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Abstract: This paper presents the design, modeling, analysis, and experimental results of a novel
bipedal robotic system that utilizes two interconnected single degree-of-freedom (DOF) leg mech-
anisms to produce stable forward locomotion and steering. The single DOF leg is actuated via
a Reuleaux triangle cam-follower mechanism to produce a constant body height foot trajectory.
Kinematic analysis and dimension selection of the Reuleaux triangle mechanism is conducted first
to generate the desired step height and step length. Leg sequencing is then designed to allow the
robot to maintain a constant body height and forward walking velocity. Dynamic simulations and
experiments are conducted to evaluate the walking and steering performance. The results show
that the robot is able to control its body orientation, maintain a constant body height, and achieve
quasi-static locomotion stability.

Keywords: bipedal robot; reuleaux triangle; mechanism design; kinematics; dynamics; simulation

1. Introduction

To mimic the most commonly observed locomotion form in nature, legged robots
have been a popular topic since the early days of robotic research. Leg designs with
more active degrees of freedom (DOF) help to enhance the mobility and dexterity of
legged robots [1], such as the ANYmal quadruped robot [2], the MIT Cheetah series
quadruped robots [3,4], the Adaptive Suspension Vehicle [5], the ATRIAS robot [6], and
the HyQ quadruped robot [7]. These robots utilize multiple DOFs per leg to position their
(primarily) single-point-of-contact (SPOC) feet. The typical configuration of this type of
legs uses three DOFs per leg [8,9], namely, one hip abduction/adduction DOF, one hip
extension/flexion DOF, and one knee extension/flexion DOF (note that there are other
types of leg configuration, such as those using parallel mechanisms [10].) Therefore, a
multi-legged robot usually requires 61 actuators, with n being the number of leg pairs. If
non-SPOC feet are implemented, even more actuators are required to control the additional
DOFs from the feet [11], which increases the robot complexity and the overall energy
consumption [12].

To address the challenges of multiple DOFs leg mechanism, researchers have proposed
the reduced-DOF leg designs which aim to utilize two or fewer active DOFs on each
leg. This way, with fewer actuators, the overall weight and control complexity of the
robotic system could be significantly reduced. For instance, Torige et al. [13] developed
a centipede-like robot that consists of six segments. Each segment utilizes four motors
to control two legs. Hoffman et al. [14] further promoted this concept by utilizing two
passive revolute joints to couple the motion between two legs. This way, the two legs
use only two linear actuators to extend the body;, to lift the legs, and to drive the robot
forward simultaneously. The RHex hexapod [15] robot is another typical reduced-DOF
leg design which utilizes six continuously rotating C-shaped legs to drive the robot and
uses a differential drive to achieve steering. Yoenda et al. [16] designed a quadruped robot
with three active DOFs. This robot consists of a front and a rear section that can rotate
about the orientation of the robot. The roll of each section, coupled with rotation of the
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U-shaped front and rear legs, allows the robot to move forward. Furthermore, single-DOF
crank driven mechanisms [8,14-21], and two-DOF legs that generate an approximately
straight-line support phase foot trajectories [22,23] have been proposed for the construction
of legged robots for simplified control and design complexity. To build an easy-to-use and
light legged platform for tail research purposes, the authors also proposed a reduced-DOF
leg mechanism named Robotic Modular Leg (RML) [24,25], which has two DOFs per
leg and can be implemented in a quadruped or biped robot in a modular manner. The
“modular” in this context refers to the mechanical modules inside a robot, which is different
from the more generalized “modular” concept that many independent modular robots
constitute a larger robotic system. The RML leg mechanism applied decoupled actuation
to simplify control and used a double parallelogram mechanism to keep the foot parallel to
the robot chassis.

However, this design still requires two actuators, which is too heavy and too compli-
cated (in terms of foot position planning) for the tail research [26]. Therefore, looking for a
single DOF leg mechanism that is able to stably walk and steer becomes a practical require-
ment. However, by reviewing the literature, most existing single DOF leg mechanisms
(such as the RHex robot [15] that was frequently used in robotic tail research [27]) are not
able to maintain a constant body height, which induces instabilities during locomotion and
thus is less attractive for our purpose.

