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S U M M A R Y
While distributed acoustic sensing (DAS) has been demonstrated to have great potential in
seismology, DAS data often have much higher levels of stochastic and coherent noise (e.g.
instrument noise, traffic vibrations) than data collected by traditional seismometers. The lin-
early, densely spaced nature of DAS arrays presents a suite of opportunities for more innovative
processing techniques that can be used to address this issue. One way to take advantage of
DAS’s array architecture is through the use of curvelets. Curvelets have a non-uniform scaling
property that makes them an excellent tool for representing images with discontinuities along
piecewise, twice continuously differentiable curves. This anisotropic scaling property makes
curvelets an ideal processing tool for DAS data, for which the measured wavefield can be
represented as an image composed of curved features. Here, we use the curvelet frame as a
tool for the manipulation of DAS signal and demonstrate how this manipulation can improve
our ability to identify important features in DAS data sets. We use the curvelet representation
to partition the measured wavefield using DAS data collected near Ridgecrest, CA, following
the 2019 Mw7.1 Ridgecrest earthquake. Here, we isolate the earthquake-induced wavefield
from coherent and stochastic noise using the curvelet frame in an effort to improve the results
of template matching of the Ridgecrest aftershock sequence. We show that our wavefield-
partitioning technique facilitates the identification of over 30 per cent more aftershocks and
greatly reduces the magnitude of diurnal depressions in the aftershock catalogue due to cultural
noise.

Key words: Instrumental noise; Image processing; Time-series analysis; Seismicity and
tectonics.

1 I N T RO D U C T I O N

Distributed acoustic sensing (DAS) is a new tool in seismology that
repurposes fibre optic cables as arrays of densely spaced strain-
meters (see Hartog 2017, for a review). DAS employs a laser inter-
rogator unit, which sends short laser pulses through optical fibres
and performs interferometry to measure phase shifts in the Rayleigh
backscattered light. These phase shifts are quasi-linearly propor-
tional to strain or strain rate in the fibre. This strain is averaged
over a ‘gauge length’ and sampled at discrete intervals along the
fibre that constitute the so-called channels of the array. Laser pulses
are sent at regular intervals to measure the temporal dependence of
strain in the fibre.

DAS has the potential to transform seismology because of its
dense spatial sampling and its capacity to transform in situ fibres
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into seismic arrays (see Zhan 2019, for a review). DAS functions
as a large-N array of instruments, and because of this high spatial
sampling, DAS may allow seismologists to probe the subsurface
at resolutions that have historically been limited to expensive ex-
ploration experiments (Dou et al. 2017; Ajo-Franklin et al. 2019).
Pre-existing fibre optic cables in place for telecommunications can
be easily re-purposed as DAS arrays. DAS’s capacity to use pre-
existing fibre allows seismologists to both deploy seismic arrays
faster and extend seismology, particularly dense array seismology,
to logistically challenging locations of immense societal and scien-
tific interest (Lellouch et al. 2019; Lindsey et al. 2019; Sladen et al.
2019; Booth et al. 2020; Spica et al. 2020).

However, DAS remains an emerging technology, and there still
exist fundamental challenges in the acquisition and analysis of DAS
data. One such challenge is noise, both stochastic and coherent.
Stochastic noise in DAS signals is likely dominated by instrumental
deficiencies like sampling error and phase noise and is bounded by
the Crámer–Rao lower bound (Costa et al. 2019). Coherent noise
can be defined as the coherent components of the DAS wavefield
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that are not interesting to the end user. In many cases, particularly for
seismologists, traffic noise is a persistent source of coherent noise.
Traffic noise is especially problematic for DAS because pre-existing
fibre optic cables are often placed along major roads. Both stochastic
and coherent noise are problematic because they can either mask or
obscure relevant signal. This obfuscation is exemplified in Fig. 1(b),
which shows a case in which cultural noise masks much of the signal
generated by a local earthquake. Fig. 1(b) also shows that even for
a relatively quiet station along the DAS array, stochastic noise is
much stronger in the DAS station than in a nearby broad-band
station. DAS stochastic noise is in large part instrument related,
and the noise level in DAS will likely vary between generations
and decrease as technology improves. However, since DAS signal
degrades with distance, stochastic noise may persist as a challenge
at the far end of the DAS array for many years to come.

Previous efforts to remove stochastic noise from DAS data have
been varied and proposed both outside of and within seismology.
Many of these efforts have successfully applied time–space analysis
techniques from signal processing such as wavelet transforms (Qin
et al. 2012), 2-D edge detection (Zhu et al. 2013), 2-D bilateral
filters (He et al. 2017), empirical mode decomposition (Qin et al.
2017b) and principal component analysis (Ibrahim et al. 2020).
In particular, Qin et al. (2017a) proposed an approach to remove
random noise in the curvelet domain. They recognized that the
curvelet domain, much like the wavelet domain, sparsely represents
DAS data, and they perform thresholding of curvelet coefficients
below a certain magnitude to remove random noise. We build on
this approach in this study. More recently, van den Ende et al. (2021)
proposed a deep learning approach for removing incoherent signal
with a focus on DAS data.

