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does not allow for a wide area of stress change within the main Brawley 
swarm fault because of the thin (20m) normal fault zone and the low 
permeability of the strike-slip fault. 

However, the choice of geometric and hydraulic parameters in our 
simulation is somewhat arbitrary, and we have neglected the effect of 
fault reactivation on permeability [e.g., Guglielmi et al., 2015; Im et al., 
2018; Cappa and Rutqvist, 2011]. Assuming a larger fault-zone perme
ability or a permeability increase with shear strain (for both the normal 
and strike-slip faults) would have resulted in different pressure distri
bution. The high permeability zone associated with the normal fault 
could also be much thicker, and therefore, a wider area of the strike-slip 
fault could have been directly pressurized. Abundant seismicity con
necting the reservoir and swarm area was detected in December 2010 
(Fig. 10) when the significant subsidence initiated (Fig. 10 inset). This 
observation may imply some stimulation below the reservoir. A shal
lower weak swarm was also detected roughly two days before the main 
2010 swarm (Fig. 10b). These events might have been driven by shallow 
poro-thermo elastic stress change from the geothermal operation or by a 
possible vertical hydraulic connection between the reservoir and the 
swarm area. If the strike-slip fault was stimulated, the increased pressure 
at the injectors might have reached the depth of the swarm. Alterna
tively, such stimulation may redistribute the natural pressure distribu
tion if the initial pressure was far from hydrostatic. The pressure change 
at depth can contribute to an additional Coulomb stress increase. 

5.3. A swarm triggered by small stress perturbations 

Our model is used to validate a possible scenario to connect the 
geothermal field with the observations (seismicity and subsidence). We 
acknowledge that the comparison of the modeling results with the 
observation is more qualitative than quantitative. Coulomb stress vari
ations are estimated only to first order because the details of the faults 
geometries are not known. We did not carry out the sensitivity tests 
needed to assess uncertainties due to the computation efforts. However, 
we believe that our best-fit simulation provides a reliable first-order 
estimation since it successfully reproduced flow rate, wellbore pres
sure, and surface subsidence. The pattern and amplitude of subsidence 
and Coulomb stress changes in our simulation, which we interpret to 
have triggered the swarm in 2012, are similar to the observation and 
those estimated by Wei et al. [2015] based on the normal fault slip 
distribution estimated from surface deformation. These stress changes 

are estimated to be of the order of 0.01MPa. This value is much smaller 
than the typical 1-10MPa stress drop during earthquakes. So, these 
events classify as ‘triggered’ according to the terminology suggested by 
McGarr et al. [2002]. 

The geothermal operation probably contributed to initiating the 
swarm but was not a significant source of the elastic strain released by 
the swarm. The bulk of the released strain was probably of tectonic 
origin. The Brawley area is indeed a zone of continuous strain build-up 
and seismicity (Fig. 1e). Geothermal operation temporarily boosted the 
seismicity rate. However, the boost disappeared a few months after the 
onset of the Brawley swarm, even though the geothermal flow rate and 
injection pressures remain at the same level until mid-2014 and 
Coulomb stress kept increasing (Fig. 8c). This observation suggests that 
fault reactivation during the swarm released most of the shear stress that 
was initially available to drive earthquakes at depth. 

The stress changes that triggered the 2012 swarm are about ten times 
smaller than the Coulomb stress changes estimated to drive aftershocks 
following large earthquakes [King et al., 1994]. Swarms may be sensi
tive to smaller stress changes than regular earthquakes. This will be 
expected if they occur in a zone of high pore pressure, as is commonly 
assumed [e.g., Thomas et al., 2012]. According to the rate-and-state 
model of earthquake nucleation, the seismicity rate is multiplied by 
exp(Δτ/a(σ-P)) [Dieterich, 1994], where Δτ is the Coulomb stress 
change, a is friction rate parameter, σ is normal stress, and P is pressure. 
Accordingly, a small Coulomb stress change can result in some signifi
cant triggering if ‘a’ is small or the pore pressure is high. However, a 
high pore pressure should, in principle, favor aseismic slip, so it is un
clear that a large pore pressure is a right explanation for the high 
sensitivity of the seismicity in the swarm area. 

5.4. Implication for mitigation strategy of induced earthquakes 

According to our simulations, the geothermal operations at Brawley 
released elastic shear stress, which had accumulated as a result of tec
tonic loading, via a combination of aseismic inelastic deformation and 
triggered seismicity. A similar strain release occurred at the Coso 
geothermal field and can explain the lack of aftershocks following the 
2019 Ridgecrest earthquakes [Im et al., 2021]. To mitigate induced 
seismicity, one may consider releasing the elastic shear stress that can 
potentially drive large seismic events. However, the 2012 Brawley 
swarm is a notable example that shows that relatively large seismic 

Fig. 10. (a): Seismicity cross-section similar to that of Fig. 1b, but focused on 2010 December using the quake template matching (QTM) seismicity catalog [Ross 
et al., 2019]. Events from a burst in December 2010 are highlighted in red. As shown in the inset, these seismicity burst corresponds to the timing of the reservoir 
pressure increase (high flowrate) and surface subsidence acceleration. (b): Time vs. depth for the 2012 December swarm. The burst was initiated on day 13 at 
shallow strata. 
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