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Abstract

Network estimation and variable selection have been extensively studied in the statistical literature,
but only recently have those two challenges been addressed simultaneously. In this paper, we seek to
develop a novel method to simultaneously estimate network interactions and associations to relevant
covariates for count data, and specifically for compositional data, which have a fixed sum constraint.
We use a hierarchical Bayesian model with latent layers and employ spike-and-slab priors for both
edge and covariate selection. For posterior inference, we develop a novel variational inference scheme
with an expectation maximization step, to enable efficient estimation. Through simulation studies, we
demonstrate that the proposed model outperforms existing methods in its accuracy of network recovery.
‘We show the practical utility of our model via an application to microbiome data. The human microbiome
has been shown to contribute to many of the functions of the human body, and also to be linked with a
number of diseases. In our application, we seek to better understand the interaction between microbes
and relevant covariates, as well as the interaction of microbes with each other. We call our algorithm
SINC (Simultaneous Inference for Networks and Covariates) and provide a Python implementation, which
is available online.

Keywords: graphical model, variational inference, EM algorithm, count data, Bayesian hierarchical

model, microbiome data

1 Introduction

Variable selection, also known as feature selection, is a well-studied subject in the statistical literature,
particularly in the context of regression models, where many approaches have been proposed. Feature

selection offers an opportunity to both improve model predictions, by avoiding the inclusion of noisy or



irrelevant predictors, and to identify interpretable parsimonious models. Frequentist approaches often use
a penalized likelihood to obtain sparse estimates of the regression coefficients, and include methods such

as LASSO (Tibshiranil 1996), adaptive LASSO 2006), and SCAD (Fan and Li, [2001)). Alternatively,

Bayesian approaches employ carefully constructed priors on the regression coefficients to identify the relevant

variables. Spike-and-slab priors, first proposed by [Mitchell and Beauchamp| (1988), are a popular class of

priors that use a latent indicator to represent variable inclusion. Conditional on the indicators, the regression

coefficients are assumed to come from a mixture prior representing important vs negligible effects (George

[and McCulloch), |1997; Brown et al.l 1998). In addition to sparse estimation of the coefficients, these priors

produce posterior probabilities of inclusion (PPIs) for each covariate that capture the uncertainty in the

selection. Spike-and-slab priors have been extended to regression models for non-Gaussian data, including

binary, multinomial and count responses (Rafteryl 1996; Ntzoufras et al. |2003; Sha et al. |2004; Wadsworth|
let al.l |2017}; Koslovsky and Vannucci, 2020)).

A parallel development has happened in the graphical model literature: in this framework, nodes cor-
respond to variables, and edges connecting these nodes represent conditional dependence relations. In the
Gaussian setting, the problem of selecting edges in the graph reduces to the estimation of a sparse inverse
covariance matrix, since exact zeros in this matrix, which is also known as the precision matrix, correspond to
conditional independence relations [1972)). In frequentist settings, penalized likelihood methods,
such as neighborhood selection (Meinshausen and Bithlmann, 2006) and the graphical LASSO

[2007; [Friedman et al.| |2008]), have been proposed. These methods have been extended to count data by using

data transformations (Kurtz et al.,[2015) or penalized log-likelihood methods (Fang et al.l [2017)). In Bayesian
inference, the G-Wishart prior (Roveratol 2002), which is the conjugate prior that imposes exact zeros in

the precision matrix, has been explored by several authors for inference in Gaussian graphical models, but

poses significant computational challenges (Lenkoski and Dobral, 2011)). As a result, this prior is not easily

scalable. Alternative shrinkage constructions that employ continuous priors on the off-diagonal elements of
the precision matrix have been proposed, such as the Bayesian graphical lasso , which relies
on double exponential priors, and mixture priors 7 inspired by the spike-and-slab priors in the
regression framework discussed above. To enable estimation of the spike-and-slab model of in

high-dimensional settings, [Li and McCormickl (2019) recently proposed an efficient expectation conditional

maximization method, which offers an attractive alternative to stochastic search approaches.
In this paper, we propose a novel Bayesian hierarchical model for count data that allows for simultaneous

estimation of covariate dependence and network interactions. Methods for simultaneous estimation are

gaining popularity, with approaches including penalized likelihood methods (Rothman et al., 2010; [Yang
2017)), and, most recently, spike-and-slab lasso prior models (Deshpande et al.|[2019). By accounting for

covariate selection, simultaneous estimation methods are able to control for those variables, which ultimately

leads to more accurate network estimation. Moreover, simultaneous estimation can improve the detection of

covariate effects, as noted by |Deshpande et al.| (2019). However, with the exception of [Yang et al| (2017),




these methods are not suitable for count data. In our approach, we consider multivariate count data, and
specifically compositional data that have a fixed sum constraint. We model the data using a Dirichlet-
multinomial likelihood and then introduce a latent layer by modeling the log concentration parameters
via a Gaussian distribution. We account for covariates through the mean function of the latent layer and
employ multivariate variable selection spike-and-slab priors that allow each covariate to be relevant for
individual response variables (Richardson et al. 2010; |Stingo et al., |2010). We also capture a network
of latent dependence relationships by estimating the inverse covariance matrix via the mixture prior of
Wang] (2015). For posterior inference, we implement a novel variational Bayes approach that includes an
expectation-minimization (EM) step to estimate the model. This allows us to gain flexibility by using a
Bayesian model, while still remaining computationally efficient. Additionally, the algorithm is developed so
that multiple steps can be run in parallel, achieving larger computational gains. We show through simulations
that our method outperforms the LASSO-based approach of [Yang et al.| (2017). We refer to our model as
SINC (Simultaneous Inference of Networks and Covariates).