There has been less discussion of removing coherent noise from
DAS, partly because coherent noise is not well defined. The dif-
ference between coherent noise and the signal of interest depends
on how we define coherent noise and what the signal of interest
is. Usually, signals of different types can be distinguished by one
or more physical characteristics. For the seismic wavefield, signals
can be distinguished using the various velocity attributes of seismic
waves. We can exploit this quality by transforming our DAS data
from the spatiotemporal domain to the frequency–wavenumber do-
main, where our signals are localized by velocity. Williams et al.
(2019) illustrate this point by localizing seismic waves from ocean
waves recorded by a submarine DAS fibre using the frequency–
wavenumber domain. It follows that if the coherent noise is local-
ized by velocity, then muting the velocity range in the frequency–
wavenumber domain associated with the coherent noise removes
the coherent noise from the signal. This method of denoising has
been used in exploration seismology for decades (Embree et al.
1963) and has been applied as a pre-processing step to DAS data
(Fang et al. 2020). Though frequency–wavenumber domain filter-
ing is commonly used, other tools, such as the continuous wavelet
transform, have been used to diminish coherent noise in DAS data
as well (Martin et al. 2018).

With DAS, we encounter stochastic noise and coherent noise
together. We argue that a simple, unified approach to noise reduction
in DAS would be useful. Moreover, given the large volumes of DAS
data that seismologists are prone to process, this filtering approach
must be scalable such that it can be applied to terabytes of data in
a reasonable amount of time. In this paper, we propose combining
some of the principles described in this introduction into a unified
approach to isolate a signal of interest in seismological data by
wavefield partitioning entirely under the curvelet transform. We
then illustrate the efficacy of this approach by applying it as a

pre-processing step for template matching applied to a subset of
DAS data recording the Mw7.1 Ridgecrest earthquake aftershock
sequence.

2 M E T H O D O L O G Y

2.1 Curvelets

Curvelets were described in a continuous setting (Candés & Donoho
2004) as an almost optimal representation of images with disconti-
nuities along twice continuously differentiable (C2) curves. Candés
et al. (2006) developed the fast discrete curvelet transform (FDCT),
making curvelets easily applicable in image processing. This trans-
form has since been used widely in a number of fields (see Ma
& Plonka 2010, for examples). Curvelets have been evaluated by
how well they represent a 2-D object, F, that has a discontinuity
along a curve, but is otherwise smooth, using an m-term approxi-
mation of the object, Fm. It has been shown that for such objects
the mean squared error of the curvelet frame representation de-
cays with m−2[log(m)]3, whereas the mean squared error of the
wavelet representation decays with m−1 (Candés & Donoho 2004).
We claim that DAS data sections measuring the seismic wavefield
can be approximated as smooth images with discontinuities along
C2 curves because DAS data are marked by periods of quiescence
(smoothness) interrupted by wavefronts (curvature). If this is a good
approximation, the curvelet frame is the best available non-adaptive
sparse representation of DAS data. In this study, we perform denois-
ing of DAS data through applications of the FDCT on DAS record
sections of finite length in time and space (e.g. Fig. 1b).

Following closely after Candés et al. (2006), curvelets are
constructed by first creating a polar tiling in the frequency–
wavenumber domain. Specifically, we take the 2-D Fourier trans-
form of our function and compartmentalize the resultant function
using special tiling geometry. Letting (ω, k) be a coordinate in
the frequency–wavenumber domain and letting r = √

ω2 + k2 and
θ = arctan (ω/k), we can construct the polar tiling using windowing
functions:

U j (r, θ ) = 2− 3 j
4 W

(
2− j r

)
V

(
2� j

2 �θ
2π

)
, (1)

where Uj(r, θ ) is a polar wedge corresponding to radius r, orientation
θ , and scale integer j. Here, W is a window function along the radius
and V is a window function along the orientation. Importantly, the
scale, given by 2−j, is inversely related to the scale integer term.
Note, then, that the radius is dilated by 2 for each jump in scale,
and the number of wedges increases by a factor of 2 for every two
jumps in scale. This prescribes a non-uniform scaling that results in
curvelets becoming more needle-like with finer scales. The spacing
of r and θ are thus dictated by the number of scales and the number of
wedges at the coarsest scale. To be clear, tiles further away from the
origin of the frequency–wavenumber domain correspond to smaller
and more needle-like curvelets in the spatiotemporal domain. This
relationship is illustrated in Fig. 2(b). The intuitive motivation for
this non-uniform scaling rests in the observation that smooth curves
appear more linear when viewed from up close, and thus needle-like
objects can capture the sharp edges of smooth curves if the needles
are sufficiently small.

