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Date: 2019-10-16-Location: Arctic Ocean, 84.765482°N, 133.905373°E 
The crew of the research icebreaker Polarstern inspects the ice anchors after a sea ice fractur- 
ing event at the early stages of the Multidisciplinary drifting Observatory for the Study of Arctic 
Climate (MOSAiC) experiment. 
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The full report is available from https://doi.org/10.1175/2021BAMSStateoftheClimate.1. 
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Fig. 5.20. Long-term trends in annual discharge (km3 yr−1) for (a) Eurasian and (b) North American Arctic rivers. Gaps in the 

North American rivers time series span from 1996 through 2001 due to missing Yukon data from 1996 to 2001 and missing 

Mackenzie measurements in 1997 and 1998. Reported slopes are for the period 1976–2020. Note the different scales for 

the (a) Eurasian and (b) North American river discharge. 

 

h. Permafrost—S. L. Smith, V. E. Romanovsky, K. Isaksen, K. E. Nyland, A. L. Kholodov, N. I. Shiklomanov, 

D. A. Streletskiy, L. M. Farquharson, D. S. Drozdov, G. V. Malkova, and H. H. Christiansen 

Permafrost refers to Earth materials (e.g., bedrock, mineral soil, organic matter) that remain at 

or below 0°C for 2 years or longer and underlies extensive regions of the high-latitude landscape 

(Brown et al. 1997). Overlying the permafrost is the active layer, which thaws and refreezes an- 

nually. Permafrost, especially where it contains large volumes of ice, can play a critical role in 

the stability of Arctic landscapes. Warming of permafrost, active layer thickening, and ground 

ice melt cause changes in surface topography, hydrology, and landscape stability, thus having 

implications for the integrity of the Arctic infrastructure and ecosystems (Romanovsky et al. 2017; 

Bjella 2019). Changes in permafrost conditions can also affect the rate of release of carbon dioxide 

and methane to the atmosphere, with the potential to accelerate global warming (Schuur 2020). 

Permafrost conditions respond to shifts in the surface energy balance through a combination of 

interrelated changes in ground temperature and active layer thickness (ALT). Ground temperatures 

fluctuate seasonally near the surface, while below the depth of seasonal temperature variation, 

ground temperature reflects longer-term changes in climate. Long-term changes in permafrost 

temperatures are driven by changes in air temperature (Romanovsky et al. 2017); however, per- 

mafrost temperature trends show local variability due to other important influences such as snow 

cover, vegetation characteristics, and soil moisture. Monitoring sites across the Arctic (Fig. 5.21) 

have been recording ground temperature in the upper 30 m for up to 5 decades, providing critical 

data on changes in permafrost stability. Observed changes in ALT relate to shorter-term (year-to- 

year) fluctuations in climate and are especially sensitive to changes in summer air temperature 

and precipitation. 

Travel restrictions in 2020 due to COVID-19 limited data collection in some regions. For boreholes 

that have data loggers, the lack of site visits may only delay data acquisition with little impact 

on record continuity. For data collected manually, including ALT, there is a loss of data for 2020. 
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Fig. 5.21. Location of the permafrost temperature monitoring sites (for which data are shown in Fig. 5.22), superimposed 

on average surface air temperature anomalies (°C) during 2000–20 (with respect to the 1981–2020 mean) from the NCEP- 

reanalysis (Kalnay et al. 1996). Reanalysis data provided by the NOAA / ESRL Physical Sciences Division, Boulder Colorado 

(www.esrl.noaa.gov/psd / ). See Table 5.2 for site names. Information about these sites is available at http: / /gtnpdatabase 

.org /, http: / /permafrost.gi.alaska.edu /sites_map, and https: / /www2.gwu.edu /~calm /. 

 

1) Permafrost  temperatures 

Observed increases in permafrost temperatures since the 1980s were generally greater in colder 

permafrost at higher latitudes, where the largest increases in air temperature were observed (Figs. 

5.21, 5.22). Permafrost temperatures in 2020 (where available) were higher than those observed 

in 2019 (except some sites in the Barents region) and the highest on record at a majority of the 

observation sites (Fig. 5.22; Table 5.2). In northern Alaska, for example, temperatures in 2020 were 

up to 0.1°C higher than in 2019 and in the Alaskan interior the 2020 temperature at one site (Old 

Man) was >0.1°C higher than in 2019, about 1.4°C higher than in 1985 (Figs. 5.22a,b). At Alert in 

the Canadian High Arctic, permafrost temperatures were also higher in 2020, and 1.4°C higher 

than at the start of monitoring in 1978 (Fig. 5.22c). 