Compositional data are often collected in chemistry, geology, and biology applications. In biomedicine,
modern genomic sequencing technologies have allowed investigators to collect samples on the human micro-
biome. Microbes associated with the human body include eukaryotes, archaea, bacteria, and viruses, which
have been shown to contribute to important bodily functions including food digestion and energy supply.
The human microbiome has also been implicated in many diseases including colorectal cancer, inflammatory
bowel disease, and immunologically mediated skin diseases. The observed data from a microbiome study are
typically short reads of DNA sequences, which are clustered to create operational taxonomic units (OTUs).
The abundances across samples of these OTUs, which represent genetically close groups of microbes assumed
to have similar functions, are taken as input to downstream analysis. A challenge to modeling these data
is that the number of counts for a particular OTU depends on the number of sequences collected for that
sample, meaning that the observed counts are dependent on each other, as they constitute proportions of a
whole. This results in data that are compositional. For these reasons, Dirichlet-multinomial distributions
are particularly appropriate to model microbiome data, as demonstrated by several authors (Chen and Li,
2013} [Tang et al., [2018; [Wadsworth et al 2017)). In the application of this paper we focus on two questions
of interest in the understanding of the microbiome: which variables influence the microbial abundances,
and what are the dependence relationships among microbes. The abundance of microbes or groups of mi-
crobes is dependent on many factors. Microbial abundance may be related to external covariates, such as
diet, cytokines, or use of medication.These factors influence the microbiome by introducing new organisms,
changing the abundance of metabolites, or altering the pH of their environment. For example, consumption
of an animal-based diet high in meat has been shown to increase production of bile acid, which inhibits
growth of bacteria belonging to the Bacteroidetes and Firmicutes phyla (David et al.l [2014). Antibiotics
can alter the microbiome substantially, by killing off components of the microbiome in addition to the bac-

teria triggering the infection (Edwards et all [2019). As we understand more about the importance of the



microbiome, it is also critical to understand what factors lead to the prevalence of different microbes. Here
we apply the proposed method to real data from the Multi-Omic Microbiome Study: Pregnancy Initiative
(MOMS-PI) study, to estimate the interaction between microbes in the vagina, as well as the interplay
between vaginal cytokines and microbial abundances, providing insight into mechanisms of host-microbial
interaction during pregnancy.

The paper is outlined as follows: in Section [2] we describe the proposed hierarchical model, followed by
the variational EM estimation method in Section [3] We provide a simulation study in section 4] and then
showcase the proposed model in an application to multi-omic data from a study on the role of the microbiome

in pregnancy in Section [5] Finally, we discuss the advantages of the proposed model in Section [6}

2 Proposed Model

Suppose we have observed multivariate counts arranged in an n X p matrix, X, where p is the number of
observed variables measured across n samples. We then let the p-vector X; correspond to the measurements
for observation 4, and the matrix entry x; ; correspond to the j th variable measurement for the i*" observation.
We also observe ¢ covariates for each of the n observations, with these g additional factors possibly influencing
the measured counts for each observation. We arrange the covariate data in an n x ¢ matrix, M.

We are interested in understanding the conditional dependence relationships among the p variables while
simultaneously selecting the relevant covariates. We adopt a hierarchical model formulation with a latent
Gaussian layer, similarly to|Yang et al.| (2017)), as

Z; | Bo,M;,B,Q ~ MVNorm(B, + M;B, Q1)
a; = exp{Z;}

h; | a; ~ Dirichlet(ex;)

X; | h; ~ Multinomial(h;, N;).
In this hierarchical formulation, we introduce a latent normal variable Z;, which is a direct transformation
of the concentration parameter a; and therefore controls the observed counts X;. This model has sev-
eral important features: the Dirichlet-multinomial likelihood for count data, X;, allows us to account for
overdispersion as well as the compositional nature of the data. The dependence on covariates is incorpo-
rated through the mean of the multivariate normal, where the observed covariates M; have effects B. The
dependence among the Z; is captured by the inverse covariance matrix, also known as the precision matrix,
Q. The 1 xp vector By accounts for the mean of each column of the latent matrix Z. In our modeling
approach, careful consideration of the priors on the covariate effects B, the intercepts By and the precision
matrix £ allows us to construct a directed graph between covariates M and latent variables Z, as well as an
undirected graph between the columns of Z.

For microbiome studies, |Gloor et al.| (2017) noted that the observed compositional data have a different

correlation structure than the true underlying abundances. More specifically, due to the fixed sum constraint,



compositional data tend to exhibit negative correlations. In model formulation 7 we interpret the latent
layer h; to be the relative abundances, and a; to be the absolute abundances (Yang et al. |2017). By
estimating a network on the latent Z, we capture the network of the underlying, absolute abundances
through the precision matrix €. Therefore, even though the latent Gaussian layer does not allow us to
recover relationships directly among the observed counts, the inferred dependences do provide some insights
into the relationships among the underlying processes. Latent graphical models for Poisson-distributed count
data that use Gaussian layers were used by |Vinci et al.| (2018)), for spike-count data. See also Talhouk et al.

(2012) and [Li et al. (2020) for latent graphical model constructions for binary data.

2.1 Prior on covariate effects B

Here we describe the prior on the covariate effects, which enables selection of the important associations
between X and other potentially related factors M. We consider the effects of the covariates M on each
column of Z separately, which means that we will be able to update the columns of B independently of each
other. Here B is a ¢ X p matrix, where each column of B represents the vector of regression coefficients
for the ¢ covariates of M on the j" column of Z. We use a spike-and-slab prior on each element of the
matrix B, which shrinks features that do not influence Z to zero. Remember that we are looking at the
columns of Z one at a time, and can thus say that any entry from the j** column, Z; ;, comes from a
Normal(Bo; + M;Bj, 07), where o} is the standard deviation of the 4t column of Z, found by using the

properties of the multivariate normal distribution shown in equation . The prior on B is as follows:

Bij | Vh,js vE ~ ~i,;Normal(0, vE)+(1— Ve )0
Yi.j | 0; ~ Bernoulli(d,,) @
0+; | ay,by ~ Beta(a,,by),

forj=1,...,pand k =1,...,q, and with Jp a point mass at 0, indicating that when ~y ; is 0, By, ; is exactly
0. Here, 6., is the probability of a variable being relevant in B;. Notice that the mixture prior allows
each variable to be relevant for individual responses (Richardson et al., 2010; Stingo et al., 2010), as opposed
to spike-and-slab constructions that select variables as relevant to either all or none of the responses (Brown

et al., [1998)). We also put a non-informative prior on each element of By, i.e. By; o< 1.