Now, a so-called ‘mother’ curvelet, φj(x, t), with scale integer j
and coordinate (x, t) in the space–time domain, is defined by taking
the inverse Fourier transform of the polar wedge:

φ j (x, t) = F−1[U j (ω, k)], (2)
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where Uj(ω, k) is the wedge described in eq. (1) in Cartesian coor-
dinates in the frequency–wavenumber domain. This term, φj(x, t),
is called the mother curvelet because all curvelets of scale 2−j can
be defined as some rotation and translation of φj(x, t). Indeed, with
a sequence of rotation angles defined as θl = 2π · 2�− j/2� · l, where
l = 0, 1, 2, ... satisfying θ l ∈ [0, 2π ) and translation parameters
defined as k = (k1, k2), all curvelets can be defined as

φ j,l,k(x, t) = φ j (x, t) · Rθl ·
(

(x, t) − (
xk1 , tk2

)( j,l)
)

, (3)

where Rθl is a standard rotation matrix and (xk1 , tk2 )( j,l) is the posi-
tion prescribed by R−1

θl
(k1 · 2− j , k2 · 2− j ). Finally, the curvelet coef-

ficients, the values of which we will use in the subsequent denoising
procedure, are defined using the scalar product of the curvelets with
an arbitrary function f ∈ L2(R2):

c j,k,l = 〈 f, φ j,k,l〉 =
�

f (x, t) · φ j,k,l (x, t)dxdt = 1

(2π )2

�

f (ω, k) · φ j,k,l (ω, k)dωdk, (4)

where φ j,k,l is the conjugate of φj, k, l.
In words, these curvelets form a set of basis functions that, when

weighted by curvelet coefficients, can represent an arbitrary smooth
function like the seismic wavefield in space and time. However, the
antecedent equations describe the curvelet construction for the con-
tinuous case, and seismic data are collected at discrete intervals.
So, in practice, a few modifications to this methodology are neces-
sary to make this continuous transformation applicable to discrete
data. One modification is that the polar wedges, defined in eq. (1),
are necessarily computed as so-called Cartesian shears. An illus-
tration of the compartmentalization of the frequency–wavenumber
domain into Cartesian shears is given in Fig. 2(a). The construc-
tion of these shears requires thoughtful considerations of geometry
and windowing that are given a more complete treatment in Ma &
Plonka (2010). In short, these windows are real, positive, smooth
functions that localize the frequency–wavenumber domain into a
tiling of trapezoidal shears and allow the resultant curvelets to form
a tight frame. Additionally, these shears are not rectangular, and

(a) (b) (c)

Figure 1. (a) Map showing the geographic setting for the data segments in this figure. The yellow star indicates the location of the Ml 1.79 earthquake recorded
by the Ridgecrest array and the LRL station at distances of 44 km (specifically the station highlighted in panel c) and 62 km, respectively. The blue line indicates
the location of the DAS array that recorded the time-series shown in the middle image of this figure. The white box indicates the approximate location of the
DAS station whose individual station data are shown in this figure. The orange triangle shows the location of the broad-band station (LRL) whose station
data are shown in this figure. The black and grey lines delineate faults and roads, respectively. The light red dots indicate the locations of aftershocks used as
templates in this study. The inset gives regional context. (b) Full DAS record section at the time of a regional earthquake, the location of which is shown in the
map in panel (a). The black arrow marks the location of the DAS channel given as an example in panel (c) (channel 899). (c) Comparison of station data from
a single DAS station (top) with the east–west component of station data from the nearby LRL broad-band station (bottom). The DAS stations in panels (b) and
(c) and the broad-band station in panel (c) are bandpass filtered from 2 to 8 Hz using a Butterworth filter.

Figure 2. (a) Schematic illustration of the polar tiling used to construct curvelet coefficients. The wedges delineate the compartmentalization of the frequency–
wavenumber domain. (b) Plot of select curvelets in the frequency–wavenumber domain. (c) Plot of the same curvelets as in panel (b) in the spatiotemporal
domain. Colours of arrows correspond to equivalent curvelets between panels (b) and (c).
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so the necessary inverse fast Fourier transform (FFT) for the dis-
crete case is impossible to compute. To get around this problem,
the FDCT employs a ‘wrapping’ operation; that is, the curvelets
are duplicated many times and situated adjacent to each other over
the frequency–wavenumber domain. Then, the inverse FFT is taken
on a rectangular section centred on the origin in this domain (see
section 3.3 of Candés et al. 2006, for details). Curvelets of different
scales and orientations for the discrete case are shown in both the
frequency–wavenumber and spatiotemporal domains in Fig. 2(b).
As mentioned previously, the spacing of r and θ are determined by
the number of scales and the number of tiles at the coarsest scale.
These parameters are user-defined in the FDCT according to the
data matrix sampling and size.