At some sites, recent increases in the rate of permafrost warming have also been observed 

(Fig. 5.22; Table 5.2). In the Canadian High Arctic, warming rates for 2000–20 were greater than 

that for the entire 40-year record (Fig. 5.22c; Table 5.2). Throughout the Arctic, the response of 

permafrost with temperatures close to 0°C (i.e., warm permafrost sites) is slower (generally <0.3°C 

decade−1) due to latent heat effects related to melting ground ice. Warming at some sites with cold 

continuous permafrost, however, has been more rapid. For example, in the Beaufort-Chukchi 

region, permafrost temperatures in northern Alaska have increased by 0.35° to 0.81°C decade−1 

http://www.esrl.noaa.gov/psd/
http://gtnpdatabase/
http://permafrost.gi.alaska.edu/sites_map
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(Fig. 5.22a; Table 5.2). Over a shorter record in northeastern Siberia, permafrost temperatures have 

increased by 0.4°C decade−1, similar to the twenty-first century rate for northern Alaska (0.4° to 

0.7°C decade−1). 

In the Nordic region, permafrost warming reported by Isaksen et al. (2011) and Etzelmüller et al. 

(2020) is continuing (Fig. 5.22d). The longest records in high-Arctic Svalbard (Janssonhaugen) and 

in the discontinuous permafrost regions of Scandinavia (Juvvasshøe) indicate ground tempera- 

tures during 2020 were the highest measured since the late 1990s. The highest warming rate is 

observed on Svalbard at the Janssonhaugen site (Table 5.2), where cold permafrost has warmed by 

0.7°C per decade since 1998, similar to the higher latitude sites in other regions. Lower warming 

rates are observed in the warm discontinuous permafrost of Scandinavia (e.g., Iskoras), similar to 

warm permafrost in Russia (e.g., Bolvansky #56) and northwestern North America (Figs. 5.22b,d). 
 
 

 

Fig. 5.22. Time series of mean annual ground temperature (°C) at depths of 9–26 m below the surface at selected measure- 

ment sites that fall roughly into priority regions of the Adaptation Actions for a Changing Arctic Project (see Romanovsky 

et al. 2017): (a) cold continuous permafrost of northwestern North America and northeastern East Siberia (Beaufort–Chukchi 

region); (b) discontinuous permafrost in Alaska  and  northwestern  Canada;  (c)  cold  continuous  permafrost  of  eastern 

and High Arctic Canada (Baffin Davis Strait); (d) continuous to discontinuous permafrost in Scandinavia, Svalbard, and 

Russia /Siberia  (Barents  region).  Temperatures  are  measured  at  or  near  the  depth  of  zero  annual  amplitude  where  the 

seasonal variations of ground temperature are less than 0.1°C. Note differences in y-axis value range. Borehole locations 

are shown in Fig. 5.21. Data are updated from Christiansen et al. 2010; Romanovksy et al. 2020; Smith et al. 2019; Ednie 

and Smith 2015; Boike et al. 2018. 



AUGUST 2021 | State  of the C l imate  in 2020  
Unauthenticated | Do

5
w
.
n

T
lo

H
ad

E
e

A
d 

R
05

C
/1
T
7
I C
/22 07:1S92P9M6 UTC  

Table 5.2. Rate of change in mean annual ground temperature (°C decade−1) for permafrost monitoring sites shown 
in Fig. 5.21. For sites where measurements began prior to 2000, the rate of change for the entire available record 
and the period after 2000 are provided. The periods of record are shown in parenthesis below the rates of change. 
The names of the stations with record high temperatures in 2020 are shown in red. * denotes sites not reporting 
in 2020. 