Therefore, motivated by looking for a single DOF leg mechanism that can stably walk
and steer, together with three additional requirements based on Kaneko [28], which are
(1) to maintain quasi-static stability, (2) to maintain a constant robot body height, and
(3) to maintain a constant body orientation, we propose a novel biped robot design, as
shown in Figure 1. The new biped robot consists of two improved Robotic Modular Leg
Mechanisms (the newer version in this paper is named RML-V2). The new idea relies on
using the Reuleaux triangle cam-follower mechanism to couple the hip and knee motions
of the old design. This way, the leg mechanism mobility is further simplified to one DOF,
and the leg can generate a constant height trajectory due to the special Reuleaux triangle
property. Although the cam-follower mechanism has been used in robot actuation [29], our
application of the Reuleaux triangle cam-follower mechanism focuses on generating the
foot trajectory with a straight-line support phase with minimum active DOFs. The angular
orientation of the conjugate square is constrained via the two parallelogram mechanisms
connected in series, which maintain the orientation without the use of an additional active
DOF on the ankle. Thus, the leg mechanism can be used in conjunction with a flat foot
support polygon to enable a quasi-static walking gait. It is worth noting that part of
this work was previously published in [30]. The main contributions of this work are
summarized as follows:

(1) A novel single DOF leg mechanism that utilizes the Reuleaux triangle cam-follower
mechanism to achieve constant body height during locomotion is proposed.

(2) The mechanical design, kinematic analysis, dynamic modeling, prototyping, and
experiments of a novel bipedal robot based on the novel leg mechanism are carried
out, in order to verify the proposed leg mechanism.

The rest of this paper is organized as follows. Section 2 introduces the necessary
knowledge of the Reuleaux triangle and presents the corresponding mechanical design of
the RML-V2. Section 3 formulates the foot trajectory planning based on the synthesis of the
Reuleaux triangle dimensions and its angular rotation. With the mechanical structure and
the desired foot trajectory, dynamic analyses and corresponding simulations are presented
in Section 4. Section 5 demonstrates a prototype of the proposed robot and presents the
walking and steering experiments of the robot. Section 6 recaps the main novel points of
the new leg design and concludes the paper.
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2.2. Kinematic Analysis

This section presents the kinematic analysis of the Reuleaux triangle (cam) and its
foot follower (conjugate square). Prior applications [33] and analysis [34] mainly consider
the motion of the Reuleaux triangle within a stationary conjugate square. However, in
our usage of the Reuleaux triangle, the cam rotates about a point that is offset from its
centroid to enable movement of the foot follower. Therefore, specific kinematic analysis is
formulated first for this scenario. Based on the kinematic analysis, a desirable conjugate
square centroid trajectory is produced such that it maintains a fixed orientation and a
constant height. The leg mechanism dimensions are then synthesized to produce this
desirable step length and height.

Figure 3 shows the schematic diagram of the Reuleaux triangle driving mechanism
of the RML-V2, which is used to construct the biped robot. U, V, W are the three vertices
of the Reuleaux triangle with each vertex coinciding its opposing arc center. The distance
between any two vertices is [. The triangle rotates within a conjugate square with its four
corners labelled as H, I, J, K and its centroid labelled as G. To ensure the conjugation
between the Reuleaux triangle and its conjugate square, the length of the square sides
should be also I [32]. This way, the Reuleaux triangle and its conjugate square form a
two DOFs system such that the rotation of the triangle results in a planar displacement of
the conjugate square in the inertial frame (S, x, y). A body-attached frame of reference

‘ B, iy, i) is attached to the Reuleaux triangle at its centroid B, with i; pointing at U. The
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Table 1. Conjugate square side that Reuleaux triangle vertices land on for « € [0, 77/2].

Rotation Angle & u Vv w

a €0, /6] I] Inside the square Kj

a€[m/6, /3] Inside the square HK K]
a € [n/3, m/2) HI HK Inside the square

We define the position vector pZ. in the global reference frame based on the contact
point of each vertex with the sides of the conjugate square. With reference to Table 1,
Equation (1) is obtained to calculate the position vector pé for a € [0, 7/2]. Note that due
to the symmetric property of the Reuleaux triangle, the remaining phase (« € [71/2, 27])
of the trajectory profile can be generated by finding the corresponding contact points.

(- x—4)x+(ph-y+4)y,  a=[07)
pe={ (b xti)xt(phyyrdly, a=[53) M
(Px5/~x+%)x+(sz'Y_% Yy, =[5 7]

The positions of U, V, W in Equation (1) can be obtained by mapping their positions
from frame B to frame S using Equation (2).

Py = R (a) (—pif +pf) +pd
py =R§(a)(—pif +p5) +pd @)
Piy = R§ () (—pif +pfy ) +p

where R3(a) is the rotation matrix from frame B to frame S with a given input angle a. The
vertex positions in the body fixed frame B are defined in Equation (3).