2.2 Stochastic noise removal

The curvelet frame has previously been used to remove random
noise from seismograms collected using traditional seismic arrays
and has even been extended to non-uniformly sampled arrays (Hen-
nenfent & Herrmann 2006). Denoising with curvelets is often ac-
complished by producing white noise images with some assumed
variance, performing FDCT transforms on these images to establish
scale-dependent thresholds, and applying either hard or soft thresh-
olding using these thresholds (Starck et al. 2002). This method
is imperfect because it requires an estimation of the variance and
assumes that the noise is white.

With DAS seismic data, we benefit from having continuously
recorded data over long periods of time. In these long time-series,
there are usually time windows in which there is minimal coherent
signal. These time periods can be used as benchmarks for the level
of incoherent noise throughout the time-series. So, in this study,
we chose wedge-dependent denoising thresholds using the distri-
bution of curvelet coefficient amplitudes in quiet sections of the
time-series. Implicit in this selection of thresholds is the assump-
tion that the stochastic noise levels are independent of time. That
is, we assume that the noise in a quiet time segment will be repre-
sentative of the noise throughout the data. This is not always true,
as we expect the noise in DAS to fluctuate with time according to
environmental factors like temperature variability. However, we still
favour a uniform application of thresholding because non-uniform
applications are generally less stable and can produce artefacts like
step discontinuities in the noise floor of denoised data. Because we
intend to apply this technique to more data than can be visually
scrutinized, we consider these potential issues to be unacceptable
in this workflow. We also choose thresholds that are not dependent
on translational parameter k. This means that we ignore any spa-
tial and temporal variability of the noise floor within the quiet time
segment. This is a reasonable assumption because we consider the
noise floor to be largely reflective of the DAS interrogation unit,
which is shared by all channels in the array, and because including
a temporal variability within each time segment would suggest that
the noise floor is periodic according to the arbitrarily chosen time
segment duration.

When choosing a thresholding technique, one often chooses be-
tween hard thresholding and soft thresholding. Here, we chose soft
thresholding, because it minimizes noise that barely exceeds the
threshold and prevents the generation of artefacts that result from
preserving high-amplitude noise curvelet coefficients and zeroing
their neighbours. Soft thresholding is defined as

c j,k,l =
{

0 if |c j,k,l | < τ j,l

c j,k,l − sign [c j,k,l ] · τ j,l if |c j,k,l | > τ j,l
(5)

where cj, k, l is a given curvelet coefficient and τ j, l is its associated
threshold. We show an example of applying soft thresholding using
empirical thresholds defined using a pure stochastic noise window
in Fig. 3. Soft thresholding systematically diminishes the observed
amplitude of the seismic wavefield. This is acceptable in the coming
example, but for amplitude dependent analyses, hard thresholding
may be preferable.

2.3 Coherent noise removal

As described earlier, coherent noise can often be localized from
interesting signal using velocity contrasts in the frequency–
wavenumber domain. The curvelet frame, by construction, creates a
polar tiling in the frequency–wavenumber domain that finely com-
partmentalizes the wavefield by velocity and scale. Naturally, then,
we can exploit this compartmentalization to filter out coherent noise
under the curvelet transform. This can be done by simply muting
the wedges under the curvelet transform that contain the part of the
wavefield associated with the coherent noise. The curvelet trans-
form has been used in array seismology for similar purposes in the
past, namely to improve measurements of SS precursors by elim-
inating interfering phases (Yu et al. 2017) and to help isolate the
scattered wavefield from teleseismic P waves (Zhang et al. 2020).

We can justify our decision to perform velocity filtering un-
der the curvelet transform in a few ways. First, it is convenient
to perform coherent noise filtering under the same transform with
which we perform stochastic noise filtering. Additionally, this fil-
tering procedure is straightforward and useful for experimentation.
The Cartesian shear framework provides a convenient basis with
which to identify and remove wavefield components in velocity-
scale space. Yet another reason is that the windowing functions
used by the FDCT employ tapers that are effective at removing
large artefacts produced by the creation of discontinuities in the
frequency–wavenumber domain. We show this in Fig. 4, where we
evaluate the removal of coherent noise using real data. These tapers
are also highly localized in the angular direction, yielding a precise
separation of velocities.

