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Fig. 5.20. Long-term trends in annual discharge (km? yr!) for (a) Eurasian and (b) North American Arctic rivers. Gaps in the
North American rivers time series span from 1996 through 2001 due to missing Yukon data from 1996 to 2001 and missing
Mackenzie measurements in 1997 and 1998. Reported slopes are for the period 1976-2020. Note the different scales for
the (a) Eurasian and (b) North American river discharge.

h. Permafrost—S. L. Smith, V. E. Romanovsky, K. Isaksen, K. E. Nyland, A. L. Kholodov, N. I. Shiklomanov,
D. A. Streletskiy, L. M. Farquharson, D. S. Drozdov, G. V. Malkova, and H. H. Christiansen
Permafrost refers to Earth materials (e.g., bedrock, mineral soil, organic matter) that remain at
or below 0°C for 2 years or longer and underlies extensive regions of the high-latitude landscape
(Brown et al. 1997). Overlying the permafrost is the active layer, which thaws and refreezes an-
nually. Permafrost, especially where it contains large volumes of ice, can play a critical role in
the stability of Arcticlandscapes. Warming of permafrost, active layer thickening, and ground
ice melt cause changes in surface topography, hydrology, and landscape stability, thus having
implications for the integrity of the Arctic infrastructure and ecosystems (Romanovsky et al. 2017;
Bjella 2019). Changes in permafrost conditions can also affect the rate of release of carbon dioxide
and methane to the atmosphere, with the potential to accelerate global warming (Schuur 2020).
Permafrost conditions respond to shifts in the surface energy balance through a combination of
interrelated changes in ground temperature and active layer thickness (ALT). Ground temperatures
fluctuate seasonally near the surface, while below the depth of seasonal temperature variation,
ground temperature reflects longer-term changes in climate. Long-term changes in permafrost
temperatures are driven by changes in air temperature (Romanovsky et al. 2017); however, per-
mafrost temperature trends show local variability due to other important influences such as snow
cover, vegetation characteristics, and soil moisture. Monitoring sites across the Arctic (Fig. 5.21)
have been recording ground temperature in the upper 30 m for up to 5 decades, providing critical
data on changes in permafrost stability. Observed changes in ALT relate to shorter-term (year-to-
year) fluctuations in climate and are especially sensitive to changes in summer air temperature
and precipitation.
Travel restrictions in 2020 due to COVID-19 limited data collection in some regions. For boreholes
that have data loggers, the lack of site visits may only delay data acquisition with little impact
on record continuity. For data collected manually, including ALT, there is a loss of data for 2020.
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Fig. 5.21. Location of the permafrost temperature monitoring sites (for which data are shown in Fig. 5.22), superimposed
on average surface air temperature anomalies (°C) during 2000—-20 (with respect to the 1981-2020 mean) from the NCEP-
reanalysis (Kalnay et al. 1996). Reanalysis data provided by the NOAA/|ESRL Physical Sciences Division, Boulder Colorado
(www.esrl.noaa.gov/psd|). See Table 5.2 for site names. Information about these sites is available at http://gtnpdatabase

.org/, http://[permafrost.gi.alaska.edu/sites_map, and https://www2.gwu.edu/~calm|.

1) Permafrost temperatures

Observed increases in permafrost temperatures since the 1980s were generally greater in colder
permafrost at higher latitudes, where the largest increases in air temperature were observed (Figs.
5.21, 5.22). Permafrost temperatures in 2020 (where available) were higher than those observed
in 2019 (except some sites in the Barents region) and the highest on record at a majority of the
observation sites (Fig. 5.22; Table 5.2). In northern Alaska, for example, temperatures in 2020 were
up to 0.1°C higher than in 2019 and in the Alaskan interior the 2020 temperature at one site (Old
Man) was >0.1°C higher than in 2019, about 1.4°C higher than in 1985 (Figs. 5.22a,b). At Alert in
the Canadian High Arctic, permafrost temperatures were also higher in 2020, and 1.4°C higher
than at the start of monitoring in 1978 (Fig. 5.22c).