2.2  Prior on precision matrix {2

Next we introduce the prior on the precision matrix €2, which allows us to learn a sparse association network.
We consider the prior of [Wang| (2015) in the formulation proposed by [Li and McCormick| (2019)):

2 2
(|6, v1,00,\,7T) ocH {(1 — d;,5)Normal(w; ; | 0, V—O) + ¢; jNormal(w; ; | 0, V—l)}
T T

" (3)
[T Exp(wii | A\/2) e,



where 1y and v, are fixed standard deviations, that assume small and large values respectively, ¢; ; is a latent
variable indicating whether or not an edge is present between nodes ¢ and j, and 7 is a scaling parameter,
with a hyperprior Gamma(a, b;) that allows to adaptively learn the standard deviations. The original prior
of [Wang| (2015) is obtained by setting 7 = 1. Additional complexity can be added to the prior on 7 to
include existing knowledge about variable associations, as shown in |[Li and McCormick| (2019). The mixture
of normals on the off-diagonal precision matrix entries enables the selection of interactions, represented
by edges in a network, since non-zero precision matrix entries reflect conditional dependence relationships
(Dempsterl, |1972)). Here, entries reflecting conditional independence relations do not equal exactly zero, but
get shrunk to close to zero. The diagonal entries are drawn from a common exponential prior. The final
term in equation expresses a constraint to the space of positive definite matrices MT. This prior is
particularly advantageous in our model, as it allows for efficient estimation via the EM algorithm and leads
to less bias in estimation of the off-diagonal precision matrix elements than the graphical LASSO, as shown
by |Li and McCormick| (2019)).

We complete the modeling of the precision matrix €2 by setting the prior on the graph structure, assuming

independent Bernoulli distributions on the inclusion of each edge as follows:

di,; | m ~ Bernoulli(m)

7| @rybr ~ Beta(ar, by).

3 Posterior Inference

We now discuss how to obtain posterior estimates of the parameters in the model outlined in Section
Instead of a traditional Markov chain Monte Carlo (MCMC) sampler, which can be computationally quite
expensive, we rely on a Variational Inference (VI) approach, which aims to find an approximation of the
posterior using optimization methods. VI works by specifying a family of approximate distributions Q, which
are densities over latent variables W that are dependent on free parameters £, and then seeking to find the
values of £ that minimize the Kullback-Leibler (KL) divergence between the approximate distribution and the
true posterior. As discussed in Blei et al.| (2017), minimizing the KL divergence is equivalent to maximizing

the Evidence Lower BOund (ELBO), which is defined as:
ELBO = E¢[log p(X, W)] — E¢[log ¢(W)], (5)

with p(X, W) as the joint distribution of the observed data and the latent variables, and ¢(W) the variational
distributions of the latent variables.

The most common approach to obtain an approximating distribution when applying a variational Bayes
approach is mean field approximation, where the approximating distribution is assumed to factorize over
some partition of the parameters. This is the approach that we adopt for the coefficient vector B. However,

a mean field approach for the elements of the precision matrix €2 is not appropriate, due to the dependence



among the parameters induced by the fact that this matrix is constrained to be symmetric and positive
semi-definite. For this reason, the choice of an appropriate approximating distribution for the precision
matrix is an open research question. To circumvent this issue, similar to Miao et al. (2020), we adopt a
hybrid VI algorithm, with an Expectation-Minimization (EM) step to estimate €2 and 4.
Specifically, for B we use the mean field variational distributions ¢(B,~) = e a(Brjo i, |
Pk.j» Hk.js Ok,j), where
¢r,;Normal(By, j | p,j, 0k,5) if v, =1,

q(Brjs V,j | Ph,jis ik js Okj) =
(1 = ¢r,5)00(Br.5) otherwise,

with free parameters £ = {¢y ;, ttr,j, 0k ;}. We then define the ELBO as

ELBO = E¢ llogH( (X; | Z:)p(Z i\BoyMi,Bvﬂ)H(p Brej | W.3> vB)P (g | 0,)p(0, Iwav))>

j=1

p(Q| 6, 01,00, N\, T)p(8i 5 | T)p(7 | ar,br)| — Eg

p q
log H H q(Br,js Vk.j | d)k,ja/ik,jyak,j)‘|v
j=1k=1

where the first expectation is equivalent to E¢[log p(X, W)] and the second expectation is E¢[log ¢(WW)] of
equation (f)), for W = {Z, By, B, Q, 8, 7, v, 0,,}.

The hybrid scheme we use to maximize the ELBO, where the first part is a VI step and the second
part is an EM step, is described in detail in the following subsections. In the VI step we update the free
parameters, &, by setting the partial derivative of the ELBO with respect to the desired parameters equal
to zero. This maximizes the ELBO with respect to £&. We then further maximize the ELBO by finding the
optimal values for the remainder of the latent parameters. For this, we rely on an EM step, by treating 6 as

latent parameters and taking the expectation of the ELBO with respect to d, or equivalently setting
Q6 6. £") = Es[ELBO,

and optimizing Q(0 | O(t),ﬁ(t)) by finding the maximum a posteriori (MAP) estimate of the remaining
parameters @ = {Z, By, Q, 7, 6,}. The resulting algorithm, which we call SINC, is described in Algorithm
1. As with traditional EM and VI schemes, parameter updates at each iteration are made with the most
current estimates of all other parameters. The algorithm results in MAP estimates for the parameters in 6.
Additionally, since no uncertainty about these parameters is used in the updates of the other parameters,
the proposed algorithm is only suitable for point estimation.