Subregions Sites Entire Record Since 2000 

Beaufort-Chukchi Region 

North of East Siberia Duvany Yar (DY) NA 
+0.44 

(2009–20) 

Alaskan Arctic plain 
West Dock (WD)*, Deadhorse (De), 
Franklin Bluffs (FB), Barrow (Ba)* 

+0.40 to +0.81 
(1978– 2020) 

+0.49 to +0.74 
(2000–20) 

Northern foothills of the Brooks 
Range, Alaska 

Happy Valley (HV), Galbraith Lake 
(GL) 

+0.35 to +0.44 
(1983–2020) 

+0.44 to +0.48 
(2000–20) 

Northern Mackenzie Valley Norris Ck (No)*, KC-07(KC)* NA 
+0.6 to +0.8 
(2008–19) 

Discontinuous Permafrost Alaska and NW Canada 

Southern foothills of the Brooks 
Range, Alaska 

Coldfoot (Co)*, Chandalar Shelf 
(CS), Old Man (OM) 

+0.08 to +0.39 
(1983–2020) 

+0.14 to +0.41 
(2000–20) 

Interior Alaska 
College Peat (CP), Birch Lake (BL), 

Gulkana (Gu), Healy (He) 
+0.09 to +0.30 

(1983–2020) 
+0.04 to +0.26 

(2000–20) 

Central Mackenzie Valley 
Norman Wells (NW)*, 

Wrigley (Wr)* 
Up to +0.1 

(1984–2019) 
<+0.1 to +0.2 

(2000–19) 

Baffin Davis Strait Region 

Baffin Island Pangnirtung (Pa)*, Pond Inlet (PI)* NA 
+0.4 

(2009–19) 

High Canadian Arctic Resolute (Re)* NA 
+0.7 

(2009–18) 

 
High Canadian Arctic 

Alert (Al) @15m* 
Alert (Al) @24m 

+0.6 
+0.4 

(1979 – 2020) 

+1.1 
+0.6 

(2000–20) 

Barents Region 

North of West Siberia Urengoy 15-06* and 15-08 (Ur)* 
+0.20 to +0.48 

(1974–2019) 
+0.08 to +0.77 

(2005–19) 

Russian European North Bolvansky 56, and 65 (Bo) 
+0.05 to +0.26 

(1984–2020) 
+0.04 to +0.48 

(2001–20) 

Svalbard 
Janssonhaugen (Ja), Bayelva (Bay), 

Kapp Linne 1 (KL) 
+0.7 

(1998–2020) 
+0.6 to +0.8 
(2000–20) 

Northern Scandinavia Tarfalarggen (Ta), Iskoras Is-B-2 (Is) NA 
+0.1 to +0.5 
(2000–20) 

Southern Norway Juvvasshøe (Ju) 
+0.2 

(1999–2020) 
+0.2 

(2000–20) 
 

2) Active layer thickness 

With the exception of the Mackenzie Valley in northwest Canada (at which thaw tubes are 

used), active layer data reported here were measured by mechanical probing across grids vary- 

ing from 1 ha to 1 km2 in size and representative of regional landscapes (Shiklomanov et al. 2012). 

Increases in ALT are observed over the period of record in some regions but for other regions 

trends are less evident. 

The average ALT (0.46 m) for 12 North Slope of Alaska sites reporting in 2020 was 0.015 m below 

the 2003–12 mean for the same 12 sites and 0.06 m lower than in 2019 (Fig. 5.23). Observers from 

local communities were able to make measurements so that some 2020 ALT data were collected. 

Interior Alaska continues to exhibit pronounced ALT increases over the last 25 years, with a new 

record average of 0.92 m in 2020. 
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Sites in Svalbard displayed similar ALT values to the two previous years, values that were ap- 

proximately 0.13 m above the 2003–12 mean (Fig. 5.23). ALT for Greenland in 2020 was similar to 

that in 2019, 0.08 m above the 2003–12 mean (Strand et al. 2020). 

Sites in West and East Siberia reported increased ALT in 2020, continuing the general trend, 

with the average ALT (1.46 m) for West Siberia being a new record maximum for the observation 

period (Fig. 5.23). Significant ALT reduction was reported in 2020 for sites in the Russian European 

North and Chukotka, but these values are based on fewer sites and may not be representative of 

regional trends previously reported (Abramov et al. 2019; Vasiliev et al. 2020). 

 

Fig. 5.23. Long-term active layer thickness anomalies in six different Arctic regions as observed by the Circumpolar 

Active Layer Monitoring (CALM) program. The data are shown as annual anomalies (m) relative to the mean value for the 

reference period 2003–12. Positive and negative anomaly values indicate the active layer is thicker or thinner than the 

10-year mean values, respectively. The number of sites varies by region (numbers provided on figure), because only sites 

with >20 years of continuous thaw depth observations from the end of the thaw season were included. Asterisks on the 

figure represent 2020 data, as observations from fewer sites (number provided beside asterisks) were possible due to 

pandemic-related restrictions. Site-specific data are available at www2.gwu.edu /~calm /. 