At some sites, recent increases in the rate of permafrost warming have also been observed
(Fig. 5.22; Table 5.2). In the Canadian High Arctic, warming rates for 2000-20 were greater than
that for the entire 40-year record (Fig. 5.22¢; Table 5.2). Throughout the Arctic, the response of
permafrost with temperatures close to 0°C (i.e., warm permafrost sites) is slower (generally <0.3°C
decade™) due to latent heat effects related to melting ground ice. Warming at some sites with cold
continuous permafrost, however, has been more rapid. For example, in the Beaufort-Chukchi
region, permafrost temperatures in northern Alaska have increased by 0.35° to 0.81°C decade™
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(Fig. 5.22a; Table 5.2). Over a shorter record in northeastern Siberia, permafrost temperatures have
increased by 0.4°C decade, similar to the twenty-first century rate for northern Alaska (0.4° to
0.7°C decade™).
In the Nordic region, permafrost warming reported by Isaksen et al. (2011) and Etzelmdiller et al.
(2020) is continuing (Fig. 5.22d). The longest records in high-Arctic Svalbard (Janssonhaugen) and
in the discontinuous permafrost regions of Scandinavia (Juvvasshee) indicate ground tempera-
tures during 2020 were the highest measured since the late 1990s. The highest warming rate is
observed on Svalbard at the Janssonhaugen site (Table 5.2), where cold permafrost has warmed by
0.7°C per decade since 1998, similar to the higher latitude sites in other regions. Lower warming
rates are observed in the warm discontinuous permafrost of Scandinavia (e.g., Iskoras), similar to
warm permafrost in Russia (e.g., Bolvansky #56) and northwestern North America (Figs. 5.22b,d).

(a)

-3

®) 4

=5 , HHDDVW

Cogo”

L Galbraith Lake (20

=TT Frankiin Bluffs (20.0 m)
-8L
- 4B

Ground Temperature (°C)

Ground Temperature (°C)

Chandalar Shelf (20.0m

g Rt o Ot
TWrigley2 (10.0m) ¢

g

College Peat (20.0m)

eadhorse (20.0 m)
-9r o7 Barrow 2 (20.0m) =-3r
[ = Old Man (15.0m)
-10F o
WestDock (20.0m)
_11 L 1 L I N 1 L 1 n - N I " N i . i L
1980 1990 2000 2010 2020 1980 1990 2000 2010 2020
(€) -4 (d)
" 0F Iskoras Is-B-2 (20.0m) pocaaoaaants
( 1) I Bolvansky #56 (10.0m)
-6+ a o a og o .
-1 oyPengoy #15-06 (10.0m) 4R
o S Bolvansky #65 (10.0m) Ty .
QO Q i [ g - oo™ sofod
g < E
o -8F Pond Inlet (15.0m) 00500 o “2[
2 - 2
© ©
@ = & -3f
g -10+ Arctic Bay (15 sz ’-_./—"' oo “E,-
o B P B ¢ B9
2 Alert BH1 (24.4m) 2
B R 3
@ Resolute (15.0m) 6 =5+ .

-14} A

-16

lert BH2 (24.4m)

" Eureka EUK4 (10.0m)

-6+

1990

1980 2000 2010

2020

oo
Urengoy #15-10 (10.0m)

Janssonhaugen P10 (20.0m)

1980 1990 2000 2010 2020

Fig. 5.22. Time series of mean annual ground temperature (°C) at depths of 9-26 m below the surface at selected measure-
ment sites that fall roughly into priority regions of the Adaptation Actions for a Changing Arctic Project (see Romanovsky
et al. 2017): (a) cold continuous permafrost of northwestern North America and northeastern East Siberia (Beaufort—Chukchi
region); (b) discontinuous permafrost in Alaska and northwestern Canada; (c) cold continuous permafrost of eastern
and High Arctic Canada (Baffin Davis Strait); (d) continuous to discontinuous permafrost in Scandinavia, Svalbard, and
Russia/Siberia (Barents region). Temperatures are measured at or near the depth of zero annual amplitude where the
seasonal variations of ground temperature are less than 0.1°C. Note differences in y-axis value range. Borehole locations
are shown in Fig. 5.21. Data are updated from Christiansen et al. 2010; Romanovksy et al. 2020; Smith et al. 2019; Ednie

and Smith 2015;

Boike et al. 2018.

AUGUST 2021 | State of the Climate in 2020

BAMS

Unauthenticated | Do%mnwggeﬁ B&HF& 07:8% uTC



Table 5.2. Rate of change in mean annual ground temperature (°C decade™) for permafrost monitoring sites shown
in Fig. 5.21. For sites where measurements began prior to 2000, the rate of change for the entire available record
and the period after 2000 are provided. The periods of record are shown in parenthesis below the rates of change.
The names of the stations with record high temperatures in 2020 are shown in red. * denotes sites not reporting

in 2020.