B _ ;B
Pu_\/gl

P€=—7 +3i3 ®)
B I ;B _ 1B

Pw = 2\[ 712

Substituting Equations (2) and (3) into Equation (1) yields the position of G with
respect to the input angle « and offset p, as shown in Equation (4) where ¢, = cosa and

S, = sina.
\%—p)Ca_%}X+|:—é(\/§l+6p)S - )}y, o« =[0,%)
3(1=5a) =g (5 +6p) Cax + ’(\fl+6p)sa+ -Gy,  «=[%%) 4)
L1—-8,) -1 %+6p C,x}x+ (%—p)sa—j}y, =% %]

Based on Equation (4), the point G trajectories r; are illustrated in Figure 4 for various
offset values of p. The profiles are normalized with respect to the triangle length [. Note that
the trajectory profile varies with respect to different offsets, p. The trajectories 71, 7, 773, 714,
and 7tg are shown in Figure 4a and the trajectories 75, 714, and 717 are shown in Figure 4b.
The characteristics of these profiles were investigated and presented in Reuleaux’s original
book [32] that the p = |BU| yields 711, a straight-sided quadrilateral profile with corners
that are elliptically rounded, as shown in Figure 4a. For values of p satisfying the inequality
0.5(I — |BU|) < p < |BU|, the trajectories 71, and 713 are obtained and represent a concaved
sided quadrilateral with round corners. For p = 0.5(] — |BU]|), the trajectory denoted as 774
represents a super ellipse or Lamé curve.
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Figure 4. Trajectory profiles of point G normalized with respect to [ for various offset values p: (a) five profiles without

self-intersection, and (b) three profiles with self-intersection. The stars (M and N) in the figure indicate the endpoints of the

support phase trajectory.

Similarly, for the profiles in Figure 4b, when p value satisfies the inequality
(|BU| —1/2) < p < 0.5(I — |BU]|), the trajectory 75 consists of four intersecting con-
cave elliptical curves which form four loops. When p value approaches (|BU| — 1/2), the
loops expand and eventually are tangent to each other at p = (|BU| —1/2). This home
central form of 715 is 714 trajectory. For 0 < p < (|BU| —1/2), the four elliptical curves
intersect with each other and form the 7ty trajectory. For p = 0, the 7tg trajectory consists of
four convex elliptical curves which are tangent to its neighboring curves [32].

2.3. Mechanical Design

Figure 5 shows a side view schematic diagram of the RML-V2. The leg consists of two
serially connected parallelogram mechanisms with one being the thigh and the other being
the shin. The thigh parallelogram rotates about the hip joint and the shin parallelogram
rotates about the knee joint. Due to the parallelogram mechanism, the foot maintains a
constant orientation with respect to the body without requiring an additional DOF at the
ankle. The size of the foot is chosen to be large enough so that the leg could be statically
stable during the support phase. The above presented Reuleaux triangle cam-follower
mechanism is placed inside the foot to actuate the RML-V2. The Reuleaux triangle rotates
about an axis on the body (the active DOF shown in Figure 5) and thus drives the conjugate
square foot to form a quasi-square trajectory, which will be discussed in Section 3. These
design features improve the first generation of the RML [24,25] by reducing the two active
DOFs to one and generating a foot trajectory with a constant body height. The single DOF
actuation facilitates the control system development, and the constant body height foot
trajectory makes the locomotion more stable. However, these improvements are mainly
based on the flat surface and the quasi-static condition. That is, the robot moves slowly
enough so that its dynamic effect is minimized, and the large foot design guarantees that
the system center of mass is always inside the supporting polygon.
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active DOFs to one and generating a foot trajectory with a constant body height. The single
DOF actuation facilitates the control system development, and the constant body height
foot trajectory makes the locomotion more stable. However, these improvements are
mainly based on the flat surface and the quasi-static condition. That is, the robot moves
slowly enough so that its dynamic effect is minimized, and the large foot design guarasni1s
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step length and step height, and (3) designing the gait sequence for bipedal locomotion.

3.1. Single Leg Foot Trajectory Planning

As discussed in Section 2, it is desirable to let the robot maintain a constant body height
and orientation such that the energy consumption for a forward walking gait could be
minimized. This requires a straight-line support phase for the foot trajectory [28]. Referring
to Figure 4a, trajectory profile 77; illustrates a straight-sided quadrilateral such that one of
the straight sides can be used as the straight-line support phase foot trajectory. Therefore,
the offset distance from the Reuleaux triangle centroid B to the rotational center O should
be setto p = |BU| =1//3.

