,
809 Gu, Y., Kang, P., Chakrabarty, K., Witelsky, T.P., Huang, T.J. 2021. Acoustohydrodynamic
810 tweezers via spatial arrangement of streaming vortices. *Sci. Ad.* 7(2): eabc7885. doi:
811 10.1126/sciadv.abc7885.

812