Our proposed hybrid algorithm builds upon the similarities between the VI and EM algorithms. As noted
in Blei et al.| (2017)), the first term of equation is the expected complete log likelihood, which is optimized
by the EM algorithm. Since no variational distributions are proposed for the parameters in 8, updating
those parameters is achieved by optimizing logp(W,Y") in equation . As an alternative perspective to

highlight the similarity, we could say that we have assigned a point mass as our variational distribution for



Algorithm 1 SINC Algorithm

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

procedure INITIALIZE(Z, 32, Q)
Set Z = log(a + 1)
s =7Z/N
Q=x"1
while ELBO has not converged do
procedure VI-STEP(B,¢)
for jin1:pdo
while /,L§-t), 0'§-t), qb;t) not converged do
Update p;
Update o
Update ¢,
Set By ; = pig,jPr.;
procedure E-STEP(J)
Update p*
Update d*
procedure M-STEP(B,92,6,,7,7Z)
for jinl:pdo
Update By;
while Q) not converged do
Column-wise update of €2
for jinl:pdo
Update 0.,
Update 7
Update 7, if applicable
Update Z

> Z is Z, column centered

> Equation (6]
> Equation (7))
> Equation (8)

> Equation (|9)
> Equation ((10)
> Equation

> Equations (12}f13])

> Equation
> Equation ([15))
> Equation (|16

> Maximize Equation using L-BFGS

these latent parameters. Optimizing the ELBO would then lead to the same result, since taking the partial

derivative of the ELBO with respect to the variables with point mass variational distributions would result

in optimizing E¢ log[p(W,Y)]. By stating the algorithm in this way, we can interpret our approach as a

proper VI scheme, solved via an EM step similar to [Titsias and Lazaro-Gredilla (2011)), which affords us the

confidence of VI guarantees of previous literature (Blei et al., [2017)).

3.1 VI Step

Here we use a Variational Inference step to estimate the regression coefficients B by updating the free

parameters fix j, O j, and @i j, where py ; and oy ; are the mean and variance, respectively, of By ; when

Yk; = 1, and ¢y ; is the probability v, ; = 1 resulting in By ; # 0. Following the work of [Titsias and

Lazaro-Gredillal (2011)) and |Carbonetto and Stephens| (2012) the free parameters can then be updated as

Mk, = I |:{MT(Zj — Boj)}, — Z(MTM)Zstl,le,k}a

%5
%
Okj = ,
P (MTM) g + 1/vp
0.
-1 "
¢r,; = Logit (log1 — JQW

2




Updating each column of B can then be done independently and, when resources are available, these updates
can be done in parallel. While updating a column of By, each component of u;, o;, ¢; is updated given
all other components. This component-wise update of p;, o, ¢; is repeated until ELBO(uj, o, (bj) has
converged. Once all u and ¢ have been updated, the individual elements of B are assigned E(By, ;) = ik, j @k, ;-
Once the SINC algorithm has converged, as common in variational spike-and-slab literature (Huang et al.,
2016; Miao et al., 2020), we set By ; = pg,; if ¢ ; > 0.5 and By, ; = 0 if ¢ ; < 0.5. The threshold of 0.5 is
equivalent to selecting the median model of Barbieri and Berger| (2004) and can be adjusted to include or

exclude more covariates, but the threshold of 0.5 is the most commonly used.

3.2 E Step

In this step, we focus on updates to the edge inclusion parameter d; ;. For the first step we take the
expectation of the posterior distribution, treating & as the latent variable. We define Q(® | @1 £ ag
Esiom = x (log p(Z,92,B,Bg, 7 | X, M) | Q(t),ﬂ'(t),X). Following the results shown in |[Li and McCormick
(2019)), the E step can be broken into two steps:

* Qij
E5\9“)7mx[5i’j} Py = aij -Fjbz“ ®)
J
1 L—pij | P
§|Q® x X l/ngl(l _ 5i,j) + V127'71§i,j ij ( Vg + 1/12 T ( )

where a;; = p(w; ; | 0;; = 1)m and b;; = p(w; ; | §; ; = 0)(1—7), and (i, §) is the (4, )" entry of the precision

matrix, where ¢ and j € {1,..., P}.

3.3 M Step

The remainder of the unknown parameters can be found by maximizing the posterior distribution with
regards to each of the parameters we are interested in. Here, we first update the column-wise centering
parameters By; independently as

N
_ 2z Ziy — MiB;
n

By, (11)

Next, we update the precision matrix, Q. Following |Li and McCormick| (2019)) and |Wang) (2015)) the condi-
tional distribution of each column of 2 can be found in closed form. For this, let

Q11 wis Si1 si2
Q:( ),(Z—(MB+B0))T(Z—(MB+BO)):( )

T
Wy W22 S21 S22

Then, the conditional distributions are

w12 ~ Normal(—Csis, C),

n A+ Sa2

wag — w12Q11w12 ~ Gamma(l + 35 ), (12)

C = ((s22 + )\)Q_l + diag(u512))_1.




We can then do a column-by-column update as

wiz = —((s22 + A) ()" + diag(d;;))~")s12,
n
A+ S22

wor = wi211wi2 +

The point estimates of §, and 7 are also updated as

_ E¢i,j+a7_1 (14)
T pta,+b, -2’

"= (“”+Z5u—1)/(aﬂ+bﬂ+p(p7_1)

1<j

—2). (15)

If using the adaptive scale parameter, 7, an additional update is done by setting

. ar —14+0.5(px (p—1))
b, 2405, widr

1<j "5 ]

(16)

Finally, the matrix of latent variables can be estimated by finding a point estimate for each entry of the
matrix. This is done by updating each row of the matrix independent of the others. As shown in [Yang et al.

(2017)), the objective function to optimize with respect to Z is

log P(Z | X, M, Bo, B, 2) =~ 3~ | 3" Flay +15) = Ts() + (X)) = Y- Fla) + Flsa)) | -
S 108|945 S (Zi— (Bo+ MiB)QZ — (Bo+ MiB),  (17)

i=1
where T is the log-gamma function, and s(z;) = Z;’:l x;5. To accomplish optimization of each Z; we use
the limited-memory quasi-Newton (L-BFGS) algorithm, which is a quasi-newton gradient descent method
that makes use of the inverse gradient to direct where to search through the variable space.