For clarity, the stroke length and the stroke height are defined as the maximum range
of horizontal and vertical distances shown on the trajectory profile, while the step length
and the step height are defined as the horizontal and vertical distances corresponding to the
support phase and the swing phase. For instance, in Figure 4a, the distance between point
M and point N on the 717 trajectory defines the step length, while the distance between the
two vertical sides defines the stroke length.

Based on Equation (4) and Figure 6, for a € [0, 71/6), the trajectory profile is repre-
sented as a vertical straight line with x-component equivalent to —1/2, for a € [71/6, 7/3),
the profile is an elliptical curve, and for a € [71/3, 71/2], the profile is a horizontal straight
line with the y-component equivalent to —//2. Due to the symmetric property of the
Reuleaux triangle cam-follower mechanism presented in Section 2, the other three quad-
rants of the foot trajectory can be generated by mirroring the a € [0, 77/2] portion with
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pomnt M and point /N on the 7; trajectory derines the step length, while the aistance be-
tween the two vertical sides defines the stroke length.

Based on Equation (4) and Figure 6, for a € [0,7/6), the trajectory profile is repre-
sented as a vertical straight line with x-component equivalent to —[/2, for a €
[T[/ 6, 7r/ 3), the proflle is an elhptlcal curve, and for a € [/ 3 7r/ 2], the proflle isa horm%

of the Reuleaux trlangle cam-follower mechamsm presented in Sectlon 2, the other three
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As shown in Figure 6, the support phase (highlighted by thick solid line) of the foot
trajjectony inititttesat tax =73 drad deteminintesest at &= 27773 ShbStibstimgttheséheskiwaines
into Equation (4) yields the coordinates of points M and N. Therefore, the step length is
calculated as I (\@ — 1). These relations could be used to synthesize the dimensions of the
Reuleaux triangle mechanism such that a desirable step length and height is achieved.

3.2. Gait Sequencing for Bipedal Locomotion

This section analyzes the additional requirements of the input angle « trajectory such
that the RML-V2 achieves a constant body height as well as a constant walking velocity
during the support phase. As stated in Section 3.1, the foot trajectory 71y is selected to
ensure a constant body height for the support phase. Since each leg has only one DOF, to
avoid motion conflict during forward motion, the two feet should not have different speeds
when the feet are both on the ground. Otherwise, the robot body may fluctuate vertically
and cause instances of instability. Moreover, to minimize variations in acceleration, it is
desirable to have a constant forward velocity for walking gaits. Therefore, this section
provides the design of the gait sequencing of the two legs such that the biped achieves
stable forward walking with a constant speed v.

Referring to Figure 6, the gait cycle period is the sum of the times for the support and
swing phases. In this work, we set the support phase time to be equal to the swing phase
time. Therefore, the gait cycle period, for a combined single swing and single support
phase, can be obtained from Equation (5).

_HIMN| Ly sz
T =2 _0(2\@ 2) ®)

With the assumption of no slipping condition, the walking velocity v of the robot
equals to the velocity of the conjugate square, which could be obtained from taking the
time derivative of pé. Therefore, based on Equation (4), differentiating pé during the
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support phase (/3 < a < 71/2) yields the horizontal velocity of the conjugate square for
half of the support phase, as shown in Equation (6).

- %% cos(a) + %?lsin(a) =0 (6)

Substitute Equation (5) into Equation (6) and define T = t/T to be the completed

percentage of a gait cycle. Define Tspport as the duty cycle and Tswing = 1 — Tspport. Since

Tspport 18 set to be equal to Tswings Tspport = 0.5. Using these relations, solving « from

Equation (6) yields Equation (7) for 77/3 < &« < 71/2, and Equation (8) for 7/2 < a <271/3,
respectively.

a:arcsin<(2\f3—2)T—C1)+2§, S [g,g) (7)
x = arcsin((Z\@ — 2>T - C2> + g, S [;, 2;1 8)

Here, C; and C; are the constants of integration that can be obtained from initial
conditions where the transition from the support phase to the swing phase occurs, and
vice versa. To achieve smooth transitions from the support phase to the swing phase,
cubic splines are interpolated to generate the rotation angle trajectory a(t) of the Reuleaux
triangle in the time domain for a swing phase that satisfies Ty = 0.5.