2.4 Unified approach

Since the methods described for removing stochastic noise and
coherent noise are both performed under the same transform, we
can remove both of these noise sources in the same step. This
procedure simply involves transforming from the spatiotemporal
domain to the curvelet domain under the FDCT, performing thresh-
olding using thresholds determined by a noise window to remove
stochastic noise, muting the curvelet wedges that are associated
with unwanted signal, and finally performing the inverse FDCT
to return to the spatiotemporal domain. If the threshold values are
fixed, then the order of the second and third steps does not matter.
Performing these procedures together simplifies pre-processing and
lowers computational costs by avoiding additional transforms. The
simplicity argument for this approach should not be undervalued.
Rather than requiring a set of arbitrary signal processing decisions,
our methodology effectively offers a ‘dial’ to turn down stochas-
tic noise and a ‘switch’ to turn off coherent signal by velocity and
scale. The computational cost reduction may vary, but if one were to
perform stochastic noise filtering under the curvelet transform and
coherent noise filtering under a second transform, the cost saved
would amount to the cost of the forward and inverse computations
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(a) (b)

(c) (d)

Figure 3. Illustration of stochastic denoising using soft-thresholding in the curvelet domain. Thresholds for this example were determined empirically using
a window with little coherent signal from the same data set. (a) Unfiltered record sections for the entire DAS array. (b) Curvelet filtered record sections for
the entire DAS array. (c) The individual DAS station data from the record sections in panels (a) (black) and (b) (red) for the DAS station marked by the grey
(channel 422) arrows. (d) The individual DAS station data from the record sections in panels (a) (black) and (b) (red) for the DAS station marked by the black
(channel 780) arrows.

Figure 4. Illustration of coherent denoising using the polar-tiling framework of the curvelet construction. (a) Pseudo-synthetic noisy window made by
superimposing a record section with high cultural noise onto a record section with an earthquake. (b) Time-series in which velocities in the range 0–1000 m
s−1 were removed using an untapered FK filter. (c) Time-series in which velocities in the range 0–1000 m s−1 were removed using our curvelet windowing
technique. The black arrows point to a region of prominent filter-generated artefacts.

of the second transform multiplied by the number of spatiotemporal
windows being filtered.

3 A P P L I C AT I O N

3.1 Data

Following the Mw7.1 Ridgecrest earthquake on 2019 July 5, an Op-
taSense ODH3 interrogator unit was used to deploy a DAS array in

the town of Ridgecrest, CA, near the epicentre of the event. This
array samples at 250 Hz and has 1250 channels with a channel
spacing of 8 m for an overall cable length of 10 km. The array
continuously recorded much of the aftershock sequence. We choose
this array both because it has recorded many earthquakes, and be-
cause it is linear. The linearity of the array ensures that the apparent
velocities of incoming waves are mostly constant across the en-
tire array. A linear array geometry is not strictly necessary to per-
form the curvelet filtering approach outlined above, but the linear
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geometry ensures that the earthquake wavefield is more localized
in the frequency–wavenumber domain. The location and aperture
of the DAS array is shown in Fig. 1(a).

3.2 Template matching

In order to demonstrate the efficacy of our filtering approach, we
apply it to the DAS data prior to a template matching procedure
to better illuminate small earthquakes masked by noise. Template
matching is a technique that correlates known events, known as tem-
plates, with continuous time-series to detect previously unknown
events that are similar to the templates (Gibbons & Ringdal 2006).
Li & Zhan (2018) showed that template matching could be suc-
cessfully applied to DAS data. This technique has been modified
to perform template matching using the Ridgecrest DAS array to
supplement the Southern California Seismic Network’s (SCSN)
catalogue of Ridgecrest earthquake aftershocks (Li et al. 2021).
Though this catalogue is successful in improving the number of cat-
alogued events, the template matching catalogue contains diurnal
depressions in the number of events due to cultural noise. Addition-
ally, the completeness of this catalogue may be limited by the noise
floor of the Ridgecrest DAS array. We seek to show that these lim-
itations can be mitigated by applying our unified curvelet filtering
framework to Ridgecrest DAS array data.

Our filtering framework includes a few pre-processing steps. We
first remove the stations of the array that are either coiled or too
close to the interrogator unit. We then segment these array data into
60-s time windows recorded at the original sampling rate by the
1142 DAS stations that remain after the station removal step. The
temporal and spatial sampling rates dictate the velocities associated
with Cartesian shears under the curvelet domain. The number of
samples along the time and space axes control the frequency and
wavenumber resolution respectively, which in turn dictates the pre-
cision of the velocity filtering. We segment these array data to ensure
that each allocation of memory does not exceed a few gigabytes,
but 60-s segments are long enough so as to ensure we have suffi-
cient frequency resolution for velocity filtering. Segmenting these
data also allows us to filter in parallel. We applied a Tukey window
along the time axis to minimize artefacts due to discontinuities at
the start and end of each segment. Time segments were staggered
such that we could clip the tapered portions of the time segments
when constructing the final time-series. For each time segment, we
applied a median filter to remove a source of optical noise, not
handled by the curvelet filter, that results in random, high-strain
spikes in the data (Bakku 2015). Failure to remove these spikes
before filtering results in the creation of star-like artefacts after fil-
tering. Though median filtering mitigates this issue, these artefacts
are often unavoidable. An adaptive spectrum screening algorithm
can potentially help better separate earthquake signals from coher-
ent noise, but for consistency with the original template matching
framework, we bandpass filter each station between 2 and 8 Hz (Li
et al. 2021).