Subregions

North of East Siberia

Alaskan Arctic plain

Northern foothills of the Brooks
Range, Alaska

Northern Mackenzie Valley

Southern foothills of the Brooks
Range, Alaska

Interior Alaska

Central Mackenzie Valley

Baffin Island

High Canadian Arctic

High Canadian Arctic

North of West Siberia

Russian European North

Svalbard

Northern Scandinavia

Southern Norway

Sites Entire Record

Beaufort-Chukchi Region
Duvany Yar (DY) NA

West Dock (WD)*, Deadhorse (De),
Franklin Bluffs (FB), Barrow (Ba)*

+0.40 to +0.81
(1978-2020)

Happy Valley (HV), Galbraith Lake +0.35 to +0.44
(GL) (1983-2020)
Norris Ck (No)*, KC-07(KC)* NA

Discontinuous Permafrost Alaska and NW Canada

Coldfoot (Co)*, Chandalar Shelf
(CS), Old Man (OM)

College Peat (CP), Birch Lake (BL), +0.09 to +0.30
Gulkana (Gu), Healy (He) (1983-2020)

Norman Wells (NW)*, Upto+0.1
Wrigley (Wr)* (1984-2019)

+0.08 to +0.39
(1983-2020)

Baffin Davis Strait Region

Pangnirtung (Pa)*, Pond Inlet (P1)* NA
Resolute (Re)* NA
Alert (Al) @15m* :8'2
Alert (Al) @24 ’
ert (Al) @24m (1979 - 2020)
Barents Region
+0.20 to +0.48
15-06* 15- W
Urengoy 15-06* and 15-08 (Ur) (1974-2019)

+0.05 to +0.26

Bolvansky 56, and 65 (Bo) (1984-2020)

Janssonhaugen (Ja), Bayelva (Bay), +0.7

Kapp Linne 1 (KL) (1998-2020)
Tarfalarggen (Ta), Iskoras Is-B-2 (Is) NA
+0.2

Juvvasshge (Ju) (1999-2020)

Since 2000

+0.44
(2009-20)

+0.49 to +0.74
(2000-20)

+0.44 to +0.48
(2000-20)

+0.6 to +0.8
(2008-19)

+0.14 to +0.41
(2000-20)

+0.04 to +0.26
(2000-20)

<+0.1 to +0.2
(2000-19)

+0.4
(2009-19)

+0.7
(2009-18)

+1.1
+0.6
(2000-20)

+0.08 to +0.77
(2005-19)

+0.04 to +0.48
(2001-20)

+0.6 to +0.8
(2000-20)

+0.1 to +0.5
(2000-20)

+0.2
(2000-20)

2) Active layer thickness

With the exception of the Mackenzie Valley in northwest Canada (at which thaw tubes are
used), active layer data reported here were measured by mechanical probing across grids vary-
ing from 1 ha to 1 km? in size and representative of regional landscapes (Shiklomanov et al. 2012).
Increases in ALT are observed over the period of record in some regions but for other regions

trends are less evident.

The average ALT (0.46 m) for 12 North Slope of Alaska sites reporting in 2020 was 0.015 m below
the 2003-12 mean for the same 12 sites and 0.06 m lower than in 2019 (Fig. 5.23). Observers from
local communities were able to make measurements so that some 2020 ALT data were collected.
Interior Alaska continues to exhibit pronounced ALT increases over the last 25 years, with a new
record average of 0.92 m in 2020.
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Sites in Svalbard displayed similar ALT values to the two previous years, values that were ap-
proximately 0.13 m above the 2003-12 mean (Fig. 5.23). ALT for Greenland in 2020 was similar to
that in 2019, 0.08 m above the 2003-12 mean (Strand et al. 2020).