4. Dynamic Analysis of the Robotic System

This section presents the dynamic analysis of the biped robot. The dynamic model
of the robot is obtained using Kane’s method [35]. Since the robot consists of planar
mechanisms, for each of the bodies shown in Figure 5, four parameters are defined—three
Cartesian coordinates and one rotation angle. Hence, the linear velocity and angular
velocity can be calculated as

Vi = Jvkqwk = kaq (9)

where q = [q1,42]" = [a1,22]" are the generalized coordinates. J,; and J ; are the Jacobians
of the k-th link (labelled as I} in Figure 5) corresponding to v and wy respectively. The iner-
tia force of the k-th link is F; = —may, and the inertia torque is Ty = —(Ixog + wy x Lrwy)
where a, oy, and Iy are the linear acceleration, angular acceleration, and the inertia matrix
of the k-th link, respectively. Therefore, the generalized inertia force of the k-th link is
obtained as K| = ]ZkFZ + JZ;kTZ' which is further expanded as

K; = —M;q — (Jgkmijvk + JZ;kmkjwk) q - JE ey (10)

where My is the inertia matrix calculated as My = ]kaklvk + Jgklk]wk and wy is the skew-
symmetric matrix of wy. The external forces applied to the body are the gravity and the
input torques 15, T, which drive the Reuleaux triangle cam on the left leg and the right leg,
respectively. The generalized external force is calculated as:

Ky = JLomg + I + 1Lt (11)

The equation of motion of the robot is then derived with JL as the transpose of the
constraint Jacobian and A as the Lagrange multiplier, as shown in Equation (12). Here,
the Lagrange multiplier presents the constraint force caused by the friction and support
of the ground during walking. The Lagrange multiplier is a function of q that eliminates
the switch between two conditions where the left foot or the right foot is in contact with
the ground.

YK+ Y Ki+JEA=0 (12)

A Proportional-Integral (PI) compensator is utilized to generate an input torque
such that the Reuleaux triangle cams can track the desired foot trajectory described in
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the Lagrange multiplier presents the constraint force caused by the friction and support
of the ground during walking. The Lagrange multiplier is a function of q that eliminates
the switch between two conditions where the left foot or the right foot is in contact with
the ground.

ZKk+ZK;+]£A=O (12) 100f15
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5. Experimental Results

This section presents the integration of the RML-V2 prototype (Section 5.1) and the
walking experiments of the prototype (Section 5.2).

5.1. Robot Prototype



Robotics 2021, 10, 114 11 of 15

5. Experimental Results

This section presents the integration of the RML-V2 prototype (Section 5.1) and the
walking experiments of the prototype (Section 5.2).

5.1. Robot Prototype

A prototype of the RML-V2 was built to verify the mechanism design and to evaluate
the performance of the robot. Acrylonitrile Butadiene Styrene (ABS) based 3D printing was
used to manufacture the prototype parts. Two Dynamixel MX-106 smart actuators were
used to drive the Reuleaux triangle cams. The prototype measures 230 x 200 x 320 mm
and weighs 2.5 kg in total. The Reuleaux triangle dimensions are selected to produce a gait
cycle with a step height of 75 mm, and a step length of 54.9 mm.

The prototype was first fixed to a stable surface to measure its actual foot trajectory.
The measurement was achieved by tracking a blue marker attached on the foot via computer
vision method. The Reuleaux triangle cam was set to rotate at a constant velocity. Tracking
results versus theoretical results are presented in Figure 9 where the actual foot trajectory
is presented as dashed lines, and the theoretical trajectory 711 is presented as solid lines.
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Figure 11. Straight walking prototype body x and y displacement.
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Section 3. One observed deficiency is, however, that the biped also requires smooth surface
during steering. This is mainly due to the fact that the single DOF leg relies on motion
confliction (through ground friction) to change direction. However, this is an inevitable
disadvantage as the tradeoff of the reduced mobility.

6. Conclusions

This paper presented the design and implementation of a novel biped robot based
on a new single DOF robotic leg mechanism named RML-V2. The RML-V?2 utilizes the
classic Reuleaux triangle cam-follower mechanism and a double parallelogram mechanism,
which is used to restrict the rotation motion of the conjugate square of the Reuleaux
triangle mechanism so that the foot is always in parallel with the ground during a gait
cycle. Corresponding kinematics of the leg mechanism was derived based on the Reuleaux
triangle geometry and a foot trajectory that can guarantee a constant body height and a
steady forward velocity was selected. Dynamics model of the bipedal robot was derived,
and corresponding walking simulation was performed to verify the design. To practically
validate the proposed mechanism and evaluate the theoretical analysis, a prototype was
built and various experiments were carried out. The results showed that the robot meets
all the design requirements and is able to produce a stable quasi-static forward walking
gait as well as an effective differential turning motion.

Supplementary Materials: A supplementary video showing the working prototype is available
online at https:/ /www.youtube.com/watch?v=Yny7gS1V9Fg.
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