Print this Page for Your Records

Close Window

Please review your work, no changes may be made after the revision deadline, October 5, 2020 at 11:59 PM EST.

Control/Tracking Number: 22-A-1695-BPS Activity: Abstract Current Date/Time: 9/30/2021 5:35:24 PM

DIRECTING SPATIOTEMPORAL FIRING PATTERNS IN PRIMARY NEURON NETWORKS USING NANOMAGNETIC FORCES

Author Block: : Conner Killeen¹, Connor L. Beck², Anja Kunze².

¹Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA, ²Electrical and Computer Engineering, Montana State University, Bozeman, MT, USA.

Abstract:

Controlling the connectivity and firing patterns in neuronal networks is key to information processing in the brain. Engineering directed connectivity patterns *in vitro*, where firing patterns propagate reliably and reproducibly along a user-defined direction within a regrown neurite network, has been challenging. Recent efforts to overcome these challenges are based on using magnetic nanomaterials as a mechanical cue to orient the growth of neurite networks, *e.g.*, within magnetic field gradients. It remains, however, unclear if mechanically oriented neurite networks would exhibit a predefined connectivity or firing pattern. Here, we grew dissociated primary cortical neurons (E18, rat) on microelectrode arrays (MEA60) under two distinct mechanical force patterns (including magnetic nanoparticles). These force patterns exposed the cortical neurons to either a weak (0.3 fN/mm) or a strong force gradient (0.97 fN/mm, forces were estimated based on a single particle, 100 nm iron oxide). Directed neurite growth was assessed between two and five days *in vitro* (DIV) using neurite tracing from phase-contrast images. At eight and fourteen DIV, extracellular recordings were performed for 4 min at 10 kHz. Extracellular firing patterns were then extracted from unfiltered signal recordings and applied to Granger causality testing (Multivariate Analysis) to compute a probability of potentially directed signal causality. Probability values above p = 0.001 were then used to excerpt connectivity maps. Based on the connectivity maps, we found that spatiotemporal firing patterns propagate perpendicular to the gradient ascent in both the weak and the strong force gradient patterns. For our control growth conditions (no force or no magnetic field gradient), the Granger causality test indicated randomized firing patterns. These findings hold great promise to engineer neuronal growth and spatiotemporal firing patterns using nanomaterials and forces at the neuronal interface and in next-generation neurological implants.

Presentation Preference (Complete):

: Platform or Poster

: Yes

If Yes, please provide the information below.

Full Name: : Anja Kunze

Phone Number: : 406-994-7172

Email Address: : anja.kunze@montana.edu

Chair Gender: Female
Chair Career Level: Other

Sponsorship (Complete):

Topic (Complete): 4B Mechanosensation; 9C Neuroscience: Experimental Approaches and Tools

Technique (Complete):

First Selection: Electrophysiology **Second Selection:** Nanotechnology

Third Selection: Fluorescence and Light Microscopy

Fourth Selection: None/Other

Payment (Complete): Your credit card order has been processed on Thursday 30 September 2021 at 5:34 PM.

Status: Complete

Biophysical Society 5515 Security Lane, Suite 1110 Rockville, MD 20852 Phone: 240-290-5600

For technical inquiries, <u>click here</u> to contact cOASIS Helpdesk or call 217-398-1792. Technical Support is available Monday-Friday, 8am-5pm Central Time.

1 of 2 9/30/2021, 4:35 PM

Powered by <u>cOASIS</u>, The Online Abstract Submission and Invitation System SM © 1996 - 2021 <u>CTI Meeting Technology</u> All rights reserved. <u>Privacy Policy</u>

2 of 2