For each time segment, we applied our unified curvelet filter pro-
cedure described above. For the stochastic noise removal, we used
a representative noise window to establish thresholds for the entire
time-series. We opted to use a single representative noise window
rather than multiple noise windows throughout the time-series, be-
cause using multiple noise windows produces the undesirable side
effect of discontinuities in the noise floor. After applying these
thresholds, we muted wedges associated with apparent velocities
between 0 and 1000 m s−1 in both the east-going and west-going

directions at scales corresponding to the seismic wavefield. We then
took the inverse FDCT and removed the tapered portions of the time
segment. We then placed the filtered time segment in its appropriate
position in the final, filtered time-series.

The templates used in the template matching algorithm were
taken directly from the data. So, once we had filtered the data, we
had also filtered the corresponding templates. We found template
candidates using the SCSN catalogue and determined which tem-
plate candidates to keep using a criterion that requires at least a set
number of stations to exceed a fixed signal-to-noise ratio (SNR).
Because the curvelet denoising improves the SNR of the data, the
curvelet filtered data produced many more templates that met our
criteria. To be fair, we only used templates that the filtered and un-
filtered data had in common. We then performed template matching
on both our filtered and unfiltered time-series. Processing 192 hr
of DAS data (2019 July 14–21) using our intentionally redundant
methodology on 24 CPUs took just over 19 hr. Both the catalogue
produced before filtering and the catalogue produced after filtering
are plotted, by number of events per hour, in Fig. 5. The template
matching catalogue corresponding to the unfiltered data contains
20 935 events while the template matching catalogue correspond-
ing to the filtered data contains 28 044 events. There exists a diurnal
pattern in the difference between the filtered and unfiltered cata-
logues, with the difference reaching peaks during the daytime when
traffic noise is highest. In particular, we see a 56 per cent increase
in number of events during the daytime (7 a.m. to 7 p.m.) and a 21
per cent increase in number of events during the night-time (7 p.m.
to 7 a.m.).

To confidently identify the cause of this diurnal effect, we applied
this template matching procedure to the same DAS data filtered us-
ing only the coherent noise filter and only the stochastic noise filter.
These hourly catalogues are shown in Supporting Information Fig.
S1. This diurnal pattern in the difference between the filtered and
unfiltered catalogues is amplified when only the coherent noise is
removed while this diurnal pattern is non-existent when only the
stochastic noise is filtered. This observation suggests that the im-
provement made by the coherent velocity filter is largely due to the
removal of traffic-generated surface waves. Interestingly, perform-
ing only the stochastic noise filtering results in a catalogue with
slightly fewer events (19 826 events) than the catalogue produced
using unfiltered data (20 935 events); incongruously, performing
the stochastic and coherent noise filtering together results in a cat-
alogue with many more events (28 044 events) than the catalogue
produced using data filtered using only the coherent noise filtering
(25 731 events). This observation may be explained by noting that
the stochastic noise filter will amplify both the earthquake wave-
forms and the coherent noise (e.g. traffic noise), and so the stochastic
noise filtering in the presence of a large amount of coherent noise
may be detrimental to the template matching procedure and stochas-
tic noise filtering in the presence of little coherent noise is beneficial
to the template matching procedure.

4 D I S C U S S I O N

Clearly, the curvelet filtering improved the performance of the tem-
plate matching algorithm. One noteworthy feature of Fig. 5 is the
reduction in the magnitude of the diurnal depressions in the after-
shock catalogue. This is largely due to the removal of the cultural
noise (mostly surface waves generated by vehicles), which is far
more prevalent during the daytime, by the coherent noise filter. Be-
cause the apparent velocities of the earthquake-generated surface
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Figure 5. Hourly (PST) event counts of the catalogues created using template matching. A 3-hr moving average filter was applied to each of the time-series.
The yellow line shows the hourly counts for the catalogue of templates made using the SCSN catalogue. The red line shows the hourly counts for the catalogue
created using template matching (TM) on the unfiltered data. The blue line shows the hourly counts for the catalogue created using TM on the curvelet filtered
data.

waves also often fall in our filtered velocity range, earthquake sig-
nals in our filtered time-series are often degenerate. We argue this
loss of information is well compensated by the remarkable illu-
mination of the earthquake-generated body waves. As is clear in
Fig. 5, at no point did we see a decrease in the number of catalogued
events due to filtering, suggesting that the information recovered by
filtering outweighed the information lost. Given that DAS is more
sensitive to the low-velocity wavefield, earthquake-generated sur-
face waves may prove useful in the detection of earthquakes in the
future (Lior et al. 2021). However, traffic noise is also composed of
largely low-velocity surface waves and is thus especially prominent
in DAS data, making the removal of this noise essential.