For posterior inference, we iterate through the VI step, which iterates between updating ¢y ;, ur,j, and
Ok,j, and the E and M steps, which update 2 one column at a time, until the algorithm has converged.
For both the VI and the M steps, we run each of those steps until the respective parameter estimates have
converged. We determine the algorithm to have converged if the ELBO changes by less than a predefined
tolerance from one iteration to the next. To obtain a selected network and set of covariates based on these
posterior estimates, we select edges ¢, j with p; ; in equation @D > 0.50, and covariate associations with ¢y j
in equation > 0.50. In practice, both the p7 ; and ¢y, ; values, which reflect the posterior probabilities for
the selection of edges and covariates, tend to converge to values close to 0 or close to 1. A similar trend has
been noted by Kook et al.| (2020), who reported that the variational parameters for the marginal posterior

probabilities of inclusion tended to become more widely separated as the algorithm converges.

4 Simulation Study

We now compare the performance of our method to existing approaches in a simulation setting designed to

mimic the application to microbiome data described later in the paper.
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4.1 Simulation Setup

Simulated data were generated with the following steps. First the covariates, M, were generated from a
normal distribution MVNorm(0,I,), and subsequently scaled. The values of the regression coefficients B,
related to M, were then sampled. Each element of B, By j, was assigned either a random value between
[—1, —0.5] with probability 0.1, a value in [0.5, 1] with probability 0.1, or else 0. Each By; was then sampled
from the interval [6,8] with probability 0.2, and from [2,4] with probability 0.8. This allowed for some
variables to have larger counts and others to be sparser, as common in microbiome data. Simulated counts
were then sampled by first drawing Z from MVNorm(MB + By, ©2), with Q as described below, and then
assigning a as exp(Z). Finally, h; was sampled as a random draw from Dirichlet(ex;), and X; drawn from a
Multinomial(h;, nint(n;)), with n; generated from a Normal(3000, 250), allowing for samples to have different
numbers of total counts, where nint() represents the nearest integer function. We set p = 100, ¢ = 50 and
n = 300.

To explore performance for a range of possible network structures, we simulated a variety of configurations.
These networks were created using the R package huge (Jiang et al., [2019). For this simulation, we used a
band, cluster, hub, and random graph structure. An example of what these networks look like can be seen
in Figure[l} Band graphs and random graphs are common test cases for network learning, while the hub and
cluster graphs capture some aspects of biological networks, such as highly connected nodes and community
structure (Girvan and Newman, [2002). The probability of an edge in the network was set to 0.025 for the
random graph and 0.30 for each cluster in the cluster graph. The bandwidth in the graph was set to 3 and
the number of hubs in the hub graph was set to 3. The precision matrix € used to generate the simulated
data was also constructed using the function huge.generate of the R package huge |Jiang et al.| (2019).
Parameters v and u of huge.generate, which control the off-diagonal elements of the precision matrix and

magnitude of the partial correlations, were set to 1 and 0.0001, respectively.

Band Hub Cluster Random

Figure 1: Simulation study: Example networks used in the simulation studies. Black boxes represent true
edges, and light gray boxes correspond to no edge. For the cluster and random graphs, the actual networks
that generated the data were different for each simulated data set, but each simulation kept the blocked

shape or random network, respectively.

The results we report below for our proposed model were obtained with the following hyperparameter
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settings. Fairly non-informative priors were set by choosing a, = by = 2 in the prior probability of inclusion
(2) of each covariate. The same setting was used for the hyperparameters a, and b, in Equation , which
determines the prior probability of an edge being included. The standard deviation of the prior on the selected
regression coefficients, vg in equation , was set to 1. Following guidelines given by |Wang| (2015) and |Li
and McCormick| (2019), we set v1 = 10, the standard deviation in prior on the off-diagonal precision
matrix entries corresponding to selected edges, and fit the model across a grid of values, ranging from 0.0001
to 0.1, of v, the prior standard deviation of off-diagonal elements of the precision matrix corresponding to
non selected edges. We then chose the final model by using the v value that gave sparsity closest to 0.10.
This sparsity level was selected arbitrarily, and did not result in any specific advantage for our method, as
none of the simulation networks had sparsity equal to 0.10. Finally, the rate parameter A of equation ,
which appears in the prior on diagonal elements of the precision matrix, was set to 150. We also compare
the model when the scaling parameter, 7, is learned, and use a Gamma(2,2) prior to do so. We comment on

the sensitivity of the results to parameter choices in Section [£.3] below.

4.2 Simulation Results

We compare the performance of our method to several existing alternative approaches in terms of accuracy
in network estimation and covariate selection. For comparison, we used mLDM (Yang et al., 2017, which is
specifically designed for estimating networks of compositional data while controlling for covariates, and mSSL-
DPE (Deshpande et al., |2019)), which we applied to the centered log ratio (CLR) transformed version of the
simulated count data, a common method to account for the compositionality (Fang et al., 2017; Kurtz et al.|
2015). For network estimation, we also considered SpiecEasi (Kurtz et all |2015), which applies graphical
LASSO to the CLR-transformed data. These methods were applied by using the default selection criteria in
their respective R packages. To more precisely characterize factors contributing to the network estimation
performance of the SINC method, we apply a version of SINC with the covariate effects B constrained to
be 0. A comparison of the results from this constrained version of SINC to those of SpiecEasi reflects the
performance advantages arising from differences in the network estimation procedure, while comparison to
the full unconstrained SINC method provides quantitative insight on the benefit of simultaneous estimation
of covariate effects on network recovery. Similarly, for the comparison of variable selection accuracy, we
apply a constrained version of SINC with €2 fixed to the identity matrix. Comparison of the results from
this approach to those of the full unconstrained SINC method illustrates the added value of accounting for
the residual covariance in estimation of B.