 
 

i. Tundra greenness—G. V. Frost, M. J. Macander, U. S. Bhatt, H. E. Epstein, L. T. Berner, J. W. Bjerke, B. C. Forbes, 

S. J. Goetz, M. J. Lara, T. Park, G. K. Phoenix, M. K. Raynolds, H. Tømmervik, and D. A. Walker 

Occupying Earth’s northernmost lands, the Arctic tundra biome is a focal point of global en- 

vironmental change because vegetation and underlying permafrost soils are strongly influenced 

by warming air temperatures and interactions with sea ice loss in the adjacent Arctic Ocean 

(Lawrence et al. 2008; Bhatt et al. 2010; Serreze and Barry 2011; sections 5b–d). One of the most 

striking consequences of the Arctic’s warming climate has been an increase in the productivity  

(“greenness”) of tundra vegetation, which is largely governed by summer temperature (Berner et  

al. 2020; Bjorkman et al. 2020). Tundra greenness has been monitored by Earth-observing satel- 

lites since 1982 and a growing constellation of spaceborne sensors provide increasingly detailed 

observations of Arctic ecosystems. 

The spaceborne record of global vegetation productivity began in late 1981 using the Advanced 

Very High Resolution Radiometer (AVHRR), a sensor that collects daily observations and contin- 

ues to operate onboard polar-orbiting satellites today. The long-term dataset reported here is the 

Global Inventory Modeling and Mapping Studies 3g V1.2 dataset (GIMMS-3g+), which is based on 

corrected and calibrated AVHRR data with a spatial resolution of about 8 km (Pinzon and Tucker 

2014). At the time of this writing, however, processed GIMMS-3g+ data are available only through 

the 2019 growing season. Therefore, we also report observations from the Moderate Resolution 
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Chapter 5 – Acronyms 
 

ALT active layer thickness 

AON Arctic Observing Network 

ARC Arctic Report Card 

AVHRR Advanced Very High Resolution radiometer 

AWS automated weather stations 

BUI Buildup Index 

CALM Circumpolar Active Layer Monitoring 

CFFDRS Canadian Forest Fire Danger Rating System 

CMC Canadian Meteorological Centre 

DMI Danish Meteorological Institute 

DU Dobson units 

GIMMS-3g+ Global Inventory Modeling and Mapping Studies 3g V1.2 

GRACE Gravity Recovery and Climate Experiment 

GRACE-FO GRACE Follow-On 

HNL high northern latitudes 

ICESat-2 Ice, Cloud, and land Elevation 2 

IMS Interactive Multisensor Snow and Ice Mapping System 

MAR Modèle Atmosphérique Régional 

MaxNDVI maximum NDVI 

MCD43A4 Nadir Bidirectional Reflectance Distribution Function Adjusted 

Reflectance 

MERRA-2 Modern-Era Retrospective Analysis for Research and 

Applications version 2 

MLS Microwave Limb Sounder 

MODIS Moderate Resolution Imaging Spectroradiometer 

MOSAiC Multidisciplinary drifting Observatory for the Study of 

Arctic Climate 

NDVI Normalized Difference Vegetation Index 

NH Northern Hemisphere 

NSIDC National Snow and Ice Data Center 

OISSTv2 Optimum Interpolation Sea Surface Temperature version 2 

OMI Ozone Monitoring Instrument 

OSI SAF CCI Ocean  and  Sea  Ice  Satellite  Application  Facility  Climate 

Change Initiative 

PM Passive Microwave 

PROMICE Programme for Monitoring of the Greenland Ice Sheet 

PSCs polar stratospheric clouds 

SAT surface air temperature 

SCD snow cover duration 

SCE snow cover extent 

SLP sea-level pressure 

SMB surface mass balance 

SMOS Soil Moisture Ocean Salinity 

SPEI Standardized Precipitation-Evapotranspiration Index 

SSMIS Special Sensor Microwave Imager/Sounder 
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SSTs sea surface temperatures 

SWE snow water equivalent 

TOC total ozone column 

UV ultraviolet 

UVI ultraviolet index 

VTA value tree assessment 
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