To evaluate the amount of overlap between catalogues, we com-
pute the proportion of events in the original template matching
catalogue that were also detected in the new template matching cat-
alogue made using filtered data. Because the templates are altered in
the filtering process, the same event may be matched with different
templates between catalogues. This possibility adds significant un-
certainty to any measure of overlap between catalogues. We choose
to measure this overlap using the metric that if for any given event
in the original catalogue, there is a corresponding event in the new
catalogue with an origin time within 2.5 s of that of the given event,
then the given event is represented in both catalogues. By this met-
ric, 73 per cent of the events in the original catalogue were carried
over to the new catalogue. Indeed, this metric is conservative; if we
extend the time window about the origin to 5 s, then we find that
83 per cent of the events in the original catalogue are represented
in the new catalogue. Additionally, the fact that some events are
not represented in the new catalogue does not necessarily represent
a failure of the filtering methodology, but could be indicative of a
success. Cultural noise is a consistent source of coherent signal that
produces observables that are frequently almost replicated at differ-
ent times. This noise can potentially produce false detections in the
original catalogue that will not be present in the new catalogue, for
which cultural noise has been largely removed. This removal of false
detections is partially evidenced by the diurnal pattern shown in the
plot of the per cent of events retained between catalogues by hour

shown in Supporting Information Fig. S2, which suggests that the
percentage of events retained between catalogues is lowest during
a large portion of the population’s morning commute. Further evi-
dence that the detections lost from the original catalogue to the new
catalogue are false detections is given by the observation that most
of these detections were made using noisy templates as opposed to
quiet templates. These noisy templates thus provide a substantial
coherent noise wavefield that can produce cross-correlation peaks
with the coherent noise in the data. An example of one of these
suspected false detections is shown in Supporting Information Fig.
S3.

Our results summarized in Fig. 5 and Supporting Information Fig.
S1 suggest that, in combination with the coherent noise filtering,
the stochastic noise filtering produced a considerable improvement
in the number of catalogued events. This improvement likely results
from the fact that for a template matching algorithm to label a
detection, the cross-correlation between the template and the time-
series must produce a peak that exceeds some significance threshold.
It is easier, then, for an event’s correlation to exceed a significance
threshold when the baseline noise is lower. Additionally, in the
absence of coherent noise filtering, the stochastic noise filtering
produced a slight decrease in the number of catalogued events.
This decrease may potentially be explained by the fact that the
stochastic noise filtering increases the SNR of all types of coherent
signal, thus increasing the prominence of coherent noise in the data
and making event detection more challenging. We suggest that this
explanation for the loss of detections is more plausible than an
explanation of simple overfiltering, because there exists a diurnal
pattern in the loss of detections (we see a 9 per cent decrease in the
number of events between 7 a.m. and 7 p.m. and only a 3 per cent
decrease in detections between 7 p.m. and 7 a.m.). This pattern runs
counter to our expectation for overfiltering, for which we would
expect overfiltering to present more of a problem during the night-
time, because the detection threshold for template matching is much
lower when coherent noise is lower.

Though this curvelet filtering methodology performs very well
for this problem and is easily generalizable to other problems, it
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has some limitations. Many of these limitations are a result of
the imperfect nature of DAS as a measuring instrument. Indeed,
curvelets are exceptional at representing smooth discontinuities,
but not rough discontinuities. In reality, DAS data exhibit many
rough discontinuities such as random spikes of high strain that act
as localized discontinuities. We also note that, for high-strain events
like earthquakes and large vehicles driving near the fibre, strain
rates are so high that they produce DAS phase errors that result in
additional discontinuities. Optical fading, a spatially random effect
that results from the destructive interference of scatterer-generated
electric fields (Zhou et al. 2013), produces muted stations that,
when near unmuted stations, act as discontinuities. A similar effect
can be produced by variability in the degree of coupling between
the DAS cable and the ground. These discontinuities are not well
represented by curvelets and produce artefacts of varying severity
under our filtering procedure.

We also note the importance of array geometry in the practica-
bility of our methodology. The degree of localization of velocity
dictates whether or not two signals can be separated on the basis of
velocity. For example, a plane wave recorded by a complex DAS ar-
ray geometry may be spread over a large range of velocities because
of a high variability in the angle of incidence at different stations
along the array. Traffic-generated surface waves are conducive to
this technique, however, because DAS cables often run parallel to
roads. In this case, most of the traffic-generated surface wave sig-
nal is recorded at near true velocity. This is the case in this study,
but with a not insignificant caveat. Because the cable and the road
are separated by a small distance, for a short section of the array
directly next to passing vehicles, traffic-generated surface waves
are recorded with very high velocities. This results in systematic
imperfections in the coherent noise removal in this study.