We report results in terms of true positive rate (TPR), false positive rate (FPR), F1 score, and Matthew’s
correlation coefficient (MCC). For edge selection, we also report the area under the curve (AUC). This was
calculated, for the SINC method, over a grid of vy values, and for the mLDM and mSSL-DPE methods by
using the LASSO penalization parameter for the coefficients associated with the best selected graph, and

then varying the graph penalization parameter over a grid of values. The AUC for SpiecEasi was calculated
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Network estimation accuracy

TPR FPR F1 MCC AUC [[TPR FPR Fl MCC AUC
Random Hub
mSSL-DPE 0.000 0.015 0.000 -0.019 0.499 |[ 0.001 0.024 0.001 -0.021 0.450
SpiecEasi 0.013 0.009 0.018 0.005 0.563 || 0.011 0.009 0.015 0.003 0.528
mLDM 0277 0.181  0.067 0.039  0.560 || 0.440 0.248 0.080 0.069  0.602
SINC (B = 0) 0276 0225 0.056 0.020 0542 || 0.253 0.241 0.038 0.004  0.507
SINC (7 =1) 0.420 0.093 0.167 0.169  0.750 || 0.175 0.096 0.059 0.037 0.613
SINC (7 learned) | 0.598 0.091  0.237 0.263 0.838 || 0.294 0.094 0.098 0.094 0.689
Cluster Band
mSSL-DPE 0.005 0.0181 0.008 -0.0230 0.446 || 0.003 0.022 0.004 -0.032 0.468
SpiecEasi 0.013 0.010 0.0182 0.005  0.563 || 0.012 0.009 0.020 0.007 0.544
mLDM 0232 0155 0.126  0.051  0.544 || 0.440 0.248 0.080 0.069  0.602
SINC (B = 0) 0.272 0229 0.110 0.024  0.534 || 0.294 0242 0.114 0.028  0.533
SINC (7 = 1) 0.294 0.084 0.223 0.169  0.678 || 0.311 0.088 0.230 0.175 0.685
SINC (7 learned) | 0.411 0.080 0.306 0.261  0.741 || 0.446 0.089 0.312 0.269 0.737

Table 1: Simulation results for network selection. mSSL-DPE refers to the method of [Deshpande et al.
(2019), SpiecEasi to the method of [Kurtz et al.| (2015), mLDM to [Yang et al.| (2017), SINC (B = 0) to the
modified version of the proposed model with the covariate estimates fixed, and SINC to the proposed model.

Random, Hub, Cluster, and Band refer to the underlying shape of the network, as illustrated in Figure

Variable selection accuracy

| TPR FPR  Fl MCC || TPR FPR  Fl MCC
Random Hub
mSSL-DPE 0.840 0.000 0.912 0.898 || 0.868 0.000 0.929 0.915
mLDM 0.609 0.003 0.751 0.734 || 0.612 0.003 0.754  0.738
SINC (2 =1) 0.808 0.003 0.871 0.889 || 0.813 0.001 0.887  0.894
SINC (1 =1) 0.914 0.001 0.943 0.953 || 0.925 0.000 0.952 0.960
SINC (7 learned) | 0.917 0.000 0.947 0.956 || 0.926 0.001 0.952 0.960
Cluster Band
mSSL-DPE 0.837 0.000 0.910 0.900 || 0.853 0.000 0.920 0.906
mLDM 0.605 0.003 0.747 0.730 || 0.597 0.003 0.741  0.725
SINC (2 =1) 0.791 0.006 0.854 0.873 || 0.808 0.000 0.887  0.893
SINC (1 =1) 0.908 0.000 0.941 0.951 || 0.921 0.001 0.947 0.957
SINC (r learned) | 0.910 0.000 0.942 0.952 || 0.922 0.000 0.950 0.959

Table 2: Simulation results for covariate selection. mSSL-DPE refers to the method of [Deshpande et al.
(2019), mLDM to the method of |[Yang et al.| (2017), SINC (€2 = I) to the modified version of the proposed
model with the precision matrix fixed, and SINC to the proposed model. SpiecEasi is omitted from the
comparison, as it does not perform selection or adjustment for covariates. Random, Hub, Cluster, and Band

refer to the underlying shape of the network, as illustrated in Figure
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by varying the penalization parameter. Tables[l| and [2| show the results for network estimation and variable
selection, respectively. From Table[I} we can see that mSSL-DPE and SpiecEasi are generally not competitive
in terms of their performance, with low F1, MCC, and AUC values. This is likely because mSSL-DPE was
not designed for compositional data, and SpiecEasi is not able to account for the effects of the covariates on
the counts. We also see that mLDM performs better than the other two methods but is still outperformed by
the proposed model, which does better in all F1, MCC, and AUC scores across all of the network structures
except the hub structure. Finally, we see that when the proposed model does not control for additional
covariates, the network estimation scores decrease and are comparable to the other methods. Across all
methods, SINC while learning 7 performed best in all network structures in terms of F1, MCC, and AUC.
The performance metrics for SINC are pretty similar across all network types, though the best performance
is achieved on the random graph, while the hub and cluster settings are more challenging. From Table [2| we
can see that mSSL-DPE performs quite well in selecting the covariates of interest. In fact, its performance
is very close to the proposed model, SINC, on all metrics. Similarly, the proposed model while holding the
estimated network and precision matrix fixed performs well for coefficient estimation, but does not do as
well as mSSL-DPE and the full version of the proposed model. Additionally, we did not see any significant
difference in performance in the full SINC models when 7 is fixed or learned. SpiecEasi is not included in
Table 2] as it is not able to select or adjust for relevant covariates, which is a limitation of the method.

We did not compare our model to MCMC approaches because of the computational complexity resulting
from a lack of conjugacy. We did, however, experiment by using a Monte Carlo draw to update €2 at each
iteration of SINC, and found that the point estimates of SINC without a Monte Carlo step were very close

to the mean of the Monte Carlo draws.