Sites in West and East Siberia reported increased ALT in 2020, continuing the general trend,
with the average ALT (1.46 m) for West Siberia being a new record maximum for the observation
period (Fig. 5.23). Significant ALT reduction was reported in 2020 for sites in the Russian European
North and Chukotka, but these values are based on fewer sites and may not be representative of
regional trends previously reported (Abramov et al. 2019; Vasiliev et al. 2020).
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Fig. 5.23. Long-term active layer thickness anomalies in six different Arctic regions as observed by the Circumpolar
Active Layer Monitoring (CALM) program. The data are shown as annual anomalies (m) relative to the mean value for the
reference period 2003-12. Positive and negative anomaly values indicate the active layer is thicker or thinner than the
10-year mean values, respectively. The number of sites varies by region (numbers provided on figure), because only sites
with >20 years of continuous thaw depth observations from the end of the thaw season were included. Asterisks on the
figure represent 2020 data, as observations from fewer sites (humber provided beside asterisks) were possible due to
pandemic-related restrictions. Site-specific data are available at www2.gwu.edu/~calm|.

i. Tundra greenness—G. V. Frost, M. J. Macander, U. S. Bhatt, H. E. Epstein, L. T. Berner, J. W. Bjerke, B. C. Forbes,

S. J. Goetz, M. J. Lara, T. Park, G. K. Phoenix, M. K. Raynolds, H. Témmervik, and D. A. Walker

Occupying Earth’s northernmost lands, the Arctic tundra biome is a focal point of global en-
vironmental change because vegetation and underlying permafrost soils are strongly influenced
by warming air temperatures and interactions with sea ice loss in the adjacent Arctic Ocean
(Lawrence et al. 2008; Bhatt et al. 2010; Serreze and Barry 2011; sections 5b—d). One of the most
striking consequences of the Arctic’'s warming climate has been an increase in the productivity
(“greenness”) of tundra vegetation, which is largely governed by summer temperature (Berner et
al. 2020; Bjorkman et al. 2020). Tundra greenness has been monitored by Earth-observing satel-
lites since 1982 and a growing constellation of spaceborne sensors provide increasingly detailed
observations of Arctic ecosystems.

The spaceborne record of global vegetation productivity began in late 1981 using the Advanced
Very High Resolution Radiometer (AVHRR), a sensor that collects daily observations and contin-
ues to operate onboard polar-orbiting satellites today. The long-term dataset reported here is the
Global Inventory Modeling and Mapping Studies 3g V1.2 dataset (GIMMS-3g+), which is based on
corrected and calibrated AVHRR data with a spatial resolution of about 8 km (Pinzon and Tucker
2014). At the time of this writing, however, processed GIMMS-3g+ data are available only through
the 2019 growing season. Therefore, we also report observations from the Moderate Resolution
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Chapter 5 — Acronyms

ALT active layer thickness

AON Arctic Observing Network

ARC Arctic Report Card

AVHRR Advanced Very High Resolution radiometer

AWS automated weather stations

BUI Buildup Index

CALM Circumpolar Active Layer Monitoring

CFFDRS Canadian Forest Fire Danger Rating System

cMC Canadian Meteorological Centre

DMI Danish Meteorological Institute

DU Dobson units

GIMMS-3g+ Global Inventory Modeling and Mapping Studies 3g V1.2

GRACE Gravity Recovery and Climate Experiment

GRACE-FO GRACE Follow-On

HNL high northern latitudes

ICESat-2 Ice, Cloud, and land Elevation 2

IMS Interactive Multisensor Snow and Ice Mapping System

MAR Modele Atmosphérique Régional

MaxNDVI maximum NDVI

MCD43A4 Nadir Bidirectional Reflectance Distribution Function Adjusted
Reflectance

MERRA-2 Modern-Era Retrospective Analysis for Research and
Applications version 2

MLS Microwave Limb Sounder

MODIS Moderate Resolution Imaging Spectroradiometer

MOSAIC Multidisciplinary drifting Observatory for the Study of
Arctic Climate

NDVI Normalized Difference Vegetation Index

NH Northern Hemisphere

NSIDC National Snow and Ice Data Center

OISSTv2 Optimum Interpolation Sea Surface Temperature version 2

oMl Ozone Monitoring Instrument

OSI SAF CClI Ocean and Sea Ice Satellite Application Facility Climate
Change Initiative

PM Passive Microwave

PROMICE Programme for Monitoring of the Greenland Ice Sheet

PSCs polar stratospheric clouds

SAT surface air temperature

SCD snow cover duration

SCE snow cover extent

SLP sea-level pressure

SMB surface mass balance

SMOS Soil Moisture Ocean Salinity

SPEI Standardized Precipitation-Evapotranspiration Index

SSMIS Special Sensor Microwave Imager/Sounder
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SSTs

sea surface tem peratures

SWE snow water equivalent

TOC total ozone column

uv ultraviolet

uvi ultraviolet index

VTA value tree assessment
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