In this study, we apply stochastic and coherent noise removal
together to illustrate a unified approach to noise removal that is
convenient, scalable and effective. However, there is no hinderance
to applying either the stochastic or coherent noise filtering indepen-
dently. Applying the stochastic noise filtering by itself is easily justi-
fiable, because the curvelet representation is, to our knowledge, the
best available, non-adaptive sparse representation of objects with
smooth discontinuities. Applying the coherent noise filtering by
itself is effective, but not more effective than traditional frequency–
wavenumber filters with specialized tapers. The choice to perform
only coherent noise filtering under the curvelet transform may be
made out of convenience, but the flexibility of this filter is lim-
ited by the Cartesian coronae framework. Performing only coherent
noise filtering using the curvelet domain can be made considerably
faster by creating a frequency–wavenumber mask under the curvelet
transform. Such a mask can be made by performing coherent noise
filtering on a 2-D delta function under the curvelet transform.

5 C O N C LU S I O N S

Here, we proposed a unified wavefield-partitioning approach for
DAS data in a seismological context using curvelets. One com-
ponent of our technique involves the application of thresholding
to curvelet coefficients using data-specific thresholds under the
curvelet transformation. Another component of our technique re-
quires the implementation of scale-dependent velocity filtering un-
der the curvelet transform. By using these partitioning techniques
together under the curvelet transform, we demonstrated that stochas-
tic and coherent noise can be removed in a single step. We showed
that this approach is effective and scalable by applying this filtering

technique to 8 d of DAS data collected following the Mw7.1 Ridge-
crest earthquake. With a simple application of our filtering tech-
nique, we greatly improved a template-matching-generated earth-
quake catalogue, increasing the number of detected events by over
30 per cent and reducing the magnitude of diurnal depressions in
the catalogue due to cultural noise.

With its high spatial sampling and logistical advantages, DAS
presents numerous opportunities to advance the field of seismology.
However, more so than for other seismic instrumentation, noise in
DAS will persist in limiting how well we can seize these opportu-
nities. In the coming years, we may expect improvements in DAS
instrumentation to lower the instrument noise floor, but we should
continue searching for pre-processing steps that help us get the most
out of our data. Here, we have outlined a methodology to remove
noise sources from DAS data in a seismological context using a ba-
sis that we think is particularly well suited for DAS data. However,
our approach is non-adaptive, and we might expect to see significant
improvements in coherent noise removal from adaptive techniques
targeted to seismological applications. In particular, learning the
structure of DAS data, using techniques like machine learning, will
likely allow for more precise coherent noise removal. We see the
framework of our methodology and the curvelet basis as potentially
useful components of more effective adaptive filtering techniques
that may be developed in the foreseeable future.
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Earthquake record sections used in Figs 1, 3, and 4 are available for
download at Caltech’s research data repository (https://data.caltech
.edu/records/1955). Code for performing this wavefield-partitioning
technique with a working example is available on Github (https:
//github.com/atterholt/curvelet-denoising). This code makes use of
the CurveLab toolbox that is available on the curvelet.org website
(http://www.curvelet.org).
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.
Figure S1 Hourly (PST) event counts of the catalogues created
using template matching. A 3-hr moving average filter was applied
to each of the time-series. The yellow line shows the hourly counts
for the catalogue of templates made using the SCSN catalogue. The
red line shows the hourly counts for the catalogue created using
the unfiltered data. The green line shows the hourly counts for the
catalogue created using data filtered using only the coherent noise
filter. The purple line shows the hourly counts for the catalogue
created using data filtered using only the stochastic noise filter. The
blue line shows the hourly counts for the catalogue created using
data filtered with both the coherent noise and stochastic noise filters.
Figure S2 Hourly (PST) measure of the percentage of events from
the catalogue produced using unfiltered data retained in the cata-
logue produced using data filtered for both stochastic and coherent
noise. Events are considered retained if there exists a correspond-
ing event in the catalogue produced using filtered data that has an
origin time within 2.5 s of the event. A 3-hr moving average filter
was applied to this time-series.
Figure S3 Example of a detection made in the original catalogue but
not made in the new catalogue. (a) Template event taken from the
unfiltered data. (b) Wavefield of the detection made using the tem-
plate in panel (a). (c) Same template as in panel (a) but taken from
the filtered data. (d) Same wavefield as in panel (b) but taken from
the filtered data. Black arrows point to the earthquake-generated
body waves of the template event.
Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.
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