4.3 Influence of parameters

An advantage of using spike-and-slab priors for covariate and network edge selection, over penalized methods,
is given by the flexible level of sparsity induced on the regression coeflicients and the precision matrix
entries. For example, Li and McCormick (2019) show that d; ; from equation is comparable to the
penalty parameter, A, in the graphical LASSO (Dempster| |1972). However, d; ; is unique to each edge and
is adaptively learned from the data. In Figure [2| we show this advantage over penalized methods by plotting
the estimated coefficients and precision matrix values, for a smaller simulation scenario with p = 10, ¢ = 15,
and n = 5000, using SINC (with 7 fixed at 1) and the penalization based method mLDM, while varying
the sparsity-inducing parameters. The top-left plot shows the estimated B coefficients by the proposed
model when increasing the variance parameter vg of the spike-and-slab prior in equation . The top-
right plot shows the estimated B coefficients via mLDM when increasing the LASSO penalty parameter.
The bottom-left plot shows the estimated off-diagonal values of the precision matrix 2 when increasing the
variance parameter vg in equation and the bottom-right plot shows the estimated off-diagonal estimates

of the precision matrix when increasing the graphical LASSO penalty parameter. In all plots, red lines
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correspond to true associations in the simulated data, and black lines correspond to coefficients representing
no underlying association. The flat trend in the red lines of the plots related to SINC shows that the
estimated covariate effects and precision matrix entries corresponding to true associations are stable, while

for mLDM, depicted at bottom, they get shrunken to zero as the penalty parameters increase.
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Figure 2: Simulation study: The top-left plot shows the estimated B coefficients by the proposed model
when increasing the variance parameter vg of the spike-and-slab prior . The top-right plot shows the
estimated B coefficients via mLDM when increasing the LASSO penalty parameter. The bottom-left plot
shows the estimated off-diagonal values of the precision matrix 2 when increasing the variance parameter
1 in and the bottom-right plot shows the estimated off-diagonal estimates of the precision matrix when
increasing the graphical LASSO penalty parameter. In all plots, —o- lines correspond to true associations in

the simulated data, and -x- lines correspond to coeflicients representing no underlying association.

We conclude this section by providing some comments on the sensitivity of the results to the choice of
the hyperparameters. As shown in Figure [2] with sufficient data, the estimates of € and B are stable for
increasing values of 1, in the prior of equation , and vpg, in the prior of equation , respectively. These
parameters, however, affect the sparsity of the selection. In particular, as vy increases, holding all other
parameters constant, the selected network becomes sparser. Similarly, as vy, which appears in the prior of

equation , increases, holding v constant, the network sparsity increases. In recent work using this type of
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mixture prior, |Li and McCormick| (2019) and Rockova and George| (2014) have suggested holding v; constant
while varying vg. It should be apparent, then, that increasing v while holding all other parameters constant
decreases the number of selected coefficients, as increasing vp is analogous to increasing 7. The remainder
of the hyperparameters influence sparsity as well, but to a lesser extent. For example, changing a, and b, in
the prior given in equation to put more weight on larger values of 7 results in sparser networks. Similarly,
selecting a~ and b, in the prior of equation to reflect a stronger prior belief in larger 6. values results
in an increase in the number of selected coefficients. Since 7 and 6., are both updated at each iteration of
the SINC algorithm, selecting relatively non-informative priors, such as the ones used in the simulations of
a, = by = 2, allows the sparsity levels to be primarily controlled by vy and vp. Alternative choices that
would also be appropriate include a, = b, = 1, a more non-informative setting corresponding to a uniform
prior on the unit interval, or a, = 1 and b, = p, which would more strongly favor sparsity, as discussed in
Rockova and George (2014). We found that our variable selection results were not overly sensitive to the
choice of these parameters. Increasing A\ also increases the network sparsity because it changes the scale of
the estimated €2 values by making them smaller. Appropriate A\ values need to be selected based on the scale

of the data that is being used.

5 Application to a study of the vaginal microbiome in pregnancy

In this section, we apply our proposed method to data from the Multi'Omic Microbiome Study - Pregnancy
Initiative (MOMS-PI), an NIH-funded study aimed at characterizing the microbiome and its role in shaping
maternal and infant health. Previous research has demonstrated that immune and metabolic changes during
pregnancy reshape the microbiome, which undergoes large shifts during the course of pregnancy. The vaginal
microbiome in particular has been shown to change early in pregnancy (Serrano et al.,|2019)) and be predictive
of pregnancy outcomes such as preterm birth (Fettweis et al., |2019)).

The MOMS-PI study involved following pregnant women throughout pregnancy and for a short term after
childbirth. Participants in the MOMS-PI study were asked to provide samples from the mouth, skin, vagina
and rectum. Multiple omic technologies were used to process the collected samples including microbiome
profiling, metabolomics, and quantification of cytokine abundances via immunoproteomics. Cytokines, in
particular, are one mechanism by which the host regulates the composition of the vaginal microbiome.
The data was obtained from the R package HMP2Data and consists of 596 subjects that were sampled across
multiple visits. For our analysis, we focus on samples collected at the first baseline visit. Of the 596 subjects,
225 subjects had both the microbiome and cytokine profiling of the vagina available at this time point. We
consider these 225 subjects in the analysis. To avoid the inclusion of very rare taxa, the OTUs were filtered
for inclusion in the analysis using the following rule: the absolute abundance of an OTU had to be greater
than 1 for at least 10 percent of the subjects, resulting in 90 OTUs. All 29 cytokines profiled were included

as covariates. For the analysis, the cytokine data was transformed to the log scale and centered.
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We applied the SINC method to estimate the interaction between vaginal microbes, as well as the interplay
between vaginal cytokines and microbial abundances. We used the same hyperparameter settings as in the
simulation: vg =1, ay, =2, b, = 2, v1 =10, A = 150, ar = 2, by = 2, set vy = 0.01, a value that, in the
simulations, achieved a sparsity level of 0.10, and fixed 7 to 1. Since we are controlling for cytokine counts
when estimating the microbiome network, we are more confident in the selection as we do not expect to

select an edge between two microbes that may be related only via their common dependence on a cytokine.

5.1 MOMS-PI Results

Figure [Bp shows the adjacency matrix of the microbial network inferred from the MOMS-PI data, with filled
boxes representing selected edges, together with a plot of the number of edges for each OTU in[3p. A network
diagram of the inferred microbial network is shown in in Figure [3f, with node sizes representing the degree
of the nodes, so the larger a node, the more edges that node has with other nodes. In these plots, OTUs
are grouped based on their phylum (Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, Fusobacteria,
and TMT). Looking at the adjacency matrix and network representation, we notice that Actinobacteria have
few shared edges with Bacteroidetes, Proteobacteria and Fusobacteria, instead sharing the majority of their
inter-phylum edges with Firmicutes, while the other phyla (Firmicutes, Bacteroidetes, Proteobacteria and
Fusobacteria) show no trend in inter-phylum edges. We also notice that within the Firmicutes subnetwork,
OTUs of the genus Lactobacillus (OTU 1 through 26 in the adjacency matrix) form their own subnetwork
with very few inter-genus connections. Also, from the node degrees plot we can see that many Firmicutes
have large numbers of edges. Indeed, when looking at the most connected nodes of the inferred microbial
network, we found that 5 of the 6 most connected OTUs belong to the Firmicutes phylum.

Next, we show the inference on the microbe-cytokine association network. Figure [] shows the adjacency
matrix of the selected microbe-cytokine associations, with microbes colored based on phylum. We observe
clear patterns of association, with both cytokines that show relationships to many OTUs, and OTUs that
show relationships with several cytokines. In particular, we see that the cytokines IP-10, IL-1b, IL-17A,
FGF basic, and IL-8 have the most associations with OTU abundances. When looking at which OTUs have
the most associations with cytokines, we found that 6 of the 10 most connected are Lactobacillus. This is
also seen in Figure {4f where many of the first 26 microbes (columns) have several cytokine associations.
Lactobacillus has previously been shown to be largely influenced by cytokines (Valenti et al.l |2018]).

We also compare the results from SINC to those from SpiecEasi (Kurtz et al.,2015) and the B-constrained
version of SINC, and found that the two methods that do not control for covariates shared 22 edges that were
not selected by the proposed model. Two of these edges can be seen in Figure [b] which shows the network
of a subset of three microbes and three cytokines estimated by SINC, as well as the network of the same
subset of microbes estimated by SpiecEasi and a variant of SINC with the B coefficients not estimated. We
hypothesize that SINC did not select the same edges as the other two methods, i.e. the edge between OTUs
14 and 19 and the edge between OTUs 19 and 20, because edges selected by methods that do not control for
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Figure 3: Case study: Plot a): Adjacency matrix of the microbial network inferred from the MOMS-PI data,
with filled boxes representing selected edges. Plot b): number of edges for each OTU, listed in the same

order as in the adjacency matrix. Plot ¢): Network diagram of the inferred microbial network, with node
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OTU (plotted on the x axis).

cytokines may incorrectly determine an edge when microbe pairs have a mutual association with a cytokine.
This can be seen in Figure [5| where OTUs 14,19, and 20 all have an association with IP-10. This illustrates

the ability of our model to discover covariate effects and a sparse network accounting for these effects.

6 Discussion

In this paper, we have introduced a novel Bayesian hierarchical model for count data that allows for simul-
taneous estimation of covariate dependence and network interactions. By accounting for covariate selection,
simultaneous estimation methods are able to control for those variables, which ultimately leads to more
accurate network estimation. We have considered multivariate count data, and specifically compositional
data that have a fixed sum constraint, and have modeled the data using a Dirichlet-multinomial likelihood.
We have accounted for covariates by modeling the log concentration parameters via a Gaussian distribution,
and achieved simultaneous covariate and edge selection via spike-and-slab priors. For posterior inference,
we have implemented a variational Bayes approach that includes an expectation-minimization step to en-
able efficient estimation. We have shown through simulations that the proposed model outperforms existing
methods in its accuracy of network recovery. This is due, in part, to the flexibility of the hierarchical model,
as discussed in Section [4.3] which avoids some of the over-shrinkage typical of penalized approaches, as well
as the added accuracy from doing simultaneous covariate and network selection. Finally, we have applied the

proposed method to data from the MOMS-PI study, to estimate the microbial interactions in the vagina, as
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well as the interplay between vaginal cytokines and microbial abundances, providing insight into mechanisms
of host-microbial interaction during pregnancy.

Although other estimation methods, such as EM, could potentially be applied, we found that our unique
hybrid algorithm offers several advantages. As we noted in Section 3, the VI and EM approaches are similar
in many ways. VI, however, can enable additional insight on the uncertainty of the parameter estimates, as
one can think of the EM as a special case of the VI algorithm when the variational distributions are point
estimates. Although this is one potential advantage of the VI estimation of B, we primarily prefer the VI
approach for pragmatic reasons regarding performance, since we found in practice that the VI algorithm for
variable selection is less sensitive to the choice of the hyperparameters (specifically, the standard deviations of
the spike and slab distributions) than alternative approaches for variable selection in the EM framework. This
makes the application of our approach simpler, since we can focus on tuning the parameters for the EMGS
portion of the algorithm. Moreover, Ray and Szabo| (2019) recently demonstrated that the VI algorithm of
Carbonetto and Stephens| (2012)) generally outperforms the EMVS algorithm of [Rockova and George, (2014])
across various simulation settings, suggesting we may be able to obtain more accurate estimates of B under
this approach. Finally, VI methods can be used with discrete spike and slab priors, whereas continuous spike
and slab priors are used with EM methods.

Although our VI scheme is more computationally efficient than MCMC sampling, estimating the latent
variable matrix Z is still computationally expensive and a bottleneck to this problem. For the case study
of this paper, the model ran on a cluster using 25 cores and took 16 minutes (approximately 6.2 CPU
hours). Using the case study data and the default R package settings, mSSL-DPE took 49.4 minutes, and
SpiecEasi took 57 seconds. Even though spiecEasi and mSSL-DPE were much faster, they resulted in less

accurate predictions. Finally, mLDM was much slower and took over 120 hours per simulation. The dramatic
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difference in time between mLDM and SINC is due, in part, to SINC being calibrated for parallel computing.
Not only does the computational complexity of our model scale in p, but because there are p x n latent
variables in Z, the speed of our algorithm also scales with n. Avoiding estimation of these latent variables, or
finding computationally more efficient estimates, would allow for further scalability of the implementation.

Python code implementing the SINC method is available at https://github.com/Nathan-Osborne/SINC/.
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